1
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
2
|
Meng HX, Wang YZ, Yao XL, Xie XR, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet. PLANT MOLECULAR BIOLOGY 2024; 114:37. [PMID: 38602592 DOI: 10.1007/s11103-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.
Collapse
Affiliation(s)
- Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Ran Xie
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
3
|
Rao Y, Peng T, Xue S. Mechanisms of plant saline-alkaline tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153916. [PMID: 36645936 DOI: 10.1016/j.jplph.2023.153916] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkaline soil affects crop growth and development, thereby suppressing the yields. Human activities and climate changes are putting arable land under the threat of saline-alkalization. To feed a growing global population in limited arable land, it is of great urgence to breed saline-alkaline tolerant crops to cope with food security. Plant salt-tolerance mechanisms have already been explored for decades. However, to date, the molecular mechanisms underlying plants responses to saline-alkaline stress have remained largely elusive. Here, we summarize recent advances in plant response to saline-alkaline stress and propose some points deserving of further exploration.
Collapse
Affiliation(s)
- Ying Rao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Pastuszak J, Dziurka M, Hornyák M, Szczerba A, Kopeć P, Płażek A. Physiological and Biochemical Parameters of Salinity Resistance of Three Durum Wheat Genotypes. Int J Mol Sci 2022; 23:8397. [PMID: 35955532 PMCID: PMC9369059 DOI: 10.3390/ijms23158397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar 'Tamaroi' (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0-150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)-Fv/F0, energy dissipation from PSII-DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100-150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. 'Tamaroi' demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress.
Collapse
Affiliation(s)
- Jakub Pastuszak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland;
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Marta Hornyák
- Władysław Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland;
| | - Anna Szczerba
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland;
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Agnieszka Płażek
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland;
| |
Collapse
|
5
|
Zhao R, Yin K, Chen S. Hydrogen sulphide signalling in plant response to abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:523-531. [PMID: 34837449 DOI: 10.1111/plb.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Throughout their whole life cycle, higher plants are often exposed to diverse environmental stresses, such as drought, salinity, heavy metals and extreme temperatures. In response to such stress, plant cells initiate signalling transduction, resulting in downstream responses, such as specific gene transcription and protein expression. Accumulating evidence has revealed that hydrogen sulphide (H2 S) serves as a signalling molecule in plant acclimation to stressful conditions. More important, H2 S interacts with other signalling molecules and phytohormones, contributing to transcriptional regulation and post-translational modification. Overall, the H2 S-mediated signalling pathway and its interaction with other signals remains elusive. Here, we describe the role of the H2 S signalling network in regulating physiological and molecular processes under various abiotic stresses.
Collapse
Affiliation(s)
- R Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - K Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - S Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Xie Q, Zhou Y, Jiang X. Structure, Function, and Regulation of the Plasma Membrane Na +/H + Antiporter Salt Overly Sensitive 1 in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866265. [PMID: 35432437 PMCID: PMC9009148 DOI: 10.3389/fpls.2022.866265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 05/24/2023]
Abstract
Physiological studies have confirmed that export of Na+ to improve salt tolerance in plants is regulated by the combined activities of a complex transport system. In the Na+ transport system, the Na+/H+ antiporter salt overly sensitive 1 (SOS1) is the main protein that functions to excrete Na+ out of plant cells. In this paper, we review the structure and function of the Na+/H+ antiporter and the physiological process of Na+ transport in SOS signaling pathway, and discuss the regulation of SOS1 during phosphorylation activation by protein kinase and the balance mechanism of inhibiting SOS1 antiporter at molecular and protein levels. In addition, we carried out phylogenetic tree analysis of SOS1 proteins reported so far in plants, which implied the specificity of salt tolerance mechanism from model plants to higher crops under salt stress. Finally, the high complexity of the regulatory network of adaptation to salt tolerance, and the feasibility of coping strategies in the process of genetic improvement of salt tolerance quality of higher crops were reviewed.
Collapse
Affiliation(s)
- Qing Xie
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
7
|
Wang Q, Wang B, Liu H, Han H, Zhuang H, Wang J, Yang T, Wang H, Qin Y. Comparative proteomic analysis for revealing the advantage mechanisms of salt-tolerant tomato ( Solanum lycoperscium). PeerJ 2022; 10:e12955. [PMID: 35251781 PMCID: PMC8893030 DOI: 10.7717/peerj.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.
Collapse
Affiliation(s)
- Qiang Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huifang Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongwei Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongmei Zhuang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hao Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
8
|
Ghanem AMFM, Mohamed E, Kasem AMMA, El-Ghamery AA. Differential Salt Tolerance Strategies in Three Halophytes from the Same Ecological Habitat: Augmentation of Antioxidant Enzymes and Compounds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061100. [PMID: 34070752 PMCID: PMC8229423 DOI: 10.3390/plants10061100] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 05/12/2023]
Abstract
Understanding the salt tolerance mechanism in obligate halophytes provides valuable information for conservation and re-habitation of saline areas. Here, we investigated the responses of three obligate halophytes namely Arthrocnemum macrostachyum, Sarcocornia fruticosa and Salicornia europaea to salt stress (0, 100, 200, 400 and 600 mM NaCl) during their vegetative growth with regard to biomass, ions contents (Na+, K+ and Ca+2), chlorophyll contents, carotenoids, phenolic compounds, flavonoids, and superoxide dismutase, peroxidase and esterase activities. S. europaea showed the lowest biomass, root K+ content, Chl a/b ratio, and carotenoids under salinity. This reduction of biomass is concomitant with the increase in proline contents and peroxidase activity. On the other hand, the promotion of growth under low salinity and maintenance under high salinity (200 and 400 Mm NaCl) in A. Macrostachyum and S. fruticosa are accompanied by an increase in Chl a/b ratio, carotenoids, phenolics contents, and esterase activity. Proline content was decreased under high salinity (400 and 600 mM NaCl) in both species compared to S. europaea, while peroxidase showed the lowest activity in both plants under all salt levels except under 600 mM NaCl in Arthrocnemum macrostachyum compared to S. europaea. These results suggest two differential strategies; (1) the salt tolerance is due to activation of antioxidant enzymes and biosynthesis of proline in S. europaea, (2) the salt tolerance in A. macrostachyum, S. fruticosa are due to rearrangement of chlorophyll ratio and biosynthesis of antioxidant compounds (carotenoids, phenolics and flavonoids) which their cost seem to need less energy than activation of antioxidant enzymes. The differential behavior in halophytes of the same habitat confirms that the tolerance mechanism in halophytes is species-specific which provides new insight about the restoration strategy of saline areas.
Collapse
Affiliation(s)
- AbdEl-Mageed F. M. Ghanem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt; (A.F.M.G.); (A.M.M.A.K.)
| | - Elsayed Mohamed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt; (A.F.M.G.); (A.M.M.A.K.)
- Correspondence:
| | - Ahmed M. M. A. Kasem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt; (A.F.M.G.); (A.M.M.A.K.)
| | - Abbas A. El-Ghamery
- Botany & Microbiology Department, Faculty of Science (Cairo), Al-Azhar University, Madinat Nasr, Cairo 11751, Egypt;
| |
Collapse
|
9
|
Heydarian Z, Gruber M, Coutu C, Glick BR, Hegedus DD. Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Sci Rep 2021; 11:4260. [PMID: 33608579 PMCID: PMC7895925 DOI: 10.1038/s41598-021-83629-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Growth of plants in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase or expression of the corresponding acdS gene in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of ethylene attenuated the salt stress response as inferred from decreases in the expression of genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to levels that may otherwise have a negative effect on plant growth and productivity. Growing plants in soil treated with Pseudomonas migulae 8R6 negatively affected ethylene signaling, auxin and JA biosynthesis and signalling, but had a positive effect on the regulation of genes involved in GA signaling. In plants expressing acdS, the expression of the genes involved in auxin signalling was positively affected, while the expression of genes involved in cytokinin degradation and ethylene biosynthesis were negatively affected. Moreover, fine-tuning of ABA signaling appears to result from the application of ACC deaminase in response to salt treatment. Moderate expression of acdS under the control of the root specific rolD promoter or growing plants in soil treated with P. migulae 8R6 were more effective in reducing the expression of the genes involved in ethylene production and/or signaling than expression of acdS under the more active Cauliflower Mosaic Virus 35S promoter.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
10
|
Wang Z, Liang Y, Jin Y, Tong X, Wei X, Ma F, Ma B, Li M. Ectopic expression of apple hexose transporter MdHT2.2 reduced the salt tolerance of tomato seedlings with decreased ROS-scavenging ability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:504-513. [PMID: 33049446 DOI: 10.1016/j.plaphy.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Salt is one of the main stresses that limit plant growth, especially at the seedling stage, reducing crop production and severely impacting food security. However, the relationship between salt stress and sugar content regulated by sugar transporters remains unknown. Here, we investigated the salt tolerance of transgenic tomato seedlings ectopically expressing MdHT2.2, which is a fructose and glucose/H+ symporter located on the plasma membrane in apple. Although the contents of fructose, glucose and sucrose in the leaves of seedlings ectopically expressing MdHT2.2 obviously increased compared with those of WT seedlings, the transgenic seedlings were significantly less tolerance to salt stress. Under salt stress, the SlSOS1/2 and SlNHX1 genes were highly expressed, and the accumulation of Na+ was lower in the transgenic seedlings than in WT, however, ROS accumulated to a greater degree in the former, and the ROS-scavenging-related enzyme activities and AsA content were lower in the transgenic seedlings than WT. Taken together, these results indicated that the relatively low salt tolerance of the MdHT2.2 transgenic seedlings was related with the accumulation of ROS, which was caused by reduced ROS-scavenging ability. Our results offer proof that changes in sugar content caused by sugar transporters are related to salt tolerance, and provide new insight into the regulation of sugar content, quality improvement and stress tolerance.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yonghui Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuru Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolei Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Kushwaha P, Kashyap PL, Bhardwaj AK, Kuppusamy P, Srivastava AK, Tiwari RK. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol 2020; 36:26. [PMID: 31997078 DOI: 10.1007/s11274-020-2804-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Salinity stress is one of the key constraints for sustainable crop production. It has gained immense importance in the backdrop of climate change induced imbalanced terrestrial water budgets. The traditional agronomic approaches and breeding salt-tolerant genotypes have often proved insufficient to alleviate salinity stress. Newer approaches like the use of bacterial endophytes associated with agricultural crops have occupied center place recently, owing to their advantageous role in improving crop growth, health and yield. Research evidences have revealed that bacterial endophytes can promote plant growth by accelerating availability of mineral nutrients, helping in production of phytohormones, siderophores, and enzymes, and also by activating systemic resistance against insect pest and pathogens in plants. These research developments have opened an innovative boulevard in agriculture for capitalizing bacterial endophytes, single species or consortium, to enhance plant salt tolerance capabilities, and ultimately lead to translational refinement of crop-production business under salty environments. This article reviews the latest research progress on the identification and functional characterization of salt tolerant endophytic bacteria and illustrates various mechanisms triggered by them for plant growth promotion under saline environment.
Collapse
Affiliation(s)
- Prity Kushwaha
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India.
| | - Ajay Kumar Bhardwaj
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, 132001, India.
| | - Pandiyan Kuppusamy
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Rajesh Kumar Tiwari
- AMITY University, Uttar Pradesh Lucknow Campus, Malhaur, Gomti Nagar Extension, Lucknow, 227105, India
| |
Collapse
|
12
|
Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P, Sajjad M, Zhang X, Ge X. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:28-36. [PMID: 31300139 DOI: 10.1016/j.plantsci.2019.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/25/2019] [Indexed: 05/25/2023]
Abstract
MYB family genes act as important regulators modulating the response to abiotic stress in plants. However, much less is known about MYB proteins in cotton. Here, we found that a cotton MYB gene, GhMYB73, was induced by NaCl and abscisic acid (ABA). Silencing GhMYB73 expression in cotton increased sensitivity to salt stress. The cotyledon greening rate of Arabidopsis thaliana over-expressing GhMYB73 under NaCl or mannitol treatment was significantly enhanced during the seedling germination stage. What's more, several osmotic stress-induced genes, such as AtNHX1, AtSOS3 and AtP5CS1, were more highly induced in the over-expression lines than in wild type under salt treatment, supporting the hypothesis that GhMYB73 contributes to salinity tolerance by improving osmotic stress resistance. Arabidopsis lines over-expressing GhMYB73 had superior germination and cotyledon greening under ABA treatment, and some abiotic stress-induced genes involved in ABA pathways (AtPYL8, AtABF3, AtRD29B and AtABI5), had increased transcription levels under salt-stress conditions in these lines. Furthermore, we found that GhMYB73 physically interacts with GhPYL8 and AtPYL8, suggesting that GhMYB73 regulates ABA signaling during salinity stress response. Taken together, over-expression of GhMYB73 significantly increases tolerance to salt and ABA stress, indicating that it can potentially be used in transgenic technology approaches to improve cotton salt tolerance.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 40070, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanpeng Ding
- Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangyang Diao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peipei Liu
- Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 40070, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
13
|
Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: A Key Regulator of Na + Homeostasis during Germination. PLANT PHYSIOLOGY 2019; 180:1101-1118. [PMID: 30894419 PMCID: PMC6548231 DOI: 10.1104/pp.19.00119] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 05/06/2023]
Abstract
Salinity impairs seed germination and seedling establishment. We investigated the role of Arabidopsis (Arabidopsis thaliana) CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6 (CAMTA6) in salinity stress responses during early germination. Compared with the wild type, the camta6-4 and camta6-5 mutants were more tolerant to NaCl and abscisic acid (ABA) and accumulated less Na+ In contrast, 4- to 11-d-old camta6 seedlings were more sensitive to NaCl. In camta6, expression of HIGH-AFFINITY K+ TRANSPORTER1 (AtHKT1;1), encoding an Na+/K+ transporter, was restricted to the radicles and was not enhanced by NaCl or ABA. During germination, the camta6 hkt1 double mutant was as sensitive as the wild type and hkt1 to NaCl, suggesting that HKT1;1 is crucial for the salt tolerance of camta6 An ABA response element in the HKT1;1 promoter was found to be indispensable for the enhanced expression of the gene in response to NaCl and to ABA. Transcriptome analysis of the wild type and camta6-5 with and without salt treatment revealed 1,020 up-regulated and 1,467 down-regulated salt-responsive genes in the wild type. Among these, 638 up-regulated and 1,242 down-regulated genes were classified as CAMTA6-dependent. Expression of several known salt stress-associated genes, including SALT OVERLY SENSITIVE1 and Na+/H+ ANTIPORTER, was impaired in camta6 mutants. Bioinformatics analysis of the 5' upstream sequences of the salt-responsive CAMTA6-dependent up-regulated genes revealed the CACGTGTC motif as the most prominent element, representing an ABA response element and a potential CAMTA-binding site. We suggest that CAMTA6 regulates, directly or indirectly, the expression of most of the salt-responsive genes in germinating seeds, including genes that are crucial for Na+ homeostasis and salt stress tolerance.
Collapse
Affiliation(s)
- Doron Shkolnik
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hillel Fromm
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Souid I, Toumi I, Hermosín-Gutiérrez I, Nasri S, Mliki A, Ghorbel A. The effect of salt stress on resveratrol and piceid accumulation in two Vitis vinifera L. cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:625-635. [PMID: 31168228 PMCID: PMC6522566 DOI: 10.1007/s12298-019-00668-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Salinity is one of the most important abiotic stresses, especially in arid regions. Such devastating constraint is converted mainly to oxidative burst. Thus, plants have to develop strategies to scavenge salt-related regenerated oxidant molecules. In the present work, fully aged plants derived from two Vitis vinifera L. cultivars, the Tunisian autochthonous tolerant genotype Razegui and the salt sensitive Syrah, were analyzed regarding their short term response to 100 mM NaCl, in hydroponic cultures. The ratio [ASA/ASA + DHA] was calculated on the basis of the oxidation of ascorbic acid (ASA) into dehydroascorbic acid (DHA) in leaves. Results proved that oxidative stress was generated. This led to the accumulation of malondialdehyde which referred to a lipid peroxidation mainly in the sensitive Syrah. In order to cope with these oxidative disturbances, trans-resveratrol as well as its glucosides trans-piceid and cis-piceid have been de novo synthesized in the sensitive variety. Razegui stilbene concentrations were presented here for the first time and unexpectedly did not show a very important variation during the salt elicitation.
Collapse
Affiliation(s)
- Imen Souid
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
- Central Analytical Laboratory of Animal Feeds, Box 155, Chotrana 1, 2036 Soukra, Tunisia
| | - Imene Toumi
- Department of Biology, University of Crete, P.O. Box 2280, 71409 Heraklion, Greece
| | - Isidro Hermosín-Gutiérrez
- Escuela Universitaría de Ingeniería Técnica Agrícola, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Soumaia Nasri
- Campus for Girls Study, Pre-Medical Department, Sciences Faculty, King Khaled University, Box 3340, Abha, Saudi Arabia
| | - Ahmed Mliki
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| | - Abdelwahed Ghorbel
- Laboratory of Grapevine Molecular Physiology, University of Tunis II, Tunis, Tunisia
| |
Collapse
|
15
|
Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S. The Arabidopsis Ca 2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124062. [PMID: 30558245 PMCID: PMC6321221 DOI: 10.3390/ijms19124062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
CDPKs (Ca2+-Dependent Protein Kinases) are very important regulators in plant response to abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference (RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of seedling growth. Under NaCl treatment, Na+ levels in the roots of CPK12-RNAi plants increased and were higher than levels in GL1 plants. In addition, the level of salt-elicited H2O2 production was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively, our results suggest that CPK12 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nianfei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chenjing Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Rebah F, Ouhibi C, Alamer KH, Msilini N, Nasri MB, Stevens R, Attia H. Comparison of the responses to NaCl stress of three tomato introgression lines. ACTA BIOLOGICA HUNGARICA 2018; 69:464-480. [PMID: 30587018 DOI: 10.1556/018.69.2018.4.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We aimed to examine the response of three tomato introgression lines (IL925.3, IL925.5 and IL925.6) to NaCl stress. These lines originated from a cross between M82 (Solanum lycopersicum) and the wild salttolerant tomato Solanum pennellii, each line containing a different fragment of the S.pennellii genome. Salt-sensitive phenotypes related to plant growth and physiology, and the response of antioxidants, pigments and antioxidant enzymes were measured. In general, salt stress decreased the fresh weight of leaves, leaf area and leaf number and an increase of Na+ accumulation in aerial parts was observed, which caused a reduction in the absorption of K+ and Ca2+. Salt stress also induced a decrease in chlorophyll, carotenoids and lipid peroxidation (MDA) and an increase in anthocyanins and reduced ascorbate, although some differences were seen between the lines, for example for carotenoid levels. Guaiacol peroxidase, catalase and glutathione reductase activity enhanced in aerial parts of the lines, but again some differences were seen between the three lines. It is concluded that IL925.5 might be the most sensitive line to salt stress as its dry weight loss was the greatest in response to salt and this line showed the highest Na+ ion accumulation in leaves.
Collapse
Affiliation(s)
- Fedia Rebah
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisie
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Chayma Ouhibi
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisie
| | - K. H. Alamer
- Biology Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia
| | - Najoua Msilini
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisie
| | - Mouhiba Ben Nasri
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisie
| | - Rebecca Stevens
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France
| | - Houneida Attia
- Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisie
- Biology Department, Faculty of Science, Taif University, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Li N, Kang S. Do volatile compounds produced by Fusarium oxysporum and Verticillium dahliae affect stress tolerance in plants? Mycology 2018; 9:166-175. [PMID: 30181923 PMCID: PMC6115880 DOI: 10.1080/21501203.2018.1448009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 11/01/2022] Open
Abstract
Volatile compounds (VCs) produced by diverse microbes seem to affect plant growth, development and/or stress tolerance. We investigated how VCs released by soilborne fungi Fusarium oxysporum and Verticillium dahliae affect Arabidopsis thaliana responses to abiotic and biotic stresses. Under salt stress, VCs from both fungi helped its growth and increased chlorophyll content. However, in contrast to wild-type A. thaliana (Col-0), V. dahliae VCs failed to increase leaf surface area in auxin signalling mutants aux1-7, tir1-1 and axr1-3. Compared to wild-type Col-0, the degree of lateral root density enhanced by V. dahliae VCs in these mutants was also reduced. Consistent with the involvement of auxin signalling in fungal VC-mediated salt torelance, A. thaliana line carrying DR5::GUS displayed increased auxin accumulation in root apex upon exposure to V. dahliae VCs, and 1-naphthylphthalamic acid, an auxin transport inhibitor, adversely affected V. dahliae VC-mediated salt tolerance. F. oxysporum VCs induced the expression of PR1 but not PDF1.2 in A. thaliana lines containing PR1::GUS and PFD1.2::GUS. When challenged with Pseudomonas syringae after the exposure to F. oxysporum VCs, A. thaliana showed reduced disease symptoms. However, the number of bacterial cells in F. oxysporum VC-treated plants was not significantly different from that in control plants.
Collapse
Affiliation(s)
- Ningxiao Li
- Intercollege Graduate Degree Program in Plant Biology, University Park, PA, The Pennsylvania State University, USA
| | - Seogchan Kang
- Intercollege Graduate Degree Program in Plant Biology, University Park, PA, The Pennsylvania State University, USA.,Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Thyssen GM, Holtkamp M, Kaulfürst-Soboll H, Wehe CA, Sperling M, von Schaewen A, Karst U. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles. Metallomics 2017; 9:676-684. [PMID: 28504297 DOI: 10.1039/c7mt00003k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g-1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.
Collapse
Affiliation(s)
- G M Thyssen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Shukla D, Rinehart CA, Sahi SV. Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development. Sci Rep 2017; 7:3074. [PMID: 28596610 PMCID: PMC5465178 DOI: 10.1038/s41598-017-03061-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
Excess Phosphorus (P) in agriculture is causing serious environmental problems like eutrophication of lakes and rivers. Unlike the enormous information available for phosphate starvation response (P0), very few information is available for the effect of excess phosphate Pi on plants. Characterization of Excess Phosphate Response (EPiR) is essential for designing strategies to increase phosphate accumulation and tolerance. We show a significant modulation in the root developmental plasticity under the increasing supply of excess Pi. An excess supply of 20 mM Pi (P20) produces a shallow root system architecture (RSA), reduces primary root growth, root apical meristem size, and meristematic activity in Arabidopsis. The inhibition of primary root growth and development is indeterminate in nature and caused by the decrease in number of meristematic cortical cells due to EPiR. Significant changes occurred in metal nutrients level due to excess Pi supply. A comparative microarray investigation of the EPiR response reveals a modulation in ethylene biosynthesis and signaling, metal ions deficiency response, and root development related genes. We used ethylene-insensitive or sensitive mutants to provide more evidence for ethylene-mediated signaling. A new role of EPiR in regulating the developmental responses of plants mediated by ethylene has been demonstrated.
Collapse
Affiliation(s)
- Devesh Shukla
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA.
| | - Claire A Rinehart
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA
| | - Shivendra V Sahi
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA.
| |
Collapse
|
20
|
Ma X, Ou YB, Gao YF, Lutts S, Li TT, Wang Y, Chen YF, Sun YF, Yao YA. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. Sci Rep 2016; 6:32890. [PMID: 27597726 PMCID: PMC5011775 DOI: 10.1038/srep32890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute–Agronomy (ELI-A), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tao-Tao Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Fu Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu-Fang Sun
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
21
|
Carrió-Seguí À, Romero P, Sanz A, Peñarrubia L. Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:1568-1582. [PMID: 27328696 DOI: 10.1093/pcp/pcw087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/25/2016] [Indexed: 05/09/2023]
Abstract
ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu uptake. Exogenous ABA inhibited pmCOPT expression and drastically modified COPT2-driven localization in roots. ABA regulated SPL7, the main transcription factor responsive for Cu deficiency responses, and subsequently affected expression of its targets. ABA biosynthesis (aba2) and signaling (hab1-1 abi1-2) mutants differentially responded to ABA according to Cu levels. Alteration of Cu homeostasis in the pmCOPT mutants affected ABA biosynthesis, transport and signaling as genes such as NCED3, WRKY40, HY5 and ABI5 were differentially modulated by Cu status, and also in the pmCOPT and ABA mutants. Altered Cu uptake resulted in modified plant sensitivity to salt-mediated increases in endogenous ABA. The overall results provide evidence for reciprocal cross-talk between Cu status and ABA metabolism and signaling.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100-Burjassot, Spain
- These authors contributed equally to this work
| | - Paco Romero
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100-Burjassot, Spain
- These authors contributed equally to this work
- Present address: Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Amparo Sanz
- Departamento de Biología Vegetal, Universitat de València, 46100-Burjassot, Spain
| | - Lola Peñarrubia
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100-Burjassot, Spain
| |
Collapse
|
22
|
Wu J, Liu Z, Zhang Z, Lv Y, Yang N, Zhang G, Wu M, Lv S, Pan L, Joosten MHAJ, Wang G. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3339-51. [PMID: 27099374 PMCID: PMC4892725 DOI: 10.1093/jxb/erw152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes.
Collapse
Affiliation(s)
- Jinbin Wu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guohua Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Menyao Wu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
23
|
Xu N, Wang L, Cheng H, Liu Q, Liu J, Ma Y. In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum. FEMS Microbiol Lett 2015; 363:fnv237. [PMID: 26667218 DOI: 10.1093/femsle/fnv237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
Corynebacterium glutamicum, typically used as industrial workhorse for amino acid production, is a moderately salt-alkali-tolerant microorganism with optimal growth at pH 7-9. However, little is known about the mechanisms of salt-alkali tolerance in C. glutamicum. Here, the catalytic capacity of three putative Na(+)/H(+) antiporters from C. glutamicum (designated as Cg-Mrp1, Cg-Mrp2 and Cg-NhaP) were characterized in an antiporter-deficient Escherichia coli KNabc strain. Only Cg-Mrp1 was able to effectively complement the Na(+)-sensitive of E. coli KNabc. Cg-Mrp1 exhibited obvious Na(+)(Li(+))/H(+) antiport activities with low apparent Km values of 1.08 mM and 1.41 mM for Na(+) and Li(+), respectively. The Na(+)/H(+) antiport activity of Cg-Mrp1 was optimal in the alkaline pH range. All three antiporters showed detectable K(+)/H(+) antiport activitiy. Cg-NhaP also exhibited Na(+)(Li(+),Rb(+))/H(+) antiport activities but at lower levels of activity. Interestingly, overexpression of Cg-Mrp2 exhibited clear Na(+)(K(+))/H(+) antiport activities. These results suggest that C. glutamicum Na(+)(K(+))/H(+) antiporters may have overlapping roles in coping with salt-alkali and perhaps high-osmolarity stress.
Collapse
Affiliation(s)
- Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Lei Wang
- Department of Microbiology and immunology, College of Biological Sciences, China Agricultural University, Beijing 10094, PR China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingdai Liu
- School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
24
|
Park MY, Kim SY. The Arabidopsis J Protein AtJ1 is Essential for Seedling Growth, Flowering Time Control and ABA Response. ACTA ACUST UNITED AC 2014; 55:2152-63. [DOI: 10.1093/pcp/pcu145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake. PLANT PHYSIOLOGY 2014; 166:518-27. [PMID: 25104725 PMCID: PMC4213084 DOI: 10.1104/pp.114.244749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 05/17/2023]
Abstract
The root system has a crucial role for plant growth and productivity. Due to the challenges of heterogeneous soil environments, diverse environmental signals are integrated into root developmental decisions. While root growth and growth responses are genetically determined, there is substantial natural variation for these traits. Studying the genetic basis of the natural variation of root growth traits can not only shed light on their evolution and ecological relevance but also can be used to map the genes and their alleles responsible for the regulation of these traits. Analysis of root phenotypes has revealed growth strategies and root growth responses to a variety of environmental stimuli, as well as the extent of natural variation of a variety of root traits including ion content, cellular properties, and root system architectures. Linkage and association mapping approaches have uncovered causal genes underlying the variation of these traits.
Collapse
Affiliation(s)
- Daniela Ristova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Bicenter, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Bicenter, 1030 Vienna, Austria
| |
Collapse
|
26
|
Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 2014; 9:e97878. [PMID: 24837971 PMCID: PMC4023963 DOI: 10.1371/journal.pone.0097878] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. METHODOLOGY/PRINCIPAL FINDINGS We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. CONCLUSIONS/SIGNIFICANCE The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Collapse
|
27
|
Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo S, Leone A, Inzé D. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. MOLECULAR PLANT 2014; 7:773-91. [PMID: 24413416 DOI: 10.1093/mp/ssu002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In high-light environments, plants are exposed to different types of stresses, such as an excess of UV-B, but also drought stress which triggers a common morphogenic adaptive response resulting in a general reduction of plant growth. Here, we report that the Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) gene, a known regulator of the UV-B morphogenic response, was able to complement a Saccharomyces cerevisiae osmo-sensitive mutant and its expression was induced after osmotic or salt stress in Arabidopsis plants. Under low levels of UV-B, plants overexpressing UVR8 are dwarfed with a reduced root development and accumulate more flavonoids compared to control plants. The growth defects are mainly due to the inhibition of cell expansion. The growth inhibition triggered by UVR8 overexpression in plants under low levels of UV-B was exacerbated by mannitol-induced osmotic stress, but it was not significantly affected by ionic stress. In contrast, uvr8-6 mutant plants do not differ from wild-type plants under standard conditions, but they show an increased shoot growth under high-salt stress. Our data suggest that UVR8-mediated accumulation of flavonoid and possibly changes in auxin homeostasis are the underlying mechanism of the observed growth phenotypes and that UVR8 might have an important role for integrating plant growth and stress signals.
Collapse
Affiliation(s)
- Rossella Fasano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. PLANT PHYSIOLOGY 2014; 164:1068-76. [PMID: 24326670 PMCID: PMC3912080 DOI: 10.1104/pp.113.227595] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/06/2013] [Indexed: 05/18/2023]
Abstract
One of the two branches of the α-linolenic acid metabolism pathway is catalyzed by 12-oxo-phytodienoic acid reductase I, and the other is involved in jasmonic acid (JA) synthesis. The former is known to be active in the response to salinity tolerance in wheat (Triticum aestivum), but the participation of the latter in this response has not been established as yet. Here, the salinity-responsive bread wheat gene TaAOC1, which encodes an allene oxide cyclase involved in the α-linolenic acid metabolism pathway, was constitutively expressed in both bread wheat and Arabidopsis (Arabidopsis thaliana). In both species, transgenic lines exhibited an enhanced level of tolerance to salinity. The transgenic plants accumulated a higher content of JA and developed shorter roots. Both the shortened roots and the salinity tolerance were abolished in a background lacking a functional AtMYC2, a key component of the JA and abscisic acid signaling pathway, but were still expressed in a background deficient with respect to abscisic acid synthesis. We provide the first evidence, to our knowledge, suggesting that JA is also involved in the plant salinity response and that the α-linolenic acid metabolism pathway has a regulatory role over this response.
Collapse
|
29
|
Mao G, Seebeck T, Schrenker D, Yu O. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2013; 13:169. [PMID: 24164720 PMCID: PMC3819737 DOI: 10.1186/1471-2229-13-169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 08/28/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. RESULTS We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. CONCLUSIONS These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response.
Collapse
Affiliation(s)
- Guohong Mao
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| | - Timothy Seebeck
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| | - Denyse Schrenker
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: The Pennsylvania State University, 115 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| |
Collapse
|
30
|
Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. THE PLANT CELL 2013; 25:2132-54. [PMID: 23898029 PMCID: PMC3723617 DOI: 10.1105/tpc.113.112896] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 06/11/2013] [Indexed: 05/18/2023]
Abstract
Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis. Through the use of a new high-resolution spatio-temporal transcriptional map, we identify the key hormone signaling pathways that regulate specific transcriptional programs, predict their spatial domain of action, and link the activity of these pathways to the regulation of specific phases of growth. We use tissue-specific approaches to suppress the abscisic acid (ABA) signaling pathway and demonstrate that ABA likely acts in select tissue layers to regulate spatially localized transcriptional programs and promote growth recovery. Finally, we show that salt also regulates many tissue-specific and time point-specific transcriptional responses that are expected to modify water transport, Casparian strip formation, and protein translation. Together, our data reveal a sophisticated assortment of regulatory programs acting together to coordinate spatially patterned biological changes involved in the immediate and long-term response to a stressful shift in environment.
Collapse
Affiliation(s)
- Yu Geng
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Rui Wu
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Choon Wei Wee
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Fei Xie
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Xueliang Wei
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
| | - Penny Mei Yeen Chan
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Cliff Tham
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Lina Duan
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - José R. Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Address correspondence to
| |
Collapse
|
31
|
Ye J, Zhang W, Guo Y. Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. PLANT CELL REPORTS 2013; 32:139-48. [PMID: 23052592 DOI: 10.1007/s00299-012-1348-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE : SOS3 mediates calcium dependent actin filament reorganization that plays important roles in plant responses to salt stress. Arabidopsis salt overly sensitive 3 (SOS3) plays an important role in plant salt tolerance by regulation of Na(+)/K(+) homeostasis. Plants lacking SOS3 are hypersensitive to salt stress and this phenomenon can be partially rescued by the addition of calcium. However the mechanism underlying remains elusive. We here report that the organization of actin filaments in sos3 mutant differs from that in wild-type plant. Under salt stress abnormal actin assembly and arrangement in sos3 are more pronounced, which can be partially complemented by addition of external calcium or low concentration of latrunculin A, an actin monomer-sequestering agent. The effects of calcium and Lat A on actin filament organization of sos3 mutant are accordant with their effects on sos3 salt sensitivity under salt stress. These findings indicate that the salt-hypersensitivity of sos3 mutant partially results from its disordered actin filaments, and SOS3 mediated actin filament reorganization plays important roles in plant responses to salt stress.
Collapse
Affiliation(s)
- Jiamin Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
32
|
|
33
|
Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2050-6. [PMID: 21813179 DOI: 10.1016/j.ecoenv.2011.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/04/2023]
Abstract
Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCl-treated grass. Salt stress increased accumulation of Na(+) and decreased K(+)/Na(+) ratio, Mg(2+) and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
34
|
Park MY, Kang JY, Kim SY. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells 2011; 31:447-54. [PMID: 21399993 PMCID: PMC3887605 DOI: 10.1007/s10059-011-0300-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/22/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022] Open
Abstract
We carried out activation tagging screen to isolate genes regulating abscisic acid (ABA) response. From the screen of approximately 10,000 plants, we isolated ca 100 ABA response mutants. We characterized one of the mutants, designated ahs1, in this study. The mutant is ABA-hypersensitive, and AtMYB52 was found to be activated in the mutant. Overexpression analysis to recapitulate the mutant phenotypes demonstrated that ATMYB confers ABA-hypersensitivity during postgermination growth. Additionally, AtMYB52 overexpression lines were drought-tolerant and their seedlings were salt-sensitive. Changes in the expression levels of a few genes involved in ABA response or cell wall biosynthesis were also observed. Together, our data suggest that AtMYB52 is involved in ABA response. Others previously demonstrated that AtMYB52 regulates cell wall biosynthesis; thus, our results imply a possible connection between ABA response and cell wall biosynthesis.
Collapse
Affiliation(s)
| | | | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
35
|
ten Hove CA, Bochdanovits Z, Jansweijer VMA, Koning FG, Berke L, Sanchez-Perez GF, Scheres B, Heidstra R. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. PLANT MOLECULAR BIOLOGY 2011; 76:69-83. [PMID: 21431781 PMCID: PMC3097349 DOI: 10.1007/s11103-011-9769-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 03/10/2011] [Indexed: 05/19/2023]
Abstract
Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes.
Collapse
Affiliation(s)
- Colette A. ten Hove
- Faculty of Science, Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Zoltán Bochdanovits
- Department of Clinical Genetics, Section Medical Genomics, VU University Medical Center, Van de Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Vera M. A. Jansweijer
- Faculty of Science, Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fenne G. Koning
- Faculty of Science, Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lidija Berke
- Faculty of Science, Department of Biology, Section Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gabino F. Sanchez-Perez
- Faculty of Science, Department of Biology, Section Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ben Scheres
- Faculty of Science, Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Renze Heidstra
- Faculty of Science, Department of Biology, Section Molecular Genetics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
36
|
Kant P, Gordon M, Kant S, Zolla G, Davydov O, Heimer YM, Chalifa-Caspi V, Shaked R, Barak S. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. PLANT, CELL & ENVIRONMENT 2008; 31:697-714. [PMID: 18182014 DOI: 10.1111/j.1365-3040.2008.01779.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses are a primary cause of crop loss worldwide. The convergence of stress signalling pathways to a common set of transcription factors suggests the existence of upstream regulatory genes that control plant responses to multiple abiotic stresses. To identify such genes, data from published Arabidopsis thaliana abiotic stress microarray analyses were combined with our presented global analysis of early heat stress-responsive gene expression, in a relational database. A set of Multiple Stress (MST) genes was identified by scoring each gene for the number of abiotic stresses affecting expression of that gene. ErmineJ over-representation analysis of the MST gene set identified significantly enriched gene ontology biological processes for multiple abiotic stresses and regulatory genes, particularly transcription factors. A subset of MST genes including only regulatory genes that were designated 'Multiple Stress Regulatory' (MSTR) genes, was identified. To validate this strategy for identifying MSTR genes, mutants of the highest-scoring MSTR gene encoding the circadian clock protein CCA1, were tested for altered sensitivity to stress. A double mutant of CCA1 and its structural and functional homolog, LATE ELONGLATED HYPOCOTYL, exhibited greater sensitivity to salt, osmotic and heat stress than wild-type plants. This work provides a reference data set for further study of MSTR genes.
Collapse
Affiliation(s)
- Pragya Kant
- Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Plieth C. Calcium: just another regulator in the machinery of life? ANNALS OF BOTANY 2005; 96:1-8. [PMID: 15845557 PMCID: PMC4246803 DOI: 10.1093/aob/mci144] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/07/2004] [Accepted: 03/01/2005] [Indexed: 05/18/2023]
Abstract
UNLABELLED * BACKGROUND Current hypotheses imply that stimulus-response systems in plants are networks of signal transduction pathways. It is usually assumed that these pathways connect receptors with effectors via chains of molecular events. Diverse intermediate signalling components (transducers) participate in these processes. However, many cellular transducers respond to several stimuli. Hence, there are no discrete chains but rather pathways that interconnect network-modules of different command structure. In particular, the cytosolic free Ca2+ concentration ([Ca2+](cyt)) is thought to perform many different tasks in a wide range of cellular events. However, this range of putative functions is so wide that it is often questioned how Ca2+ can comply with the definition of a second messenger. *THE Ca2+ SIGNATURE HYPOTHESIS: Some authors have suggested the concept of a specific signature of the ([Ca2+](cyt)) response. This implies that characteristics of the time course of changes in ([Ca2+](cyt)) and their localized sites of appearance in cells are used by the plant to identify the type and intensity of the stimulus. This hypothesis has triggered many investigations, which have yielded contradictory results. * THE CURRENT PICTURE: Much evidence suggests that the functions of calcium can be grouped into three classes: Ca2+ as a protective agent, Ca2+ as a chemical switch and Ca2+ as a 'digital' information carrier. Examples of the first two classes are presented here. The third is more controversial; while some investigations seem to support this idea, others call the Ca2+ signature hypothesis into question. Further investigations are needed to shed more light on Ca(2+)-driven signalling cascades.
Collapse
Affiliation(s)
- Christoph Plieth
- Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany.
| |
Collapse
|
38
|
Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. PLANT PHYSIOLOGY 2004; 135:432-43. [PMID: 15122038 PMCID: PMC429396 DOI: 10.1104/pp.103.036814] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/27/2004] [Accepted: 01/27/2004] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H2O2) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed.
Collapse
Affiliation(s)
- Emile J M Clerkx
- Graduate School of Experimental Plant Science and Laboratory of Genetics, Wageningen University, NL-6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lorenzen I, Aberle T, Plieth C. Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:539-44. [PMID: 15086798 DOI: 10.1111/j.0960-7412.2004.02053.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Salt stress leads to massive accumulation of toxic levels of Na(+) and Cl(-) ions in plants. By using the recombinant fluorescent probe CLOMELEON, we demonstrate passive anion flux under salt stress. Chloride influx is restricted in the presence of divalent cations like Mg(2+) and Ca(2+), and completely blocked by La(3+). The amount but not the rate of the reported chloride uptake is independent from the kind of corresponding permeable cation (K(+) versus Na(+)), external pH and magnitude of osmotic stress. Cl(-) efflux however seems to involve stretch-activated transport. From the influence of Ca(2+) on reported changes of cytosolic anion concentrations, we speculate that transport mechanisms of Cl(-) and Na(+) might be thermodynamically coupled under saline conditions.
Collapse
Affiliation(s)
- Inken Lorenzen
- Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | | | | |
Collapse
|
40
|
Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C. Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. PLANT PHYSIOLOGY 2004; 134:898-908. [PMID: 15020753 PMCID: PMC389913 DOI: 10.1104/pp.103.032508] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 10/02/2003] [Accepted: 11/25/2003] [Indexed: 05/17/2023]
Abstract
For noninvasive in vivo measurements of intra- and extracellular ion concentrations, we produced transgenic Arabidopsis expressing pH and calcium indicators in the cytoplasm and in the apoplast. Ratiometric pH-sensitive derivatives of the green fluorescent protein (At-pHluorins) were used as pH indicators. For measurements of calcium ([Ca(2+)]), luminescent aequorin variants were expressed in fusion with pHluorins. An Arabidopsis chitinase signal sequence was used to deliver the indicator complex to the apoplast. Responses of pH and [Ca(2+)] in the apoplast and in the cytoplasm were studied under salt and "drought" (mannitol) stress. Results are discussed in the frame of ion flux, regulation, and signaling. They suggest that osmotic stress and salt stress are differently sensed, compiled, and processed in plant cells.
Collapse
Affiliation(s)
- Dongjie Gao
- Institut für Pflanzenernährung und Bodenkunde, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
41
|
Gao X, Ren Z, Zhao Y, Zhang H. Overexpression of SOD2 increases salt tolerance of Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1873-81. [PMID: 14630955 PMCID: PMC300740 DOI: 10.1104/pp.103.026062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 06/11/2003] [Accepted: 09/11/2003] [Indexed: 05/18/2023]
Abstract
The yeast (Schizosaccharomyces pombe) SOD2 (Sodium2) gene was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Transformants were selected for their ability to grow on medium containing kanamycin. Southern- and northern-blot analyses confirmed that SOD2 was transferred into the Arabidopsis genome. There were no obvious morphological or developmental differences between the transgenic and wild-type (wt) plants. Several transgenic homozygous lines and wt plants (control) were evaluated for salt tolerance and gene expression. Overexpression of SOD2 in Arabidopsis improved seed germination and seedling salt tolerance. Analysis of Na+ and K+ contents of the symplast and apoplast in the parenchyma cells of the root cortex and mesophyll cells in the spongy tissue of the leaf showed that transgenic lines accumulated less Na+ and more K+ in the symplast than the wt plants did. The photosynthetic rate and the fresh weight of the transgenic lines were distinctly higher than that of wt plants after NaCl treatment. Results from different tests indicated that the expression of the SOD2 gene promoted a higher level of salt tolerance in vivo in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Xiuhua Gao
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | |
Collapse
|