1
|
Wang X, Wu Z, Liu Y, Wu C, Jiang J, Hashimoto K, Zhou X. The role of thyroid-stimulating hormone in regulating lipid metabolism: Implications for body-brain communication. Neurobiol Dis 2024; 201:106658. [PMID: 39236910 DOI: 10.1016/j.nbd.2024.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Thyroid-stimulating hormone (TSH) is a pituitary hormone that stimulates the thyroid gland to produce and release thyroid hormones, primarily thyroxine and triiodothyronine. These hormones are key players in body-brain communication, influencing various physiological processes, including the regulation of metabolism (both peripheral and central effects), feedback mechanisms, and lipid metabolism. Recently, the increasing incidence of abnormal lipid metabolism has highlighted the link between thyroid function and lipid metabolism. Evidence suggests that TSH can affect all bodily systems through body-brain communication, playing a crucial role in growth, development, and the regulation of various physiological systems. Lipids serve dual purposes: they are involved in energy storage and metabolism, and they act as vital signaling molecules in numerous cellular activities, maintaining overall human health or contributing to various diseases. This article reviews the role of TSH in regulating lipid metabolism via body-brain crosstalk, focusing on its implications for common lipid metabolism disorders such as obesity, atherosclerosis, nonalcoholic fatty liver disease, neuropsychiatric disorders (including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and depression), and cerebrovascular disorders such as stroke.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhen Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Liu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Department of Thyroid Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Ogata K, Suto H, Sato A, Maeda K, Minami K, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Optimal testing time for cerebral heterotopia formation in the rat comparative thyroid assay, a downstream indicator for perinatal thyroid hormone insufficiency. J Toxicol Pathol 2024; 37:173-187. [PMID: 39359896 PMCID: PMC11442261 DOI: 10.1293/tox.2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024] Open
Abstract
In a past study, we proposed a modified Comparative Thyroid Assay (CTA) with additional examinations of brain thyroid hormone (TH) concentrations and brain histopathology but with smaller group sizes. The results showed that the modified CTA in Sprague Dawley rats detected 10 ppm 6-propylthiouracil (6-PTU)-induced significant suppressions of serum/brain TH concentrations in offspring. To confirm the reliability of qualitative brain histopathology and identify the optimal testing time for heterotopia (a cluster of ectopic neurons) in the modified CTA, brain histopathology together with serum/brain TH concentrations were assessed in GD20 fetuses and PND2, 4, 21, and 28 pups using a similar study protocol but with a smaller number of animals (N=3-6/group/time). Significant hypothyroidism was observed and brain histopathology revealed cerebral heterotopia formation in PND21 and PND28 pups, with likely precursor findings in PND2 and PND4 pups but not in GD20 fetuses. This study confirmed that the optimal testing time for cerebral heterotopia in rat CTA was PND21 and thereafter. These findings suggest that cerebral heterotopia assessment at appropriate times may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
- Current address: Registration & Regulatory Affairs
Department, AgroSolutions Division-International, Sumitomo Chemical Company, Ltd., Tokyo
Nihombashi Tower, 2-7-1 Nihonbashi, Chuo-ku, Tokyo 103-6020, Japan
| | - Akira Sato
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Naruto Tomiyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tadashi Kosaka
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hiroaki Aoyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
3
|
Rovet JF. Targeting the Manifestations of Subclinical and Overt Hypothyroidism Within the Hippocampus. J Clin Endocrinol Metab 2024; 109:e1950-e1954. [PMID: 38970545 DOI: 10.1210/clinem/dgae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The past decade has witnessed a surge of articles describing the neurocognitive sequelae and associated structural and functional brain abnormalities of patients with overt hypothyroidism (OH) and subclinical hypothyroidism (SCH). Findings show effects primarily within the frontal lobes with usually worse outcomes for OH than SCH. Several recent studies have also indicated hypothyroid patients may have smaller hippocampi, a key structure for memory. CONTEXT The JCEM paper by Zhang and colleagues applies 2 novel approaches for analyzing hippocampal structure and function. One uses an automated processing tool that segments the hippocampus into distinct subregions, and the other performs connectivity analysis to assess the relationships between specific hippocampal subregions and cortical areas. Relatively large samples of OH and SCH patients and healthy controls received a test of global cognitive functioning and underwent structural and functional magnetic resonance imaging. Results showed hypothyroid groups scored significantly below controls on the memory scale and also had smaller hippocampal volumes in selective subregions. Effects were stronger for SCH than OH groups, who also showed different patterns of interconnectivity between hippocampal subregions and specific frontal lobe areas. INTERPRETATION To make sense of these findings, I explored the rodent and human literatures on thyroid hormone's role in hippocampal functioning and on hippocampal subfields and their purported functions and interconnections. Because current results suggest SCH may represent a distinct clinical entity with unique brain manifestations, I hypothesized 2 explanations for these findings, one involving transporter defects in the brain barriers and the other, differential neurodegeneration of the blood-brain barrier vascular unit.
Collapse
Affiliation(s)
- Joanne F Rovet
- Department of Paediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| |
Collapse
|
4
|
O'Shaughnessy KL, Bell KS, Sasser AL, Gilbert ME, Riutta C, Ford JL, McCord J, Wood CR. The pollutant perfluorohexane sulfonate (PFHxS) reduces serum thyroxine but does not alter thyroid action in the postnatal rat brain. ENVIRONMENT INTERNATIONAL 2024; 190:108838. [PMID: 38963985 DOI: 10.1016/j.envint.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood. Here we examine the endocrine and neurodevelopmental consequences of perfluorohexane sulfonate (PFHxS) exposure in pregnant, lactating, and developing rats, and compare its effects to an anti-thyroid pharmaceutical (propylthiouracil, PTU) that induces thyroid-mediated developmental neurotoxicity. We show that PFHxS dramatically reduces maternal serum thyroxine (T4), nearly equivalently to PTU (-55 and -51%, respectively). However, only PTU increases thyroid stimulating hormone. The lactational transfer of PFHxS is significant and reduces pup serum T4 across the postnatal period. Surprisingly, brain THs are only minimally decreased by PFHxS, whereas PTU drastically diminishes them. Evaluation of brain TH action by phenotyping, RNA-Sequencing, and quantification of radial glia cell morphology supports that PTU interrupts TH signaling while PFHxS has limited to no effect. These data show that PFHxS induces abnormal serum TH profiles; however, there were no indications of hypothyroidism in the postnatal brain. We suggest the stark differences between the neurodevelopmental effects of PFHxS and a typical antithyroid agent may be due to its interaction with TH distributing proteins like transthyretin.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; Oak Ridge Institute for Science and Education, Oak Ridge 37831, TN, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - James McCord
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, United States Environmental Protection Agency Research Triangle Park, NC 27709, USA
| | - Carmen R Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| |
Collapse
|
5
|
Wei W, Liu A, Liu M, Li M, Wu X, Qin C, Shan Z, Zhang L. Development of an animal model of hypothyroxinemia during pregnancy in Wistar rats. Animal Model Exp Med 2024. [PMID: 38946346 DOI: 10.1002/ame2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Hypothyroxinemia is a subclinical thyroid hormone deficiency in which the mother has inadequate levels of T4 during pregnancy. The fetus relies entirely on the mother's T4 hormone level for early neurodevelopment. Isolated maternal hypothyroxinemia (IMH) in the first trimester of pregnancy can lead to lower intelligence, lower motor scores, and a higher risk of mental illness in descendants. Here, we focus on the autism-like behavior of IMH offspring. METHODS The animals were administered 1 ppm of propylthiouracil (PTU) for 9 weeks. Then, the concentrations of T3, T4, and thyroid-stimulating hormone (TSH) were detected using enzyme-linked immunosorbent assay (ELISA) to verify the developed animal model of IMH. We performed four behavioral experiments, including the marble burying test, open-field test, three-chamber sociability test, and Morris water maze, to explore the autistic-like behavior of 40-day-old offspring rats. RESULTS The ELISA test showed that the serum T3 and TSH concentrations in the model group were normal compared with the negative control group, whereas the T4 concentration decreased. In the behavioral experiments, the number of hidden marbles in the offspring of IMH increased significantly, the frequency of entering the central compartment decreased, and the social ratio decreased significantly. CONCLUSION The animal model of IMH was developed by the administration of 1 ppm of PTU for 9 weeks, and there were autistic-like behavior changes such as anxiety, weakened social ability, and repeated stereotyping in the IMH offspring by 40 days.
Collapse
Affiliation(s)
- Wei Wei
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Aihua Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Min Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Mingfeng Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xinghan Wu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Chuan Qin
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| |
Collapse
|
6
|
Ramhøj L, Svingen T, Evrard B, Chalmel F, Axelstad M. Two thyroperoxidase-inhibiting chemicals induce shared transcriptional changes in hippocampus of developing rats. Toxicology 2024; 505:153822. [PMID: 38685447 DOI: 10.1016/j.tox.2024.153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Thyroid hormone (TH) system disrupting compounds can impair brain development by perturbing TH action during critical life stages. Human exposure to TH system disrupting chemicals is therefore of great concern. To better protect humans against such chemicals, sensitive test methods that can detect effects on the developing brain are critical. Worryingly, however, current test methods are not sensitive and specific towards TH-mediated effects. To address this shortcoming, we performed RNA-sequencing of rat brains developmentally exposed to two different thyroperoxidase (TPO) inhibiting compounds, the medical drug methimazole (MMI) or the pesticide amitrole. Pregnant and lactating rats were exposed to 8 and 16 mg/kg/day(d) MMI or 25 and 50 mg/kg/d amitrole from gestational day 7 until postnatal day 16. Bulk-RNA-seq was performed on hippocampus from the 16-day old male pups. MMI and amitrole caused pronounced changes to the transcriptomes; 816 genes were differentially expressed, and 425 gene transcripts were similarly affected by both chemicals. Functional terms indicate effects from key cellular functions to changes in cell development, migration and differentiation of several cell populations. Of the total number of DEGs, 106 appeared to form a consistent transcriptional fingerprint of developmental hypothyroidism as they were similarly and dose-dependently expressed across all treatment groups. Using a filtering system, we identified 20 genes that appeared to represent the most sensitive, robust and dose-dependent markers of altered TH-mediated brain development. These markers provide inputs to the adverse outcome pathway (AOP) framework where they, in the context of linking TPO inhibiting compounds to adverse cognitive function, can be used to assess altered gene expression in the hippocampus in rat toxicity studies.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, F-35000, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, F-35000, France
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
7
|
O'Shaughnessy KL, Sasser AL, Bell KS, Riutta C, Ford JL, Grindstaff RD, Gilbert ME. Bypassing the brain barriers: upregulation of serum miR-495 and miR-543-3p reflects thyroid-mediated developmental neurotoxicity in the rat. Toxicol Sci 2024; 198:128-140. [PMID: 38070162 DOI: 10.1093/toxsci/kfad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Rachel D Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
8
|
Gilbert ME, Hassan I, O'Shaughnessy KL, Wood C, Stoker TE, Riutta C, Ford JL. Ammonium perchlorate: serum dosimetry, neurotoxicity, and resilience of the neonatal rat thyroid system. Toxicol Sci 2024; 198:113-127. [PMID: 38145495 PMCID: PMC11588387 DOI: 10.1093/toxsci/kfad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.
Collapse
Affiliation(s)
- Mary E Gilbert
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Office of Air Quality, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Carmen Wood
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Tammy E Stoker
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Cal Riutta
- Office of Research and Development, Centre for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, USA
| | - Jermaine L Ford
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
9
|
Suto H, Ogata K, Minami K, Sato A, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Perinatal maternal exposure to high-dose sodium phenobarbital in the modified Comparative Thyroid Assay: no significant reduction in thyroid hormones in pups despite notable effects in dams. J Toxicol Sci 2024; 49:509-529. [PMID: 39496387 DOI: 10.2131/jts.49.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We propose a modified Comparative Thyroid Assay (CTA, USEPA) utilizing a smaller number of Sprague-Dawley rats (N=10/group) that assesses brain thyroid hormone (TH) concentrations and periventricular heterotopia while maintaining assay sensitivity. Our recent findings demonstrated that a prenatal test cohort of the modified CTA detected a dose-dependent decrease in maternal serum T3 (up to -26%) and T4 (up to -44%) with sodium phenobarbital (NaPB) exposure at 1000 ppm and 1500 ppm, equivalent to intakes of 60 and 84 mg/kg/day, respectively. On gestation day (GD) 20, fetuses exhibited reduced serum (-26%) and brain (-29%) TH concentrations, although these reductions were not dose dependent. The present study expanded the treatment in a postnatal test cohort, with maternal exposure to NaPB (81-93 mg/kg/day) from GD6 to lactation day (LD) 21. We assessed serum and brain TH concentrations, and periventricular heterotopia in pups on postnatal days (PND) 4, 21, and 28. While LD21 dams showed significant reductions in serum T3 (up to -34%) and T4 (up to -54%), the pups did not exhibit significant TH suppression or periventricular heterotopia at any test point. Instead, a compensatory increase in T4 was observed in serum and brain of PND21 pups. The present study confirmed that perinatal maternal exposure to high doses of NaPB leads to a moderate decrease in maternal TH concentrations; however, the exposure of maternal rats to a similar dose of NaPB did not significantly reduce serum or brain TH concentrations in their postnatal offspring.
Collapse
Affiliation(s)
- Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
- Current address: Registration & Regulatory Affairs Dept. AgroSolutions Division - International, Sumitomo Chemical Company, Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Akira Sato
- The Institute of Environmental Toxicology
| | | | | | | | | | | | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| |
Collapse
|
10
|
Gilbert ME, O’Shaughnessy KL, Bell KS, Ford JL. Structural Malformations in the Neonatal Rat Brain Accompany Developmental Exposure to Ammonium Perchlorate. TOXICS 2023; 11:1027. [PMID: 38133428 PMCID: PMC10747616 DOI: 10.3390/toxics11121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Environmental contaminants are often flagged as thyroid system disruptors due to their actions to reduce serum thyroxine (T4) in rodent models. The presence of a periventricular heterotopia (PVH), a brain malformation resulting from T4 insufficiency, has been described in response to T4 decrements induced by pharmaceuticals that reduce the hormone synthesis enzyme thyroperoxidase. In this report, we extend these observations to the environmental contaminant perchlorate, an agent that interferes with thyroid status by inhibiting iodine uptake into the thyroid gland. Pregnant rat dams were administered perchlorate in their drinking water (0, 30, 100, 300, 1000 ppm) from gestational day (GD) 6 until the weaning of pups on postnatal day (PN) 21. Serum T4 was reduced in dams and fetuses in late gestation and remained lower in lactating dams. Pup serum and brain T4, however, were not reduced beyond PN0, and small PVHs were evident in the brains of offspring when assessed on PN14. To emulate the developmental time window of the brain in humans, a second study was conducted in which pups from perchlorate-exposed dams were administered perchlorate orally from PN0 to PN6. This treatment reduced serum and brain T4 in the pup and resulted in large PVH. A third study extended the period of serum and brain TH suppression in pups by coupling maternal perchlorate exposure with maternal dietary iodine deficiency (ID). No PVHs were evident in the pups from ID dams, small PVHs were observed in the offspring of dams exposed to 300 ppm of perchlorate, and very large PVHs were present in the brains of pups born to dams receiving ID and perchlorate. These findings underscore the importance of the inclusion of serum hormone profiles in pregnant dams and fetuses in in vivo screens for thyroid-system-disrupting chemicals and indicate that chemical-induced decreases in fetal rat serum that resolve in the immediate postnatal period may still harbor considerable concern for neurodevelopment in humans.
Collapse
Affiliation(s)
- Mary E. Gilbert
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Katherine L. O’Shaughnessy
- Centre for Public Health and Environmental Assessment, Office of Research and Development, Environmetal Protection Agency, Research Triangle Park, NC 27709, USA;
| | - Kiersten S. Bell
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jermaine L. Ford
- National Center for Computational Toxicology, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
11
|
Richard S, Ren J, Flamant F. Thyroid hormone action during GABAergic neuron maturation: The quest for mechanisms. Front Endocrinol (Lausanne) 2023; 14:1256877. [PMID: 37854197 PMCID: PMC10579935 DOI: 10.3389/fendo.2023.1256877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Thyroid hormone (TH) signaling plays a major role in mammalian brain development. Data obtained in the past years in animal models have pinpointed GABAergic neurons as a major target of TH signaling during development, which opens up new perspectives to further investigate the mechanisms by which TH affects brain development. The aim of the present review is to gather the available information about the involvement of TH in the maturation of GABAergic neurons. After giving an overview of the kinds of neurological disorders that may arise from disruption of TH signaling during brain development in humans, we will take a historical perspective to show how rodent models of hypothyroidism have gradually pointed to GABAergic neurons as a main target of TH signaling during brain development. The third part of this review underscores the challenges that are encountered when conducting gene expression studies to investigate the molecular mechanisms that are at play downstream of TH receptors during brain development. Unravelling the mechanisms of action of TH in the developing brain should help make progress in the prevention and treatment of several neurological disorders, including autism and epilepsy.
Collapse
Affiliation(s)
| | | | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, USC1370 Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Lyon, France
| |
Collapse
|
12
|
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. Int J Mol Sci 2023; 24:12352. [PMID: 37569727 PMCID: PMC10418487 DOI: 10.3390/ijms241512352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.
Collapse
Affiliation(s)
| | - Steffen Mayerl
- Department of Endocrinology Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
13
|
Ramhøj L, Guyot R, Svingen T, Kortenkamp A, Flamant F, Axelstad M. Is periventricular heterotopia a useful endpoint for developmental thyroid hormone system disruption in mouse toxicity studies? Regul Toxicol Pharmacol 2023:105445. [PMID: 37414127 DOI: 10.1016/j.yrtph.2023.105445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In rats, hypothyroidism during fetal and neonatal development can disrupt neuronal migration and induce the formation of periventricular heterotopia in the brain. However, it remains uncertain if heterotopia also manifest in mice after developmental hypothyroidism and whether they could be used as a toxicological endpoint to detect TH-mediated effects caused by TH system disrupting chemicals. Here, we performed a mouse study where we induced severe hypothyroidism by exposing pregnant mice (n = 3) to a very high dose of propylthiouracil (PTU) (1500 ppm) in the diet. This, to obtain best chances of detecting heterotopia. We found what appears to be very small heterotopia in 4 out of the 8 PTU-exposed pups. Although the incidence rate could suggest some utility for this endpoint, the small size of the ectopic neuronal clusters at maximum hypothyroidism excludes the utility of heterotopia in mouse toxicity studies aimed to detect TH system disrupting chemicals. On the other hand, parvalbumin expression was manifestly lower in the cortex of hypothyroid mouse offspring demonstrating that offspring TH-deficiency caused an effect on the developing brain. Based on overall results, we conclude that heterotopia formation in mice is not a useful toxicological endpoint for examining TH-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon I, CNRS UMR 5242, INRAE USC 1370 Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, France
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
14
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Lupu DI, Cediel Ulloa A, Rüegg J. Endocrine-Disrupting Chemicals and Hippocampal Development: The Role of Estrogen and Androgen Signaling. Neuroendocrinology 2023; 113:1193-1214. [PMID: 37356425 DOI: 10.1159/000531669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Hormones are important regulators of key processes during fetal brain development. Thus, the developing brain is vulnerable to the action of chemicals that can interfere with endocrine signals. Epidemiological studies have pointed toward sexually dimorphic associations between neurodevelopmental outcomes, such as cognitive abilities, in children and prenatal exposure to endocrine-disrupting chemicals (EDCs). This points toward disruption of sex steroid signaling in the development of neural structures underlying cognitive functions, such as the hippocampus, an essential mediator of learning and memory processes. Indeed, during development, the hippocampus is subjected to the organizational effects of estrogens and androgens, which influence hippocampal cell proliferation, differentiation, dendritic growth, and synaptogenesis in the hippocampal fields of Cornu Ammonis and the dentate gyrus. These early organizational effects correlate with a sexual dimorphism in spatial cognition and are subject to exogenous chemical perturbations. This review summarizes the current knowledge about the organizational effects of estrogens and androgens on the developing hippocampus and the evidence for hippocampal-dependent learning and memory perturbations induced by developmental exposure to EDCs. We conclude that, while it is clear that sex hormone signaling plays a significant role during hippocampal development, a complete picture at the molecular and cellular levels would be needed to establish causative links between the endocrine modes of action exerted by EDCs and the adverse outcomes these chemicals can induce at the organism level.
Collapse
Affiliation(s)
- Diana-Ioana Lupu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Xing W, Gu W, Liang M, Wang Z, Fan D, Zhang B, Wang L. Sex-specific effect of urinary metabolites of polycyclic aromatic hydrocarbons on thyroid profiles: results from NHANES 2011-2012. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47168-47181. [PMID: 36735133 DOI: 10.1007/s11356-023-25693-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The current study aims to evaluate the associations between 10 urinary polycyclic aromatic hydrocarbon (PAH) metabolites and thyroid profiles. The levels of 10 PAH metabolites and thyroid profiles were obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2012. Spearman analysis was utilized to evaluate the correlation coefficients among these 10 PAH metabolites. Multivariate linear and logistic regression models assessed the relationship between urinary PAH metabolite levels, thyroid hormones, and thyroid autoantibodies after adjusting potential confounders. Stratified analysis by gender was performed to evaluate sex-specific effect of urinary metabolites of PAH on thyroid profiles. One thousand six hundred forty-five eligible adult participants with complete research data were enrolled. Of note, the concentrations of the majority of urinary PAH metabolites were remarkedly higher in females compared with males. 2-hydroxyfluorene (2-FLU) was associated with higher total triiodothyronine (T3) levels in whole population (β = 2.113, 95% CI 0.339-3.888). In males, positive associations were observed in 1-hydroxynaphthalene (1-NAP) and free thyroxine (T4) (β = 0.0002, 95% CI 0.0000-0.0004). 2-FLU was also found positively associated with total T3 (β = 2.528, 95% CI 0.115-4.940) in male subjects. While in female participants, 2-hydroxynaphthalene (2-NAP) was associated with free T3 (β = 0.002, 95% CI 0.000-0.005). 2-FLU was associated with total T3 (β = 2.683, 95% CI 0.038-5.328), free T3 (β = 0.050, 95% CI 0.012-0.087), and total T4 (β = 0.195, 95% CI 0.008-0.382). 2-Hydroxyphenanthrene (2-OHP), 1-hydroxypyrene (1-HP), and 9-hydroxyfluorene (9-FLU) were all positively related to total T3 levels, and the corresponding coefficients were 16.504, 6.587, and 3.010. 9-FLU was also associated with free T3 (β = 0.049, 95% CI 0.008-0.090). No statistical significances were found between PAH metabolite levels and increased prevalence of increased thyroglobulin antibody (TgAb)/thyroid peroxidase antibody (TPOAb) when PAH metabolites were treated as continuous variables. Meanwhile, in the quartile analyses, increased prevalence of elevated TgAb was observed in participants with quartile 2 2-NAP compared with lowest quartile (OR = 1.753, 95% CI 1.021-3.008). Male subgroup analyses indicated that increased prevalence of elevated TgAb was observed in higher quartile of 1-NAP, 2-NAP, and 3-hydroxyfluorene (3-FLU). Increased prevalence of elevated TPOAb was associated with higher 2-NAP quartile. However, in subgroup analysis of females, no statistical significances were found between PAH quartiles and increased TgAb/TPOAb. Significant correlations were found among these 10 PAH metabolites. In conclusion, the cross-sectional study indicated that exposure to PAH might disturb the concentrations of thyroid hormones and thyroid autoantibodies. It is noteworthy that significant differences existed in males and females. Further prospective research is warranted to explore the causal relationship and underlying mechanism of PAH exposure on thyroid dysfunction.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China.
| | - Wen Gu
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Lei Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| |
Collapse
|
17
|
Hipólito LTM, Batista TH, Dos Anjos-Garcia T, Giusti-Paiva A, Vilela FC. Methimazole-induced gestational hypothyroidism affects the offspring development and differently impairs the conditioned fear in male and female adulthood rodents. Int J Dev Neurosci 2023; 83:108-120. [PMID: 36445265 DOI: 10.1002/jdn.10243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Gestational hypothyroidism is a prevalent disorder in pregnant women and also impairs fetal development with relevant outcomes. One of the outcomes of greatest interest has been rodent fear- and anxiety-like behavior. However, the relationship between maternal hypothyroidism and onset of conditioned fear-related responses in offspring remains controversial. Here, we used a well-validated methimazole-induced gestational hypothyroidism to investigate the behavioral consequences in offspring. Dams were treated with methimazole at 0.02% in drinking water up to gestational Day 9. Maternal body weights and maternal behavior were evaluated, and the puppies ware analyzed for weight gain and physical/behavioral development and assigned for the open field and fear conditioning test. Methimazole-induced gestational hypothyroidism induced loss in maternal and litter weight, increases in maternal behavior, and impairs in offspring developmental landmarks in both male and female rodents. Only male offspring enhanced responsiveness to conditioned fear-like behavior in adulthood.
Collapse
Affiliation(s)
- Laísa T M Hipólito
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Tatiane H Batista
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Tayllon Dos Anjos-Garcia
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fabiana C Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
18
|
O’Shaughnessy KL, McMichael BD, Sasser AL, Bell KS, Riutta C, Ford JL, Stoker TE, Grindstaff RD, Pandiri AR, Gilbert ME. Thyroid hormone action controls multiple components of cell junctions at the ventricular zone in the newborn rat brain. Front Endocrinol (Lausanne) 2023; 14:1090081. [PMID: 36843608 PMCID: PMC9950412 DOI: 10.3389/fendo.2023.1090081] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvβ3 and isoforms of both thyroid receptors (TRα/TRβ) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.
Collapse
Affiliation(s)
- Katherine L. O’Shaughnessy
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- *Correspondence: Katherine L. O’Shaughnessy,
| | - Benjamin D. McMichael
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Aubrey L. Sasser
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Kiersten S. Bell
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Cal Riutta
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Jermaine L. Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Tammy E. Stoker
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Rachel D. Grindstaff
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Mary E. Gilbert
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
19
|
Verghese JP, Terry A, de Natale ER, Politis M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J Clin Med 2022; 11:jcm11236964. [PMID: 36498538 PMCID: PMC9735716 DOI: 10.3390/jcm11236964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The glymphatic system is a unique pathway that utilises end-feet Aquaporin 4 (AQP4) channels within perivascular astrocytes, which is believed to cause cerebrospinal fluid (CSF) inflow into perivascular space (PVS), providing nutrients and waste disposal of the brain parenchyma. It is theorised that the bulk flow of CSF within the PVS removes waste products, soluble proteins, and products of metabolic activity, such as amyloid-β (Aβ). In the experimental model, the glymphatic system is selectively active during slow-wave sleep, and its activity is affected by both sleep dysfunction and deprivation. Dysfunction of the glymphatic system has been proposed as a potential key driver of neurodegeneration. This hypothesis is indirectly supported by the close relationship between neurodegenerative diseases and sleep alterations, frequently occurring years before the clinical diagnosis. Therefore, a detailed characterisation of the function of the glymphatic system in human physiology and disease would shed light on its early stage pathophysiology. The study of the glymphatic system is also critical to identifying means for its pharmacological modulation, which may have the potential for disease modification. This review will critically outline the primary evidence from literature about the dysfunction of the glymphatic system in neurodegeneration and discuss the rationale and current knowledge about pharmacological modulation of the glymphatic system in the animal model and its potential clinical applications in human clinical trials.
Collapse
|
20
|
Minami K, Suto H, Sato A, Ogata K, Kosaka T, Hojo H, Takahashi N, Tomiyama N, Fukuda T, Iwashita K, Aoyama H, Yamada T. Feasibility study for a downsized comparative thyroid assay with measurement of brain thyroid hormones and histopathology in rats: Case study with 6-propylthiouracil and sodium phenobarbital at high dose. Regul Toxicol Pharmacol 2022; 137:105283. [PMID: 36372265 DOI: 10.1016/j.yrtph.2022.105283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
Concern has been raised that thyroid hormone disruptors (THDs) may potentially interfere with the developing brain, but effects of mild suppression of maternal THs by environmental contaminants on neonatal brain development are not fully understood. The comparative thyroid assay (CTA) is a screening test for offspring THDs, but it requires several animals and is criticized that reliance on serum THs alone as predictive markers of brain malfunction is inadequate. To verify feasibility of the downsized CTA but additional examination of brain THs levels and histopathology, we commenced internal-validation studies. This paper presents the data of the study where 6-propylthiouracil (6-PTU, 10 ppm) and sodium phenobarbital (NaPB, 1000 ppm) were dosed by feeding from gestational days (GD)6-20, and from GD6 to lactation day 21. The modified CTA detected 6-PTU-induced severe (>70%) suppression of serum THs in dams, with >50% suppressed serum/brain TH levels in offspring and brain heterotopia in postnatal day 21 pups. The modified CTA also detected NaPB-induced mild (<35%) suppression of serum THs in dams, with mild (<35%) reduction of serum/brain TH levels in fetuses but not in pups. These findings suggest that the modified CTA may have a potential as a screening test for offspring THDs.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Akira Sato
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Tadashi Kosaka
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Hitoshi Hojo
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naofumi Takahashi
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Naruto Tomiyama
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Katsumasa Iwashita
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Hiroaki Aoyama
- Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki, 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan.
| |
Collapse
|
21
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Uchida K, Suzuki M. Congenital Hypothyroidism and Brain Development: Association With Other Psychiatric Disorders. Front Neurosci 2021; 15:772382. [PMID: 34955723 PMCID: PMC8695682 DOI: 10.3389/fnins.2021.772382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones play an important role in brain development, and thyroid hormone insufficiency during the perinatal period results in severe developmental delays. Perinatal thyroid hormone deficiency is clinically known as congenital hypothyroidism, which is caused by dysgenesis of the thyroid gland or low iodine intake. If the disorder is not diagnosed or not treated early, the neuronal architecture is perturbed by thyroid hormone insufficiency, and neuropathological findings, such as abnormal synapse formation, defects in neuronal migration, and impairment of myelination, are observed in the brains of such patients. Furthermore, the expression of psychiatric disorder-related molecules, especially parvalbumin, is significantly decreased by thyroid hormone insufficiency during the perinatal period. Animal experiments using hypothyroidism models display decreased parvalbumin expression and abnormal brain architecture, and these experimental results show reproducibility and stability. These basic studies reinforce the results of epidemiological studies, suggesting the relevance of thyroid dysfunction in psychiatric disorders. In this review, we discuss the disruption of brain function associated with congenital hypothyroidism from the perspective of basic and clinical research.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Mao Suzuki
- Laboratory of Biomodeling, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Ramhøj L, Svingen T, Frädrich C, Rijntjes E, Wirth EK, Pedersen K, Köhrle J, Axelstad M. Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicol Lett 2021; 354:44-55. [PMID: 34757178 DOI: 10.1016/j.toxlet.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023]
Abstract
Disruption of the thyroid hormone system during development can impair brain development and cause irreversible damage. Some thyroid hormone system disruptors act by inhibiting the thyroperoxidase (TPO) enzyme, which is key to thyroid hormone synthesis. For the potent TPO-inhibiting drug propylthiouracil (PTU) this has been shown to result in thyroid hormone system disruption and altered brain development in animal studies. However, an outstanding question is which chemicals beside PTU can cause similar effects on brain development and to what degree thyroid hormone insufficiency must be induced to be able to measure adverse effects in rats and their offspring. To start answering these questions, we performed a perinatal exposure study in pregnant rats with two TPO-inhibitors: the drug methimazole (MMI) and the triazole herbicide amitrole. The study involved maternal exposure from gestational day 7 through to postnatal day 22, to MMI (8 and 16 mg/kg body weight/day) or amitrole (25 and 50 mg/kg body weight/day). Both MMI and amitrole reduced serum T4 concentrations in a dose-dependent manner in dams and offspring, with a strong activation of the hypothalamic-pituitary-thyroid axis. This reduction in serum T4 led to decreased thyroid hormone-mediated gene expression in the offspring's brains and caused adverse effects on brain function, seen as hyperactivity and decreased habituation in preweaning pups. These dose-dependent effects induced by MMI and amitrole are largely the same as those observed with PTU. This demonstrates that potent TPO-inhibitors can induce effects on brain development in rats and that these effects are driven by T4 deficiency. This knowledge will aid the identification of TPO-inhibiting thyroid hormone system disruptors in a regulatory context and can serve as a starting point in search of more sensitive markers of developmental thyroid hormone system disruption.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Caroline Frädrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Eva K Wirth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Endocrinology and Metabolism and Charité Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Katrine Pedersen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
24
|
Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL. Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome-An Examination Using Triclosan and Perfluorohexane Sulfonate. Toxicol Sci 2021; 183:195-213. [PMID: 34460931 PMCID: PMC9038230 DOI: 10.1093/toxsci/kfab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Susan E Thomas
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Cal Riutta
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Carmen R Wood
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Alicia Smith
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Wendy O Oshiro
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Richard L Ford
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830, USA
| | - Michelle Gatien Hotchkiss
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Iman Hassan
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jermaine L Ford
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
25
|
Ramhøj L, Frädrich C, Svingen T, Scholze M, Wirth EK, Rijntjes E, Köhrle J, Kortenkamp A, Axelstad M. Testing for heterotopia formation in rats after developmental exposure to selected in vitro inhibitors of thyroperoxidase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117135. [PMID: 33892370 DOI: 10.1016/j.envpol.2021.117135] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The thyroperoxidase (TPO) enzyme is expressed by the thyroid follicular cells and is required for thyroid hormone synthesis. In turn, thyroid hormones are essential for brain development, thus inhibition of TPO in early life can have life-long consequences for brain function. If environmental chemicals with the capacity to inhibit TPO in vitro can also alter brain development in vivo through thyroid hormone dependent mechanisms, however, remains unknown. In this study we show that the in vitro TPO inhibiting pesticide amitrole alters neuronal migration and induces periventricular heterotopia; a thyroid hormone dependent brain malformation. Perinatal exposure to amitrole reduced pup serum thyroxine (T4) concentrations to less than 50% of control animals and this insufficiency led to heterotopia formation in the 16-day old pup's brain. Two other in vitro TPO inhibitors, 2-mercaptobenzimidazole and cyanamide, caused reproductive toxicity and had only minor sporadic effects on the thyroid hormone system; consequently, they did not cause heterotopia. This is the first demonstration of an environmental chemical causing heterotopia, a brain malformation until now only reported for rodent studies with the anti-thyroid drugs propylthiouracil and methimazole. Our results highlight that certain TPO-inhibiting environmental chemicals can alter brain development through thyroid hormone dependent mechanisms. Improved understanding of the effects on the brain as well as the conditions under which chemicals can perturb brain development will be key to protect human health.
Collapse
Affiliation(s)
- Louise Ramhøj
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Caroline Frädrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Martin Scholze
- Division of Environmental Studies, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Eva K Wirth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| | - Andreas Kortenkamp
- Division of Environmental Studies, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
26
|
O'Shaughnessy KL, Gilbert ME. Thyroid disrupting chemicals and developmental neurotoxicity - New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 2020; 518:110663. [PMID: 31760043 PMCID: PMC8270644 DOI: 10.1016/j.mce.2019.110663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| | - Mary E Gilbert
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
27
|
Kortenkamp A, Axelstad M, Baig AH, Bergman Å, Bornehag CG, Cenijn P, Christiansen S, Demeneix B, Derakhshan A, Fini JB, Frädrich C, Hamers T, Hellwig L, Köhrle J, Korevaar TI, Lindberg J, Martin O, Meima ME, Mergenthaler P, Nikolov N, Du Pasquier D, Peeters RP, Platzack B, Ramhøj L, Remaud S, Renko K, Scholze M, Stachelscheid H, Svingen T, Wagenaars F, Wedebye EB, Zoeller RT. Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals-The ATHENA Project. Int J Mol Sci 2020; 21:E3123. [PMID: 32354186 PMCID: PMC7247692 DOI: 10.3390/ijms21093123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Asma H. Baig
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Åke Bergman
- School of Science and Technology, Orebro University, SE-701 82 Orebro, Sweden
| | | | - Peter Cenijn
- Department of Environment and Health, Vrije Universiteit Amsterdam, VUA, 1081 HV Amsterdam, The Netherlands
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Barbara Demeneix
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum national d’Histoire naturelle, Centre National de la Recherche Scientifique CNRS 7, rue Cuvier, F-75005 Paris, France
| | - Arash Derakhshan
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum national d’Histoire naturelle, Centre National de la Recherche Scientifique CNRS 7, rue Cuvier, F-75005 Paris, France
| | - Caroline Frädrich
- Department of Experimental Endocrinology, Charitė - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, VUA, 1081 HV Amsterdam, The Netherlands
| | - Lina Hellwig
- Dept. of Experimental Neurology, Dept. of Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, D-10117 Berlin, Germany
- Charité-BIH Centrum Therapy and Research, BIH Stem Cell Core Facility, Charité – Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Josef Köhrle
- Department of Experimental Endocrinology, Charitė - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Tim I.M. Korevaar
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands
| | - Johan Lindberg
- Department of C4hemical Process and Pharmaceutical Development, Research Institutes Sweden, RISE, SE-151 36 Sodertalje, Sweden
| | - Olwenn Martin
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Marcel E. Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands
| | - Philipp Mergenthaler
- Dept. of Experimental Neurology, Dept. of Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, D-10117 Berlin, Germany
- Berlin Institute of Health, D-10178 Berlin, Germany
| | - Nikolai Nikolov
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Centre, 3000 CA Rotterdam, The Netherlands
| | - Bjorn Platzack
- Department of C4hemical Process and Pharmaceutical Development, Research Institutes Sweden, RISE, SE-151 36 Sodertalje, Sweden
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sylvie Remaud
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum national d’Histoire naturelle, Centre National de la Recherche Scientifique CNRS 7, rue Cuvier, F-75005 Paris, France
| | - Kostja Renko
- Department of Experimental Endocrinology, Charitė - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harald Stachelscheid
- Charité-BIH Centrum Therapy and Research, BIH Stem Cell Core Facility, Charité – Universitätsmedizin Berlin, D-13353 Berlin, Germany
- Berlin Institute of Health, D-10178 Berlin, Germany
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Fabian Wagenaars
- Department of Environment and Health, Vrije Universiteit Amsterdam, VUA, 1081 HV Amsterdam, The Netherlands
| | - Eva Bay Wedebye
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - R. Thomas Zoeller
- School of Science and Technology, Orebro University, SE-701 82 Orebro, Sweden
| |
Collapse
|
28
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
29
|
O'Shaughnessy KL, Kosian PA, Ford JL, Oshiro WM, Degitz SJ, Gilbert ME. Developmental Thyroid Hormone Insufficiency Induces a Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study. Toxicol Sci 2019; 163:101-115. [PMID: 29385626 DOI: 10.1093/toxsci/kfy016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormones (THs) are essential for brain development, but few rodent models exist that link TH inefficiency to apical neurodevelopmental endpoints. We have previously described a structural anomaly, a heterotopia, in the brains of rats treated in utero with propylthiouracil (PTU). However, how the timing of an exposure relates to this birth defect is unknown. This study seeks to understand how various temporal treatments of the mother relates to TH insufficiency and adverse neurodevelopment of the offspring. Pregnant rats were exposed to PTU (0 or 3 ppm) through the drinking water from gestational day 6 until postnatal day (PN) 14. On PN2 a subset of pups was cross-fostered to a dam of the opposite treatment, to create 4 conditions: pups exposed to PTU prenatally, postnatally, during both periods, or not at all (control). Both PTU and TH concentrations were characterized in the mother and offspring over time, to capture the dynamics of a developmental xenobiotic exposure. Brains of offspring were examined for heterotopia presence and severity, and adult littermates were assessed for memory impairments. Heterotopia were observed under conditions of prenatal exposure, and its severity increased in animals in the most prolonged exposure group. This malformation was also permanent, but not sex biased. In contrast, behavioral impairments were limited to males, and only in animals exposed to PTU during both the gestational and postnatal periods. This suggests a distinct TH-dependent etiology for both phenotypes, and illustrates how timing of hypothyroxinemia can induce abnormal brain structure and function.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709.,Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37803
| | - Patricia A Kosian
- National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Jermaine L Ford
- Analytical Chemistry Core, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | | | - Sigmund J Degitz
- National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
30
|
Costa LES, Clementino-Neto J, Mendes CB, Franzon NH, Costa EDO, Moura-Neto V, Ximenes-da-Silva A. Evidence of Aquaporin 4 Regulation by Thyroid Hormone During Mouse Brain Development and in Cultured Human Glioblastoma Multiforme Cells. Front Neurosci 2019; 13:317. [PMID: 31019448 PMCID: PMC6458270 DOI: 10.3389/fnins.2019.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates that thyroid function and the thyroid hormones L-thyroxine (T4) and L-triiodothyronine (T3) are important factors contributing to the improvement of various pathologies of the central nervous system, including stroke, and various types of cancer, including glioblastoma multiforme (GBM). Low levels of T3 are correlated with the poorest outcome of post-stroke brain function, as well as an increased migration and proliferation of GBM tumor cells. Thyroid hormones are known to stimulate maturation and brain development. Aquaporin 4 (AQP4) is a key factor mediating the cell swelling and edema that occurs during ischemic stroke, and plays a potential role in the migration and proliferation of GBM tumor cells. In this study, as a possible therapeutic target for GBM, we investigated the potential role of T3 in the expression of AQP4 during different stages of mouse brain development. Pregnant mice at gestational day 18, or young animals at postnatal days 27 and 57, received injection of T3 (1 μg/g) or NaOH (0.02 N vehicle). The brains of mice sacrificed on postnatal days 0, 30, and 60 were perfused with 4% paraformaldehyde and sections were prepared for immunohistochemistry of AQP4. AQP4 immunofluorescence was measured in the mouse brains and human GBM cell lines. We found that distribution of AQP4 was localized in astrocytes of the periventricular, subpial, and cerebral parenchyma. Newborn mice treated with T3 showed a significant decrease in AQP4 immunoreactivity followed by an increased expression at P30 and a subsequent stabilization of aquaporin levels in adulthood. All GBM cell lines examined exhibited significantly lower AQP4 expression than cultured astrocytes. T3 treatment significantly downregulated AQP4 in GBM-95 cells but did not influence the rate of GBM cell migration measured 24 h after treatment initiation. Collectively, our results showed that AQP4 expression is developmentally regulated by T3 in astrocytes of the cerebral cortex of newborn and young mice, and is discretely downregulated in GBM cells. These findings indicate that higher concentrations of T3 thyroid hormone would be more suitable for reducing AQP4 in GBM tumorigenic cells, thereby resulting in better outcomes regarding the reduction of brain tumor cell migration and proliferation.
Collapse
Affiliation(s)
- Lucas E S Costa
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - José Clementino-Neto
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Carmelita B Mendes
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Nayara H Franzon
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto do Cérebro and Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
A transient window of hypothyroidism alters neural progenitor cells and results in abnormal brain development. Sci Rep 2019; 9:4662. [PMID: 30874585 PMCID: PMC6420655 DOI: 10.1038/s41598-019-40249-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Cortical heterotopias are clusters of ectopic neurons in the brain and are associated with neurodevelopmental disorders like epilepsy and learning disabilities. We have previously characterized the robust penetrance of a heterotopia in a rat model, induced by thyroid hormone (TH) disruption during gestation. However, the specific mechanism by which maternal TH insufficiency results in this birth defect remains unknown. Here we first determined the developmental window susceptible to endocrine disruption and describe a cellular mechanism responsible for heterotopia formation. We show that five days of maternal goitrogen treatment (10 ppm propylthiouracil) during the perinatal period (GD19-PN2) induces a periventricular heterotopia in 100% of the offspring. Beginning in the early postnatal brain, neurons begin to aggregate near the ventricles of treated animals. In parallel, transcriptional and architectural changes of this region were observed including decreased Sonic hedgehog (Shh) expression, abnormal cell adhesion, and altered radial glia morphology. As the ventricular epithelium is juxtaposed to two sources of brain THs, the cerebrospinal fluid and vasculature, this progenitor niche may be especially susceptible to TH disruption. This work highlights the spatiotemporal vulnerabilities of the developing brain and demonstrates that a transient period of TH perturbation is sufficient to induce a congenital abnormality.
Collapse
|
32
|
O’Shaughnessy KL, Wood CR, Ford RL, Kosian PA, Hotchkiss MG, Degitz SJ, Gilbert ME. Thyroid Hormone Disruption in the Fetal and Neonatal Rat: Predictive Hormone Measures and Bioindicators of Hormone Action in the Developing Cortex. Toxicol Sci 2018; 166:163-179. [PMID: 30085217 PMCID: PMC6727986 DOI: 10.1093/toxsci/kfy190] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse neurodevelopmental consequences remain a primary concern when evaluating the effects of thyroid hormone (TH) disrupting chemicals. Though the developing brain is a known target of TH insufficiency, the relationship between THs in the serum and the central nervous system is not well characterized. To address this issue, dose response experiments were performed in pregnant rats using the goitrogen propylthiouracil (PTU) (dose range 0.1-10 ppm). THs were quantified in the serum and brain of offspring at gestational day 20 (GD20) and postnatal day 14 (PN14), two developmental stages included in OECD and EPA regulatory guideline/guidance studies. From the dose response data, the quantitative relationships between THs in the serum and brain were determined. Next, targeted gene expression analyses were performed in the fetal and neonatal cortex to test the hypothesis that TH action in the developing brain is linked to changes in TH concentrations within the tissue. Results show a significant reduction of T4/T3 in the serum and brain of the GD20 fetus in response to low doses of PTU; interestingly, very few genes were significantly different at any dose tested. In the PN14 pup significant reductions of T4/T3 in the serum and brain were also detected; however, twelve transcriptional targets were identified in the neonatal cortex that correlated well with reduced brain THs. These results show that serum T4 is a good predictor of brain THs, and offer several target genes that could serve as pragmatic readouts of T4/T3 dysfunction within the PN14 cortex.
Collapse
Affiliation(s)
- Katherine L. O’Shaughnessy
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830
| | - Carmen R. Wood
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Richard L. Ford
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
- Oak Ridge Institute for Science Education, Oak Ridge, Tennesse 37830
| | - Patricia A. Kosian
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Michelle G. Hotchkiss
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Sigmund J. Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Mary E. Gilbert
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
33
|
Amano I, Takatsuru Y, Khairinisa MA, Kokubo M, Haijima A, Koibuchi N. Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring. Endocrinology 2018. [PMID: 29522169 DOI: 10.1210/en.2017-03125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mild perinatal hypothyroidism may result from inadequate iodine intake, insufficient treatment of congenital hypothyroidism, or exposure to endocrine-disrupting chemicals. Because thyroid hormones are critical for brain development, severe hypothyroidism that is untreated in infancy causes irreversible cretinism. Milder hypothyroidism may also affect cognitive development; however, the effects of mild and/or moderate hypothyroidism on brain development are not fully understood. In this study, we examined the behavior of adult male mice rendered mildly hypothyroid during the perinatal period using low-dose propylthiouracil (PTU). PTU was administered through drinking water (5 or 50 ppm) from gestational day 14 to postnatal day 21. Cognitive performance, studied by an object in-location test (OLT), was impaired in PTU-treated mice at postnatal week 8. These results suggest that, although the hypothyroidism was mild, it partially impaired cognitive function. We next measured the concentration of neurotransmitters (glutamate, γ-aminobutyric acid, and glycine) in the hippocampus using in vivo microdialysis during OLT. The concentrations of neurotransmitters, particularly glutamate and glycine, decreased in PTU-treated mice. The expression levels of N-methyl-d-aspartate receptor subunits, which are profound regulators of glutamate neurotransmission and memory function, also were decreased in PTU-treated mice. These data indicate that mild perinatal hypothyroidism causes cognitive disorders in adult offspring. Such disorders may be partially induced secondary to decreased concentrations of neurotransmitters and receptor expression.
Collapse
Affiliation(s)
- Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
34
|
Richard S, Flamant F. Regulation of T3 Availability in the Developing Brain: The Mouse Genetics Contribution. Front Endocrinol (Lausanne) 2018; 9:265. [PMID: 29892264 PMCID: PMC5985302 DOI: 10.3389/fendo.2018.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alterations in maternal thyroid physiology may have deleterious consequences on the development of the fetal brain, but the underlying mechanisms remain elusive, hampering the development of appropriate therapeutic strategies. The present review sums up the contribution of genetically modified mouse models to this field. In particular, knocking out genes involved in thyroid hormone (TH) deiodination, transport, and storage has significantly improved the picture that we have of the economy of TH in the fetal brain and the underlying genetic program. These data pave the way for future studies to bridge the gap in knowledge between thyroid physiology and brain development.
Collapse
|
35
|
Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework. Toxicol Sci 2017; 160:57-73. [PMID: 28973696 PMCID: PMC10623382 DOI: 10.1093/toxsci/kfx163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Adequate levels of thyroid hormone (TH) are needed for proper brain development, deficiencies may lead to adverse neurologic outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures and decline in serum TH resulting in neurodevelopmental impairment is poorly understood. The present study developed a quantitative adverse outcome pathway where serum thyroxin (T4) reduction following inhibition of thyroperoxidase in the thyroid gland are described and related to deficits in fetal brain TH and the development of a brain malformation, cortical heterotopia. Pregnant rats were exposed to 6-propylthiouracil (PTU 0, 0.1, 0.5, 1, 2, or 3 parts per million [ppm]) from gestational days 6-20, sequentially increasing PTU concentrations in maternal thyroid gland and serum as well as in fetal serum. Dams exposed to 0.5 ppm PTU and higher exhibited dose-dependent decreases in thyroidal T4. Serum T4 levels in the dam were significantly decreased with exposure to 2 and 3 ppm PTU. In the fetus, T4 decrements were first observed at a lower dose of 0.5 ppm PTU. Based on these data, fetal brain T4 levels were estimated from published literature sources, and quantitatively linked to increases in the size of the heterotopia present in the brains of offspring. These data show the potential of in vivo assessments and computational descriptions of biologic responses to predict the development of this structural brain malformation and use of quantitative adverse outcome pathway approach to evaluate brain deficits that may result from exposure to other TH disruptors.
Collapse
Affiliation(s)
| | - Hisham El-Masri
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Patricia A Kosian
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Jermaine Ford
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | | |
Collapse
|
36
|
Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 2017; 342:68-100. [PMID: 26434624 PMCID: PMC4819012 DOI: 10.1016/j.neuroscience.2015.09.070] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Thyroid hormones (THs) play an obligatory role in many fundamental processes underlying brain development and maturation. The developing embryo/fetus is dependent on maternal supply of TH. The fetal thyroid gland does not commence TH synthesis until mid gestation, and the adverse consequences of severe maternal TH deficiency on offspring neurodevelopment are well established. Recent evidence suggests that even more moderate forms of maternal thyroid dysfunction, particularly during early gestation, may have a long-lasting influence on child cognitive development and risk of neurodevelopmental disorders. Moreover, these observed alterations appear to be largely irreversible after birth. It is, therefore, important to gain a better understanding of the role of maternal thyroid dysfunction on offspring neurodevelopment in terms of the nature, magnitude, time-specificity, and context-specificity of its effects. With respect to the issue of context specificity, it is possible that maternal stress and stress-related biological processes during pregnancy may modulate maternal thyroid function. The possibility of an interaction between the thyroid and stress systems in the context of fetal brain development has, however, not been addressed to date. We begin this review with a brief overview of TH biology during pregnancy and a summary of the literature on its effect on the developing brain. Next, we consider and discuss whether and how processes related to maternal stress and stress biology may interact with and modify the effects of maternal thyroid function on offspring brain development. We synthesize several research areas and identify important knowledge gaps that may warrant further study. The scientific and public health relevance of this review relates to achieving a better understanding of the timing, mechanisms and contexts of thyroid programing of brain development, with implications for early identification of risk, primary prevention and intervention.
Collapse
Affiliation(s)
- N K Moog
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany
| | - S Entringer
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA
| | - C Heim
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| | - P D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, 3117 Gillespie Neuroscience Research Facility, 837 Health Sciences Drive, Irvine, CA 92697, USA
| | - N Kathmann
- Department of Clinical Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - C Buss
- Department of Medical Psychology, Charité University Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, 333 The City Drive West, Suite 1200, Orange, CA 92868, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, 505 South Main Street, Suite 525, Orange, CA 92868, USA.
| |
Collapse
|
37
|
Immunohistochemistry of aberrant neuronal development induced by 6-propyl-2-thiouracil in rats. Toxicol Lett 2016; 261:59-71. [DOI: 10.1016/j.toxlet.2016.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/03/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
|
38
|
Ramos RL, Toia AR, Pasternack DM, Dotzler TP, Cuoco JA, Esposito AW, Le MM, Parker AK, Goodman JH, Sarkisian MR. Neuroanatomical characterization of the cellular and axonal architecture of subcortical band heterotopia in the BXD29-Tlr4 lps-2J/J mouse cortex. Neuroscience 2016; 337:48-65. [PMID: 27595889 DOI: 10.1016/j.neuroscience.2016.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Subcortical band heterotopia (SBH) are malformations of the human cerebral cortex typically associated with epilepsy and cognitive delay/disability. Rodent models of SBH have demonstrated strong face validity as they are accompanied by both cognitive deficits and spontaneous seizures or reduced seizure threshold. BXD29-Tlr4lps-2J/J recombinant inbred mice display striking bilateral SBH, partial callosal agenesis, morphological changes in subcortical structures of the auditory pathway, and display sensory deficits in behavioral tests (Rosen et al., 2013; Truong et al., 2013, 2015). Surprisingly, these mice show no cognitive deficits and have a higher seizure threshold to chemi-convulsive treatment (Gabel et al., 2013) making them different than other rodent SBH models described previously. In the present report, we perform a detailed characterization of the cellular and axonal constituents of SBH in BXD29-Tlr4lps-2J/J mice and demonstrate that various types of interneurons and glia as well as cortical and subcortical projections are found in SBH. In addition, the length of neuronal cilia was reduced in SBH compared to neurons in the overlying and adjacent normotopic cortex. Finally, we describe additional and novel malformations of the hippocampus and neocortex present in BXD29-Tlr4lps-2J/J mice. Together, our findings in BXD29-Tlr4lps-2J/J mice are discussed in the context of the known neuroanatomy and phenotype of other SBH rodent models.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA.
| | - Alyssa R Toia
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Daniel M Pasternack
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Timothy P Dotzler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Joshua A Cuoco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Anthony W Esposito
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Megan M Le
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | - Alexander K Parker
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Department of Physiology & Pharmacology and Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA.
| |
Collapse
|
39
|
Spring S, Bastian T, Wang Y, Kosian P, Anderson G, Gilbert M. Thyroid hormone-dependent formation of a subcortical band heterotopia (SBH) in the neonatal brain is not exacerbated under conditions of low dietary iron (FeD). Neurotoxicol Teratol 2016; 56:41-46. [DOI: 10.1016/j.ntt.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/29/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
40
|
Samadi A, Skocic J, Rovet JF. Children born to women treated for hypothyroidism during pregnancy show abnormal corpus callosum development. Thyroid 2015; 25:494-502. [PMID: 25780811 DOI: 10.1089/thy.2014.0548] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Thyroid hormone (TH) is essential for the developing brain, and because the fetal thyroid develops relatively late in gestation, the maternal TH supply is critical for fetal brain development. However, if the mother has hypothyroidism during pregnancy, fetal brain and neuropsychological development may be compromised. Rodents experiencing maternal TH insufficiency show abnormal corpus callosum (CC) morphology, but it is not known if children born to women treated for hypothyroidism (HYPO) show similar effects. The purpose of the current study was to investigate HYPO for CC morphology and morphometry and to determine whether any specific CC abnormalities were associated aspects of maternal hypothyroidism and were correlated with reduced neuropsychological functioning in the children. METHODS ANALYZE software was used to trace CCs in archived magnetic resonance imaging scans from 22 HYPO and 22 matched controls. Areas of two sub-regions and six segments and different shape metrics (angles, lengths, ratios) were determined. CC parameters were correlated with maternal thyrotropin (TSH) values and number of hypothyroid trimesters as well as the child's neuropsychological test performance. RESULTS HYPO showed a smaller anterior CC and genu and larger posterior CC and splenium areas than controls as well as shape abnormalities in genu and splenium. Results were correlated with the duration of maternal hypothyroidism. Executive function skills were positively associated with genu size in HYPO, while verbal comprehension skills were negatively associated with splenium and overall posterior CC sizes. CONCLUSIONS Maternal hypothyroidism contributes to CC abnormalities in the offspring, and effects differ for anterior versus posterior CC regions.
Collapse
Affiliation(s)
- Arash Samadi
- 1 Department of Neuroscience, University of Toronto , Toronto, Canada
| | | | | |
Collapse
|
41
|
Shiraki A, Saito F, Akane H, Akahori Y, Imatanaka N, Itahashi M, Yoshida T, Shibutani M. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism. J Appl Toxicol 2015; 36:24-34. [DOI: 10.1002/jat.3140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Ayako Shiraki
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; 1-1 Yanagido, Gifu-shi Gifu 501-1193 Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Hirotoshi Akane
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute; Japan, 1-4-25 Koraku, Bunkyo-ku Tokyo 112-0004 Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences; Gifu University; 1-1 Yanagido, Gifu-shi Gifu 501-1193 Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu-shi Tokyo 183-8509 Japan
| |
Collapse
|
42
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
43
|
Developmental neurotoxicity of 3,3',4,4'-tetrachloroazobenzene with thyroxine deficit: Sensitivity of glia and dentate granule neurons in the absence of behavioral changes. TOXICS 2014; 2:496-532. [PMID: 26029700 PMCID: PMC4445902 DOI: 10.3390/toxics2030496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (TH) regulate biological processes implicated in neurodevelopmental disorders and can be altered with environmental exposures. Developmental exposure to the dioxin-like compound, 3,3',4,4'-tetrachloroazobenzene (TCAB), induced a dose response deficit in serum T4 levels with no change in 3,5,3'- triiodothyronine or thyroid stimulating hormone. Female Sprague-Dawley rats were orally gavaged (corn oil, 0.1, 1.0, or 10 mg TCAB/kg/day) two weeks prior to cohabitation until post-partum day 3 and male offspring from post-natal day (PND)4-21. At PND21, the high dose showed a deficit in body weight gain. Conventional neuropathology detected no neuronal death, myelin disruption, or gliosis. Astrocytes displayed thinner and less complex processes at 1.0 and 10 mg/kg/day. At 10 mg/kg/day, microglia showed less complex processes, unbiased stereology detected fewer hippocampal CA1 pyramidal neurons and dentate granule neurons (GC) and Golgi staining of the cerebellum showed diminished Purkinje cell dendritic arbor. At PND150, normal maturation of GC number and Purkinje cell branching area was not observed in the 1.0 mg/kg/day dose group with a diminished number and branching suggestive of effects initiated during developmental exposure. No effects were observed on post-weaning behavioral assessments in control, 0.1 and 1.0mg/kg/day dose groups. The demonstrated sensitivity of hippocampal neurons and glial cells to TCAB and T4 deficit raises support for considering additional anatomical features of brain development in future DNT evaluations.
Collapse
|
44
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
45
|
Garcia C, Gutmann DH. Using the neurofibromatosis tumor predisposition syndromes to understand normal nervous system development. SCIENTIFICA 2014; 2014:915725. [PMID: 25243094 PMCID: PMC4163293 DOI: 10.1155/2014/915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Development is a tightly regulated process that involves stem cell self-renewal, differentiation, cell-to-cell communication, apoptosis, and blood vessel formation. These coordinated processes ensure that tissues maintain a size and architecture that is appropriate for normal tissue function. As such, tumors arise when cells acquire genetic mutations that allow them to escape the normal growth constraints. In this regard, the study of tumor predisposition syndromes affords a unique platform to better understand normal development and the process by which normal cells transform into cancers. Herein, we review the processes governing normal brain development, discuss how brain cancer represents a disruption of these normal processes, and highlight insights into both normal development and cancer made possible by the study of tumor predisposition syndromes.
Collapse
Affiliation(s)
- Cynthia Garcia
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Gilbert ME, Ramos RL, McCloskey DP, Goodman JH. Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: structural and functional characteristics. J Neuroendocrinol 2014; 26:528-41. [PMID: 24889016 DOI: 10.1111/jne.12169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
Abstract
Thyroid hormones (TH) play crucial roles in brain maturation and are important for neuronal migration and neocortical lamination. Subcortical band heterotopia (SBH) represent a class of neuronal migration errors in humans that are often associated with childhood epilepsy. We have previously reported the presence of SBH in a rodent model of low level hypothyroidism induced by maternal exposure to the goitrogen, propylthiouracil (PTU). In the present study, we report the dose-response characteristics of this developmental malformation and the connectivity of heterotopic neurones with other brain regions, as well as their functionality. Pregnant rats were exposed to varying concentrations of PTU through the drinking water (0-10 p.p.m.) beginning on gestational day 6 to produce graded levels of TH insufficiency. Dose-dependent increases in the volume of the SBH present in the corpus callosum were documented in the adult offspring, with a clear presence at concentrations of PTU that resulted in minor (< 15%) reductions in maternal serum thyroxine as measured when pups were weaned. SBH contain neurones, oligodendrocytes, astrocytes and microglia. Monoaminergic and cholinergic processes were prevalent and many of the axons were myelinated. Anatomical connectivity of SBH neurones to cortical neurones and the synaptic functionality of these anatomical connections was verified by ex vivo field potential recordings. SBH persisted in adult offspring despite a return to euthyroid status on termination of exposure and these offspring displayed an increased sensitivity to seizures. Features of this model are attractive with respect to the investigation of the molecular mechanisms of cortical development, the effectiveness of therapeutic intervention in hypothyroxinaemia during pregnancy and the impact of the very modest TH imbalance that accompanies exposure to environmental contaminants.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, Neurotoxicology Branch, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
47
|
Shiraki A, Saito F, Akane H, Takeyoshi M, Imatanaka N, Itahashi M, Yoshida T, Shibutani M. Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil. Toxicol Lett 2014; 228:225-34. [PMID: 24780913 DOI: 10.1016/j.toxlet.2014.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022]
Abstract
The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development.
Collapse
Affiliation(s)
- Ayako Shiraki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Hirotoshi Akane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Masahiro Takeyoshi
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Nobuya Imatanaka
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
48
|
Bastian TW, Prohaska JR, Georgieff MK, Anderson GW. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression. Endocrinology 2014; 155:1157-67. [PMID: 24424046 PMCID: PMC3929725 DOI: 10.1210/en.2013-1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pharmacy Practice and Pharmaceutical Sciences (T.W.B., G.W.A.), College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota 55812; Department of Biomedical Sciences (J.R.P.), University of Minnesota Medical School Duluth, Duluth, Minnesota 55812; Department of Pediatrics and Center for Neurobehavioral Development (M.K.G.), School of Medicine, University of Minnesota, Minneapolis, Minnesota 55454
| | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Rodents with gestational thyroid-hormone (TH) deficiencies and children with congenital hypothyroidism show abnormal hippocampal development. Given that the human hippocampus starts to develop early in gestation, we asked if children born to women with hypothyroidism during pregnancy also show hippocampal abnormalities and if this is related to the severity of maternal TH insufficiency and current memory functioning. We additionally sought to determine whether effects were more prominent in anterior or posterior hippocampal subsections given these support different memory functions and have different developmental trajectories. We hypothesized that these children would have smaller than normal hippocampal volumes than controls and show memory deficits on both standardized tests and indices of "everyday" memory functioning. METHODS We studied 54 children aged 9 to 12 years: 30 controls and 24 HYPO cases-offspring from women diagnosed with hypothyroidism prior to or during pregnancy and treated with l-thyroxine. All children received a thorough assessment of memory functions and an MRI scan. For each child, right and left hippocampi were manually traced, and volumes of right and left hippocampi and anterior and posterior segments were determined. RESULTS HYPO cases showed significantly smaller right and left hippocampal volumes than controls, particularly in right posterior and left anterior segments. In HYPO children, hippocampal volumes were negatively correlated with maternal third-trimester TSH levels and positively correlated with third-trimester fT4. HYPO cases scored significantly below controls on one objective and several subjective memory indices, and these were correlated with hippocampal volumes. CONCLUSION Early TH insufficiency from maternal hypothyroidism affects offspring hippocampal development and memory.
Collapse
Affiliation(s)
- Karen A Willoughby
- 1 Neuroscience and Mental Health Research Program , The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
50
|
Johnstone AFM, Gilbert ME, Aydin C, Grace CE, Hasegawa M, Gordon CJ. Thermoregulatory deficits in adult Long Evans rat exposed perinatally to the antithyroidal drug, propylthiouracil. Neurotoxicol Teratol 2013; 39:1-8. [PMID: 23732561 DOI: 10.1016/j.ntt.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022]
Abstract
Developmental exposure to endocrine disrupting drugs and environmental toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (T(c)) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic pituitary thyroid (HPT) axis. We hypothesized that thermoregulation would be disrupted in adult offspring exposed perinatally to an HPT disruptor. Propylythiouracil (PTU) was used as a prototypical compound because of its well known antithyroidal properties. PTU was added to the drinking water of pregnant rats in concentrations of 0, 1, 2, 3, and 10 ppm from gestational day (GD) 6 through postnatal day (PND) 21. Adult male offspring were implanted with radiotransmitters to monitor Tc and motor activity (MA) and were observed undisturbed at an ambient temperature of 22 °C for 12 consecutive days. Data were averaged into a single 24 hour period to minimize impact of ultradian changes in T(c) and MA. All treatment groups showed a distinct circadian temperature rhythm. Rats exposed to 10 ppm PTU exhibited a marked deviation in their regulated T(c) with a reduction of approximately 0.4 °C below that of controls throughout the daytime period and a smaller reduction at night. Rats exposed to 1 or 2 ppm also had smaller but significant reductions in T(c). MA was unaffected by PTU. Overall, developmental exposure to moderate doses of an antithyroidal drug led to an apparent permanent reduction in T(c) of adult offspring that was independent of changes in MA.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|