1
|
Morneau-Vaillancourt G, Palaiologou E, Polderman TJC, Eley TC. Research Review: A review of the past decade of family and genomic studies on adolescent mental health. J Child Psychol Psychiatry 2024. [PMID: 39697100 DOI: 10.1111/jcpp.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Mental health problems and traits capturing psychopathology are common and often begin during adolescence. Decades of twin studies indicate that genetic factors explain around 50% of individual differences in adolescent psychopathology. In recent years, significant advances, particularly in genomics, have moved this work towards more translational findings. METHODS This review provides an overview of the past decade of genetically sensitive studies on adolescent development, covering both family and genomic studies in adolescents aged 10-24 years. We focus on five research themes: (1) co-occurrence or comorbidity between psychopathologies, (2) stability and change over time, (3) intergenerational transmission, (4) gene-environment interplay, and (5) psychological treatment outcomes. RESULTS First, research shows that much of the co-occurrence of psychopathologies in adolescence is explained by genetic factors, with widespread pleiotropic influences on many traits. Second, stability in psychopathology across adolescence is largely explained by persistent genetic influences, whereas change is explained by emerging genetic and environmental influences. Third, contemporary twin-family studies suggest that different co-occurring genetic and environmental mechanisms may account for the intergenerational transmission of psychopathology, with some differences across psychopathologies. Fourth, genetic influences on adolescent psychopathology are correlated with a wide range of environmental exposures. However, the extent to which genetic factors interact with the environment remains unclear, as findings from both twin and genomic studies are inconsistent. Finally, a few studies suggest that genetic factors may play a role in psychological treatment response, but these findings have not yet been replicated. CONCLUSIONS Genetically sensitive research on adolescent psychopathology has progressed significantly in the past decade, with family and twin findings starting to be replicated at the genomic level. However, important gaps remain in the literature, and we conclude by providing suggestions of research questions that still need to be addressed.
Collapse
Affiliation(s)
- Geneviève Morneau-Vaillancourt
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elisavet Palaiologou
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tinca J C Polderman
- Department of Clinical Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry & Social Care, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thalia C Eley
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley Hospital, London, UK
| |
Collapse
|
2
|
Bertie LA, Quiroz JC, Berkovsky S, Arendt K, Bögels S, Coleman JRI, Cooper P, Creswell C, Eley TC, Hartman C, Fjermestadt K, In-Albon T, Lavallee K, Lester KJ, Lyneham HJ, Marin CE, McKinnon A, McLellan LF, Meiser-Stedman R, Nauta M, Rapee RM, Schneider S, Schniering C, Silverman WK, Thastum M, Thirlwall K, Waite P, Wergeland GJ, Wuthrich V, Hudson JL. Predicting remission following CBT for childhood anxiety disorders: a machine learning approach. Psychol Med 2024:1-11. [PMID: 39686883 DOI: 10.1017/s0033291724002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models. METHODS A machine learning approach was applied to predict anxiety disorder remission in a large sample of 2114 anxious youth (5-18 years). Potential predictors included demographic, clinical, parental, and treatment variables with data obtained pre-treatment, post-treatment, and at least one follow-up. RESULTS All machine learning models performed similarly for remission outcomes, with AUC between 0.67 and 0.69. There was significant alignment between the factors that contributed to the models predicting two target outcomes: remission of all anxiety disorders and the primary anxiety disorder. Children who were older, had multiple anxiety disorders, comorbid depression, comorbid externalising disorders, received group treatment and therapy delivered by a more experienced therapist, and who had a parent with higher anxiety and depression symptoms, were more likely than other children to still meet criteria for anxiety disorders at the completion of therapy. In both models, the absence of a social anxiety disorder and being treated by a therapist with less experience contributed to the model predicting a higher likelihood of remission. CONCLUSIONS These findings underscore the utility of prediction models that may indicate which children are more likely to remit or are more at risk of non-remission following CBT for childhood anxiety.
Collapse
Affiliation(s)
- Lizel-Antoinette Bertie
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
- School of Psychology, UNSW, Sydney, Australia
| | - Juan C Quiroz
- Center for Big Data Research, UNSW, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Shlomo Berkovsky
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | - Susan Bögels
- Research Institute Child Development and Education, University of Amsterdam, the Netherlands
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, & King's College London, UK
| | - Peter Cooper
- School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Cathy Creswell
- School of Psychology and Clinical Language Sciences, University of Reading, UK
- Departments of Psychiatry and Experimental Psychology, University of Oxford, UK
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, & King's College London, UK
| | - Catharina Hartman
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, the Netherlands
| | | | - Tina In-Albon
- Clinical Child and Adolescent Psychology and Psychotherapy, Department of Psychology, University of Koblenz-Landau, Landau, Germany
| | | | | | - Heidi J Lyneham
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Carla E Marin
- Yale University, Child Study Center, New Haven, CT, USA
| | - Anna McKinnon
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Lauren F McLellan
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | | | - Maaike Nauta
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Ronald M Rapee
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Silvia Schneider
- Mental Health Research and Treatment Center, Ruhr-Universtät Bochum, Germany
| | - Carolyn Schniering
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | | | | | - Kerstin Thirlwall
- School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Polly Waite
- School of Psychology and Clinical Language Sciences, University of Reading, UK
- Departments of Psychiatry and Experimental Psychology, University of Oxford, UK
| | - Gro Janne Wergeland
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Norway
| | - Viviana Wuthrich
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Jennifer L Hudson
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
- School of Psychology, UNSW, Sydney, Australia
| |
Collapse
|
3
|
Bertie LA, Arendt K, Coleman JRI, Cooper P, Creswell C, Eley TC, Hartman C, Heiervang ER, In-Albon T, Krause K, Lester KJ, Marin CE, Nauta M, Rapee RM, Schneider S, Schniering C, Silverman WK, Thastum M, Thirlwall K, Waite P, Wergeland GJ, Hudson JL. Patterns of sub-optimal change following CBT for childhood anxiety. J Child Psychol Psychiatry 2024; 65:1612-1623. [PMID: 38817012 PMCID: PMC11563922 DOI: 10.1111/jcpp.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Children and adolescents demonstrate diverse patterns of symptom change and disorder remission following cognitive behavioural therapy (CBT) for anxiety disorders. To better understand children who respond sub-optimally to CBT, this study investigated youths (N = 1,483) who continued to meet criteria for one or more clinical anxiety diagnosis immediately following treatment or at any point during the 12 months following treatment. METHODS Data were collected from 10 clinical sites with assessments at pre-and post-treatment and at least once more at 3, 6 or 12-month follow-up. Participants were assigned to one of three groups based on diagnostic status for youths who: (a) retained an anxiety diagnosis from post to end point (minimal responders); (b) remitted anxiety diagnoses at post but relapsed by end point (relapsed responders); and (c) retained a diagnosis at post but remitted to be diagnosis free at end point (delayed responders). Growth curve models assessed patterns of change over time for the three groups and examined predictors associated with these patterns including demographic, clinical and parental factors, as well as treatment factors. RESULTS Higher primary disorder severity, being older, having a greater number of anxiety disorders, having social anxiety disorder, as well as higher maternal psychopathology differentiated the minimal responders from the delayed and relapsed responders at the baseline. Results from the growth curve models showed that severity of the primary disorder and treatment modality differentiated patterns of linear change only. Higher severity was associated with significantly less improvement over time for the minimal and relapsed response groups, as was receiving group CBT, when compared to the delayed response group. CONCLUSIONS Sub-optimal response patterns can be partially differentiated using variables assessed at pre-treatment. Increased understanding of different patterns of change following treatment may provide direction for clinical decision-making and for tailoring treatments to specific groups of clinically anxious youth. Future research may benefit from assessing progress during treatment to detect emerging response patterns earlier.
Collapse
Affiliation(s)
- Lizel-Antoinette Bertie
- School of Psychology, UNSW, Sydney, NSW, Australia
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Kristian Arendt
- Department of Psychology, University of Aarhus, Aarhus, Denmark
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, & King's College London, London, UK
| | - Peter Cooper
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Cathy Creswell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, & King's College London, London, UK
| | - Catharina Hartman
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Einar R Heiervang
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Tina In-Albon
- Clinical Child and Adolescent Psychology and Psychotherapy, Department of Psychology, University of Koblenz-Landau, Landau, Germany
| | - Karen Krause
- Mental Health Research and Treatment Center, Ruhr-Universtät Bochum, Bochum, Germany
| | | | - Carla E Marin
- Yale University, Child Study Center, New Haven, CT, USA
| | - Maaike Nauta
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald M Rapee
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Silvia Schneider
- Mental Health Research and Treatment Center, Ruhr-Universtät Bochum, Bochum, Germany
| | - Carolyn Schniering
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | | | - Mikael Thastum
- Department of Psychology, University of Aarhus, Aarhus, Denmark
| | - Kerstin Thirlwall
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Polly Waite
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Gro Janne Wergeland
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Jennifer L Hudson
- School of Psychology, UNSW, Sydney, NSW, Australia
- Department of Psychological Sciences, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Ricon-Becker I, Cole SW. Transcriptomics and psychotherapy: An integrative review. Brain Behav Immun Health 2024; 42:100867. [PMID: 39881816 PMCID: PMC11776085 DOI: 10.1016/j.bbih.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 01/31/2025] Open
Abstract
Gold-standard psychotherapies like cognitive-behavioral therapy (CBT) show beneficial effects, but patient responses vary, indicating a need to predict and optimize treatment efficacy. Gene expression analysis may offer insights into the interplay between psychosocial processes and biological factors that impact psychopathology and therapeutic response. This integrative review examines 17 studies that assess gene expression in the context of psychotherapy, highlighting innovative frameworks for incorporating gene expression analysis in diagnosis, predicting treatment response, and monitoring treatment progress. Current evidence points to transcriptional control pathways downstream of the hypothalamic-pituitary-adrenal (HPA)-axis and sympathetic nervous system (SNS) signaling pathways, particularly their effects on immune cells (e.g., pro-inflammatory processes and wound healing), as key areas for future research. Higher-level pathway analyses, whether theory-based or empirically driven, appear to offer the most robust framework for future studies. This review also discusses significant limitations of current literature and proposes directions for future research.
Collapse
Affiliation(s)
- Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Steve W. Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
McAusland L, Burton CL, Bagnell A, Boylan K, Hatchard T, Lingley-Pottie P, Al Maruf A, McGrath P, Newton AS, Rowa K, Schachar RJ, Shaheen SM, Stewart S, Arnold PD, Crosbie J, Mattheisen M, Soreni N, Stewart SE, Meier S. The genetic architecture of youth anxiety: a study protocol. BMC Psychiatry 2024; 24:159. [PMID: 38395805 PMCID: PMC10885620 DOI: 10.1186/s12888-024-05583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Anxiety disorders are the most common psychiatric problems among Canadian youth and typically have an onset in childhood or adolescence. They are characterized by high rates of relapse and chronicity, often resulting in substantial impairment across the lifespan. Genetic factors play an important role in the vulnerability toward anxiety disorders. However, genetic contribution to anxiety in youth is not well understood and can change across developmental stages. Large-scale genetic studies of youth are needed with detailed assessments of symptoms of anxiety disorders and their major comorbidities to inform early intervention or preventative strategies and suggest novel targets for therapeutics and personalization of care. METHODS The Genetic Architecture of Youth Anxiety (GAYA) study is a Pan-Canadian effort of clinical and genetic experts with specific recruitment sites in Calgary, Halifax, Hamilton, Toronto, and Vancouver. Youth aged 10-19 (n = 13,000) will be recruited from both clinical and community settings and will provide saliva samples, complete online questionnaires on demographics, symptoms of mental health concerns, and behavioural inhibition, and complete neurocognitive tasks. A subset of youth will be offered access to a self-managed Internet-based cognitive behavioral therapy resource. Analyses will focus on the identification of novel genetic risk loci for anxiety disorders in youth and assess how much of the genetic risk for anxiety disorders is unique or shared across the life span. DISCUSSION Results will substantially inform early intervention or preventative strategies and suggest novel targets for therapeutics and personalization of care. Given that the GAYA study will be the biggest genomic study of anxiety disorders in youth in Canada, this project will further foster collaborations nationally and across the world.
Collapse
Affiliation(s)
- Laina McAusland
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
| | - Christie L Burton
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Alexa Bagnell
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Khrista Boylan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Offord Center for Child Studies, Hamilton, ON, Canada
- Child and Youth Mental Health Program, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Taylor Hatchard
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Youth Wellness Center, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Patricia Lingley-Pottie
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, IWK Health Centre, Halifax, NS, Canada
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Patrick McGrath
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Amanda S Newton
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Karen Rowa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Russell J Schachar
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - S-M Shaheen
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Sam Stewart
- Department of Epidemiology and Community Health, Dalhousie University, Halifax, NS, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jennifer Crosbie
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Manuel Mattheisen
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Epidemiology and Community Health, Dalhousie University, Halifax, NS, Canada
- Department of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Noam Soreni
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Offord Center for Child Studies, Hamilton, ON, Canada
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Pediatric OCD Consultation Service, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - S Evelyn Stewart
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Epidemiology and Community Health, Dalhousie University, Halifax, NS, Canada
- Department of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Singh M, Kumar S. Effect of single nucleotide polymorphisms on the structure of long noncoding RNAs and their interaction with RNA binding proteins. Biosystems 2023; 233:105021. [PMID: 37703988 DOI: 10.1016/j.biosystems.2023.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Long non-coding RNAs (lncRNA) are emerging as a new class of regulatory RNAs with remarkable potential to be utilized as therapeutic targets against many human diseases. Several genome-wide association studies (GWAS) have catalogued Single Nucleotide Polymorphisms (SNPs) present in the noncoding regions of the genome from where lncRNAs originate. In this study, we have selected 67 lncRNAs with GWAS-tagged SNPs and have also investigated their role in affecting the local secondary structures. Majority of the SNPs lead to changes in the secondary structure of lncRNAs to a different extent by altering the base pairing patterns. These structural changes in lncRNA are also manifested in form of alteration in the binding site for RNA binding proteins (RBPs) along with affecting their binding efficacies. Ultimately, these structural modifications may influence the transcriptional and post-transcriptional pathways of these RNAs, leading to the causation of diseases. Hence, it is important to understand the possible underlying mechanism of RBPs in association with GWAS-tagged SNPs in human diseases.
Collapse
Affiliation(s)
- Mandakini Singh
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
7
|
Purves KL, Krebs G, McGregor T, Constantinou E, Lester KJ, Barry TJ, Craske MG, Young KS, Breen G, Eley TC. Evidence for distinct genetic and environmental influences on fear acquisition and extinction. Psychol Med 2023; 53:1106-1114. [PMID: 34474701 PMCID: PMC9975999 DOI: 10.1017/s0033291721002580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Anxiety disorders are highly prevalent with an early age of onset. Understanding the aetiology of disorder emergence and recovery is important for establishing preventative measures and optimising treatment. Experimental approaches can serve as a useful model for disorder and recovery relevant processes. One such model is fear conditioning. We conducted a remote fear conditioning paradigm in monozygotic and dizygotic twins to determine the degree and extent of overlap between genetic and environmental influences on fear acquisition and extinction. METHODS In total, 1937 twins aged 22-25 years, including 538 complete pairs from the Twins Early Development Study took part in a fear conditioning experiment delivered remotely via the Fear Learning and Anxiety Response (FLARe) smartphone app. In the fear acquisition phase, participants were exposed to two neutral shape stimuli, one of which was repeatedly paired with a loud aversive noise, while the other was never paired with anything aversive. In the extinction phase, the shapes were repeatedly presented again, this time without the aversive noise. Outcomes were participant ratings of how much they expected the aversive noise to occur when they saw either shape, throughout each phase. RESULTS Twin analyses indicated a significant contribution of genetic effects to the initial acquisition and consolidation of fear, and the extinction of fear (15, 30 and 15%, respectively) with the remainder of variance due to the non-shared environment. Multivariate analyses revealed that the development of fear and fear extinction show moderate genetic overlap (genetic correlations 0.4-0.5). CONCLUSIONS Fear acquisition and extinction are heritable, and share some, but not all of the same genetic influences.
Collapse
Affiliation(s)
- K. L. Purves
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - G. Krebs
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National and Specialist OCD and Related Disorders Clinic for Young People, South London and Maudsley, London, UK
| | - T. McGregor
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - E. Constantinou
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - K. J. Lester
- School of Psychology, University of Sussex, Brighton, Sussex, UK
| | - T. J. Barry
- Experimental Psychopathology Lab, Department of Psychology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - M. G. Craske
- Department of Psychology, University of California, Los Angeles, California, USA
| | - K. S. Young
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - G. Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - T. C. Eley
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|
8
|
Huang SS, Chen YT, Su MH, Tsai SJ, Chen HH, Yang AC, Liu YL, Kuo PH. Investigating genetic variants for treatment response to selective serotonin reuptake inhibitors in syndromal factors and side effects among patients with depression in Taiwanese Han population. THE PHARMACOGENOMICS JOURNAL 2023; 23:50-59. [PMID: 36658263 DOI: 10.1038/s41397-023-00298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Major depressive disorder (MDD) is associated with high heterogeneity in clinical presentation. In addition, response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably among patients. Therefore, identifying genetic variants that may contribute to SSRI treatment responses in MDD is essential. In this study, we analyzed the syndromal factor structures of the Hamilton Depression Rating Scale in 479 patients with MDD by using exploratory factor analysis. All patients were followed up biweekly for 8 weeks. Treatment response was defined for all syndromal factors and total scores. In addition, a genome-wide association study was performed to investigate the treatment outcomes at week 4 and repeatedly assess all visits during follow-up by using mixed models adjusted for age, gender, and population substructure. Moreover, the role of genetic variants in suicidal and sexual side effects was explored, and five syndromal factors for depression were derived: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. Subsequently, several known genes were mapped to suggestive signals for treatment outcomes, including single-nucleotide polymorphisms (SNPs) in PRF1, UTP20, MGAM, and ENSG00000286536 for psychomotor-insight and in C4orf51 for anorexia. In total, 33 independent SNPs for treatment responses were tested in a mixed model, 12 of which demonstrated a p value <0.05. The most significant SNP was rs2182717 in the ENSR00000803469 gene located on chromosome 6 for the core syndromal factor (β = -0.638, p = 1.8 × 10-4) in terms of symptom improvement over time. Patients with a GG or GA genotype with the rs2182717 SNP also exhibited a treatment response (β = 0.089, p = 2.0 × 10-6) at week 4. Moreover, rs1836075352 was associated with sexual side effects (p = 3.2 × 10-8). Pathway and network analyses using the identified SNPs revealed potential biological functions involved in treatment response, such as neurodevelopment-related functions and immune processes. In conclusion, we identified loci that may affect the clinical response to treatment with antidepressants in the context of empirically defined depressive syndromal factors and side effects among the Taiwanese Han population, thus providing novel biological targets for further investigation.
Collapse
Affiliation(s)
- Shiau-Shian Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Bali Psychiatric Center, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Ting Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Hsin Su
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shih-Jen Tsai
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsi-Han Chen
- Department of Psychiatry, Yang Ji Mental Hospital, Keelung, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.,Institute of Brain Science, National Yang Ming Chiao Tung University, Keelung, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan. .,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan. .,Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Castle D, Feusner J, Laposa JM, Richter PMA, Hossain R, Lusicic A, Drummond LM. Psychotherapies and digital interventions for OCD in adults: What do we know, what do we need still to explore? Compr Psychiatry 2023; 120:152357. [PMID: 36410261 PMCID: PMC10848818 DOI: 10.1016/j.comppsych.2022.152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Despite significant advances in the understanding and treatment of obsessive compulsive disorder (OCD), current treatment options are limited in terms of efficacy for symptom remission. Thus, assessing the potential role of iterative or alternate psychotherapies is important. Also, the potential role of digital technologies to enhance the accessibility of these therapies, should not be underestimated. We also need to embrace the idea of a more personalized treatment choice, being cognisant of clinical, genetic and neuroimaging predictors of treatment response. PROCEDURES Non-systematic review of current literature on emerging psychological and digital therapies for OCD, as well as of potential biomarkers of treatment response. FINDINGS A number of 'third wave' therapies (e.g., Acceptance and Commitment Therapy, Mindfulness-Based Cognitive Therapy) have an emerging and encouraging evidence base in OCD. Other approaches entail employment of elements of other psychotherapies such as Dialectical Behaviour Therapy; or trauma-focussed therapies such as Eye Movement Desensitisation and Reprocessing, and Imagery Rescripting and Narrative Therapy. Further strategies include Danger Ideation Reduction Therapy and Habit Reversal. For these latter approaches, large-scale randomised controlled trials are largely lacking, and the precise role of these therapies in treating people with OCD, remains to be clarified. A concentrated 4-day program (the Bergen program) has shown promising short- and long-term results. Exercise, music, and art therapy have not been adequately tested in people with OCD, but may have an adjunctive role. Digital technologies are being actively investigated for enhancing reach and efficacy of psychological therapies for OCD. Biomarkers, including genetic and neuroimaging, are starting to point to a future with more 'personalised medicine informed' treatment strategizing for OCD. CONCLUSIONS There are a number of potential psychological options for the treatment of people with OCD who do not respond adequately to exposure/response prevention or cognitive behaviour therapy. Adjunctive exercise, music, and art therapy might be useful, albeit the evidence base for these is very small. Consideration should be given to different ways of delivering such interventions, including group-based, concentrated, inpatient, or with outreach, where appropriate. Digital technologies are an emerging field with a number of potential applications for aiding the treatment of OCD. Biomarkers for treatment response determination have much potential capacity and deserve further empirical testing.
Collapse
Affiliation(s)
- David Castle
- Centre for Addiction and Mental Health, 60 White Squirrel Way, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | - Jamie Feusner
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1RB, Canada
| | - Judith M Laposa
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 100 Stokes St., Toronto, Ontario M6J 1H4, Canada
| | - Peggy M A Richter
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Frederick W Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, 2075 Bayview, Toronto, Ontario M4N 3M5, Canada
| | - Rahat Hossain
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Ana Lusicic
- Centre for Addiction and Mental Health, 60 White Squirrel Way, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Lynne M Drummond
- Service for OCD/ BDD, South-West London and St George's NHS Trust, Glenburnie Road, London SW17 7DJ, United Kingdom
| |
Collapse
|
10
|
Duarte RR, Pain O, Furler RL, Nixon DF, Powell TR. Transcriptome-wide association study of HIV-1 acquisition identifies HERC1 as a susceptibility gene. iScience 2022; 25:104854. [PMID: 36034232 PMCID: PMC9403347 DOI: 10.1016/j.isci.2022.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
The host genetic factors conferring protection against HIV type 1 (HIV-1) acquisition remain elusive, and in particular the contributions of common genetic variants. Here, we performed the largest genome-wide association meta-analysis of HIV-1 acquisition, which included 7,303 HIV-1-positive individuals and 587,343 population controls. We identified 25 independent genetic loci with suggestive association, of which one was genome-wide significant within the major histocompatibility complex (MHC) locus. After exclusion of the MHC signal, linkage disequilibrium score regression analyses revealed a SNP heritability of 21% and genetic correlations with behavioral factors. A transcriptome-wide association study identified 15 susceptibility genes, including HERC1, UEVLD, and HIST1H4K. Convergent evidence from conditional analyses and fine-mapping identified HERC1 downregulation in immune cells as a robust mechanism associated with HIV-1 acquisition. Functional studies on HERC1 and other identified candidates, as well as larger genetic studies, have the potential to further our understanding of the host mechanisms associated with protection against HIV-1.
Collapse
Affiliation(s)
- Rodrigo R.R. Duarte
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Oliver Pain
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Timothy R. Powell
- Department of Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| |
Collapse
|
11
|
Schosser A, Fischer-Hansal D, Swoboda MM, Ludwig B, Carlberg L, Swoboda P, Kienesberger K, Bernegger A, Fuxjäger M, Zotter M, Schmelzle N, Inaner M, Koller R, Kapusta ND, Haslacher H, Aigner M, Kasper S, Senft B. BDNF gene polymorphisms predicting treatment response to CBT-based rehabilitation of depression: to be submitted to: European Neuropsychopharmacology. Eur Neuropsychopharmacol 2022; 58:103-108. [PMID: 35453068 DOI: 10.1016/j.euroneuro.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Genetic factors were shown to play a major role in both variation of treatment response and incidence of adverse effects to medication in affective disorders. Nevertheless, there is still a lack of therapygenetic studies, investigating the prediction of psychological therapy outcomes from genetic markers. Neuroplasticity and one of its mediators, brain-derived neurotrophic factor (BDNF), are potential research targets in this field. We aimed to investigate Tag SNP polymorphisms of the BDNF gene in depressed patients treated with cognitive behavioral therapy (CBT) in the context of a standardized 6-weeks outpatient rehabilitation program. Treatment response was assessed calculating the mean differences in BDI-II (Beck Depression Inventory) scores from admission to discharge. Six BDNF SNPs, including the Val66Met polymorphism (rs6265), were genotyped. Both genotypic data and BDI-II-scores at admission and discharge were available for 277 patients. Three SNPs, rs10501087 (p = 0.005, FDRp=0.015), rs11030104 (p = 0.006, FDRp=0.012), and the Val66Met polymorphism (rs6265, p<0.001, FDRp=0.006), were significantly associated with treatment response in depressed patients, even after multiple testing correction using the false discovery rate method (FDRp). We conclude that BDNF might serve as promising genetic marker for treatment response to psychological treatment in depression. However, due to our limited sample size, further studies are needed to disentangle the role of BDNF as potential therapygenetic marker.
Collapse
Affiliation(s)
- Alexandra Schosser
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Zentren für seelische Gesundheit, BBRZ-Med, Vienna, Austria; Faculty of Medicine, Sigmund Freud University, Freudplatz 3, Vienna 1020, Austria; Arbeitsgemeinschaft für Verhaltensmodifikation, Salzburg, Austria.
| | - Daniela Fischer-Hansal
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Zentren für seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Marleen M Swoboda
- Department of Psychiatry and Psychotherapy, Karl Landsteiner University for Health and Science, Tulln, Austria
| | - Birgit Ludwig
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Neurology, Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Laura Carlberg
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Patrick Swoboda
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Klemens Kienesberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Bernegger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; St. John of God Hospital, Vienna, Austria
| | - Monika Fuxjäger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Melanie Zotter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Zentren für seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Nicolas Schmelzle
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michelle Inaner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Romina Koller
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Nestor D Kapusta
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Aigner
- Department of Psychiatry and Psychotherapy, Karl Landsteiner University for Health and Science, Tulln, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Birgit Senft
- Zentren für seelische Gesundheit, BBRZ-Med, Vienna, Austria
| |
Collapse
|
12
|
Wannemüller A, Kumsta R, Jöhren HP, Eley TC, Teismann T, Moser D, Rayner C, Breen G, Coleman J, Schaumburg S, Blackwell SE, Margraf J. Genes in treatment: Polygenic risk scores for different psychopathologies, neuroticism, educational attainment and IQ and the outcome of two different exposure-based fear treatments. World J Biol Psychiatry 2021; 22:699-712. [PMID: 33970774 DOI: 10.1080/15622975.2021.1907708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Evidence for a genetic influence on psychological treatment outcome so far has been inconsistent, likely due to the focus on candidate genes and the heterogeneity of the disorders treated. Using polygenic risk scores (PRS) in homogenous patient samples may increase the chance of detecting genetic influences. METHODS A sample of 342 phobic patients treated either for clinically relevant dental fear (n = 189) or other (mixed) phobic fears (n = 153) underwent highly standardised exposure-based CBT. A brief five-session format was used to treat dental fear, whereas longer multi-session treatments were used with the mixed-fear cohort. PRS were calculated based on large genetic studies of Neuroticism, Educational Attainment (EA), Intelligence, and four psychopathology domains. We compared PRS of post-treatment and follow-up remitters and non-remitters and regressed PRS on fear reduction percentages. RESULTS In the dental fear cohort, EA PRS were associated with treatment outcomes, i.e. drop-out, short- and long-term remission state, fear reduction, and attendance of subsequent dental appointments. In the mixed fear treatment cohort, no gene effects were observable. CONCLUSIONS Results indicate the importance of EA-related traits for outcomes following brief, but not long, standardised exposure-based CBT. Such use of PRS may help inform selection and tailoring of treatments.
Collapse
Affiliation(s)
- André Wannemüller
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Tobias Teismann
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Christopher Rayner
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Jonathan Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Svenja Schaumburg
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Simon E Blackwell
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
13
|
Ask H, Cheesman R, Jami ES, Levey DF, Purves KL, Weber H. Genetic contributions to anxiety disorders: where we are and where we are heading. Psychol Med 2021; 51:2231-2246. [PMID: 33557968 DOI: 10.1017/s0033291720005486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anxiety disorders are among the most common psychiatric disorders worldwide. They often onset early in life, with symptoms and consequences that can persist for decades. This makes anxiety disorders some of the most debilitating and costly disorders of our time. Although much is known about the synaptic and circuit mechanisms of fear and anxiety, research on the underlying genetics has lagged behind that of other psychiatric disorders. However, alongside the formation of the Psychiatric Genomic Consortium Anxiety workgroup, progress is rapidly advancing, offering opportunities for future research.Here we review current knowledge about the genetics of anxiety across the lifespan from genetically informative designs (i.e. twin studies and molecular genetics). We include studies of specific anxiety disorders (e.g. panic disorder, generalised anxiety disorder) as well as those using dimensional measures of trait anxiety. We particularly address findings from large-scale genome-wide association studies and show how such discoveries may provide opportunities for translation into improved or new therapeutics for affected individuals. Finally, we describe how discoveries in anxiety genetics open the door to numerous new research possibilities, such as the investigation of specific gene-environment interactions and the disentangling of causal associations with related traits and disorders.We discuss how the field of anxiety genetics is expected to move forward. In addition to the obvious need for larger sample sizes in genome-wide studies, we highlight the need for studies among young people, focusing on specific underlying dimensional traits or components of anxiety.
Collapse
Affiliation(s)
- Helga Ask
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosa Cheesman
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eshim S Jami
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Kirstin L Purves
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Heike Weber
- Department of Psychology, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Liu HK, He SJ, Zhang JG. A bioinformatic study revealed serotonergic neurons are involved in the etiology and therapygenetics of anxiety disorders. Transl Psychiatry 2021; 11:297. [PMID: 34011923 PMCID: PMC8134630 DOI: 10.1038/s41398-021-01432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic factors contribute to the susceptibility of anxiety disorders (ADs) and responses to associated cognitive-behavioral therapy (CBT). However, the type of brain cell affected by the related genes remains unclear. Previous studies have indicated various important brain neurons associated with psychiatric disorders, highlighting the necessity to study the cellular basis of anxiety. We assembled 37 AD-related genes and 23 CBT-related genes from recent large-scale genome-wide association studies, and then investigated their cell-type specificity in single-cell transcriptome data via an expression weighted cell type enrichment method. Additionally, to investigate the cellular differences between ADs and other psychiatric disorders, we excluded the genes associated with major depressive disorder, bipolar disorder, and neuroticism, resulting in 29 AD-specific genes. Remarkably, results indicate that serotonergic neurons are significantly associated with both AD-related and CBT-related genes, despite the two gene sets showing no overlap. These observations provide evidence that serotonergic neurons are involved in the etiology and therapygenetics of ADs. Moreover, results also showed that serotonergic neurons are associated with AD-specific genes, providing a supplementary finding that is in opposition to previous studies that found no evidence for the association between serotonergic neurons and psychiatric disorders via the same strategy. In summary, the current study found that serotonergic neurons are involved in the etiology and therapygenetics of ADs, providing insights into their genetic and cellular basis. Further, this cellular difference study may deepen our understanding of ADs and other psychiatric disorders.
Collapse
Affiliation(s)
- Han-Kui Liu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, China
| | - Si-Jie He
- Shijiazhuang BGI Genomics Co., Ltd, Shijiazhuang, China
| | | |
Collapse
|
15
|
Schiele MA, Reif A, Lin J, Alpers GW, Andersson E, Andersson G, Arolt V, Bergström J, Carlbring P, Eley TC, Esquivel G, Furmark T, Gerlach AL, Hamm A, Helbig-Lang S, Hudson JL, Lang T, Lester KJ, Lindefors N, Lonsdorf TB, Pauli P, Richter J, Rief W, Roberts S, Rück C, Schruers KRJ, Thiel C, Wittchen HU, Domschke K, Weber H, Lueken U. Therapygenetic effects of 5-HTTLPR on cognitive-behavioral therapy in anxiety disorders: A meta-analysis. Eur Neuropsychopharmacol 2021; 44:105-120. [PMID: 33483252 DOI: 10.1016/j.euroneuro.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
There is a recurring debate on the role of the serotonin transporter gene linked polymorphic region (5-HTTLPR) in the moderation of response to cognitive behavioral therapy (CBT) in anxiety disorders. Results, however, are still inconclusive. We here aim to perform a meta-analysis on the role of 5-HTTLPR in the moderation of CBT outcome in anxiety disorders. We investigated both categorical (symptom reduction of at least 50%) and dimensional outcomes from baseline to post-treatment and follow-up. Original data were obtained from ten independent samples (including three unpublished samples) with a total of 2,195 patients with primary anxiety disorder. No significant effects of 5-HTTLPR genotype on categorical or dimensional outcomes at post and follow-up were detected. We conclude that current evidence does not support the hypothesis of 5-HTTLPR as a moderator of treatment outcome for CBT in anxiety disorders. Future research should address whether other factors such as long-term changes or epigenetic processes may explain further variance in these complex gene-environment interactions and molecular-genetic pathways that may confer behavioral change following psychotherapy.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jiaxi Lin
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg W Alpers
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Evelyn Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Division of Psychology, Linköping University, Linköping, Sweden
| | - Volker Arolt
- Institute of Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Jan Bergström
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Per Carlbring
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Thalia C Eley
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Gabriel Esquivel
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands and Mondriaan Mental Health Center, Maastricht, The Netherlands
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Alexander L Gerlach
- Department of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Alfons Hamm
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Sylvia Helbig-Lang
- Department of Clinical Psychology and Psychotherapy, University of Hamburg, Hamburg, Germany
| | - Jennifer L Hudson
- Department of Psychology, Centre for Emotional Health, Macquarie University, Sydney, NSW, Australia
| | - Thomas Lang
- Christoph-Dornier-Foundation for Clinical Psychology, Bremen, Germany; Department of Psychology and Methods, Jacobs University Bremen, Germany
| | - Kathryn J Lester
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Nils Lindefors
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Region Stockholm, Sweden
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), and Center of Mental Health, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Richter
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Winfried Rief
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Philipps University Marburg, Marburg, Germany
| | - Susanna Roberts
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, United Kingdom
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Region Stockholm, Sweden
| | - Koen R J Schruers
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands and Mondriaan Mental Health Center, Maastricht, The Netherlands
| | - Christiane Thiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Ulrike Lueken
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Hartwell EE, Feinn R, Morris PE, Gelernter J, Krystal J, Arias AJ, Hoffman M, Petrakis I, Gueorguieva R, Schacht JP, Oslin D, Anton RF, Kranzler HR. Systematic review and meta-analysis of the moderating effect of rs1799971 in OPRM1, the mu-opioid receptor gene, on response to naltrexone treatment of alcohol use disorder. Addiction 2020; 115:1426-1437. [PMID: 31961981 PMCID: PMC7340566 DOI: 10.1111/add.14975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS There is wide inter-individual variability in response to the treatment of alcohol use disorder (AUD) with the opioid receptor antagonist naltrexone. To identify patients who may be most responsive to naltrexone treatment, studies have examined the moderating effect of rs1799971, a single nucleotide polymorphism (SNP) that encodes a non-synonymous substitution (Asn40Asp) in the mu-opioid receptor gene, OPRM1. The aims of this study were to: (1) conduct a systematic review of randomized clinical trials (RCTs); (2) assess the bias of the available studies and gauge publication bias; and (3) meta-analyze the interaction effect of the Asn40Asp SNP on the response to naltrexone treatment. METHODS We searched for placebo-controlled RCTs that examined the effect of Asn40Asp on the response to naltrexone treatment of heavy drinking or AUD. We tested the hypothesis that the minor (Asp40) allele was associated with a greater reduction in five alcohol consumption measures (relapse to heavy drinking, abstinence, percentage of heavy drinking days, percentage of days abstinent and drinks per day) in naltrexone-treated participants by meta-analyzing the interaction effects using a random effects model. RESULTS Seven RCTs met the study criteria. Overall, risk of bias was low and we observed no evidence of publication bias. Of the five alcohol consumption outcomes considered, there was a nominally significant moderating effect of the Asn40Asp SNP only on drinks per day (d = -0.18, P = 0.02). However, the effect was not significant when multiple comparisons were taken into account. CONCLUSIONS From the evidence to date, it remains unclear whether rs1799971, the OPRM1 Asn40Asp single nucleotide polymorphism, predicts naltrexone treatment response in individuals with alcohol use disorder or heavy drinking.
Collapse
Affiliation(s)
- Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Cpl. Michael J. Crescenz VAMC, Philadelphia, PA 19104
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Richard Feinn
- Department of Medical Sciences, Frank H. Netter School of Medicine at Quinnipiac University, North Haven, CT 06473
| | - Paige E. Morris
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Joel Gelernter
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, and VA Connecticut Healthcare, West Haven, CT 06516
| | - John Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Albert J. Arias
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michaela Hoffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Ismene Petrakis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Ralitza Gueorguieva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Joseph P. Schacht
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - David Oslin
- Mental Illness Research, Education and Clinical Center, Cpl. Michael J. Crescenz VAMC, Philadelphia, PA 19104
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Raymond F. Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Cpl. Michael J. Crescenz VAMC, Philadelphia, PA 19104
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
17
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
18
|
Tammimies K, Li D, Rabkina I, Stamouli S, Becker M, Nicolaou V, Berggren S, Coco C, Falkmer T, Jonsson U, Choque-Olsson N, Bölte S. Association between Copy Number Variation and Response to Social Skills Training in Autism Spectrum Disorder. Sci Rep 2019; 9:9810. [PMID: 31285490 PMCID: PMC6614458 DOI: 10.1038/s41598-019-46396-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Challenges in social communication and interaction are core features of autism spectrum disorder (ASD) for which social skills group training (SSGT) is a commonly used intervention. SSGT has shown modest and heterogeneous effects. One of the major genetic risk factors in ASD is rare copy number variation (CNV). However, limited information exists whether CNV profiles could be used to aid intervention decisions. Here, we analyzed the rare genic CNV carrier status for 207 children, of which 105 received SSGT and 102 standard care as part of a randomized clinical trial for SSGT. We found that being a carrier of rare genic CNV did not have an impact on the SSGT outcome measured by the parent-report Social Responsiveness Scale (SRS). However, when stratifying by pathogenicity and size of the CNVs, we identified that carriers of clinically significant and large genic CNVs (>500 kb) showed inferior SRS outcomes at post-intervention (P = 0.047 and P = 0.036, respectively) and follow-up (P = 0.008 and P = 0.072, respectively) when adjusting for standard care effects. Our study provides preliminary evidence that carriers of clinically significant and large genic CNVs might not benefit as much from SSGT as non-carriers. Our results indicate that genetic information might help guide the modifications of interventions in ASD.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ielyzaveta Rabkina
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Sofia Stamouli
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Veronika Nicolaou
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Steve Berggren
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
| | - Christina Coco
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
| | - Torbjörn Falkmer
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Bentley, Australia
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ulf Jonsson
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Nora Choque-Olsson
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Services, Region, Stockholm, Sweden.
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Bentley, Australia.
| |
Collapse
|
19
|
Rayner C, Coleman JRI, Purves KL, Hodsoll J, Goldsmith K, Alpers GW, Andersson E, Arolt V, Boberg J, Bögels S, Creswell C, Cooper P, Curtis C, Deckert J, Domschke K, El Alaoui S, Fehm L, Fydrich T, Gerlach AL, Grocholewski A, Hahlweg K, Hamm A, Hedman E, Heiervang ER, Hudson JL, Jöhren P, Keers R, Kircher T, Lang T, Lavebratt C, Lee SH, Lester KJ, Lindefors N, Margraf J, Nauta M, Pané-Farré CA, Pauli P, Rapee RM, Reif A, Rief W, Roberts S, Schalling M, Schneider S, Silverman WK, Ströhle A, Teismann T, Thastum M, Wannemüller A, Weber H, Wittchen HU, Wolf C, Rück C, Breen G, Eley TC. A genome-wide association meta-analysis of prognostic outcomes following cognitive behavioural therapy in individuals with anxiety and depressive disorders. Transl Psychiatry 2019; 9:150. [PMID: 31123309 PMCID: PMC6533285 DOI: 10.1038/s41398-019-0481-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder and the anxiety disorders are highly prevalent, disabling and moderately heritable. Depression and anxiety are also highly comorbid and have a strong genetic correlation (rg ≈ 1). Cognitive behavioural therapy is a leading evidence-based treatment but has variable outcomes. Currently, there are no strong predictors of outcome. Therapygenetics research aims to identify genetic predictors of prognosis following therapy. We performed genome-wide association meta-analyses of symptoms following cognitive behavioural therapy in adults with anxiety disorders (n = 972), adults with major depressive disorder (n = 832) and children with anxiety disorders (n = 920; meta-analysis n = 2724). We estimated the variance in therapy outcomes that could be explained by common genetic variants (h2SNP) and polygenic scoring was used to examine genetic associations between therapy outcomes and psychopathology, personality and learning. No single nucleotide polymorphisms were strongly associated with treatment outcomes. No significant estimate of h2SNP could be obtained, suggesting the heritability of therapy outcome is smaller than our analysis was powered to detect. Polygenic scoring failed to detect genetic overlap between therapy outcome and psychopathology, personality or learning. This study is the largest therapygenetics study to date. Results are consistent with previous, similarly powered genome-wide association studies of complex traits.
Collapse
Affiliation(s)
- Christopher Rayner
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Trust, NIHR Biomedical Research Centre for Mental Health, London, UK
| | - Kirstin L Purves
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Hodsoll
- Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kimberley Goldsmith
- Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Georg W Alpers
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Evelyn Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Susan Bögels
- Research Institute Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Cathy Creswell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Peter Cooper
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Charles Curtis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Trust, NIHR Biomedical Research Centre for Mental Health, London, UK
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, 97078, Germany
| | - Katharina Domschke
- Faculty of Medicine, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samir El Alaoui
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Lydia Fehm
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander L Gerlach
- Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
| | - Anja Grocholewski
- Department of Psychology, University of Braunschweig, Braunschweig, Germany
| | - Kurt Hahlweg
- Department of Psychology, University of Braunschweig, Braunschweig, Germany
| | - Alfons Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Erik Hedman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Einar R Heiervang
- Division of Mental Health and Addiction, Department of Child and Adolescent Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Jennifer L Hudson
- Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, Australia
| | - Peter Jöhren
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Robert Keers
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Thomas Lang
- Christoph-Dornier-Stiftung für Klinische Psychologie, Institut für Klinische Psychologie und Psychotherapie, Bremen, Germany
| | - Catharina Lavebratt
- Neurogenetics Unit, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sang-Hyuck Lee
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Trust, NIHR Biomedical Research Centre for Mental Health, London, UK
| | - Kathryn J Lester
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Nils Lindefors
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Maaike Nauta
- Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, Groningen, The Netherlands
| | - Christiane A Pané-Farré
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Ronald M Rapee
- Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Winfried Rief
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Susanna Roberts
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martin Schalling
- Neurogenetics Unit, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Schneider
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Wendy K Silverman
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Teismann
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Mikael Thastum
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Andre Wannemüller
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
- Dental Clinic Bochum, Bochum, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, 97078, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, 97078, Germany
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Trust, NIHR Biomedical Research Centre for Mental Health, London, UK.
| | - Thalia C Eley
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Trust, NIHR Biomedical Research Centre for Mental Health, London, UK.
| |
Collapse
|
20
|
Andersson E, Crowley JJ, Lindefors N, Ljótsson B, Hedman-Lagerlöf E, Boberg J, El Alaoui S, Karlsson R, Lu Y, Mattheisen M, Kähler AK, Svanborg C, Mataix-Cols D, Mattsson S, Forsell E, Kaldo V, Schalling M, Lavebratt C, Sullivan PF, Rück C. Genetics of response to cognitive behavior therapy in adults with major depression: a preliminary report. Mol Psychiatry 2019; 24:484-490. [PMID: 30410065 PMCID: PMC6477793 DOI: 10.1038/s41380-018-0289-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Major depressive disorder is heritable and a leading cause of disability. Cognitive behavior therapy is an effective treatment for major depression. By quantifying genetic risk scores based on common genetic variants, the aim of this report was to explore the utility of psychiatric and cognitive trait genetic risk scores, for predicting the response of 894 adults with major depressive disorder to cognitive behavior therapy. The participants were recruited in a psychiatric setting, and the primary outcome score was measured using the Montgomery Åsberg Depression Rating Scale-Self Rated. Single-nucleotide polymorphism genotyping arrays were used to calculate the genomic risk scores based on large genetic studies of six phenotypes: major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, intelligence, and educational attainment. Linear mixed-effect models were used to test the relationships between the six genetic risk scores and cognitive behavior therapy outcome. Our analyses yielded one significant interaction effect (B = 0.09, p < 0.001): the autism spectrum disorder genetic risk score correlated with Montgomery Åsberg Depression Rating Scale-Self Rated changes during treatment, and the higher the autism spectrum disorder genetic load, the less the depressive symptoms decreased over time. The genetic risk scores for the other psychiatric and cognitive traits were not related to depressive symptom severity or change over time. Our preliminary results indicated, as expected, that the genomics of the response of patients with major depression to cognitive behavior therapy were complex and that future efforts should aim to maximize sample size and limit subject heterogeneity in order to gain a better understanding of the use of genetic risk factors to predict treatment outcome.
Collapse
Affiliation(s)
- Evelyn Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatric Genomics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Nils Lindefors
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Brjánn Ljótsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hedman-Lagerlöf
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Samir El Alaoui
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mattheisen
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Biomedicine and Center for Integrated Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Svanborg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Simon Mattsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Erik Forsell
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Viktor Kaldo
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychology, Faculty of Health and Life Sciences, Linnaeus University, Växjö, Sweden
| | - Martin Schalling
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Patrick F Sullivan
- Center for Psychiatric Genomics, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Anxiety disorders are among the most common mental disorders with a lifetime prevalence of over 20%. Clinically, anxiety is not thought of as a homogenous disorder, but is subclassified in generalized, panic, and phobic anxiety disorder. Anxiety disorders are moderately heritable. This review will explore recent genetic and epigenetic approaches to anxiety disorders explaining differential susceptibility risk. RECENT FINDINGS A substantial portion of the variance in susceptibility risk can be explained by differential inherited and acquired genetic and epigenetic risk. Available data suggest that anxiety disorders are highly complex and polygenic. Despite the substantial progress in genetic research over the last decade, only few risk loci for anxiety disorders have been identified so far. This review will cover recent findings from large-scale genome-wide association studies as well as newer epigenome-wide studies. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. We discuss prospects for clinical translation of genetic findings and future directions for research.
Collapse
|
22
|
Predicting treatment outcome for anxiety disorders with or without comorbid depression using clinical, imaging and (epi)genetic data. Curr Opin Psychiatry 2019; 32:1-6. [PMID: 30480619 DOI: 10.1097/yco.0000000000000468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The present review complements previous reviews on prediction research in anxiety disorders with a focus on clinical, imaging and genetic as well as epigenetic factors and aims to provide recommendations for the design of future integrative studies in adults as well as children. RECENT FINDINGS Clinical factors predicting worse outcome such as a diagnosis of social anxiety disorder, comorbid depression and certain cognitive, behavioral and personality traits as well as low socioeconomic status were confirmed in large clinical studies. Imaging factors focusing on the fear and anxiety network were repeatedly described as predicting therapy response in small exploratory studies. The plethora of candidate gene studies has now been complemented by large genome-wide association studies and small epigenetic investigations with the need for replication in larger samples. SUMMARY The present status of research on predictors for therapy response in anxiety disorders, in particular on imaging and genetic factors, is still fragmentary. Some clinical factors for poorer outcome, though, have been consistently replicated and should be considered in the revision of therapy guidelines. There is a definite need for large integrative studies at the national and international level integrating multiple levels of biomarkers at different stages of development.
Collapse
|
23
|
Bortoluzzi A, Salum GA, da Rosa ED, Chagas VDS, Castro MAA, Manfro GG. DNA methylation in adolescents with anxiety disorder: a longitudinal study. Sci Rep 2018; 8:13800. [PMID: 30218003 PMCID: PMC6138655 DOI: 10.1038/s41598-018-32090-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Anxiety disorders (AD) typically manifest in children and adolescents and might persist into adulthood. However, there are still few data concerning epigenetic mechanisms associated with onset, persistence or remission of AD over time. We investigated a cohort of adolescents and young adults at baseline (age; 13.19 ± 2.38) and after 5 years and classified them according to the AD diagnosis and their longitudinal trajectories into 4 groups: (1) Typically Developing Comparisons (TDC; control group, n = 14); (2) Incident (AD in the second evaluation only, n = 11); (3) Persistent (AD in both evaluations, n = 14) and (4) Remittent (AD in the first evaluation only, n = 8). DNA methylation was evaluated with the Infinium HumanMethylation450 BeadChip from saliva samples collected at both evaluations. Gene set enrichment analysis was applied to consider biological pathways. We found decreased DNA methylation in TDC group while the chronic cases of AD presented hypermethylation in central nervous system development pathways. Moreover, we showed that this persistent group also presented hypermethylation while the other three groups were associated with hypomethylation in nervous system development pathway. Incidence and remission groups were associated with increased and decreased methylation in neuron development pathways, respectively. Larger studies are likely to detect specific genes relevant to AD.
Collapse
Affiliation(s)
- Andressa Bortoluzzi
- Anxiety Disorders Outpatient Program for Children and Adolescents, Universidade Federal do Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
- Post Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
| | - Giovanni Abrahão Salum
- Anxiety Disorders Outpatient Program for Children and Adolescents, Universidade Federal do Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Eduarda Dias da Rosa
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | | | - Gisele Gus Manfro
- Anxiety Disorders Outpatient Program for Children and Adolescents, Universidade Federal do Rio Grande do Sul, UFRGS/Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
- Post Graduate Program in Neuroscience, Institute of Basic Sciences/Health, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Basic Research and Advanced Investigations in Neurosciences, BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| |
Collapse
|
24
|
Goodwin GM, Holmes EA, Andersson E, Browning M, Jones A, Lass-Hennemann J, Månsson KN, Moessnang C, Salemink E, Sanchez A, van Zutphen L, Visser RM. From neuroscience to evidence based psychological treatments - The promise and the challenge, ECNP March 2016, Nice, France. Eur Neuropsychopharmacol 2018; 28:317-333. [PMID: 29371024 PMCID: PMC5861996 DOI: 10.1016/j.euroneuro.2017.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 12/28/2022]
Abstract
This ECNP meeting was designed to build bridges between different constituencies of mental illness treatment researchers from a range of backgrounds with a specific focus on enhancing the development of novel, evidence based, psychological treatments. In particular we wished to explore the potential for basic neuroscience to support the development of more effective psychological treatments, just as this approach is starting to illuminate the actions of drugs. To fulfil this aim, a selection of clinical psychologists, psychiatrists and neuroscientists were invited to sit at the same table. The starting point of the meeting was the proposition that we know certain psychological treatments work, but we have only an approximate understanding of why they work. The first task in developing a coherent mental health science would therefore be to uncover the mechanisms (at all levels of analysis) of effective psychological treatments. Delineating these mechanisms, a task that will require input from both the clinic and the laboratory, will provide a key foundation for the rational optimisation of psychological treatments. As reviewed in this paper, the speakers at the meeting reviewed recent advances in the understanding of clinical and cognitive psychology, neuroscience, experimental psychopathology, and treatment delivery technology focussed primarily on anxiety disorders and depression. We started by asking three rhetorical questions: What has psychology done for treatment? What has technology done for psychology? What has neuroscience done for psychology? We then addressed how research in five broad research areas could inform the future development of better treatments: Attention, Conditioning, Compulsions and addiction, Emotional Memory, and Reward and emotional bias. Research in all these areas (and more) can be harnessed to neuroscience since psychological therapies are a learning process with a biological basis in the brain. Because current treatment approaches are not fully satisfactory, there is an imperative to understand why not. And when psychological therapies do work we need to understand why this is the case, and how we can improve them. We may be able to improve accessibility to treatment without understanding mechanisms. But for treatment innovation and improvement, mechanistic insights may actually help. Applying neuroscience in this way will become an additional mission for ECNP.
Collapse
Affiliation(s)
- Guy M Goodwin
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Emily A Holmes
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Andersson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Michael Browning
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Andrew Jones
- Psychological Sciences, University of Liverpool, Bedford St South, Liverpool L697ZA, UK
| | - Johanna Lass-Hennemann
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, D- 66123 Saarbrucken, Germany
| | - Kristoffer Nt Månsson
- Department of Psychology, Stockholm University, SE-106 91, Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Psychology, Uppsala University, SE-75105, Uppsala, Sweden
| | - Carolin Moessnang
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany
| | - Elske Salemink
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, Amsterdam, the Netherlands
| | - Alvaro Sanchez
- Ghent University, Department of Experimental Clinical and Health Psychology, Henri Dunantlaan 2, B-9000 Ghent, Belgium
| | - Linda van Zutphen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Universiteitssingel 40; 6229 ER, Maastricht University, Maastricht, the Netherlands
| | - Renée M Visser
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
25
|
Roberts S, Wong CCY, Breen G, Coleman JRI, De Jong S, Jöhren P, Keers R, Curtis C, Lee SH, Margraf J, Schneider S, Teismann T, Wannemüller A, Lester KJ, Eley TC. Genome-wide expression and response to exposure-based psychological therapy for anxiety disorders. Transl Psychiatry 2017; 7:e1219. [PMID: 28850109 PMCID: PMC5611743 DOI: 10.1038/tp.2017.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/09/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure-based psychological treatments for anxiety have high efficacy. However, a substantial proportion of patients do not respond to therapy. Research examining the potential biological underpinnings of therapy response is still in its infancy, and most studies have focussed on candidate genes. To our knowledge, this study represents the first investigation of genome-wide expression profiles with respect to treatment outcome. Participants (n=102) with panic disorder or specific phobia received exposure-based cognitive behavioural therapy. Treatment outcome was defined as percentage reduction from baseline in clinician-rated severity of their primary anxiety diagnosis at post treatment and 6 month follow-up. Gene expression was determined from whole blood samples at three time points using the Illumina HT-12v4 BeadChip microarray. Linear regression models tested the association between treatment outcome and changes in gene expression from pre-treatment to post treatment, and pre-treatment to follow-up. Network analysis was conducted using weighted gene co-expression network analysis, and change in the detected modules from pre-treatment to post treatment and follow-up was tested for association with treatment outcome. No changes in gene expression were significantly associated with treatment outcomes when correcting for multiple testing (q<0.05), although a small number of genes showed a suggestive association with treatment outcome (q<0.5, n=20). Network analysis showed no association between treatment outcome and change in gene expression for any module. We report suggestive evidence for the role of a small number of genes in treatment outcome. Although preliminary, these findings contribute to a growing body of research suggesting that response to psychological therapies may be associated with changes at a biological level.
Collapse
Affiliation(s)
- S Roberts
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - C C Y Wong
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - G Breen
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - J R I Coleman
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - S De Jong
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - P Jöhren
- Dental Clinic Bochum, Bochum, Germany
| | - R Keers
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - C Curtis
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - S H Lee
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - J Margraf
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - S Schneider
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - T Teismann
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - A Wannemüller
- Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - K J Lester
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,School of Psychology, University of Sussex, Brighton, UK,School of Psychology, University of Sussex, Pevensey Building, Brighton BN1 9QH, UK. E-mail:
| | - T C Eley
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK,King’s College London, Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Box PO80, Denmark Hill,16 De Crespigny Park, London SE5 8AF, UKE-mail:
| |
Collapse
|
26
|
Abstract
Anxiety disorders constitute the largest group of mental disorders in most western societies and are a leading cause of disability. The essential features of anxiety disorders are excessive and enduring fear, anxiety or avoidance of perceived threats, and can also include panic attacks. Although the neurobiology of individual anxiety disorders is largely unknown, some generalizations have been identified for most disorders, such as alterations in the limbic system, dysfunction of the hypothalamic-pituitary-adrenal axis and genetic factors. In addition, general risk factors for anxiety disorders include female sex and a family history of anxiety, although disorder-specific risk factors have also been identified. The diagnostic criteria for anxiety disorders varies for the individual disorders, but are generally similar across the two most common classification systems: the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and the International Classification of Diseases, Tenth Edition (ICD-10). Despite their public health significance, the vast majority of anxiety disorders remain undetected and untreated by health care systems, even in economically advanced countries. If untreated, these disorders are usually chronic with waxing and waning symptoms. Impairments associated with anxiety disorders range from limitations in role functioning to severe disabilities, such as the patient being unable to leave their home.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California, USA
| | - Thalia C Eley
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Mohammed R Milad
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Charleston, Massachusetts, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Ronald M Rapee
- Department of Psychology, Centre for Emotional Health, Macquarie University, Sydney, New South Wales, Australia
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Faculty of Science, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
27
|
Coleman JRI, Lester KJ, Roberts S, Keers R, Lee SH, De Jong S, Gaspar H, Teismann T, Wannemüller A, Schneider S, Jöhren P, Margraf J, Breen G, Eley TC. Separate and combined effects of genetic variants and pre-treatment whole blood gene expression on response to exposure-based cognitive behavioural therapy for anxiety disorders. World J Biol Psychiatry 2017; 18:215-226. [PMID: 27376411 DOI: 10.1080/15622975.2016.1208841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. METHODS Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. RESULTS Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q < 0.05, but interactions between genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. CONCLUSIONS We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations.
Collapse
Affiliation(s)
- Jonathan R I Coleman
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK
| | - Kathryn J Lester
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,b School of Psychology, University of Sussex , UK
| | - Susanna Roberts
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK
| | - Robert Keers
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,c School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Sang Hyuck Lee
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,d National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust , London, UK
| | - Simone De Jong
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,d National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust , London, UK
| | - Héléna Gaspar
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,d National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust , London, UK
| | - Tobias Teismann
- e Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum , Germany
| | - André Wannemüller
- e Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum , Germany.,f Dental Clinic Bochum , Bochum , Germany
| | - Silvia Schneider
- e Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum , Germany
| | | | - Jürgen Margraf
- e Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum , Germany
| | - Gerome Breen
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,d National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust , London, UK
| | - Thalia C Eley
- a King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre , London , UK.,d National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust , London, UK
| |
Collapse
|
28
|
Serotonin transporter gene (SLC6A4) polymorphism and susceptibility to a home-visiting maternal-infant attachment intervention delivered by community health workers in South Africa: Reanalysis of a randomized controlled trial. PLoS Med 2017; 14:e1002237. [PMID: 28245280 PMCID: PMC5330451 DOI: 10.1371/journal.pmed.1002237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear recognition of the damaging effects of poverty on early childhood development has fueled an interest in interventions aimed at mitigating these harmful consequences. Psychosocial interventions aimed at alleviating the negative impacts of poverty on children are frequently shown to be of benefit, but effect sizes are typically small to moderate. However, averaging outcomes over an entire sample, as is typically done, could underestimate efficacy because weaker effects on less susceptible individuals would dilute estimation of effects on those more disposed to respond. This study investigates whether a genetic polymorphism of the serotonin transporter gene moderates susceptibility to a psychosocial intervention. METHODS AND FINDINGS We reanalyzed data from a randomized controlled trial of a home-visiting program delivered by community health workers in a black, isiXhosa-speaking population in Khayelitsha, South Africa. The intervention, designed to enhance maternal-infant attachment, began in the third trimester and continued until 6 mo postpartum. Implemented between April 1999 and February 2003, the intervention comprised 16 home visits delivered to 220 mother-infant dyads by specially trained community health workers. A control group of 229 mother-infant dyads did not receive the intervention. Security of maternal-infant attachment was the main outcome measured at infant age 18 mo. Compared to controls, infants in the intervention group were significantly more likely to be securely attached to their primary caregiver (odds ratio [OR] = 1.7, p = 0.029, 95% CI [1.06, 2.76], d = 0.29). After the trial, 162 intervention and 172 control group children were reenrolled in a follow-up study at 13 y of age (December 2012-June 2014). At this time, DNA collected from 279 children (134 intervention and 145 control) was genotyped for a common serotonin transporter polymorphism. There were both genetic data and attachment security data for 220 children (110 intervention and 110 control), of whom 40% (44 intervention and 45 control) carried at least one short allele of the serotonin transporter gene. For these 220 individuals, carrying at least one short allele of the serotonin transporter gene was associated with a 26% higher rate of attachment security relative to controls (OR = 3.86, p = 0.008, 95% CI [1.42, 10.51], d = 0.75), whereas there was a negligible (1%) difference in security between intervention and control group individuals carrying only the long allele (OR = 0.95, p = 0.89, 95% CI [0.45, 2.01], d = 0.03). Expressed in terms of absolute risk, for those with the short allele, the probability of secure attachment being observed in the intervention group was 84% (95% CI [73%, 95%]), compared to 58% (95% CI [43%, 72%]) in the control group. For those with two copies of the long allele, 70% (95% CI [59%, 81%]) were secure in the intervention group, compared to 71% (95% CI [60%, 82%]) of infants in the control group. Controlling for sex, maternal genotype, and indices of socioeconomic adversity (housing, employment, education, electricity, water) did not change these results. A limitation of this study is that we were only able to reenroll 49% of the original sample randomized to the intervention and control conditions. Attribution of the primary outcome to causal effects of intervention in the present subsample should therefore be treated with caution. CONCLUSIONS When infant genotype for serotonin transporter polymorphism was taken into account, the effect size of a maternal-infant attachment intervention targeting impoverished pregnant women increased more than 2.5-fold when only short allele carriers were considered (from d = 0.29 for all individuals irrespective of genotype to d = 0.75) and decreased 10-fold when only those carrying two copies of the long allele were considered (from d = 0.29 for all individuals to d = 0.03). Genetic differential susceptibility means that averaging across all participants is a misleading index of efficacy. The study raises questions about how policy-makers deal with the challenge of balancing equity (equal treatment for all) and efficacy (treating only those whose genes render them likely to benefit) when implementing psychosocial interventions. TRIAL REGISTRATION Current Controlled Trials ISRCTN25664149.
Collapse
|
29
|
Gregory AM, Rijsdijk FV, Eley TC, Buysse DJ, Schneider MN, Parsons M, Barclay NL. A Longitudinal Twin and Sibling Study of Associations between Insomnia and Depression Symptoms in Young Adults. Sleep 2016; 39:1985-1992. [PMID: 27634812 DOI: 10.5665/sleep.6228] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/18/2016] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVES To estimate genetic and environmental influences on the associations between insomnia and depression symptoms concurrently and longitudinally. METHODS Behavioral genetic analyses were conducted on data from the British longitudinal G1219 twin/sibling study. One thousand five hundred fiftysix twins and siblings participated at Time 1 (mean age = 20.3 years, SD = 1.76). Eight hundred sixty-two participated at Time 2 (mean age = 25.2 years, SD = 1.73 years). Participants completed the Insomnia Symptoms Questionnaire and the Short Mood and Feelings Questionnaire to assess symptoms of insomnia and depression respectively. RESULTS Genetic effects accounted for 33% to 41% of the variance of the phenotypes. The phenotypic correlations were moderate (r = 0.34 to r = 0.52). The genetic correlations between the variables were high (0.73-1.00). Genetic effects accounted for a substantial proportion of the associations between variables (50% to 90%). Non-shared environmental effects explained the rest of the variance and covariance of the traits. CONCLUSIONS While genetic effects play a modest role in insomnia and depression symptoms separately, they appear to play a more central role in concurrent and longitudinal associations between these phenotypes. This should be acknowledged in theories explaining these common associations.
Collapse
Affiliation(s)
- Alice M Gregory
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Fruhling V Rijsdijk
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London UK
| | - Thalia C Eley
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London UK
| | - Daniel J Buysse
- Department of Psychiatry, School of Medicine, University of Pittsburgh
| | | | | | - Nicola L Barclay
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
30
|
Keers R, Coleman JR, Lester KJ, Roberts S, Breen G, Thastum M, Bögels S, Schneider S, Heiervang E, Meiser-Stedman R, Nauta M, Creswell C, Thirlwall K, Rapee RM, Hudson JL, Lewis C, Plomin R, Eley TC. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders. PSYCHOTHERAPY AND PSYCHOSOMATICS 2016; 85:146-58. [PMID: 27043157 PMCID: PMC5079103 DOI: 10.1159/000444023] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. METHODS We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. RESULTS The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). CONCLUSIONS Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment.
Collapse
Affiliation(s)
- Robert Keers
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, UK
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jonathan R.I. Coleman
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kathryn J. Lester
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Sussex, Brighton, UK
| | - Susanna Roberts
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerome Breen
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mikael Thastum
- Department of Psychology, University of Aarhus, Aarhus, Denmark
| | - Susan Bögels
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Einar Heiervang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Anxiety Research Network, Haukeland University Hospital, Bergen, Norway
| | | | - Maaike Nauta
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cathy Creswell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Kerstin Thirlwall
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Ronald M. Rapee
- Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, N.S.W., Australia
| | - Jennifer L. Hudson
- Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, N.S.W., Australia
| | - Cathryn Lewis
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert Plomin
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thalia C. Eley
- MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|