1
|
Norman SJ, Carney AC, Algarin F, Witt B, Witzel IM, Rodriguez PM, Mohyeldin M. Thyroid Dysfunction and Bipolar Disorder: A Literature Review Integrating Neurochemical, Endocrine, and Genetic Perspectives. Cureus 2024; 16:e69182. [PMID: 39398758 PMCID: PMC11468925 DOI: 10.7759/cureus.69182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thyroid disorders are common in medicine, while bipolar disorders (BDs), though less frequent, are significant due to global prevalence, the economic burden on healthcare systems and long-term health implications, and the effects of psychiatric illness on quality of life. Clinical research has suggested thyroid hormone imbalances can cause psychiatric symptoms similar to the clinical features observed in BDs. Despite increased attention in this area of study, much remains unknown regarding how thyroid issues contribute to the development of BDs. This review explores the complex link between thyroid disorders and BDs, focusing on neurochemical dynamics, changes in the hypothalamic-pituitary-thyroid (HPT) axis, and genetic factors. Furthermore, this literature review examines the importance of understanding these factors in linking both conditions and emphasizes the necessity for therapies targeting their shared underlying mechanisms.
Collapse
Affiliation(s)
- Sarah J Norman
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Ayzia C Carney
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Fernanda Algarin
- Emergency Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Brittany Witt
- Obstetrics and Gynecology, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Ivette M Witzel
- Psychiatry and Behavioral Sciences, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Paula M Rodriguez
- Psychiatry and Behavioral Sciences, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | | |
Collapse
|
2
|
Hu YT, Tan ZL, Hirjak D, Northoff G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry 2023; 28:3257-3266. [PMID: 37495889 DOI: 10.1038/s41380-023-02193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| | - Zhong-Lin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dusan Hirjak
- Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Li M, Sun X, Wang Z, Li Y. Caspase-1 affects chronic restraint stress-induced depression-like behaviors by modifying GABAergic dysfunction in the hippocampus. Transl Psychiatry 2023; 13:229. [PMID: 37369673 DOI: 10.1038/s41398-023-02527-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Major depression disorder (MDD) is one of the most common psychiatric disorders and one of the leading causes of disability in worldwide. Both inflammation and GABAergic dysfunction have been implicated in the pathophysiology of MDD. Caspase-1, a classic inflammatory caspase, regulates AMPARs-mediated glutamatergic neurotransmission. However, the role of caspase-1 in chronic stress-induced GABAergic dysfunction remains largely unknown. In this study, we found that serum and hippocampal caspase-1-IL-1β levels increased significantly in chronic restraint stress (CRS) mice, and a significant negative correlation occurred between levels of caspase-1 and depression-like behaviors. Furthermore, CRS significantly decreased GAD67 mRNA levels and GABAergic neurotransmission accompanied by the reduction of GABA concentration, reduced the amplitude and frequency of mIPSCs inhibitory postsynaptic currents (mIPSCs) and the decreased surface expression of GABAARs γ2 subunit in the hippocampus. Genetic deficiency of caspase-1 not only blocked CRS-induced depression-like behaviors, but also alleviated CRS-induced impairments in GABAergic neurotransmission. Finally, reexpression of caspase-1 in the hippocampus of Caspase-1-/- mice increased susceptibility to stress-induced anxiety- and depression-like behaviors through inhibiting GAD67 expression and GABAARs-mediated synaptic transmission. Our study suggests that CRS dysregulates GABAergic neurotransmission via increasing the levels of caspase-1-mediated neuroinflammation in the hippocampus, ultimately leading to depression-like behaviors. This work illustrates that targeting caspase-1 may provide potential therapeutic benefits to stress-related GABAergic dysfunction in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Mingxing Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China.
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.
| | - Xuejiao Sun
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zongqin Wang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430012, China.
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, 430012, China.
| |
Collapse
|
4
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
6
|
Chen P, Chen G, Zhong S, Chen F, Ye T, Gong J, Tang G, Pan Y, Luo Z, Qi Z, Huang L, Wang Y. Thyroid hormones disturbances, cognitive deficits and abnormal dynamic functional connectivity variability of the amygdala in unmedicated bipolar disorder. J Psychiatr Res 2022; 150:282-291. [PMID: 35429738 DOI: 10.1016/j.jpsychires.2022.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Accumulating evidence suggests that hypothalamus-pituitary-thyroid (HPT) axis dysfunction is relevant to the neuropsychological and pathophysiology functions of bipolar disorder (BD). However, no research has investigated the inter-relationships among thyroid hormones disturbance, neurocognitive deficits, and aberrant brain function (particularly in the amygdala) in patients with BD. MATERIALS AND METHODS Data of dynamic resting-state functional connectivity (rs-dFC) were gathered from 59 patients with unmedicated BD II during depressive episodes and 52 healthy controls (HCs). Four seeds were selected (the bilateral lateral amygdala and the bilateral medial amygdala). The sliding-window analysis was applied to investigate dynamic functional connectivity (dFC). Additionally, the serum thyroid hormone (free tri-iodothyronine (FT3), total tri-iodothyronine (TT3), free thyroxin (FT4), total thyroxin (TT4) and thyroid-stimulating hormone (TSH)) levels, and cognitive scores on the MATRICS Consensus Cognitive Battery (MCCB) in patients and HCs were detected. RESULTS The BD group exhibited increased dFC variability between the left medial amygdala and right medial prefrontal cortex (mPFC) when compared with the HC group. Additionally, the BD group showed lower FT3, TT3, and TSH level, higher FT4 level, and poorer cognitive score. Moreover, a significant negative correlation was observed between the dFC variability of the left medial amygdala-right mPFC and TSH level, or reasoning and problem solving of MCCB score in BD group. Multiple regression analysis showed that the TSH level × dFC variability of the medial amygdala-mPFC was an independent predictor for cognitive processing speed in BD group. CONCLUSIONS This study revealed patients with BD II depression had excessive variability in dFC between the medial amygdala and mPFC. Moreover, both HPT axis dysfunction and abnormal dFC of the amygdala-mPFC might be implicated in cognitive impairment in the early stages of BD.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Tao Ye
- Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - JiaYing Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China; Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Youling Pan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Deficiency of Glycosylated α-Dystroglycan in Ventral Hippocampus Bridges the Destabilization of Gamma-Aminobutyric Acid Type A Receptors With the Depressive-like Behaviors of Male Mice. Biol Psychiatry 2022; 91:593-603. [PMID: 35063187 DOI: 10.1016/j.biopsych.2021.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Depression is a common psychiatric disorder associated with defects in GABAergic (gamma-aminobutyric acidergic) neurotransmission. α-Dystroglycan (α-DG), a cell adhesion molecule known to be essential for skeletal muscle integrity, is also present at inhibitory synapses in the central nervous system and forms a structural element in certain synapses. However, the role of α-DG in the regulation of depressive-like behaviors remains largely unknown. METHODS Depressive-like behaviors were induced by chronic social defeat stress in adult male mice. Surface protein was extracted by a biotin kit, and the expression of protein was detected by Western blotting. Intrahippocampal microinjection of the lentivirus or adeno-associated virus or agrin intervention was carried out using a stereotaxic instrument and followed by behavioral tests. Miniature inhibitory postsynaptic currents were recorded by whole-cell patch-clamp techniques. RESULTS The expression of α-DG and glycosylated α-DG in the ventral hippocampus was significantly lower in chronic social defeat stress-susceptible male mice than in control mice, accompanied by a decreased surface expression of GABAA receptor γ2 subunit and reduced GABAergic neurotransmission. RNA interference-mediated knockdown of Dag1 increased the susceptibility of mice to subthreshold stress. Both in vivo administration of agrin and overexpression of like-acetylglucosaminyltransferase ameliorated depressive-like behaviors and restored the decrease in surface expression of GABAA receptor γ2 subunit and the amplitude of miniature inhibitory postsynaptic currents in chronic social defeat stress-exposed mice. CONCLUSIONS Our findings demonstrate that glycosylated α-DG plays a role in the pathophysiological process of depressive-like behaviors by regulating the surface expression of GABAA receptor γ2 subunit and GABAergic neurotransmission in the ventral hippocampus.
Collapse
|
8
|
Serafini G, Trabucco A, Corsini G, Escelsior A, Amerio A, Aguglia A, Nasrallah H, Amore M. The potential of microRNAs as putative biomarkers in major depressive disorder and suicidal behavior. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Della Vecchia A, Arone A, Piccinni A, Mucci F, Marazziti D. GABA System in Depression: Impact on Pathophysiology and Psychopharmacology. Curr Med Chem 2021; 29:5710-5730. [PMID: 34781862 DOI: 10.2174/0929867328666211115124149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of major depressive disorder (MDD), one of the major causes of worldwide disability, is still largely unclear, despite the increasing data reporting evidence of multiple alterations of different systems. Recently, there was a renewed interest in the signalling of gamma aminobutyric acid (GABA) - the main inhibitory neurotransmitter. OBJECTIVE The aim of this study was to review and comment on the available literature about the involvement of GABA in MDD, as well as on novel GABAergic compounds possibly useful as antidepressants. METHODS We carried out a narrative review through Pubmed, Google Scholar and Scopus, by using specific keywords. RESULTS The results, derived from various research tools, strongly support the presence of a deficiency of the GABA system in MDD, which appears to be restored by common antidepressant treatments. More recent publications would indicate the complex interactions between GABA and all the other processes involved in MDD, such as monoamine neurotransmission, hypothalamus-pituitary adrenal axis functioning, neurotrophism, and immune response. Taken together, all these findings seem to further support the complexity of the pathophysiology of MDD, possibly reflecting the heterogeneity of the clinical pictures. CONCLUSION Although further data are necessary to support the specificity of GABA deficiency in MDD, the available findings would suggest that novel GABAergic compounds might constitute innovative therapeutic strategies in MDD.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Armando Piccinni
- Saint Camillus International University of Health and Medical Sciences, Rome. Italy
| | - Federico Mucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena. Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
10
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
11
|
Naguy A. Brexanolone and postpartum depression: what does it have to do with GABA? Arch Womens Ment Health 2019; 22:833-834. [PMID: 31302763 DOI: 10.1007/s00737-019-00986-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Ahmed Naguy
- Al-Manara CAP Centre, Kuwait Centre for Mental Health (KCMH), Jamal Abdul-Nassir St, Shuwaikh, Kuwait.
| |
Collapse
|
12
|
Gigase FAJ, Snijders GJLJ, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 2019; 103:150-162. [PMID: 31163205 DOI: 10.1016/j.neubiorev.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation. Neuropsychopharmacology 2019; 44:1291-1299. [PMID: 30575805 PMCID: PMC6785146 DOI: 10.1038/s41386-018-0293-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Abstract
Bipolar disorder (BD) is a chronic, debilitating illness with a global prevalence of up to 4.8%. The importance of understanding how dysfunctional mitochondria and mitophagy contribute to cell survival and death in BD is becoming increasingly apparent. Therefore, the purpose of this study was to evaluate the mitophagic pathway and NLRP3 inflammasome activation in peripheral blood mononuclear cells (PBMCs) of patients with BD and healthy individuals. Since 18-kDa translocator protein (TSPO) plays an important role in regulating mitochondrial function and since TSPO itself impairs cellular mitophagy, we also investigated the changes in the TSPO-related pathway. Our results showed that patients with BD had lower levels of Parkin, p62/SQSTM1 and LC3A and an upregulation of TSPO pathway proteins (TSPO and VDAC), both in terms of mRNA and protein levels. Additionally, we found a negative correlation between mitophagy-related proteins and TSPO levels, while VDAC correlated negatively with p62/SQSTM1 and LC3 protein levels. Moreover, we found that the gene expression levels of the NLRP3-related proteins NLRP3, ASC, and pro-casp1 were upregulated in BD patients, followed by an increase in caspase-1 activity as well as IL-1β and IL-18 levels. As expected, there was a strong positive correlation between NLRP3-related inflammasome activation and TSPO-related proteins. The data reported here suggest that TSPO-VDAC complex upregulation in BD patients, the simultaneous downregulation of mitophagic proteins and NLRP3 inflammasome activation could lead to an accumulation of dysfunctional mitochondria, resulting in inflammation and apoptosis. In summary, the findings of this study provide novel evidence that mitochondrial dysfunction measured in peripheral blood is associated with BD.
Collapse
|
14
|
Qiu B, Xu Y, Wang J, Liu M, Dou L, Deng R, Wang C, Williams KE, Stewart RB, Xie Z, Ren W, Zhao Z, Shou W, Liang T, Yong W. Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight. Neuroscience 2019; 402:23-36. [DOI: 10.1016/j.neuroscience.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
|
15
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
16
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
17
|
Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry 2017; 22:1395-1412. [PMID: 28696430 DOI: 10.1038/mp.2017.141] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Suicide is a major public health concern and a leading cause of death in most societies. Suicidal behaviour is complex and heterogeneous, likely resulting from several causes. It associates with multiple factors, including psychopathology, personality traits, early-life adversity and stressful life events, among others. Over the past decades, studies in fields ranging from neuroanatomy, genetics and molecular psychiatry have led to a model whereby behavioural dysregulation, including suicidal behaviour (SB), develops as a function of biological adaptations in key brain systems. More recently, the unravelling of the unique epigenetic processes that occur in the brain has opened promising avenues in suicide research. The present review explores the various facets of the current knowledge on suicidality and discusses how the rapidly evolving field of neurobehavioural epigenetics may fuel our ability to understand, and potentially prevent, SB.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - G Turecki
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
18
|
Wu X, Balesar R, Lu J, Farajnia S, Zhu Q, Huang M, Bao AM, Swaab DF. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression. Brain Struct Funct 2017; 222:4079-4088. [PMID: 28608287 PMCID: PMC5686266 DOI: 10.1007/s00429-017-1442-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/11/2017] [Indexed: 12/24/2022]
Abstract
In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We, therefore, studied GABA in the SCN in relation to the changes in arginine vasopressin (AVP), which is one of the major SCN output systems. Postmortem hypothalamus specimens of 13 subjects suffering from depression and of 13 well-matched controls were collected. Quantitative immunocytochemistry was used to analyze the protein levels of glutamic acid decarboxylase (GAD)65/67 and AVP, and quantitative in situ hybridization was used to measure transcript levels of GAD67 in the SCN. There were a significant 58% increase of SCN GAD65/67-ir and a significant 169% increase of SCN GAD67-mRNA in the depression group. In addition, there were a significant 253% increase of AVP-ir in female depression subjects but not in male depression patients. This sex difference was supported by a re-analysis of SCN AVP-ir data of a previous study of our group. Moreover, SCN-AVP-ir showed a significant negative correlation with age in the control group and in the male, but not in the female depression group. Given the crucial role of GABA in mediating SCN function, our finding of increased SCN GABA expression may significantly contribute to the disordered circadian rhythms in depression. The increased SCN AVP-ir in female-but not in male-depression patients-may reflect the higher vulnerability for depression in women.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.,Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, 81 MeiShan Road, Hefei, 320023, People's Republic of China
| | - Rawien Balesar
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Jing Lu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Sahar Farajnia
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Qiongbin Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Manli Huang
- Department of Mental Health, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qing Chun Road, Hangzhou, 310003, People's Republic of China
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Dick F Swaab
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang Province Key Laboratory of Mental Disorder's Management, National Clinical Research Center for Mental Health Disorders, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Jin RO, Mason S, Mellon SH, Epel ES, Reus VI, Mahan L, Rosser RL, Hough CM, Burke HM, Mueller SG, Wolkowitz OM. Cortisol/DHEA ratio and hippocampal volume: A pilot study in major depression and healthy controls. Psychoneuroendocrinology 2016; 72:139-46. [PMID: 27428086 PMCID: PMC5203799 DOI: 10.1016/j.psyneuen.2016.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
Structural imaging studies investigating the relationship between hippocampal volume (HCV) and peripheral measures of glucocorticoids (GCs) have produced conflicting results in both normal populations and in individuals with MDD, raising the possibility of other modulating factors. In preclinical studies, dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS; together abbreviated, DHEA(S)) have been shown to antagonize the actions of GCs on the central nervous system. Therefore, considering the relationship of HCV to both of these hormones simultaneously may be important, although it has rarely been done in human populations. Using high-resolution magnetic resonance imaging (MRI), the present pilot study examined the relationship between morning serum cortisol, DHEA(S), and HCV in nineteen normal controls and eighteen unmedicated subjects with Major Depressive Disorder (MDD). Serum cortisol and DHEA(S) were not significantly correlated with HCV across all subjects (cortisol: r=-0.165, p=0.33; DHEA: r=0.164, p=0.35; DHEAS: r=0.211, p=0.22, respectively). However, the ratios of cortisol/DHEA(S) were significantly negatively correlated with HCV in combined group (Cortisol/DHEA: r=-0.461, p=0.005; Cortisol/DHEAS: r=-0.363, p=0.03). Significant or near-significant correlations were found between some hormonal measurements and HCV in the MDDs alone (DHEA: r=0.482, p=0.059; DHEAS: r=0.507, p=0.045; cort/DHEA: r=-0.589, p=0.02; cort/DHEAS: r=-0.424p=0.10), but not in the controls alone (DHEA: r=0.070, p=0.79; DHEAS: r=0.077, p=0.77; cort/DHEA: r=-0.427, p=0.09; cort/DHEAS: r=-0.331, p=0.19). However, Group (MDDs vs controls) did not have a significant effect on the relationship between cortisol, DHEA(S), and their ratios with HCV (p>0.475 in all analyses). Although the exact relationship between serum and central steroid concentrations as well as their effects on the human hippocampus remains not known, these preliminary results suggest that the ratio of cortisol to DHEA(S), compared to serum cortisol alone, may convey additional information about "net steroid activity" with relation to HCV.
Collapse
Affiliation(s)
- Rowen O Jin
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Sara Mason
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Synthia H Mellon
- Department of Obstetrics-Gynecology and Reproductive Sciences, University of California, San Francisco, School of Medicine California, 94143, United States
| | - Elissa S Epel
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Victor I Reus
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Laura Mahan
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Rebecca L Rosser
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Christina M Hough
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Heather M Burke
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States
| | - Susanne G Mueller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, School of Medicine California, 94143, United States
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco, School of Medicine, CA, 94143, United States.
| |
Collapse
|
20
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
21
|
Ruiz-Veguilla M, Martín-Rodríguez JF, Palomar FJ, Porcacchia P, Álvarez de Toledo P, Perona-Garcelán S, Rodríguez-Testal JF, Huertas-Fernández I, Mir P. Trait- and state-dependent cortical inhibitory deficits in bipolar disorder. Bipolar Disord 2016; 18:261-71. [PMID: 27004755 DOI: 10.1111/bdi.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/08/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Euthymic patients with bipolar disorder (BD) have deficits in cortical inhibition. However, whether cortical inhibitory deficits are trait- or state-dependent impairments is not yet known and their relationship with psychiatric symptoms is not yet understood. In the present study, we examined trait- and state-dependent cortical inhibitory deficits and evaluated the potential clinical significance of these deficits. METHODS Nineteen patients with bipolar I disorder were evaluated using the paired-pulse transcranial stimulation protocol, which assessed cortical inhibition during an acute manic episode. Cortical inhibition measures were compared with those obtained in 28 demographically matched healthy controls. A follow-up assessment was performed in 15 of these patients three months later, when there was remission from their mood and psychotic symptoms. The association between cortical inhibitory measures and severity of psychiatric symptoms was also studied. RESULTS During mania, patients showed decreased short-interval intracortical and transcallosal inhibition, as well as a normal cortical silent period and long-interval cortical inhibition. These findings were the same during euthymia. Symptoms associated with motor hyperactivity were correlated negatively with the degree of cortical inhibition. These correlations were not significant when a Bonferroni correction was applied. CONCLUSIONS The present longitudinal study showed cortical inhibitory deficits in patients with BD, and supports the hypothesis that cortical inhibitory deficits in BD are trait dependent. Further research is necessary to confirm the clinical significance of these deficits.
Collapse
Affiliation(s)
- Miguel Ruiz-Veguilla
- Grupo Neurodesarrollo y Psicosis, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla/UGC Salud Mental HVR, Seville, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco J Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Paloma Álvarez de Toledo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Salvador Perona-Garcelán
- Grupo Neurodesarrollo y Psicosis, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla/UGC Salud Mental HVR, Seville, Spain
| | - Juan Francisco Rodríguez-Testal
- Grupo Neurodesarrollo y Psicosis, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla/UGC Salud Mental HVR, Seville, Spain.,Departamento de Personalidad, Evaluación y Tratamientos Psicológicos, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Ismael Huertas-Fernández
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| |
Collapse
|
22
|
Hashimoto K, Bruno D, Nierenberg J, Marmar CR, Zetterberg H, Blennow K, Pomara N. Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study. Transl Psychiatry 2016; 6:e744. [PMID: 26926880 PMCID: PMC4872461 DOI: 10.1038/tp.2016.8] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-D-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, L-serine and D-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine-glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression.
Collapse
Affiliation(s)
- K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - D Bruno
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | - J Nierenberg
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - C R Marmar
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - N Pomara
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat. Brain Struct Funct 2015; 221:4141-4157. [DOI: 10.1007/s00429-015-1154-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
24
|
Brisch R, Bielau H, Saniotis A, Wolf R, Bogerts B, Krell D, Steiner J, Braun K, Krzyżanowska M, Krzyżanowski M, Jankowski Z, Kaliszan M, Bernstein HG, Gos T. Calretinin and parvalbumin in schizophrenia and affective disorders: a mini-review, a perspective on the evolutionary role of calretinin in schizophrenia, and a preliminary post-mortem study of calretinin in the septal nuclei. Front Cell Neurosci 2015; 9:393. [PMID: 26578879 PMCID: PMC4624860 DOI: 10.3389/fncel.2015.00393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The septal nuclei are important limbic regions that are involved in emotional behavior and connect to various brain regions such as the habenular complex. Both the septal nuclei and the habenular complex are involved in the pathology of schizophrenia and affective disorders. METHODS We characterized the number and density of calretinin-immunoreactive neurons in the lateral, medial, and dorsal subregions of the septal nuclei in three groups of subjects: healthy control subjects (N = 6), patients with schizophrenia (N = 10), and patients with affective disorders (N = 6). RESULTS Our mini-review of the combined role of calretinin and parvalbumin in schizophrenia and affective disorders summarizes 23 studies. We did not observe significant differences in the numbers of calretinin-immunoreactive neurons or neuronal densities in the lateral, medial, and dorsal septal nuclei of patients with schizophrenia or patients with affective disorders compared to healthy control subjects. CONCLUSIONS Most post-mortem investigations of patients with schizophrenia have indicated significant abnormalities of parvalbumin-immunoreactive neurons in various brain regions including the hippocampus, the anterior cingulate cortex, and the prefrontal cortex in schizophrenia. This study also provides an explanation from an evolutionary perspective for why calretinin is affected in schizophrenia.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Hendrik Bielau
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Arthur Saniotis
- School of Medicine, The University of Adelaide Adelaide, SA, Australia ; Institute of Evolutionary Medicine, University of Zurich Zurich, Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum Bochum, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Dieter Krell
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| |
Collapse
|
25
|
Durst CR, Michael N, Tustison NJ, Patrie JT, Raghavan P, Wintermark M, Sendhil Velan S. Noninvasive evaluation of the regional variations of GABA using magnetic resonance spectroscopy at 3 Tesla. Magn Reson Imaging 2015; 33:611-7. [PMID: 25708260 DOI: 10.1016/j.mri.2015.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/29/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Rapid regional fluctuations in GABA may result in inhomogeneous concentrations throughout the brain parenchyma. The goal of this study is to provide further insight into the natural distribution of GABA throughout the brain and thus determine if a surrogate site may be used for spectroscopy when evaluating motor diseases, neurological disorders, or psychiatric dysfunction. MATERIALS AND METHODS In this prospective study, eight healthy volunteers underwent spectroscopic evaluation of the frontal lobe, occipital lobe, lateral temporal lobe, basal ganglia, and both hippocampi using a spin echo variant of a J-difference editing method. Knowledge of the relative peak intensities of the macromolecule peaks at 3ppm and 0.9ppm was used to correct the contribution of co-edited macromolecules to the GABA peak at 3ppm. The GABA values were internally referenced to NAA. Linear regression was used to normalize the effect of regional tissue-fraction variation on the GABA/NAA values. A one-way ANOVA was performed with Tukey's multiple comparison test to compare the normalized GABA/NAA values in each pair of locations. RESULTS After accounting for the macromolecule contribution to the GABA signal and correction for tissue fraction variation, the normalized GABA/NAA ratios differ significantly between the six brain locations (p<0.001). Pairwise comparisons of the corrected normalized GABA/NAA ratios show statistically significant variation between the frontal lobe and the basal ganglia, frontal and lateral temporal lobes, and frontal lobe and right hippocampus. Variations in the normalized GABA/NAA ratios trend toward significance between the frontal lobe and left hippocampus, occipital lobe and the frontal lobe, occipital lobe and basal ganglia, and occipital lobe and right hippocampus. CONCLUSION Our study suggests that GABA concentration is inhomogeneous throughout the parenchyma. Studies evaluating the role of GABA must carefully consider voxel placement when incorporating spectroscopy.
Collapse
Affiliation(s)
- Christopher R Durst
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Max Wintermark
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore; Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore; Clinical Imaging Research Centre, Agency for Science, Technology and Research, Singapore, NUS-A*STAR, Singapore
| |
Collapse
|
26
|
Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:603-24. [PMID: 25653499 PMCID: PMC4307650 DOI: 10.2147/dddt.s62912] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD’s underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants – the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine – modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies. In conclusion, this review suggests that the simplistic notion that MDD is caused by reduced GABA neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in MDD.
Collapse
Affiliation(s)
- Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| |
Collapse
|
27
|
Arnold SJM, Ivleva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Sacco CB, Francis AN, Tandon N, Bidesi AS, Witte B, Poudyal G, Pearlson GD, Sweeney JA, Clementz BA, Keshavan MS, Tamminga CA. Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated parcellation (FreeSurfer). Schizophr Bull 2015; 41:233-49. [PMID: 24557771 PMCID: PMC4266285 DOI: 10.1093/schbul/sbu009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study examined hippocampal volume as a putative biomarker for psychotic illness in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) psychosis sample, contrasting manual tracing and semiautomated (FreeSurfer) region-of-interest outcomes. The study sample (n = 596) included probands with schizophrenia (SZ, n = 71), schizoaffective disorder (SAD, n = 70), and psychotic bipolar I disorder (BDP, n = 86); their first-degree relatives (SZ-Rel, n = 74; SAD-Rel, n = 62; BDP-Rel, n = 88); and healthy controls (HC, n = 145). Hippocampal volumes were derived from 3Tesla T1-weighted MPRAGE images using manual tracing/3DSlicer3.6.3 and semiautomated parcellation/FreeSurfer5.1,64bit. Volumetric outcomes from both methodologies were contrasted in HC and probands and relatives across the 3 diagnoses, using mixed-effect regression models (SAS9.3 Proc MIXED); Pearson correlations between manual tracing and FreeSurfer outcomes were computed. SZ (P = .0007-.02) and SAD (P = .003-.14) had lower hippocampal volumes compared with HC, whereas BDP showed normal volumes bilaterally (P = .18-.55). All relative groups had hippocampal volumes not different from controls (P = .12-.97) and higher than those observed in probands (P = .003-.09), except for FreeSurfer measures in bipolar probands vs relatives (P = .64-.99). Outcomes from manual tracing and FreeSurfer showed direct, moderate to strong, correlations (r = .51-.73, P < .05). These findings from a large psychosis sample support decreased hippocampal volume as a putative biomarker for schizophrenia and schizoaffective disorder, but not for psychotic bipolar I disorder, and may reflect a cumulative effect of divergent primary disease processes and/or lifetime medication use. Manual tracing and semiautomated parcellation regional volumetric approaches may provide useful outcomes for defining measurable biomarkers underlying severe mental illness.
Collapse
Affiliation(s)
- Sara J. M. Arnold
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235;,*To whom correspondence should be addressed; tel: 214-645-8942, fax: 214-648-5321, e-mail:
| | - Tejas A. Gopal
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Anil P. Reddy
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Haekyung Jeon-Slaughter
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Carolyn B. Sacco
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Alan N. Francis
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Anup S. Bidesi
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Bradley Witte
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Gaurav Poudyal
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | - Godfrey D. Pearlson
- Department of Psychiatry, Institute of Living/Hartford Hospital, Yale School of Medicine, New Haven, CT
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| | | | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, 5352 Harry Hines Boulevard, NE5.110H, Dallas, TX 75235
| |
Collapse
|
28
|
Gullo MJ, Loxton NJ, Dawe S. Impulsivity: four ways five factors are not basic to addiction. Addict Behav 2014; 39:1547-1556. [PMID: 24576666 DOI: 10.1016/j.addbeh.2014.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Several impulsivity-related models have been applied to understanding the vulnerability to addiction. While there is a growing consensus that impulsivity is multifaceted, debate continues as to the precise number of facets and, more critically, which are most relevant to explaining the addiction-risk profile. In many ways, the current debate mirrors that which took place in the personality literature in the early 1990s (e.g., Eysenck's 'Big Three' versus Costa and McCrae's 'Big Five'). Indeed, many elements of this debate are relevant to the current discussion of the role of impulsivity in addictive behavior. Specifically, 1) the use of factor analysis as an atheoretical 'truth-grinding machine'; 2) whether additional facets add explanatory power over fewer; 3) the delineation of specific neurocognitive pathways from each facet to addictive behaviors, and; 4) the relative merit of 'top-down' versus 'bottom-up' approaches to the understanding of impulsivity. Ultimately, the utility of any model of impulsivity and addiction lies in its heuristic value and ability to integrate evidence from different levels of analysis. Here, we make the case that theoretically-driven, bottom-up models proposing two factors deliver the optimal balance of explanatory power, parsimony, and integration of evidence.
Collapse
|
29
|
Czéh B, Varga ZKK, Henningsen K, Kovács GL, Miseta A, Wiborg O. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 2014; 25:393-405. [PMID: 25331166 DOI: 10.1002/hipo.22382] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 11/05/2022]
Abstract
Major depressive disorder is a common and complex mental disorder with unknown etiology. GABAergic dysfunction is likely to contribute to the pathophysiology since disrupted GABAergic systems are well documented in depressed patients. Here we studied structural changes in the hippocampal GABAergic network using the chronic mild stress (CMS) model, as one of the best validated animal models for depression. Rats were subjected to 9 weeks of daily stress and behaviorally characterized using the sucrose consumption test into anhedonic and resilient animals based on their response to stress. Different subtypes of GABAergic interneurons were visualized by immunohistochemistry using antibodies for parvalbumin (PV), calretinin (CR), calbindin (CB), cholecystokinin (CCK), somatostatin (SOM), and neuropeptide Y (NPY). We used an unbiased quantification method to systematically count labeled cells in different subareas of the dorsal and ventral hippocampus. Chronic stress reduced the number of specific interneurons in distinct hippocampal subregions significantly. PV+ and CR+ neurons were reduced in all dorsal subareas, whereas in the ventral part only the CA1 was affected. Stress had the most pronounced effect on the NPY+ and SOM+ cells and reduced their number in almost all dorsal and ventral subareas. Stress had no effect on the CCK+ and CB+ interneurons. In most cases the effect of stress was irrespective to the behavioral phenotype. However, in a few specific areas the number of SOM+, NPY+, and CR+ neurons were significantly reduced in anhedonic animals compared to the resilient group. Overall, these data clearly demonstrate that chronic stress affects the structural integrity of specific GABAergic neuronal subpopulations and this should also affect the functioning of these hippocampal GABAergic networks.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Institute of Laboratory Medicine, Faculty of Medicine, University of Pécs, 7624, Pécs, Hungary; Structural Neurobiology Research Group, Szentágothai János Research Center, University of Pécs, 7624, Pécs, Hungary; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
Rocha L, Alonso-Vanegas M, Orozco-Suárez S, Alcántara-González D, Cruzblanca H, Castro E. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders? Epilepsy Behav 2014; 38:25-31. [PMID: 24472685 DOI: 10.1016/j.yebeh.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
It is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders. Finally, the identification of common pathophysiological mechanisms associated with receptor-receptor interaction (heterodimers) could allow designing new strategies for treatment of patients with epilepsy and comorbid mood disorders.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center, Mexico City, Mexico
| | | | - Humberto Cruzblanca
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| | - Elena Castro
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
31
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
32
|
Abstract
Suicide and bipolar disorder (BD) are challenging, complex, and intertwined areas of study in contemporary psychiatry. Indeed, BD is associated with the highest lifetime risk for suicide attempt and completion of all the psychiatric conditions. Given that several clinical risk factors for both suicide and BD have been well noted in the literature, exploring the neurobiological aspects of suicide in BD may provide insights into both preventive measures and future novel treatments. This review synthesizes findings regarding the neurobiological aspects of suicide and, when applicable, their link to BD. Neurochemical findings, genes/epigenetics, and potential molecular targets for current or future treatments are discussed. The role of endophenotypes and related proximal and distal risk factors underlying suicidal behavior are also explored. Lastly, we discuss the manner in which preclinical work on aggression and impulsivity may provide additional insights for the future development of novel treatments.
Collapse
|
33
|
Felice D, O'Leary OF, Pizzo RC, Cryan JF. Blockade of the GABAB receptor increases neurogenesis in the ventral but not dorsal adult hippocampus: Relevance to antidepressant action. Neuropharmacology 2012; 63:1380-8. [DOI: 10.1016/j.neuropharm.2012.06.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 05/25/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
|
34
|
Wiebking C, Duncan NW, Qin P, Hayes DJ, Lyttelton O, Gravel P, Verhaeghe J, Kostikov AP, Schirrmacher R, Reader AJ, Bajbouj M, Northoff G. External awareness and GABA--a multimodal imaging study combining fMRI and [18F]flumazenil-PET. Hum Brain Mapp 2012; 35:173-84. [PMID: 22996793 DOI: 10.1002/hbm.22166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/19/2012] [Accepted: 06/22/2012] [Indexed: 11/10/2022] Open
Abstract
Awareness is an essential feature of the human mind that can be directed internally, that is, toward our self, or externally, that is, toward the environment. The combination of internal and external information is crucial to constitute our sense of self. Although the underlying neuronal networks, the so-called intrinsic and extrinsic systems, have been well-defined, the associated biochemical mechanisms still remain unclear. We used a well-established functional magnetic resonance imaging (fMRI) paradigm for internal (heartbeat counting) and external (tone counting) awareness and combined this technique with [(18)F]FMZ-PET imaging in the same healthy subjects. Focusing on cortical midline regions, the results showed that both stimuli types induce negative BOLD responses in the mPFC and the precuneus. Carefully controlling for structured noise in fMRI data, these results were also confirmed in an independent data sample using the same paradigm. Moreover, the degree of the GABAA receptor binding potential within these regions was correlated with the neuronal activity changes associated with external, rather than internal awareness when compared to fixation. These data support evidence that the inhibitory neurotransmitter GABA is an influencing factor in the differential processing of internally and externally guided awareness. This in turn has implications for our understanding of the biochemical mechanisms underlying awareness in general and its potential impact on psychiatric disorders.
Collapse
Affiliation(s)
- Christine Wiebking
- Department of Biology, Freie Universität Berlin, Berlin, Germany; Institute of Mental Health Research, University of Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anisman H, Merali Z, Poulter M. Gamma-Aminobutyric Acid Involvement in Depressive Illness. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Daniele S, Da Pozzo E, Abelli M, Panighini A, Pini S, Gesi C, Lari L, Cardini A, Cassano GB, Martini C. Platelet uptake of GABA and glutamate in patients with bipolar disorder. Bipolar Disord 2012; 14:301-8. [PMID: 22548903 DOI: 10.1111/j.1399-5618.2012.01005.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Gamma aminobutyric acid (GABA) and glutamate (Glu) are the major neurotransmitters of the human central nervous system, and their actions are determined by specific transporters. Several studies suggest that GABA- and Glu-uptake mechanisms are modified in patients with bipolar disorder (BD). We explored the functionality of the GABA and Glu transporters in three groups of patients with BD, each with a different polarity of index episode (manic, depressive, or euthymic) at the time of blood draw. METHODS Forty patients with a diagnosis of BD, according to DSM-IV-TR criteria, and 15 healthy subjects were enrolled in the study. GABA and Glu uptake were evaluated in freshly prepared platelets using [(3) H]GABA or [(3) H]glutamate. RESULTS Compared to controls, GABA uptake was significantly increased in patients with depressive episodes and significantly decreased in subjects with manic episodes. Glu uptake was significantly increased in patients with index manic episodes and in euthymic patients compared to healthy controls. Moreover, a positive correlation was found between GABA platelet uptake and Hamilton Depression Rating Scale scores and between Glu platelet uptake and Young Mania Rating Scale scores in patients with manic episodes. CONCLUSIONS We found a relationship between GABA- and Glu-uptake levels and the polarity of episodes in patients with BD. Our data suggest that the functionality of both GABA and Glu transporters could represent a useful neurobiological marker to characterize the real polarity of an index episode of illness in patients with BD.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peruga I, Hartwig S, Merkler D, Thöne J, Hovemann B, Juckel G, Gold R, Linker RA. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior. Behav Brain Res 2012; 229:325-32. [DOI: 10.1016/j.bbr.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/05/2012] [Accepted: 01/08/2012] [Indexed: 12/28/2022]
|
38
|
Gos T, Steiner J, Bielau H, Dobrowolny H, Günther K, Mawrin C, Krzyżanowski M, Hauser R, Brisch R, Bernstein HG, Jankowski Z, Braun K, Bogerts B. Differences between unipolar and bipolar I depression in the quantitative analysis of glutamic acid decarboxylase-immunoreactive neuropil. Eur Arch Psychiatry Clin Neurosci 2012; 262:647-55. [PMID: 22526728 PMCID: PMC3491185 DOI: 10.1007/s00406-012-0315-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Alterations in GABAergic neurotransmission are assumed to play a crucial role in the pathophysiology of mood disorders. Glutamic acid decarboxylase (GAD) is the key enzyme in GABA synthesis. This study aimed to differentiate between unipolar and bipolar I depression using quantitative evaluation of GAD-immunoreactive (GAD-ir) neuropil in several brain regions known to be involved in the pathophysiology of mood disorders. Immunohistochemical staining of GAD 65/67 was performed in the orbitofrontal, anterior cingulate and dorsolateral prefrontal cortex (DLPFC), the entorhinal cortex, the hippocampal formation and the medial dorsal and lateral dorsal (LD) thalamic nuclei, with a quantitative densitometric analysis of GAD-ir neuropil. The study was performed on paraffin-embedded brains from 9 unipolar and 12 bipolar I depressed patients (8 and 6 suicidal patients, respectively) and 18 matched controls. In unipolar patients, compared with controls, only the increased relative density of GAD-ir neuropil in the right LD was different from the previous results in depressed suicides from the same cohort (Gos et al. in J Affect Disord 113:45-55, 2009). On the other hand, the left DLPFC was the only area where a significant decrease was observed, specific for bipolar I depression. Significant differences between both diagnostic groups were found in these regions. By revealing abnormalities in the relative density of GAD-ir neuropil in brain structures, our study suggests a diathesis of the GABAergic system in mood disorders, which may differentiate the pathophysiology of unipolar from that of bipolar I depression.
Collapse
Affiliation(s)
- Tomasz Gos
- Institute of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karoline Günther
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Maciej Krzyżanowski
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Roman Hauser
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Zbigniew Jankowski
- Institute of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- Department of Zoology, Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
39
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
40
|
Gabbay V, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM, Alonso CM, Shungu DC. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia. ACTA ACUST UNITED AC 2011; 69:139-49. [PMID: 21969419 DOI: 10.1001/archgenpsychiatry.2011.131] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). OBJECTIVE To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. DESIGN Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. SETTING Two clinical research divisions at 2 teaching hospitals. PARTICIPANTS Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12-19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. MAIN OUTCOME MEASURES Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. RESULTS Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t = 3.2; P < .003). When subjects with MDD were categorized based on the presence of anhedonia, only anhedonic patients had decreased GABA/w levels compared with control subjects (t = 4.08; P < .001; P(Tukey) < .001). Anterior cingulate cortex GABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = -0.50; P = .02), as well as for the entire participant sample including the control subjects (r = -0.54; P < .001). Anterior cingulate cortex white matter was also significantly decreased in adolescents with MDD compared with controls (P = .04). CONCLUSIONS These findings suggest that GABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature.
Collapse
Affiliation(s)
- Vilma Gabbay
- Department of Child and Adolescent Psychiatry, New York University Child Study Center, New York University Langone Medical Center, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang F, Kalmar JH, Womer FY, Edmiston EE, Chepenik LG, Chen R, Spencer L, Blumberg HP. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder. Brain 2011; 134:2005-12. [PMID: 21666263 PMCID: PMC3122371 DOI: 10.1093/brain/awr124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 01/21/2023] Open
Abstract
The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these factors implicate a central role for the olfactocentric paralimbic cortex in the development of bipolar disorder and suggest that abnormalities in this cortex may be expressed by adolescence in the disorder. We tested the hypothesis that differences in olfactocentric paralimbic cortex structure are a morphological feature in adolescents with bipolar disorder. Subjects included 118 adolescents (41 with bipolar disorder and 77 healthy controls). Cortical grey matter volume differences between adolescents with and without bipolar disorder were assessed with voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. Compared with healthy comparison adolescents, adolescents with bipolar disorder demonstrated significant volume decreases in olfactocentric paralimbic regions, including orbitofrontal, insular and temporopolar cortices. Findings in these regions survived small volume correction (P < 0.05, corrected). Volume decreases in adolescents with bipolar disorder were also noted in inferior prefrontal and superior temporal gyri and cerebellum. The findings suggest that abnormalities in the morphology of the olfactocentric paralimbic cortex may contribute to the bipolar disorder phenotype that emerges in adolescence. The morphological development of the olfactocentric paralimbic cortex has received little study. The importance of these cortices in emotional and social development, and support for a central role for these cortices in the development of bipolar disorder, suggest that study of the development of these cortices in health and in bipolar disorder is critically needed.
Collapse
Affiliation(s)
- Fei Wang
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- 2 Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jessica H. Kalmar
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fay Y. Womer
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Erin E. Edmiston
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lara G. Chepenik
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- 2 Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rachel Chen
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Linda Spencer
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hilary P. Blumberg
- 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- 2 Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- 3 Child Study Centre, Yale University School of Medicine, New Haven, CT 06510, USA
- 4 Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
42
|
Ghose S, Winter MK, McCarson KE, Tamminga CA, Enna SJ. The GABAβ receptor as a target for antidepressant drug action. Br J Pharmacol 2011; 162:1-17. [PMID: 20735410 PMCID: PMC3012402 DOI: 10.1111/j.1476-5381.2010.01004.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 11/29/2022] Open
Abstract
Preclinical and clinical data suggest that a modification in GABA(B) receptor expression and function may contribute to the symptoms of major depression and the response to antidepressants. This includes laboratory animal experiments demonstrating that antidepressants modify brain GABA(B) receptor expression and function and that GABA(B) receptor antagonists display antidepressant potential in animal models of this condition. Clinical and post-mortem studies reveal changes in GABAergic transmission associated with depression as well as depression-related changes in GABA(B) subunit expression that are localized to the cortical depression network. Detailed in this review are the preclinical and clinical data implicating a role for the GABA(B) receptor system in mediating symptoms of this disorder and its possible involvement in the response to antidepressants. Particular emphasis is placed on clinical and post-mortem studies, including previously unpublished work demonstrating regionally-selective modifications in GABA(B) receptor subunit expression in brain samples obtained from depressed subjects. Together with the earlier preclinical studies, these new data point to a role for the GABA(B) system in major depression and support the antidepressant potential of GABA(B) receptor antagonists.
Collapse
Affiliation(s)
- Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
43
|
Werner FM, Coveñas R. Classical Neurotransmitters and Neuropeptides Involved in Major Depression: a Review. Int J Neurosci 2010; 120:455-70. [DOI: 10.3109/00207454.2010.483651] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Goto N, Yoshimura R, Moriya J, Kakeda S, Hayashi K, Ueda N, Ikenouchi-Sugita A, Umene-Nakano W, Oonari N, Korogi Y, Nakamura J. Critical examination of a correlation between brain gamma-aminobutyric acid (GABA) concentrations and a personality trait of extroversion in healthy volunteers as measured by a 3 Tesla proton magnetic resonance spectroscopy study. Psychiatry Res 2010; 182:53-7. [PMID: 20227251 DOI: 10.1016/j.pscychresns.2009.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 12/18/2022]
Abstract
We hypothesized that brain gamma-aminobutyric acid (GABA) levels are associated with neuroticism, a trait associated with depression and anxiety disorders. We examined the correlation between brain GABA concentrations and the five factors included in the NEO Five-Factor Inventory (NEO-FFI) in healthy volunteers using magnetic resonance spectroscopy (MRS) at 3 T. Forty-one healthy subjects (21 males, 20 females; age: 35+/-7 years) were enrolled in this study. Each subject underwent a 3T 1H-MRS study with a MEGA-PRESS sequence. Spectroscopy voxels (3 cm x 3 cm x 3 cm) were placed in the frontal lobe and the parieto-occipital lobe. A negative correlation was found between the GABA/creatine ratios in the frontal lobe and scores of extroversion on the NEO-FFI. These results suggest that GABAergic neurons are related to personality traits of healthy subjects.
Collapse
Affiliation(s)
- Naoki Goto
- Department of Psychiatry, University of Occupational and Environmental Health, School of Medicine,1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 8078555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matrisciano F, Nasca C, Molinaro G, Riozzi B, Scaccianoce S, Raggi MA, Mercolini L, Biagioni F, Mathè AA, Sanna E, Maciocco E, Pignatelli M, Biggio G, Nicoletti F. Enhanced expression of the neuronal K+/Cl- cotransporter, KCC2, in spontaneously depressed Flinders Sensitive Line rats. Brain Res 2010; 1325:112-20. [PMID: 20153734 DOI: 10.1016/j.brainres.2010.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
We used Flinder Sensitive Line (FSL) rats, a genetic model of unipolar depression, to examine whether changes in central GABAergic transmission are associated with a depressed phenotype. FSL rats showed an increased behavioral response to low doses of diazepam, as compared to either Sprague Dawley (SD) or Flinder Resistant Line (FRL) rats used as controls. Diazepam at a dose of 0.3 mg/kg, i.p., induced a robust impairment of motor coordination in FSL rats, but was virtually inactive in SD or FRL rats. The increased responsiveness of FSL rats was not due to changes in the brain levels of diazepam or its active metabolites, or to increases in the number or affinity of benzodiazepine recognition sites, as shown by the analysis of [(3)H]-flunitrazepam binding in the hippocampus, cerebral cortex or cerebellum. We therefore examined whether FSL rats differed from control rats for the expression levels of the K(+)/Cl(-) cotransporter, KCC2, which transports Cl(-) ions out of neurons, thus creating the concentration gradient that allows Cl(-) influx through the anion channel associated with GABA(A) receptors. Combined immunoblot and immunohistochemical data showed a widespread increase in KCC2 expression in FSL rats, as compared with control rats. The increase was more prominent in the cerebellum, where KCC2 was largely expressed in the granular layer. These data raise the interesting possibility that a spontaneous depressive state in animals is associated with an amplified GABAergic transmission in the CNS resulting from an enhanced expression of KCC2.
Collapse
Affiliation(s)
- F Matrisciano
- Department of Physiology and Pharmacology, Sant'Andrea Hospital, University of Rome Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Methippara M, Bashir T, Suntsova N, Szymusiak R, McGinty D. Hippocampal adult neurogenesis is enhanced by chronic eszopiclone treatment in rats. J Sleep Res 2010; 19:384-93. [PMID: 20408925 DOI: 10.1111/j.1365-2869.2010.00833.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adult hippocampal dentate gyrus (DG) exhibits cell proliferation and neurogenesis throughout life. We examined the effects of daily administration of eszopiclone (Esz), a commonly used hypnotic drug and gamma-aminobutyric acid (GABA) agonist, compared with vehicle, on DG cell proliferation and neurogenesis, and on sleep-wake patterns. Esz was administered during the usual sleep period of rats, to mimic typical use in humans. Esz treatment for 7 days did not affect the rate of cell proliferation, as measured by 5-bromo-2'-deoxyuridine (BrdU) immunostaining. However, twice-daily Esz administration for 2 weeks increased survival of newborn cells by 46%. Most surviving cells exhibited a neuronal phenotype, identified as BrdU-neuronal nuclei (NeuN) double-labeling. NeuN is a marker of neurons. Non-rapid eye movement sleep was increased on day 1, but not on days 7 or 14 of Esz administration. Delta electroencephalogram activity was increased on days 1 and 7 of treatment, but not on day 14. There is evidence that enhancement of DG neurogenesis is a critical component of the effects of antidepressant treatments of major depressive disorder (MDD). Adult-born DG cells are responsive to GABAergic stimulation, which promotes cell maturation. The present study suggests that Esz, presumably acting as a GABA agonist, has pro-neurogenic effects in the adult DG. This result is consistent with evidence that Esz enhances the antidepressant treatment response of patients with MDD with insomnia.
Collapse
|
47
|
Gao SF, Bao AM. Corticotropin-Releasing Hormone, Glutamate, and γ-Aminobutyric Acid in Depression. Neuroscientist 2010; 17:124-44. [DOI: 10.1177/1073858410361780] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress response and depression have a significant impact on modern society. Although the symptoms are well characterized, the molecular mechanisms underlying depression are largely unknown. The monoamine hypothesis, which postulates dysfunctional noradrenergic and serotonergic systems as the underlying primary cause of depression, has been valuable for the development of conventional antidepressants, which can reverse these dysfunctional states to some degree. However, recent data from various neuroscience disciplines have questioned the major role of amines in the pathogenesis of depression. A considerable amount of evidence has accumulated that suggests that normalization of the hypothalamo—pituitary—adrenal (HPA) system might be the final step necessary for a remission of depression. In addition, an increasing body of clinical and postmortem evidence is pointing to a role played by γ-aminobutyric acid (GABA) and glutamate in the etiology of depression. This review examines the evidence, mainly obtained from clinical studies or from postmortem brain material, for a major role of the HPA axis, glutamatergic, and GABAergic systems in the pathogenesis of major and bipolar depression. The authors hope that these insights will stimulate further studies with the final aim of developing new types of antidepressants that combine increased efficacy with a shorter delay of the onset of action and reduced side-effect profiles.
Collapse
Affiliation(s)
- Shang-Feng Gao
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
48
|
GABRB2 in schizophrenia and bipolar disorder: disease association, gene expression and clinical correlations. Biochem Soc Trans 2010; 37:1415-8. [PMID: 19909288 DOI: 10.1042/bst0371415] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SCZ (schizophrenia)-associated GABA(A) receptor (gamma-aminobutyric acid type A receptor) beta(2) subunit gene GABRB2 was recently associated with BPD (bipolar disorder). Although weaker than its association with SCZ, significant association of GABRB2 with BPD was found in both German and Chinese, especially for the haplotypes rs1816071-rs187269 and rs1816072-rs187269 for which the M-M variants showed higher frequency in disease than the control. Significant genotype-dependent reduction in GABRB2 expression was shown for BPD, but to a lesser extent than that for SCZ. Temporal effects on GABRB2 expression were observed. Moreover, for the homozygous major genotypes of rs1816071, rs1816072 and rs187269, expression increased with time in CON but decreased in SCZ and BPD. The genotypes of these three SNPs (single nucleotide polymorphisms) were further correlated with antipsychotics dosage in SCZ cohorts. The findings highlight the importance of GABRB2 in neuropsychiatric disease aetiology, with respect to haplotype association, as well as reduction of and temporal effects on gene expression in both SCZ and BPD, but to a lesser extent in the latter, supporting the suggestion that functional psychosis can be conceptualized as a continuous spectrum of clinical phenotypes rather than as distinct categories.
Collapse
|
49
|
Cryan JF, Slattery DA. GABAB Receptors and Depression: Current Status. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:427-51. [DOI: 10.1016/s1054-3589(10)58016-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Abstract
Bipolar disorder (BPD) is increasingly recognized as a neuropathological disorder characterized by reductions in grey matter (GM) volume, as measured by magnetic resonance imaging (MRI) and neuronal and postmortem glial cell changes. Here, we use an anatomical framework to discuss the neurobiology of BPD, focusing on individual components of the "visceromotor network" that regulates bodily homeostasis along with neurophysiological and neuroendocrine responses to stress. MRI-defined reductions in GM volume, combined with neuronal changes, are observed in the perigenual anterior cingulate cortex (ACC) of individuals with BPD, while postmortem glial cell loss is also a characteristic of Brodmann's Area 9. Both postmortem neuronal loss and reduced GM volume have been reported in the amygdala and hippocampus. These structural changes to components of the visceromotor network are associated with increased regional cerebral blood flow (rCBF) or blood oxygenated level-dependent (BOLD) activity in response to affective or rewarding stimuli, raising the possibility that the BPD-associated structural changes are secondary to a glutamate-driven excitotoxic process.
Collapse
|