1
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
2
|
Yamamoto T, Iizuka Y, Izumi-Yamamoto K, Shirota M, Mori N, Tahara Y, Fujita T, Gotoda T. Overexpression of Slc22a18 facilitates fat accumulation in mice. Biochem Biophys Res Commun 2024; 712-713:149922. [PMID: 38626531 DOI: 10.1016/j.bbrc.2024.149922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
We previously reported that solute carrier family 22 member 18 (Slc22a18) regulates lipid accumulation in 3T3-L1 adipocytes. Here, we provide additional evidence derived from experiments with adenoviral vector expression and genetic manipulation of mice. In primary cultured rat hepatocytes, adenoviral overexpression of mouse Slc22a18 increased triglyceride accumulation and triglyceride synthetic activity, which was decreased in an adenoviral knockdown experiment. Adenoviral overexpression of mouse Slc22a18 in vivo caused massive fatty liver in mice, even under normal dietary conditions. Conversely, adenoviral knockdown of mouse Slc22a18 reduced hepatic lipid accumulation induced by a high-glucose and high-sucrose diet. We created Slc22a18 knockout mice, which grew normally and showed no obvious spontaneous phenotypes. However, compared with control littermates, the knockout mice exhibited decreased hepatic triglyceride content under refeeding conditions, significantly reduced epididymal fat mass, and tended to have lower liver weight in conjunction with leptin deficiency. Finally, we created transgenic mice overexpressing rat Slc22a18 in an adipose-specific manner, which had increased body weight and epididymal fat mass primarily because of increased adipocyte cell volume. In these transgenic mice, a positive correlation was observed between adiposity and the expression levels of the rat Slc22a18 transgene. Taken together, these results indicate that Slc22a18 has positive effects on lipid accumulation in vivo.
Collapse
Affiliation(s)
- Takashi Yamamoto
- Department of Metabolic Biochemistry, Kyorin University, Tokyo, 181-8611, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Disease, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kozue Izumi-Yamamoto
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Midori Shirota
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Nobuko Mori
- Department of Metabolic Biochemistry, Kyorin University, Tokyo, 181-8611, Japan
| | - Yoshikazu Tahara
- Department of Metabolic Biochemistry, Kyorin University, Tokyo, 181-8611, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Takanari Gotoda
- Department of Metabolic Biochemistry, Kyorin University, Tokyo, 181-8611, Japan.
| |
Collapse
|
3
|
Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem 2023; 129:1262-1278. [PMID: 34153200 DOI: 10.1080/13813455.2021.1939387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
4
|
Chun HJ, Kim ER, Lee M, Choi DH, Kim SH, Shin E, Kim JH, Cho JW, Han DH, Cha BS, Lee YH. Increased expression of sodium-glucose cotransporter 2 and O-GlcNAcylation in hepatocytes drives non-alcoholic steatohepatitis. Metabolism 2023:155612. [PMID: 37277060 DOI: 10.1016/j.metabol.2023.155612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
AIMS Steatosis reducing effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in non-alcoholic steatohepatitis (NASH) has been consistently reported in humans, but their mechanism remains uncertain. In this study, we examined the expression of SGLT2 in human livers and investigated the crosstalk between SGLT2 inhibition and hepatic glucose uptake, intracellular O-GlcNAcylation, and autophagic regulation in NASH. MATERIALS AND METHODS Human liver samples obtained from subjects with/without NASH were analyzed. For in vitro studies, human normal hepatocytes and hepatoma cells were treated with SGLT2 inhibitor under high-glucose and high-lipid conditions. NASH in vivo was induced by a high-fat, -fructose, and -cholesterol Amylin liver NASH (AMLN) diet for 10 weeks followed by an additional 10 weeks with/without SGLT2 inhibitor (empagliflozin 10 mg/kg/day). RESULTS Liver samples from subjects with NASH were associated with increased SGLT2 and O-GlcNAcylation expression compared with controls. Under NASH condition (in vitro condition with high glucose and lipid), intracellular O-GlcNAcylation and inflammatory markers were increased in hepatocytes and SGLT2 expression was upregulated; SGLT2 inhibitor treatment blocked these changes by directly reducing hepatocellular glucose uptake. In addition, decreased intracellular O-GlcNAcylation by SGLT2 inhibitor promoted autophagic flux through AMPK-TFEB activation. In the AMLN diet-induced NASH mice model, SGLT2 inhibitor alleviated lipid accumulation, inflammation, and fibrosis through autophagy activation related to decreased SGLT2 expression and O-GlcNAcylation in the liver. CONCLUSIONS This study firstly demonstrates increased SGLT2 expression in NASH and secondly reveals the novel effect of SGLT2 inhibition on NASH by activating autophagy mediated by inhibition of hepatocellular glucose uptake and consequently decreasing intracellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Hye Jin Chun
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Ran Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungbuk 28159, Republic of Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Da Hyun Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soo Hyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eugene Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| | - Yong-Ho Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| |
Collapse
|
5
|
Meng J, Lv Q, Sui A, Xu D, Zou T, Song M, Gong X, Xing S, Wang X. Hyperuricemia induces lipid disturbances by upregulating the CXCL-13 pathway. Am J Physiol Gastrointest Liver Physiol 2022; 322:G256-G267. [PMID: 34935515 DOI: 10.1152/ajpgi.00285.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanism underlying hyperuricemia-induced lipid metabolism disorders is not clear. The purpose of the current study was to investigate the mechanism of lipid disturbances in a hyperuricemia mice model. RNA-Seq showed that differentially expressed genes (DEGs) in the fatty acid synthesis signaling pathway were mainly enriched and CXCL-13 was significantly enriched in protein-protein interaction networks. Western blotting, Q-PCR, and immunofluorescence results further showed that hyperuricemia upregulated CXCL-13 and disturbed lipid metabolism in vivo and in vitro. Furthermore, CXCL-13 alone also promoted the accumulation of lipid droplets and upregulated the expression of FAS and SREBP1, blocking AMPK signaling and activating the PKC and P38 signaling pathways. Silencing CXCL-13 reversed uric-acid-induced lipid droplet accumulation, which further downregulated FAS and SREBP1 expression, inhibited the p38 and PKC signaling, and activated AMPK signaling. In conclusion, hyperuricemia induces lipid metabolism disorders via the CXCL-13 pathway, making CXCL-13 a key regulatory factor linking hyperuricemia and lipid metabolism disorders. These results may provide novel insights for the treatment of hyperuricemia.NEW & NOTEWORTHY The underlying molecular mechanism of hyperuricemia-induced lipid metabolism disorders is still unclear. The study aimed to investigate the mechanism of lipid disturbance in hyperuricemia mice model. To our knowledge, we proposed for the first time that CXCL-13 may be a key regulator of hyperuricemia and lipid metabolism disorders. These results may provide new insights for the clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Jin Meng
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Qiulan Lv
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Aihua Sui
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Daxing Xu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tong Zou
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Miao Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Xuelin Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Shichao Xing
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China.,Qingdao Women and Children's Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaofeng Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
6
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Zhang M, Ceyhan Y, Kaftanovskaya EM, Vasquez JL, Vacher J, Knop FK, Nathanson L, Agoulnik AI, Ittmann MM, Agoulnik IU. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol 2021; 4:416. [PMID: 33772116 PMCID: PMC7998001 DOI: 10.1038/s42003-021-01940-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jean Vacher
- Department of Medicine, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Shu Y, Hassan F, Coppola V, Baskin KK, Han X, Mehta NK, Ostrowski MC, Mehta KD. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis. Mol Metab 2021; 44:101133. [PMID: 33271332 PMCID: PMC7785956 DOI: 10.1016/j.molmet.2020.101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Faizule Hassan
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xianlin Han
- Department of Medicine, UT Health, San Antonio, TX, USA
| | | | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
10
|
Li D, Li S, Xue AZ, Smith Callahan LA, Liu Y. Expression of SREBP2 and cholesterol metabolism related genes in TCGA glioma cohorts. Medicine (Baltimore) 2020; 99:e18815. [PMID: 32195924 PMCID: PMC7220679 DOI: 10.1097/md.0000000000018815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Diffuse gliomas are the most common primary brain tumors. The Cancer Genome Atlas (TCGA) database provides correlative evidence between altered molecular pathways and gliomas. Dysregulated cholesterol homeostasis emerges as a potential indicator of the pathogenesis of gliomas.Mining large cohorts from the TCGA together with database from the Chinese Glioma Genome Atlas (CGGA) for confirmation, we compared gene expression of cholesterol synthesis master regulator SREBP2 and its regulatory networks in low grade glioma (LGG) and glioblastoma (GBM).Our analysis shows that expression of SREBP2 and related genes is lower in GBM than in LGG, indicating that cholesterol metabolism processes, including de novo synthesis, cholesterol uptakes, and cholesterol conversion and efflux, are suppressed in GBM.Overall, our data suggests that SREBP2 transcript could serve as a potential prognosis marker or therapeutic target in diffuse glioma including GBM.
Collapse
Affiliation(s)
- Dali Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Shenglan Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Allen Z. Xue
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura A. Smith Callahan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ying Liu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
11
|
Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer 2020; 122:4-22. [PMID: 31819192 PMCID: PMC6964678 DOI: 10.1038/s41416-019-0650-z] [Citation(s) in RCA: 807] [Impact Index Per Article: 201.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023] Open
Abstract
A common feature of cancer cells is their ability to rewire their metabolism to sustain the production of ATP and macromolecules needed for cell growth, division and survival. In particular, the importance of altered fatty acid metabolism in cancer has received renewed interest as, aside their principal role as structural components of the membrane matrix, they are important secondary messengers, and can also serve as fuel sources for energy production. In this review, we will examine the mechanisms through which cancer cells rewire their fatty acid metabolism with a focus on four main areas of research. (1) The role of de novo synthesis and exogenous uptake in the cellular pool of fatty acids. (2) The mechanisms through which molecular heterogeneity and oncogenic signal transduction pathways, such as PI3K-AKT-mTOR signalling, regulate fatty acid metabolism. (3) The role of fatty acids as essential mediators of cancer progression and metastasis, through remodelling of the tumour microenvironment. (4) Therapeutic strategies and considerations for successfully targeting fatty acid metabolism in cancer. Further research focusing on the complex interplay between oncogenic signalling and dysregulated fatty acid metabolism holds great promise to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Nikos Koundouros
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Effective Food Ingredients for Fatty Liver: Soy Protein β-Conglycinin and Fish Oil. Int J Mol Sci 2018; 19:ijms19124107. [PMID: 30567368 PMCID: PMC6321427 DOI: 10.3390/ijms19124107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity is prevalent in modern society because of a lifestyle consisting of high dietary fat and sucrose consumption combined with little exercise. Among the consequences of obesity are the emerging epidemics of hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Sterol regulatory element-binding protein-1c (SREBP-1c) is a transcription factor that stimulates gene expression related to de novo lipogenesis in the liver. In response to a high-fat diet, the expression of peroxisome proliferator-activated receptor (PPAR) γ2, another nuclear receptor, is increased, which leads to the development of NAFLD. β-Conglycinin, a soy protein, prevents NAFLD induced by diets high in sucrose/fructose or fat by decreasing the expression and function of these nuclear receptors. β-Conglycinin also improves NAFLD via the same mechanism as for prevention. Fish oil contains n-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. Fish oil is more effective at preventing NAFLD induced by sucrose/fructose because SREBP-1c activity is inhibited. However, the effect of fish oil on NAFLD induced by fat is controversial because fish oil further increases PPARγ2 expression, depending upon the experimental conditions. Alcohol intake also causes an alcoholic fatty liver, which is induced by increased SREBP-1c and PPARγ2 expression and decreased PPARα expression. β-Conglycinin and fish oil are effective at preventing alcoholic fatty liver because β-conglycinin decreases the function of SREBP-1c and PPARγ2, and fish oil decreases the function of SREBP-1c and increases that of PPARα.
Collapse
|
13
|
Balusamy SR, Perumalsamy H, Huq MA, Balasubramanian B. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomed Pharmacother 2018; 108:1835-1844. [DOI: 10.1016/j.biopha.2018.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022] Open
|
14
|
Wible RS, Tran QT, Fathima S, Sutter CH, Kensler TW, Sutter TR. Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo. Mol Pharmacol 2018; 93:297-308. [PMID: 29367259 PMCID: PMC5832324 DOI: 10.1124/mol.117.110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
The Kelch-like erythroid-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway is the subject of several clinical trials evaluating the effects of Nrf2 activation on the prevention of cancer and diabetes and the treatment of chronic kidney disease and multiple sclerosis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two distinct series of Nrf2 chemical activators. Previous reports have described activator-specific effects on Nrf2-dependent gene regulation and physiologic outcomes. Here we used a robust chemical genomics approach to characterize expression profiles between D3T and CDDO-Im in livers from wild-type and Nrf2-null mice. At equally efficacious doses in wild-type mice, 406 genes show common RNA responses to both treatments. These genes enriched the Nrf2-regulated pathways of antioxidant defense and xenobiotic metabolism. In addition, 197 and 745 genes were regulated uniquely in response to either D3T or CDDO-Im, respectively. Functional analysis of the D3T-regulated set showed a significant enrichment of Nrf2-regulated enzymes involved in cholesterol biosynthesis. This result was supported by Nrf2-dependent increases in lanosterol synthase and CYP51 protein expression. CDDO-Im had no effect on cholesterol biosynthesis regardless of the dose tested. However, unlike D3T, CDDO-Im resulted in Nrf2-dependent elevation of peroxisome proliferator α and Kruppel-like factor 13, as well as the coactivator peroxisome proliferator γ coactivator 1β, together indicating regulation of β-oxidation and lipid metabolic pathways. These findings provide novel insights into the pharmacodynamic action of these two activators of Keap1-Nrf2 signaling. Although both compounds modify Keap1 to affect canonical cytoprotective gene expression, additional unique sets of Nrf2-dependent genes were regulated by each agent with enrichment of selective metabolic pathways.
Collapse
Affiliation(s)
- Ryan S Wible
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Quynh T Tran
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Samreen Fathima
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Carrie H Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas W Kensler
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas R Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| |
Collapse
|
15
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Mehta D, Mehta KD. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol. Am J Physiol Gastrointest Liver Physiol 2017; 312:G266-G273. [PMID: 28104587 PMCID: PMC5401991 DOI: 10.1152/ajpgi.00373.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
Abstract
Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.
Collapse
Affiliation(s)
- Devina Mehta
- 1Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Kamal D. Mehta
- 2Department of Biological Chemistry and Pharmacology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
17
|
Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2. Int J Biochem Cell Biol 2016; 75:1-10. [PMID: 27032751 DOI: 10.1016/j.biocel.2016.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
Abstract
Sterol regulatory element-binding protein (SREBP)-2 is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid profiles. Phorbol 12-myristate 13-acetate (PMA), which is a common protein kinase C (PKC) activator, was shown to promote the post-translational processing and nuclear translocation of SREBP-2 in hepatic cells in the current study. Following SREBP-2 translocation, the transcripts of its target genes HMGCR and LDLR were upregulated as demonstrated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Electrophoretic mobility shift assays (EMSA) also demonstrated an induced DNA-binding activity on the sterol response element (SRE) domain under PMA treatment. The increase of activated Srebp-2 without the concurrent induced mRNA expression was also observed in an animal model. As the expression of SREBP-2 was not increased by PMA, the activation of PKC was the focus of investigation. Specific PKC isozyme inhibition and overexpression supported that PKCβ was responsible for the promoting effect. Further studies showed that the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not 5' adenosine monophosphate-activated protein kinase (AMPK), were the possible downstream signaling proteins of PKCβ. In conclusion, this study illustrated that PKCβ increased SREBP-2 nuclear translocation in a pathway mediated by MEK/ERK and JNK, rather than the one dictated by AMPK. These results revealed a novel signaling target of PKCβ in the liver cells.
Collapse
|
18
|
Mehta NK, Mehta KD. Protein kinase C-beta: An emerging connection between nutrient excess and obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1491-1497. [DOI: 10.1016/j.bbalip.2014.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/16/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
|
19
|
Caputo M, De Rosa MC, Rescigno T, Zirpoli H, Vassallo A, De Tommasi N, Torino G, Tecce MF. Binding of polyunsaturated fatty acids to LXRα and modulation of SREBP-1 interaction with a specific SCD1 promoter element. Cell Biochem Funct 2014; 32:637-46. [PMID: 25264165 DOI: 10.1002/cbf.3067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/01/2014] [Accepted: 08/23/2014] [Indexed: 01/07/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is the rate limiting enzyme in unsaturated fatty acid biosynthesis. This enzyme has an important role in the regulation of hepatic lipogenesis and lipid oxidation, and alterations in these pathways may lead to several diseases. We examined, in HepG2 cell cultures, the mechanism of SCD1 regulation considering the involvement of two transcription factors: liver X receptor alpha (LXRα) and sterol regulatory element-binding protein-1 (SREBP-1), also investigating the effect of dietary polyunsaturated fatty acids (PUFAs) on this process. The analysis of SCD1 promoter allowed to identify a functional SREBP-1 binding site (SRE 1). LXRα activation increased SCD1 protein level through upregulation of SREBP-1 and its consequent binding to SRE 1 sequence. Polyunsaturated docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) and arachidonic acid (AA, C20:4) were able to reduce SREBP-1 binding to SCD1 promoter, while saturated stearic acid (SA, C18:0) did not give any effect. Surface plasmon resonance analysis showed a direct binding of DHA, EPA and AA to LXRα. These data indicate a direct inhibitory interaction of PUFAs with LXRα, a consequent reduction of SREBP-1 and of its binding to SCD1 promoter. This information provides a mechanism to explain the regulation of lipogenic pathways induced by PUFAs.
Collapse
Affiliation(s)
- Mariella Caputo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hepatic Atypical Protein Kinase C: An Inherited Survival-Longevity Gene that Now Fuels Insulin-Resistant Syndromes of Obesity, the Metabolic Syndrome and Type 2 Diabetes Mellitus. J Clin Med 2014; 3:724-40. [PMID: 26237474 PMCID: PMC4449650 DOI: 10.3390/jcm3030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/25/2022] Open
Abstract
This review focuses on how insulin signals to metabolic processes in health, why this signaling is frequently deranged in Western/Westernized societies, how these derangements lead to, or abet development of, insulin-resistant states of obesity, the metabolic syndrome and type 2 diabetes mellitus, and what our options are for restoring insulin signaling, and glucose/lipid homeostasis. A central theme in this review is that excessive hepatic activity of an archetypal protein kinase enzyme, “atypical” protein kinase C (aPKC), plays a critically important role in the development of impaired glucose metabolism, systemic insulin resistance, and excessive hepatic production of glucose, lipids and proinflammatory factors that underlie clinical problems of glucose intolerance, obesity, hepatosteatosis, hyperlipidemia, and, ultimately, type 2 diabetes. The review suggests that normally inherited genes, in particular, the aPKC isoforms, that were important for survival and longevity in times of food scarcity are now liabilities in times of over-nutrition. Fortunately, new knowledge of insulin signaling mechanisms and how an aberration of excessive hepatic aPKC activation is induced by over-nutrition puts us in a position to target this aberration by diet and/or by specific inhibitors of hepatic aPKC.
Collapse
|
21
|
Mehta KD. Emerging role of protein kinase C in energy homeostasis: A brief overview. World J Diabetes 2014; 5:385-392. [PMID: 24936260 PMCID: PMC4058743 DOI: 10.4239/wjd.v5.i3.385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/16/2014] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C-β (PKCβ), a member of the lipid-activated serine/threonine PKC family, has been implicated in a wide range of important cellular processes. Very recently, the novel role of PKCβ in the regulation of triglyceride homeostasis via regulating mitochondrial function has been explored. In this review, I aim to provide an overview of PKCβ regarding regulation by lipids and recently gained knowledge on its role in energy homeostasis. Alterations in adipose PKCβ expression have been shown to be crucial for diet-induced obesity and related metabolic abnormalities. High-fat diet is shown to induce PKCβ expression in white adipose tissue in an isoform- and tissue-specific manner. Genetically manipulated mice devoid of PKCβ are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Available data support the model in which PKCβ functions as a “diet-sensitive” metabolic sensor whose induction in adipose tissue by high-fat diet is among the initiating event disrupting mitochondrial homeostasis via intersecting with p66Shc signaling to amplify adipose dysfunction and have systemic consequences. Alterations in PKCβ expression and/or function may have important implications in health and disease and warrants a detailed investigation into the downstream target genes and the underlying mechanisms involved. Development of drugs that target the PKCβ pathway and identification of miRs specifically controlling PKCβ expression may lead to novel therapeutic options for treating age-related metabolic disease including fatty liver, obesity and type 2 diabetes.
Collapse
|
22
|
A novel link between Slc22a18 and fat accumulation revealed by a mutation in the spontaneously hypertensive rat. Biochem Biophys Res Commun 2013; 440:521-6. [DOI: 10.1016/j.bbrc.2013.09.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022]
|
23
|
SOCS3-mediated blockade reveals major contribution of JAK2/STAT5 signaling pathway to lactation and proliferation of dairy cow mammary epithelial cells in vitro. Molecules 2013; 18:12987-3002. [PMID: 24141248 PMCID: PMC6270101 DOI: 10.3390/molecules181012987] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a cytokine-induced negative feedback-loop regulator of cytokine signaling. More and more evidence has proved it to be an inhibitor of signal transducers and activators of transcription 5 (STAT5). Here, we used dairy cow mammary epithelial cells (DCMECs) to analyze the function of SOCS3 and the interaction between SOCS3 and STAT5a. The expression of SOCS3 was found in cytoplasm and nucleus of DCMECs by fluorescent immunostaining. Overexpression and inhibition of SOCS3 brought a remarkable milk protein synthesis change through the regulation of JAK2/STAT5a pathway activity, and SOCS3 expression also decreased SREBP-1c expression and fatty acid synthesis. Inhibited STAT5a activation correlated with reduced SOCS3 expression, which indicated that SOCS3 gene might be one of the targets of STAT5a activation, DCMECs treated with L-methionine (Met) resulted in a decrease of SOCS3 expression. SOCS3 could also decrease cell proliferation and viability by CASY-TT detection. Together, our findings indicate that SOCS3 acts as an inhibitor of JAK2/STAT5a pathway and disturbs fatty acid synthesis by decreasing SREBP-1c expression, which validates its involvement in both milk protein synthesis and fat synthesis. In aggregate, these results reveal that low SOCS3 expression is required for milk synthesis and proliferation of DCMECs in vitro.
Collapse
|
24
|
Schmitz-Peiffer C. The tail wagging the dog--regulation of lipid metabolism by protein kinase C. FEBS J 2013; 280:5371-83. [PMID: 23587021 DOI: 10.1111/febs.12285] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/19/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
Upon their discovery almost 40 years ago, isoforms of the lipid-activated protein kinase C (PKC) family were initially regarded only as downstream effectors of the second messengers calcium and diacylglycerol, undergoing activation upon phospholipid hydrolysis in response to acute stimuli. Subsequently, several isoforms were found to be associated with the inhibitory effects of lipid over-supply on glucose homeostasis, especially the negative cross-talk with insulin signal transduction, observed upon accumulation of diacylglycerol in insulin target tissues. The PKC family has therefore attracted much attention in diabetes and obesity research, because intracellular lipid accumulation is strongly correlated with defective insulin action and the development of type 2 diabetes. Causal roles for various isoforms in the generation of insulin resistance have more recently been confirmed using PKC-deficient mice. However, during characterization of these animals, it became increasingly evident that the enzymes play key roles in the modulation of lipid metabolism itself, and may control the supply of lipids between tissues such as adipose and liver. Molecular studies have also demonstrated roles for PKC isoforms in several aspects of lipid metabolism, such as adipocyte differentiation and hepatic lipogenesis. While the precise mechanisms involved, especially the identities of protein substrates, are still unclear, the emerging picture suggests that the currently held view of the contribution of PKC isoforms to metabolism is an over-simplification. Although PKCs may inhibit insulin signal transduction, these enzymes are not merely downstream effectors of lipid accumulation, but in fact control the fate of fatty acids, thus the tail wags the dog.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Ito M, Nagasawa M, Omae N, Tsunoda M, Ishiyama J, Ide T, Akasaka Y, Murakami K. A novel JNK2/SREBP-1c pathway involved in insulin-induced fatty acid synthesis in human adipocytes. J Lipid Res 2013; 54:1531-1540. [PMID: 23515281 DOI: 10.1194/jlr.m031591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin plays important roles in apoptosis and lipid droplet (LD) formation, and it is one of the determinants involved in increasing fat mass. However, the mechanisms underlying insulin-induced enlargement of fat mass remain unclear. Our previous study suggested that insulin-induced increases in LDs are related to c-Jun N-terminal kinase (JNK)2-mediated upregulation of cell death-inducing DNA fragmentation factor-α-like effector (CIDE)C in human adipocytes. However, other genes involved in insulin/JNK2-induced LD formation are unknown. Here, we explored insulin/JNK2-regulated genes to clarify the mechanism of enlargement of LDs. Microarray analysis revealed that an insulin/JNK2 pathway mostly regulates expression of genes involved in lipid metabolism, including sterol regulatory element binding protein (SREBP)-1, a key transcription factor of lipogenesis. The JNK inhibitor SP600125 blocked insulin-induced upregulation of SREBP-1c expression. Small interfering RNA-mediated depletion of JNK2 suppressed insulin-induced nuclear accumulation of the active form of SREBP-1 protein and upregulation of SREBP-1c. Furthermore, depletion of JNK2 attenuated insulin-induced upregulation of SREBP-1c target lipogenic enzymes, leading to reduced de novo fatty acid synthesis. In addition, JNK2 coimmunoprecipitated with SREBP-1, reinforcing the correlation between JNK2 and SREBP-1. These results suggest that SREBP-1c is a novel insulin/JNK2-regulated gene and that the JNK2/SREBP-1c pathway mediates insulin-induced fatty acid synthesis, which may lead to enlargement of LDs in human adipocytes.
Collapse
Affiliation(s)
- Minoru Ito
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Michiaki Nagasawa
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan.
| | - Naoki Omae
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Masaki Tsunoda
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Junichi Ishiyama
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Tomohiro Ide
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Yunike Akasaka
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| | - Koji Murakami
- Discovery Research Laboratories, Kyorin Pharmaceutical Company Limited, Tochigi 329-0114, Japan
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To review the aberrations of insulin signaling to atypical protein kinase C (aPKC) in muscle and liver that generate cardiovascular risk factors, including obesity, hypertriglyceridemia, hypercholesterolemia, insulin resistance and glucose intolerance in type 2 diabetes mellitus (T2DM), and obesity-associated metabolic syndrome (MetSyn). RECENT FINDINGS aPKC and Akt mediate the insulin effects on glucose transport in muscle and synthesis of lipids, cytokines and glucose in liver. In T2DM, whereas Akt and aPKC activation are diminished in muscle, and hepatic Akt activation is diminished, hepatic aPKC activation is conserved. Imbalance between muscle and hepatic aPKC activation (and expression of PKC-ι in humans) by insulin results from differential downregulation of insulin receptor substrates that control phosphatidylinositol-3-kinase. Conserved activation of hepatic aPKC in hyperinsulinemic states of T2DM, obesity and MetSyn is problematic, as excessive activation of aPKC-dependent lipogenic, gluconeogenic and proinflammatory pathways increases the cardiovascular risk factors. Indeed, selective inhibition of hepatic aPKC by adenoviral-mediated expression of kinase-inactive aPKC, or newly developed small-molecule biochemicals, dramatically improves abdominal obesity, hepatosteatosis, hypertriglyceridemia, hypercholesterolemia, insulin resistance and glucose intolerance in murine models of obesity and T2DM. SUMMARY Hepatic aPKC is a unifying target for treating multiple clinical abnormalities that increase the cardiovascular risk in insulin-resistant states of obesity, MetSyn and T2DM.
Collapse
Affiliation(s)
- Robert V Farese
- Medical and Research Services, James A. Haley Veterans Medical Center Department of Internal Medicine, University of South Florida College of Medicine, Tampa Metabolism Division, Roskamp Institute, Sarasota, Florida, USA
| | | |
Collapse
|
27
|
Huang W, Bansode RR, Bal NC, Mehta M, Mehta KD. Protein kinase Cβ deficiency attenuates obesity syndrome of ob/ob mice by promoting white adipose tissue remodeling. J Lipid Res 2011; 53:368-378. [PMID: 22210924 DOI: 10.1194/jlr.m019687] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To explore the role of leptin in PKCβ action and to determine the protective potential of PKCβ deficiency on profound obesity, double knockout (DBKO) mice lacking PKCβ and ob genes were created, and key parameters of metabolism and body composition were studied. DBKO mice had similar caloric intake as ob/ob mice but showed significantly reduced body fat content, improved glucose metabolism, and elevated body temperature. DBKO mice were resistant to high-fat diet-induced obesity. Moreover, PKCβ deficiency increased β-adrenergic signaling by inducing expression of β1- and β3-adrenergic receptors (β-ARs) in white adipose tissue (WAT) of ob/ob mice. Accordingly, p38(MAPK) activation and expression of PGC-1α and UCP-1 were increased in WAT of DBKO mice. Consistent with results of in vivo studies, inhibition of PKCβ in WAT explants from ob/ob mice also increased expression of above β-ARs. In contrast, induction of PGC-1α and UCP-1 expression in brown adipose tissue of DBKO mice was not accompanied by changes in the expression of these β-ARs. Collectively, these findings suggest that PKCβ deficiency may prevent genetic obesity, in part, by remodeling the catabolic function of adipose tissues through β-ARs dependent and independent mechanisms.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular & Cellular Biochemistry, Dorothy M. Davis Heart & Lung Research Institute,The Ohio State University College of Medicine, 1645 Neil Avenue, Columbus, OH 43210
| | - Rishipal R Bansode
- Department of Molecular & Cellular Biochemistry, Dorothy M. Davis Heart & Lung Research Institute,The Ohio State University College of Medicine, 1645 Neil Avenue, Columbus, OH 43210
| | - Naresh C Bal
- Department of Physiology, The Ohio State University College of Medicine, 1645 Neil Avenue, Columbus, OH 43210 and
| | - Madhu Mehta
- Department of Medicine, The Ohio State University College of Medicine, 1645 Neil Avenue, Columbus, OH 43210
| | - Kamal D Mehta
- Department of Molecular & Cellular Biochemistry, Dorothy M. Davis Heart & Lung Research Institute,The Ohio State University College of Medicine, 1645 Neil Avenue, Columbus, OH 43210.
| |
Collapse
|
28
|
Huang W, Bansode RR, Xie Y, Rowland L, Mehta M, Davidson NO, Mehta KD. Disruption of the murine protein kinase Cbeta gene promotes gallstone formation and alters biliary lipid and hepatic cholesterol metabolism. J Biol Chem 2011; 286:22795-805. [PMID: 21550971 PMCID: PMC3123047 DOI: 10.1074/jbc.m111.250282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/04/2011] [Indexed: 12/16/2022] Open
Abstract
The protein kinase C (PKC) family of Ca(2+) and/or lipid-activated serine-threonine protein kinases is implicated in the pathogenesis of obesity and insulin resistance. We recently reported that protein kinase Cβ (PKCβ), a calcium-, diacylglycerol-, and phospholipid-dependent kinase, is critical for maintaining whole body triglyceride homeostasis. We now report that PKCβ deficiency has profound effects on murine hepatic cholesterol metabolism, including hypersensitivity to diet-induced gallstone formation. The incidence of gallstones increased from 9% in control mice to 95% in PKCβ(-/-) mice. Gallstone formation in the mutant mice was accompanied by hyposecretion of bile acids with no alteration in fecal bile acid excretion, increased biliary cholesterol saturation and hydrophobicity indices, as well as hepatic p42/44(MAPK) activation, all of which enhance susceptibility to gallstone formation. Lithogenic diet-fed PKCβ(-/-) mice also displayed decreased expression of hepatic cholesterol-7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8b1). Finally, feeding a modified lithogenic diet supplemented with milk fat, instead of cocoa butter, both increased the severity of and shortened the interval for gallstone formation in PKCβ(-/-) mice and was associated with dramatic increases in cholesterol saturation and hydrophobicity indices. Taken together, the findings reveal a hitherto unrecognized role of PKCβ in fine tuning diet-induced cholesterol and bile acid homeostasis, thus identifying PKCβ as a major physiological regulator of both triglyceride and cholesterol homeostasis.
Collapse
Affiliation(s)
- Wei Huang
- From the Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, and
| | - Rishipal R. Bansode
- From the Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, and
| | - Yan Xie
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Leslie Rowland
- From the Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, and
| | - Madhu Mehta
- the Department of Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210 and
| | - Nicholas O. Davidson
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kamal D. Mehta
- From the Department of Molecular and Cellular Biochemistry, The Dorothy M. Davis Heart and Lung Research Institute, and
| |
Collapse
|
29
|
Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12 Suppl 2:83-92. [PMID: 21029304 DOI: 10.1111/j.1463-1326.2010.01275.x] [Citation(s) in RCA: 501] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steatosis is an accumulation of triglycerides in the liver. Although an excessive availability of plasma fatty acids is an important determinant of steatosis, lipid synthesis from glucose (lipogenesis) is now also considered as an important contributing factor. Lipogenesis is an insulin- and glucose-dependent process that is under the control of specific transcription factors, sterol regulatory element binding protein 1c (SREBP-1c), activated by insulin and carbohydrate response element binding protein (ChREBP) activated by glucose. Insulin induces the maturation of SREBP-1c by a proteolytic mechanism initiated in the endoplasmic reticulum (ER). SREBP-1c in turn activates glycolytic gene expression, allowing glucose metabolism, and lipogenic genes in conjunction with ChREBP. Lipogenesis activation in the liver of obese markedly insulin-resistant steatotic rodents is then paradoxical. Recent data suggest that the activation of SREBP-1c and thus of lipogenesis is secondary in the steatotic liver to an ER stress. The ER stress activates the cleavage of SREBP-1c independent of insulin, thus explaining the paradoxical stimulation of lipogenesis in an insulin-resistant liver. Inhibition of the ER stress in obese rodents decreases SREBP-1c activation and lipogenesis and improves markedly hepatic steatosis and insulin sensitivity. ER is thus a new partner in steatosis and metabolic syndrome which is worth considering as a potential therapeutic target.
Collapse
Affiliation(s)
- P Ferré
- INSERM, UMR-S 872, Centre de Recherches des Cordeliers and Université Pierre et Marie Curie-Paris, Paris, France
| | | |
Collapse
|