1
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Kumar A, Schwab M, Laborit Labrada B, Silveira MAD, Goudreault M, Fournier É, Bellmann K, Beauchemin N, Gingras AC, Bilodeau S, Laplante M, Marette A. SHP-1 phosphatase acts as a coactivator of PCK1 transcription to control gluconeogenesis. J Biol Chem 2023; 299:105164. [PMID: 37595871 PMCID: PMC10504565 DOI: 10.1016/j.jbc.2023.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.
Collapse
Affiliation(s)
- Amit Kumar
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada
| | - Michael Schwab
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada
| | - Beisy Laborit Labrada
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada
| | - Maruhen Amir Datsch Silveira
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Éric Fournier
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Quebec, Canada
| | - Kerstin Bellmann
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada
| | - Nicole Beauchemin
- Department of Oncology, Medicine and Biochemistry, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Quebec, Canada
| | - Mathieu Laplante
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada
| | - André Marette
- Faculté de Médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Quebec, Canada; Institute of Nutrition and Functional Foods, Laval University, Québec, Quebec, Canada.
| |
Collapse
|
3
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
4
|
Heart Uptake of [ 18F]Fluoro-4-Thia-Oleate in a Non-Alcoholic Fatty Liver Disease Mouse Model. Pharmaceuticals (Basel) 2022; 15:ph15121577. [PMID: 36559027 PMCID: PMC9784886 DOI: 10.3390/ph15121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The world-wide high incidence of non-alcoholic fatty liver disease (NAFLD) is of concern for its progression to insulin resistance, steatohepatitis and cardiovascular disease (CVD). The increased uptake of fatty acids in critical organs plays a major role in NAFLD progression. Male Ceacam1−/− mice that develop NAFLD, insulin resistance and CVD on normal chow are a potential model for studying the dysregulation of fatty acid uptake. [18F]fluoro-4-thia-oleate ([18F]FTO) was chosen as a fatty acid reporter because of its higher uptake and retention in the heart in an animal model of CVD. Male wild-type (WT) or Ceacam1−/− mice fasted 4−6 h were administered [18F]FTO i.v., and dynamic PET scans were conducted in an MR/PET small animal imaging system along with terminal tissue biodistributions. Quantitative heart image analysis revealed significantly higher uptake at 35 min in Ceacam1−/− (6.0 ± 1.0% ID/cc) vs. WT (3.9 ± 0.6% ID/cc) mice (p = 0.006). Ex vivo heart uptake/retention (% ID/organ) was 2.82 ± 0.45 for Ceacam1−/− mice vs. 1.66 ± 0.45 for WT mice (p < 0.01). Higher kidney and pancreas uptake/retention in Ceacam1−/− was also evident, and the excretion of [18F]FTO into the duodenum was observed for both WT and Ceacam1−/− mice starting at 10 min. This study suggests that the administration of [18F]FTO as a marker of fatty acid uptake and retention may be an important tool in analyzing the effect of NAFLD on lipid dysregulation in the heart.
Collapse
|
5
|
Nahle A, Joseph YD, Pereira S, Mori Y, Poon F, Ghadieh HE, Ivovic A, Desai T, Ghanem SS, Asalla S, Muturi HT, Jentz EM, Joseph JW, Najjar SM, Giacca A. Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. Int J Mol Sci 2021; 22:ijms222413224. [PMID: 34948019 PMCID: PMC8709165 DOI: 10.3390/ijms222413224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NAD-dependent deacetylase SIRT1 improves β cell function. Accordingly, nicotinamide mononucleotide (NMN), the product of the rate-limiting step in NAD synthesis, prevents β cell dysfunction and glucose intolerance in mice fed a high-fat diet. The current study was performed to assess the effects of NMN on β cell dysfunction and glucose intolerance that are caused specifically by increased circulating free fatty acids (FFAs). NMN was intravenously infused, with or without oleate, in C57BL/6J mice over a 48-h-period to elevate intracellular NAD levels and consequently increase SIRT1 activity. Administration of NMN in the context of elevated plasma FFA levels considerably improved glucose tolerance. This was due not only to partial protection from FFA-induced β cell dysfunction but also, unexpectedly, to a significant decrease in insulin clearance. However, in conditions of normal FFA levels, NMN impaired glucose tolerance due to decreased β cell function. The presence of this dual action of NMN suggests caution in its proposed therapeutic use in humans.
Collapse
Affiliation(s)
- Ashraf Nahle
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yemisi Deborah Joseph
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo 142-0064, Japan
| | - Frankie Poon
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Aleksandar Ivovic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Tejas Desai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
| | - Emelien M. Jentz
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Jamie W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada; (E.M.J.); (J.W.J.)
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (H.E.G.); (S.S.G.); (S.M.N.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (S.A.); (H.T.M.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (A.N.); (Y.D.J.); (S.P.); (Y.M.); (F.P.); (A.I.); (T.D.)
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
6
|
Helal RA, Russo L, Ghadieh HE, Muturi HT, Asalla S, Lee AD, Gatto-Weis C, Najjar SM. Regulation of hepatic fibrosis by carcinoembryonic antigen-related cell adhesion molecule 1. Metabolism 2021; 121:154801. [PMID: 34058224 PMCID: PMC8286970 DOI: 10.1016/j.metabol.2021.154801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice displayed spontaneous hyperinsulinemia/insulin resistance and steatohepatitis. Liver-specific reconstitution of Ceacam1 reversed these metabolic anomalies in 8-month-old Cc1-/-xliver+ mice fed a regular chow diet. The current study examined whether it would also reverse progressive hepatic fibrosis in mice fed a high-fat (HF) diet. METHODS 3-Month-old mice were fed a high-fat diet for 3-5 months, and metabolic and histopathological analysis were conducted to evaluate their NASH phenotype. RESULTS Reconstituting CEACAM1 to Cc1-/- livers curbed diet-induced liver dysfunction and NASH, including macrovesicular steatosis, lobular inflammation, apoptosis, oxidative stress, and chicken-wire bridging fibrosis. Persistence of hepatic fibrosis in HF-fed Cc1-/- treated with nicotinic acid demonstrated a limited role for lipolysis and adipokine release in hepatic fibrosis caused by Ceacam1 deletion. CONCLUSIONS Restored metabolic and histopathological phenotype of HF-fed Cc1-/-xliver+xliver+ assigned a critical role for hepatic CEACAM1 in preventing NAFLD/NASH including progressive hepatic fibrosis.
Collapse
Affiliation(s)
- Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abraham D Lee
- Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH, USA
| | - Cara Gatto-Weis
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
7
|
Ghadieh HE, Abu Helal R, Muturi HT, Issa DD, Russo L, Abdallah SL, Najjar JA, Benencia F, Vazquez G, Li W, Najjar SM. Loss of Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Links Nonalcoholic Steatohepatitis to Atherosclerosis. Hepatol Commun 2020; 4:1591-1609. [PMID: 33163831 PMCID: PMC7603529 DOI: 10.1002/hep4.1590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) commonly develop atherosclerosis through a mechanism that is not well delineated. These diseases are associated with steatosis, inflammation, oxidative stress, and fibrosis. The role of insulin resistance in their pathogenesis remains controversial. Albumin (Alb)Cre+Cc1flox(fl)/fl mice with the liver‐specific null deletion of the carcinoembryonic antigen‐related cell adhesion molecule 1 (Ceacam1; alias Cc1) gene display hyperinsulinemia resulting from impaired insulin clearance followed by hepatic insulin resistance, elevated de novo lipogenesis, and ultimately visceral obesity and systemic insulin resistance. We therefore tested whether this mutation causes NAFLD/NASH and atherosclerosis. To this end, mice were propagated on a low‐density lipoprotein receptor (Ldlr)−/− background and at 4 months of age were fed a high‐cholesterol diet for 2 months. We then assessed the biochemical and histopathologic changes in liver and aortae. Ldlr−/−AlbCre+Cc1fl/fl mice developed chronic hyperinsulinemia with proatherogenic hypercholesterolemia, a robust proinflammatory state associated with visceral obesity, elevated oxidative stress (reduced NO production), and an increase in plasma and tissue endothelin‐1 levels. In parallel, they developed NASH (steatohepatitis, apoptosis, and fibrosis) and atherosclerotic plaque lesions. Mechanistically, hyperinsulinemia caused down‐regulation of the insulin receptor followed by inactivation of the insulin receptor substrate 1–protein kinase B–endothelial NO synthase pathway in aortae, lowering the NO level. This also limited CEACAM1 phosphorylation and its sequestration of Shc‐transforming protein (Shc), activating the Shc–mitogen‐activated protein kinase–nuclear factor kappa B pathway and stimulating endothelin‐1 production. Thus, in the presence of proatherogenic dyslipidemia, hyperinsulinemia and hepatic insulin resistance driven by liver‐specific deletion of Ceacam1 caused metabolic and vascular alterations reminiscent of NASH and atherosclerosis. Conclusion: Altered CEACAM1‐dependent hepatic insulin clearance pathways constitute a molecular link between NASH and atherosclerosis.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Daniella D Issa
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Simon L Abdallah
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - John A Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Fabian Benencia
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Guillermo Vazquez
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Wei Li
- Department of Biomedical Sciences Marshall University Joan C. Edwards School of Medicine Huntington WV USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA.,Diabetes Institute Heritage College of Osteopathic Medicine Ohio University Athens OH USA
| |
Collapse
|
8
|
Wu Y, Yang Z, Zhu L, Su Q, Qin L. Association of circulating CEACAM1 levels and insulin sensitivity in gestational diabetes mellitus. BMC Endocr Disord 2020; 20:66. [PMID: 32414367 PMCID: PMC7227292 DOI: 10.1186/s12902-020-00550-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to estimate the levels of circulating carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in subjects with gestational diabetes mellitus (GDM) and investigate the relationships between CEACAM1 and GDM. METHODS Circulating CEACAM1 levels were measured by ELISA kit in 70 women with GDM and 70 normal glucose tolerance (NGT) pregnant women. Blood samples were collected to detect fasting plasma glucose (FPG), fasting insulin (FINS) and glycosylated hemoglobin (HbA1c) levels in all participants. Insulin sensitivity index (ISOGTT) was calculated to assess insulin sensitivity. Correlation analysis was performed between serum CEACAM1 levels and other parameters. RESULTS Circulating CEACAM1 levels were higher in the GDM group than that in the NGT pregnant group, however, the difference showed no statistical significance (1889.82 ± 616.14 vs 1758.92 ± 433.15 pg/ml, p > 0.05). In GDM group, CEACAM1 was positively correlated with ISOGTT (R = 0.39, P = 0.001), while negatively with 1 h post-meal plasma insulin level (1hPINS) (R = -0.32, P = 0.008), 2 h post-meal plasma insulin level (2hPINS) (R = -0.33, P = 0.006) and area under curve of insulin (AUCI) (R = -0.36, P = 0.002) when adjusting for maternal age and gestational age. CONCLUSIONS The present study showed that circulating CEACAM1 levels did not differ in both GDM and NGT groups. However, we found a significant positively correlation between CEACAM1 and insulin sensitivity in the GDM group.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lingfei Zhu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Kopylov AT, Kaysheva AL, Papysheva O, Gribova I, Kotaysch G, Kharitonova L, Mayatskaya T, Krasheninnikova A, Morozov SG. Association of Proteins Modulating Immune Response and Insulin Clearance During Gestation with Antenatal Complications in Patients with Gestational or Type 2 Diabetes Mellitus. Cells 2020; 9:cells9041032. [PMID: 32326243 PMCID: PMC7226479 DOI: 10.3390/cells9041032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The purpose of the study is to establish and quantitatively assess protein markers and their combination in association with insulin uptake that may be have value for early prospective recognition of diabetic fetopathy (DF) as a complication in patients with diabetes mellitus during gestation. Methods: Proteomic surveying and accurate quantitative measurement of selected proteins from plasma samples collected from the patients with gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM) who gave birth of either healthy or affected by maternal diabetes newborns was performed using mass spectrometry. Results: We determined and quantitatively measured several proteins, including CRP, CEACAM1, CNDP1 and Ig-family that were significantly differed in patients that gave birth of newborns with signs of DF. We found that patients with newborns associated with DF are characterized by significantly decreased CEACAM1 (113.18 ± 16.23 ng/mL and 81.09 ± 10.54 ng/mL in GDM and T2DM, p < 0.005) in contrast to control group (515.6 ± 72.14 ng/mL, p < 0.005). On the contrary, the concentration of CNDP1 was increased in DF-associated groups and attained 49.3 ± 5.18 ng/mL and 37.7 ± 3.34 ng/mL (p < 0.005) in GDM and T2DM groups, respectively. Among other proteins, dramatically decreased concentration of IgG4 and IgA2 subclasses of immunoglobulins were noticed. Conclusion: The combination of the measured markers may assist (AUC = 0.893 (CI 95%, 0.785–0.980) in establishing the clinical finding of the developing DF especially in patients with GDM who are at the highest risk of chronic insulin resistance.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of General Pathology and Pathophysiology, Department of Pathology, 125315 Moscow, Russia; (A.K.); (S.G.M.)
- Institute of Biomedical Chemistry, Department of Proteomic Researches, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-926-185-4049
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, Department of Proteomic Researches, 119121 Moscow, Russia;
| | - Olga Papysheva
- Sergey S. Yudin 7th State Clinical Hospital, Perinatal Center, 115446 Moscow, Russia;
| | - Iveta Gribova
- Nikolay E. Bauman 29th State Clinical Hospital, 110020 Moscow, Russia; (I.G.); (G.K.)
- “Biopharm-Test” Limited Liability Company, 121170 Moscow, Russia
| | - Galina Kotaysch
- Nikolay E. Bauman 29th State Clinical Hospital, 110020 Moscow, Russia; (I.G.); (G.K.)
| | - Lubov Kharitonova
- Nikolay I. Pirogov Medical University, 117997 Moscow, Russia; (L.K.); (T.M.)
| | - Tatiana Mayatskaya
- Nikolay I. Pirogov Medical University, 117997 Moscow, Russia; (L.K.); (T.M.)
| | - Anna Krasheninnikova
- Institute of General Pathology and Pathophysiology, Department of Pathology, 125315 Moscow, Russia; (A.K.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, Department of Pathology, 125315 Moscow, Russia; (A.K.); (S.G.M.)
- Nikolay E. Bauman 29th State Clinical Hospital, 110020 Moscow, Russia; (I.G.); (G.K.)
| |
Collapse
|
10
|
Bergman RN, Piccinini F, Kabir M, Kolka CM, Ader M. Hypothesis: Role of Reduced Hepatic Insulin Clearance in the Pathogenesis of Type 2 Diabetes. Diabetes 2019; 68:1709-1716. [PMID: 31431441 PMCID: PMC6702636 DOI: 10.2337/db19-0098] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022]
Abstract
There is wide variance among individuals in the fraction of insulin cleared by the liver (20% to 80%). Hepatic insulin clearance is 67% lower in African Americans than European Americans. Clearance is also lower in African American children 7-13 years of age. Lower hepatic insulin clearance will result in peripheral hyperinsulinemia: this exacerbates insulin resistance, which stresses the β-cells, possibly resulting in their ultimate failure and onset of type 2 diabetes. We hypothesize that lower insulin clearance can be a primary cause of type 2 diabetes in at-risk individuals.
Collapse
Affiliation(s)
- Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Morvarid Kabir
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
11
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
12
|
Anhê FF, Varin TV, Le Barz M, Pilon G, Dudonné S, Trottier J, St-Pierre P, Harris CS, Lucas M, Lemire M, Dewailly É, Barbier O, Desjardins Y, Roy D, Marette A. Arctic berry extracts target the gut-liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetologia 2018; 61:919-931. [PMID: 29270816 DOI: 10.1007/s00125-017-4520-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS There is growing evidence that fruit polyphenols exert beneficial effects on the metabolic syndrome, but the underlying mechanisms remain poorly understood. In the present study, we aimed to analyse the effects of polyphenolic extracts from five types of Arctic berries in a model of diet-induced obesity. METHODS Male C57BL/6 J mice were fed a high-fat/high-sucrose (HFHS) diet and orally treated with extracts of bog blueberry (BBE), cloudberry (CLE), crowberry (CRE), alpine bearberry (ABE), lingonberry (LGE) or vehicle (HFHS) for 8 weeks. An additional group of standard-chow-fed, vehicle-treated mice was included as a reference control for diet-induced obesity. OGTTs and insulin tolerance tests were conducted, and both plasma insulin and C-peptide were assessed throughout the OGTT. Quantitative PCR, western blot analysis and ELISAs were used to assess enterohepatic immunometabolic features. Faecal DNA was extracted and 16S rRNA gene-based analysis was used to profile the gut microbiota. RESULTS Treatment with CLE, ABE and LGE, but not with BBE or CRE, prevented both fasting hyperinsulinaemia (mean ± SEM [pmol/l]: chow 67.2 ± 12.3, HFHS 153.9 ± 19.3, BBE 114.4 ± 14.3, CLE 82.5 ± 13.0, CRE 152.3 ± 24.4, ABE 90.6 ± 18.0, LGE 95.4 ± 10.5) and postprandial hyperinsulinaemia (mean ± SEM AUC [pmol/l × min]: chow 14.3 ± 1.4, HFHS 31.4 ± 3.1, BBE 27.2 ± 4.0, CLE 17.7 ± 2.2, CRE 32.6 ± 6.3, ABE 22.7 ± 18.0, LGE 23.9 ± 2.5). None of the berry extracts affected C-peptide levels or body weight gain. Levels of hepatic serine phosphorylated Akt were 1.6-, 1.5- and 1.2-fold higher with CLE, ABE and LGE treatment, respectively, and hepatic carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-1 tyrosine phosphorylation was 0.6-, 0.7- and 0.9-fold increased in these mice vs vehicle-treated, HFHS-fed mice. These changes were associated with reduced liver triacylglycerol deposition, lower circulating endotoxins, alleviated hepatic and intestinal inflammation, and major gut microbial alterations (e.g. bloom of Akkermansia muciniphila, Turicibacter and Oscillibacter) in CLE-, ABE- and LGE-treated mice. CONCLUSIONS/INTERPRETATION Our findings reveal novel mechanisms by which polyphenolic extracts from ABE, LGE and especially CLE target the gut-liver axis to protect diet-induced obese mice against metabolic endotoxaemia, insulin resistance and hepatic steatosis, which importantly improves hepatic insulin clearance. These results support the potential benefits of these Arctic berries and their integration into health programmes to help attenuate obesity-related chronic inflammation and metabolic disorders. DATA AVAILABILITY All raw sequences have been deposited in the public European Nucleotide Archive server under accession number PRJEB19783 ( https://www.ebi.ac.uk/ena/data/view/PRJEB19783 ).
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Bureau Y4340, Québec City, QC, G1V 4G5, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Mélanie Le Barz
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Bureau Y4340, Québec City, QC, G1V 4G5, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Bureau Y4340, Québec City, QC, G1V 4G5, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre, Laval University, Québec City, QC, Canada
- Faculty of Pharmacy, Laval University, Québec City, QC, Canada
| | - Philippe St-Pierre
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Bureau Y4340, Québec City, QC, G1V 4G5, Canada
| | - Cory S Harris
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Michel Lucas
- Populations Health and Optimal Health Practices Axis of the CHU-Québec Research Centre, Department of Social and Preventive Medicine, Laval University, Québec City, QC, Canada
| | - Mélanie Lemire
- Populations Health and Optimal Health Practices Axis of the CHU-Québec Research Centre, Department of Social and Preventive Medicine, Laval University, Québec City, QC, Canada
| | - Éric Dewailly
- Populations Health and Optimal Health Practices Axis of the CHU-Québec Research Centre, Department of Social and Preventive Medicine, Laval University, Québec City, QC, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre, Laval University, Québec City, QC, Canada
- Faculty of Pharmacy, Laval University, Québec City, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Bureau Y4340, Québec City, QC, G1V 4G5, Canada.
- Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada.
| |
Collapse
|
13
|
Russo L, Muturi HT, Ghadieh HE, Wisniewski AM, Morgan EE, Quadri SS, Landesberg GP, Siragy HM, Vazquez G, Scalia R, Gupta R, Najjar SM. Liver-specific rescuing of CEACAM1 reverses endothelial and cardiovascular abnormalities in male mice with null deletion of Ceacam1 gene. Mol Metab 2018; 9:98-113. [PMID: 29396368 PMCID: PMC5870095 DOI: 10.1016/j.molmet.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/07/2018] [Accepted: 01/14/2018] [Indexed: 12/22/2022] Open
Abstract
Objective Mice with global null mutation of Ceacam1 (Cc1−/−), display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1−/−liver+ mice. The current study examined whether Cc1−/− male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. Methods and results Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1−/−, but not Cc1−/−liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1−/−, but not Cc1−/−xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1−/−, but not Cc1−/−xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1−/− mice, which was normalized in Cc1−/−xliver+ mice. Conclusions The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function. Mice with global deletion of Ceacam1 gene (Cc1−/−) manifest endothelial dysfunction which is reversed by liver-specific rescuing of CEACAM1. Restoring CEACAM1 expression in the liver reversed cardiac hypertrophy and rescued cardiac performance. Hyperinsulinemia emerging from impaired insulin clearance regulates endothelial and cardiovascular functions.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Alexander M Wisniewski
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Eric E Morgan
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Syed S Quadri
- Department of Endocrinology and Metabolism, College of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gavin P Landesberg
- Department of Physiology and Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Helmy M Siragy
- Department of Endocrinology and Metabolism, College of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Guillermo Vazquez
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Rosario Scalia
- Department of Physiology and Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajesh Gupta
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
14
|
Russo L, Muturi HT, Ghadieh HE, Ghanem SS, Bowman TA, Noh HL, Dagdeviren S, Dogbey GY, Kim JK, Heinrich G, Najjar SM. Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 2017; 60:2463-2474. [PMID: 28913658 PMCID: PMC5788286 DOI: 10.1007/s00125-017-4432-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Godwin Y Dogbey
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
15
|
Arabzadeh A, McGregor K, Breton V, Van Der Kraak L, Akavia UD, Greenwood CMT, Beauchemin N. EphA2 signaling is impacted by carcinoembryonic antigen cell adhesion molecule 1-L expression in colorectal cancer liver metastasis in a cell context-dependent manner. Oncotarget 2017; 8:104330-104346. [PMID: 29262644 PMCID: PMC5732810 DOI: 10.18632/oncotarget.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
We have shown that carcinoembryonic antigen cell adhesion molecule 1 long isoform (CEACAM1-L) expression in MC38 metastatic colorectal cancer (CRC) cells results in liver metastasis inhibition via CCL2 and STAT3 signaling. But other molecular mechanisms orchestrating CEACAM1-L-mediated metastasis inhibition remain to be defined. We screened a panel of mouse and human CRC cells and evaluated their metastatic outcome after CEACAM1 overexpression or downregulation. An unbiased transcript profiling and a phospho-receptor tyrosine kinase screen comparing MC38 CEACAM1-L-expressing and non-expressing (CT) CRC cells revealed reduced ephrin type-A receptor 2 (EPHA2) expression and activity. An EPHA2-specific inhibitor reduced EPHA2 downstream signaling in CT cells similar to that in CEACAM1-L cells with decreased proliferation and migration. Human CRC patients exhibiting high CEACAM1 in combination with low EPHA2 expression benefited from longer time to first recurrence/metastasis compared to those with high EPHA2 expression. With the added interaction of CEACAM6, we denoted that CEACAM1 high- and EPHA2 low-expressing patient samples with lower CEACAM6 expression also exhibited a longer time to first recurrence/metastasis. In HT29 human CRC cells, down-regulation of CEACAM1 along with CEA and CEACAM6 up-regulation led to higher metastatic burden. Overall, CEACAM1-L expression in poorly differentiated CRC can inhibit liver metastasis through cell context-dependent EPHA2-mediated signaling. However, CEACAM1’s role should be considered in the presence of other CEACAM family members.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Kevin McGregor
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Lauren Van Der Kraak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Uri David Akavia
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Celia M T Greenwood
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Departments of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Departments of Medicine and Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
18
|
Russo L, Ghadieh HE, Ghanem SS, Al-Share QY, Smiley ZN, Gatto-Weis C, Esakov EL, McInerney MF, Heinrich G, Tong X, Yin L, Najjar SM. Role for hepatic CEACAM1 in regulating fatty acid metabolism along the adipocyte-hepatocyte axis. J Lipid Res 2016; 57:2163-2175. [PMID: 27777319 DOI: 10.1194/jlr.m072066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Indexed: 12/15/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance and mediating suppression of fatty acid synthase activity. Feeding C57BL/6J male mice with a high-fat (HF) diet for 3-4 weeks triggered a >60% decrease in hepatic CEACAM1 levels to subsequently impair insulin clearance and cause systemic insulin resistance and hepatic steatosis. This study aimed at investigating whether lipolysis drives reduction in hepatic CEACAM1 and whether this constitutes a key mechanism leading to diet-induced metabolic abnormalities. Blocking lipolysis with a daily intraperitoneal injection of nicotinic acid in the last two days of a 30-day HF feeding regimen demonstrated that white adipose tissue (WAT)-derived fatty acids repressed hepatic CEACAM1-dependent regulation of insulin and lipid metabolism in 3-month-old male C57BL/6J mice. Adenoviral-mediated CEACAM1 redelivery countered the adverse metabolic effect of the HF diet on insulin resistance, hepatic steatosis, visceral obesity, and energy expenditure. It also reversed the effect of HF diet on inflammation and fibrosis in WAT and liver. This assigns a causative role for lipolysis-driven decrease in hepatic CEACAM1 level and its regulation of insulin and lipid metabolism in sustaining systemic insulin resistance, hepatic steatosis, and other abnormalities associated with excessive energy supply.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614
| | - Emily L Esakov
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Marcia F McInerney
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Medicinal and Biological Chemistry at the College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48019
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH 43614 .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| |
Collapse
|
19
|
Arabzadeh A, Dupaul-Chicoine J, Breton V, Haftchenary S, Yumeen S, Turbide C, Saleh M, McGregor K, Greenwood CMT, Akavia UD, Blumberg RS, Gunning PT, Beauchemin N. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells. Gut 2016; 65:821-9. [PMID: 25666195 PMCID: PMC4826327 DOI: 10.1136/gutjnl-2014-308781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nearly 20%-29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. DESIGN Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. RESULTS MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. CONCLUSIONS CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sina Haftchenary
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sara Yumeen
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maya Saleh
- Complex Trait Group, McGill University, Montreal, Quebec, Canada
| | - Kevin McGregor
- Departments of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Celia M T Greenwood
- Departments of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Uri David Akavia
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Richard S Blumberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Heinrich G, Russo L, Castaneda TR, Pfeiffer V, Ghadieh HE, Ghanem SS, Wu J, Faulkner LD, Ergün S, McInerney MF, Hill JW, Najjar SM. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1. J Biol Chem 2016; 291:11124-32. [PMID: 27002145 DOI: 10.1074/jbc.m116.716431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/28/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.
Collapse
Affiliation(s)
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research and
| | - Tamara R Castaneda
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | | | | | - Jieshen Wu
- From the Center for Diabetes and Endocrine Research and
| | | | - Süleyman Ergün
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | - Marcia F McInerney
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | | | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
21
|
Ramakrishnan SK, Khuder SS, Al-Share QY, Russo L, Abdallah SL, Patel PR, Heinrich G, Muturi HT, Mopidevi BR, Oyarce AM, Shah YM, Sanchez ER, Najjar SM. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition. J Biol Chem 2016; 291:8121-9. [PMID: 26846848 DOI: 10.1074/jbc.m116.714014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition.
Collapse
Affiliation(s)
- Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Saja S Khuder
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Qusai Y Al-Share
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Simon L Abdallah
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Garrett Heinrich
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Harrison T Muturi
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Brahma R Mopidevi
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Ana Maria Oyarce
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Yatrik M Shah
- Departments of Internal Medicine, Division of Gastroenterology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Edwin R Sanchez
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
22
|
Ghanem SS, Heinrich G, Lester SG, Pfeiffer V, Bhattacharya S, Patel PR, DeAngelis AM, Dai T, Ramakrishnan SK, Smiley ZN, Jung DY, Lee Y, Kitamura T, Ergun S, Kulkarni RN, Kim JK, Giovannucci DR, Najjar SM. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 2015; 291:980-8. [PMID: 26586918 DOI: 10.1074/jbc.m115.692582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.
Collapse
Affiliation(s)
- Simona S Ghanem
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Garrett Heinrich
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sumona G Lester
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Sumit Bhattacharya
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Anthony M DeAngelis
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Tong Dai
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Zachary N Smiley
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Dae Y Jung
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yongjin Lee
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tadahiro Kitamura
- the Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan, and
| | - Suleyman Ergun
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Rohit N Kulkarni
- the Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Jason K Kim
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David R Giovannucci
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| |
Collapse
|
23
|
Al-Share QY, DeAngelis AM, Lester SG, Bowman TA, Ramakrishnan SK, Abdallah SL, Russo L, Patel PR, Kaw MK, Raphael CK, Kim AJ, Heinrich G, Lee AD, Kim JK, Kulkarni RN, Philbrick WM, Najjar SM. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance. Diabetes 2015; 64:2780-90. [PMID: 25972571 PMCID: PMC4512217 DOI: 10.2337/db14-1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance.
Collapse
Affiliation(s)
- Qusai Y Al-Share
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Anthony M DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Sumona Ghosh Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Sadeesh K Ramakrishnan
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Simon L Abdallah
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Payal R Patel
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Meenakshi K Kaw
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Christian K Raphael
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| | - Andrea Jung Kim
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Abraham D Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Rehabilitation Sciences, College of Health Sciences, The University of Toledo, Toledo, OH
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rohit N Kulkarni
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - William M Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH
| |
Collapse
|
24
|
Kim JH, Kim YJ. Effects of genistein in combination with conjugated estrogens on endometrial hyperplasia and metabolic dysfunction in ovariectomized mice. Endocr J 2015; 62:531-42. [PMID: 25877295 DOI: 10.1507/endocrj.ej15-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue-selective estrogen complex (TSEC), which combines a selective estrogen receptor modulator (SERM) with one or more estrogens, is a novel approach to menopausal therapy. It has been demonstrated that the phytoestrogen genistein (GEN) exhibits mixed estrogen receptor agonist and antagonist activity, suggesting that GEN may have potential for use as a natural SERM. We evaluated, for the first time, the effects of GEN, conjugated estrogens (CE), and their pairing effects as a TSEC treatment on estrogen-induced endometrial hyperplasia and metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet. CE replacement prevented fat accumulation in the adipose tissue and liver, improved glucose homeostasis, and induced endometrial hyperplasia in OVX mice. GEN at 100 mg/kg showed CE mimetic effects in preventing ovariectomy-induced metabolic dysfunctions without endometrial stimulation. Combination treatments with CE and GEN prevented metabolic dysfunctions more strongly than CE alone, but at both low and high doses, GEN did not reverse CE-induced endometrial hyperplasia. In addition, we found that in a TSEC regimen, a typical SERM raloxifene maintains the metabolic benefits of CE while simultaneously protecting the endometrium in OVX mice. These findings indicate that GEN acts as an estrogen agonist in metabolic regulation, but has no SERM function in the uteri of OVX mice.
Collapse
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, 339-700, South Korea
| | | |
Collapse
|
25
|
White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, Marette A. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med 2014; 20:664-9. [PMID: 24813250 PMCID: PMC4978533 DOI: 10.1038/nm.3549] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that low biosynthesis of ω-3 derived pro-resolution mediators termed protectins is associated with an impaired global resolution capacity, inflammation and insulin resistance in obese high fat-fed mice1. These findings prompted a more direct study of the therapeutic potential of protectins for the treatment of metabolic disorders. Herein we found that protectin DX (PDX) exerts an unanticipated glucoregulatory activity that is distinct from its anti-inflammatory actions. PDX was found to selectively stimulate the release of the prototypic myokine interleukin-6 (IL-6) from skeletal muscle and thereby initiate a myokine-liver signaling axis, which blunts hepatic glucose production via Signal transducer and activator of transcription 3 (STAT3) mediated transcriptional suppression of the gluconeogenic program. These effects of PDX were abrogated in IL-6 null mice. PDX also activates AMP-activated protein kinase (AMPK) but in an IL-6 independent manner. Notably, we demonstrate that administration of PDX to obese diabetic db/db mice raises skeletal muscle IL-6 and substantially improves insulin sensitivity in this severe model of diabetes, without any impact on adipose tissue inflammation. Our findings thus support the development of PDX-based selective muscle IL-6 secretagogues as a new class of therapy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Phillip J White
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Philippe St-Pierre
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Alexandre Charbonneau
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Patricia L Mitchell
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Emmanuelle St-Amand
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Bruno Marcotte
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - André Marette
- 1] Department of Medicine, Québec Heart and Lung Institute, Laval University, Québec, Québec, Canada. [2] Institute of Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| |
Collapse
|
26
|
Xu E, Forest MP, Schwab M, Avramoglu RK, St-Amand E, Caron AZ, Bellmann K, Shum M, Voisin G, Paquet M, Montoudis A, Lévy E, Siminovitch KA, Neel BG, Beauchemin N, Marette A. Hepatocyte-specific Ptpn6 deletion promotes hepatic lipid accretion, but reduces NAFLD in diet-induced obesity: potential role of PPARγ. Hepatology 2014; 59:1803-15. [PMID: 24327268 DOI: 10.1002/hep.26957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/27/2013] [Indexed: 01/04/2023]
Abstract
UNLABELLED Hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)) are protected from hepatic insulin resistance evoked by high-fat diet (HFD) feeding for 8 weeks. Unexpectedly, we report herein that Ptpn6(H-KO) mice fed an HFD for up to 16 weeks are still protected from insulin resistance, but are more prone to hepatic steatosis, as compared with their HFD-fed Ptpn6(f/f) counterparts. The livers from HFD-fed Ptpn6(H-KO) mice displayed 1) augmented lipogenesis, marked by increased expression of several hepatic genes involved in fatty acid biosynthesis, 2) elevated postprandial fatty acid uptake, and 3) significantly reduced lipid export with enhanced degradation of apolipoprotein B (ApoB). Despite more extensive hepatic steatosis, the inflammatory profile of the HFD-fed Ptpn6(H-KO) liver was similar (8 weeks) or even improved (16 weeks) as compared to their HFD-fed Ptpn6(f/f) littermates, along with reduced hepatocellular damage as revealed by serum levels of hepatic enzymes. Interestingly, comparative microarray analysis revealed a significant up-regulation of peroxisome proliferator-activated receptor gamma (PPARγ) gene expression, confirmed by quantitative polymerase chain reaction. Elevated PPARγ nuclear activity also was observed and found to be directly regulated by Shp1 in a cell-autonomous manner. CONCLUSION These findings highlight a novel role for hepatocyte Shp1 in the regulation of PPARγ and hepatic lipid metabolism. Shp1 deficiency prevents the development of severe hepatic inflammation and hepatocellular damage in steatotic livers, presenting hepatocyte Shp1 as a potential novel mediator of nonalcoholic fatty liver diseases in obesity.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ebke LA, Nestor-Kalinoski AL, Slotterbeck BD, Al Dieri AG, Ghosh-Lester S, Russo L, Najjar SM, von Grafenstein H, McInerney MF. Tight association between macrophages and adipocytes in obesity: implications for adipocyte preparation. Obesity (Silver Spring) 2014; 22:1246-55. [PMID: 24376179 PMCID: PMC3980195 DOI: 10.1002/oby.20634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the cellular architecture of the inflammatory infiltrate in adipose tissue from obese mice, and identify the source of inflammatory cytokines in adipose tissue at a single cell level. METHODS Adipose tissue from diet-induced obese mice was digested by collagenase treatment and fractionated by density centrifugation to obtain an adipocyte floating layer and a pellet of stromal vascular cells. The cellular architecture of the adipocyte-macrophage interaction in both intact white adipose tissue (WAT) and the separated density gradient floating layer fraction was analyzed by confocal immunohistochemistry. Cytokine expression was detected by semi-quantitative real time PCR and immunohistochemical analysis. RESULTS Three dimensional image analysis of WAT and the separated "adipocyte" floating layer revealed lipid-engorged macrophages, macrophages in contact with lipid droplets and sheath-like assemblies of macrophages surrounding adipocytes. The macrophages immunostained for TNFα and to a lesser extent for the immunoregulatory cytokine IL-10. TNFα staining was associated only with macrophages indicating that macrophages and not adipocytes are the source of TNFα expression in the adipocyte floating layer. CONCLUSION Macrophages form assemblies that tightly adhere to and cover adipocytes and lipid droplets. TNFα found in low density adipocyte preparations is due to contamination with macrophages.
Collapse
Affiliation(s)
- Lindsey A. Ebke
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo
| | | | - Brandon D. Slotterbeck
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo
| | - Ali G. Al Dieri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo
| | - Sumona Ghosh-Lester
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo
- Center for Diabetes and Endocrine Research (CeDER), University of Toledo
| | - Lucia Russo
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo
- Center for Diabetes and Endocrine Research (CeDER), University of Toledo
| | - Sonia M. Najjar
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo
- Center for Diabetes and Endocrine Research (CeDER), University of Toledo
| | - Hermann von Grafenstein
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo
| | - Marcia F. McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo
- Center for Diabetes and Endocrine Research (CeDER), University of Toledo
| |
Collapse
|
28
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
29
|
CEACAM1 loss links inflammation to insulin resistance in obesity and non-alcoholic steatohepatitis (NASH). Semin Immunopathol 2013; 36:55-71. [PMID: 24258517 DOI: 10.1007/s00281-013-0407-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023]
Abstract
Mounting epidemiological evidence points to an association between metabolic syndrome and non-alcoholic steatohepatitis (NASH), an increasingly recognized new epidemic. NASH pathologies include hepatocellular ballooning, lobular inflammation, hepatocellular injury, apoptosis, and hepatic fibrosis. We will review the relationship between insulin resistance and inflammation in visceral obesity and NASH in an attempt to shed more light on the pathogenesis of these major metabolic diseases. Moreover, we will identify loss of the carcinoembryonic antigen-related cell adhesion molecule 1 as a unifying mechanism linking the immunological and metabolic abnormalities in NASH.
Collapse
|
30
|
Najjar SM, Ledford KJ, Abdallah SL, Paus A, Russo L, Kaw MK, Ramakrishnan SK, Muturi HT, Raphael CK, Lester SG, Heinrich G, Pierre SV, Benndorf R, Kleff V, Jaffa AA, Lévy E, Vazquez G, Goldberg IJ, Beauchemin N, Scalia R, Ergün S. Ceacam1 deletion causes vascular alterations in large vessels. Am J Physiol Endocrinol Metab 2013; 305:E519-29. [PMID: 23800882 PMCID: PMC3891225 DOI: 10.1152/ajpendo.00266.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance and endothelial survival. However, its role in the morphology of macrovessels remains unknown. Mice lacking Ceacam1 (Cc1-/-) exhibit hyperinsulinemia, which causes insulin resistance and fatty liver. With increasing evidence of an association among hyperinsulinemia, fatty liver disease, and atherosclerosis, we investigated whether Cc1-/- exhibited vascular lesions in atherogenic-prone aortae. Histological analysis revealed impaired endothelial integrity with restricted fat deposition and aortic plaque-like lesions in Cc1-/- aortae, likely owing to their limited lipidemia. Immunohistochemical analysis indicated macrophage deposition, and in vitro studies showed increased leukocyte adhesion to aortic wall, mediated in part by elevation in vascular cell adhesion molecule 1 levels. Basal aortic eNOS protein and NO content were reduced, in parallel with reduced Akt/eNOS and Akt/Foxo1 phosphorylation. Ligand-induced vasorelaxation was compromised in aortic rings. Increased NADPH oxidase activity and plasma 8-isoprostane levels revealed oxidative stress and lipid peroxidation in Cc1-/- aortae. siRNA-mediated CEACAM1 knockdown in bovine aortic endothelial cells adversely affected insulin's stimulation of IRS-1/PI 3-kinase/Akt/eNOS activation by increasing IRS-1 binding to SHP2 phosphatase. This demonstrates that CEACAM1 regulates both endothelial cell autonomous and nonautonomous mechanisms involved in vascular morphology and NO production in aortae. Systemic factors such as hyperinsulinemia could contribute to the pathogenesis of these vascular abnormalities. Cc1-/- mice provide a first in vivo demonstration of distinct CEACAM1-dependent hepatic insulin clearance linking hepatic to macrovascular abnormalities.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aorta, Thoracic/immunology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Carcinoembryonic Antigen/chemistry
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/metabolism
- Cattle
- Cell Adhesion
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Leukocytes/immunology
- Leukocytes/metabolism
- Leukocytes/pathology
- Lipid Peroxidation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RNA Interference
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Huang J, Ledford KJ, Pitkin WB, Russo L, Najjar SM, Siragy HM. Targeted deletion of murine CEACAM 1 activates PI3K-Akt signaling and contributes to the expression of (Pro)renin receptor via CREB family and NF-κB transcription factors. Hypertension 2013; 62:317-23. [PMID: 23734002 DOI: 10.1161/hypertensionaha.113.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The carcinoembryonic antigen-related cell adhesion molecule 1 regulates insulin sensitivity by promoting hepatic insulin clearance. Mice bearing a null mutation of Ceacam1 gene (Cc1(-/-)) develop impaired insulin clearance followed by hyperinsulinemia and insulin resistance, in addition to visceral obesity and increased plasma fatty acids. Because insulin resistance is associated with increased blood pressure, we investigated whether they develop higher blood pressure with activated renal renin-angiotensin system and whether this is mediated, in part, by the upregulation of renal (pro)renin receptor (PRR) expression. Compared with age-matched wild-type littermates, Cc1(-/-) mice exhibited increased blood pressure with increased activation of renal renin-angiotensin systems and renal PRR expression. Cytoplasmic and nuclear immunostaining of phospho-PI3K p85α and phospho-Akt was enhanced in the kidney of Cc1(-/-) mice. In murine renal inner medullary collecting duct epithelial cells with lentiviral-mediated small hairpin RNA knockdown of carcinoembryonic antigen-related cell adhesion molecule 1, PRR expression was upregulated and phosphorylation of PI3K (Tyr508), Akt (Ser473), NF-κB p65 (Ser276), cAMP response element-binding protein/activated transcription factor (ATF)-1 (Ser133), and ATF-2 (Thr71) was enhanced. Inhibiting PI3K with LY294002 or Akt with Akt inhibitor VIII attenuated PRR expression. In conclusion, global null deletion of Ceacam1 caused an increase in blood pressure with increased renin-angiotensin system activation together with upregulation of PRR via PI3K-Akt activation of cAMP response element-binding protein 1, ATF-1, ATF-2, and NF-κB p65 transcription factors.
Collapse
Affiliation(s)
- Jiqian Huang
- Division of Endocrinology and Metabolism, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA 22908-1409, USA
| | | | | | | | | | | |
Collapse
|
33
|
Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, Neel BG, Beauchemin N, Marette A. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes 2012; 61:1949-58. [PMID: 22698917 PMCID: PMC3402325 DOI: 10.2337/db11-1502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein-tyrosine phosphatase Shp1 negatively regulates insulin action on glucose homeostasis in liver and muscle, but its potential role in obesity-linked insulin resistance has not been examined. To investigate the role of Shp1 in hepatic insulin resistance, we generated hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)), which were subjected to extensive metabolic monitoring throughout an 8-week standard chow diet (SD) or high-fat diet (HFD) feeding. We report for the first time that Shp1 expression is upregulated in metabolic tissues of HFD-fed obese mice. When compared with their Shp1-expressing Ptpn6(f/f) littermates, Ptpn6(H-KO) mice exhibited significantly lowered fasting glycemia and heightened hepatic insulin sensitivity. After HFD feeding, Ptpn6(H-KO) mice developed comparable levels of obesity as Ptpn6(f/f) mice, but they were remarkably protected from liver insulin resistance, as revealed by euglycemic clamps and hepatic insulin signaling determinations. Although Ptpn6(H-KO) mice still acquired diet-induced peripheral insulin resistance, they were less hyperinsulinemic during a glucose tolerance test because of reduced insulin secretion. Ptpn6(H-KO) mice also exhibited increased insulin clearance in line with enhanced CC1 tyrosine phosphorylation in liver. These results show that hepatocyte Shp1 plays a critical role in the development of hepatic insulin resistance and represents a novel therapeutic target for obesity-linked diabetes.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Alexandre Charbonneau
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Yannève Rolland
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Kerstin Bellmann
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Lily Pao
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Benjamin G. Neel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montréal, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
- Corresponding author: André Marette,
| |
Collapse
|
34
|
Arabzadeh A, Chan C, Nouvion AL, Breton V, Benlolo S, DeMarte L, Turbide C, Brodt P, Ferri L, Beauchemin N. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer. Oncogene 2012; 32:849-60. [PMID: 22469976 DOI: 10.1038/onc.2012.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment.
Collapse
Affiliation(s)
- A Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Patel PR, Ramakrishnan SK, Kaw MK, Raphael CK, Ghosh S, Marino JS, Heinrich G, Lee SJ, Bourey RE, Hill JW, Jung DY, Morgan DA, Kim JK, Rahmouni SK, Najjar SM. Increased metabolic rate and insulin sensitivity in male mice lacking the carcino-embryonic antigen-related cell adhesion molecule 2. Diabetologia 2012; 55:763-72. [PMID: 22159884 PMCID: PMC3272352 DOI: 10.1007/s00125-011-2388-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
AIMS/HYPOTHESIS The carcino-embryonic antigen-related cell adhesion molecule (CEACAM)2 is produced in many feeding control centres in the brain, but not in peripheral insulin-targeted tissues. Global Ceacam2 null mutation causes insulin resistance and obesity resulting from hyperphagia and hypometabolism in female Ceacam2 homozygous null mutant mice (Cc2 [also known as Ceacam2](-/-)) mice. Because male mice are not obese, the current study examined their metabolic phenotype. METHODS The phenotype of male Cc2(-/-) mice was characterised by body fat composition, indirect calorimetry, hyperinsulinaemic-euglycaemic clamp analysis and direct recording of sympathetic nerve activity. RESULTS Despite hyperphagia, total fat mass was reduced, owing to the hypermetabolic state in male Cc2(-/-) mice. In contrast to females, male mice also exhibited insulin sensitivity with elevated β-oxidation in skeletal muscle, which is likely to offset the effects of increased food intake. Males and females had increased brown adipogenesis. However, only males had increased activation of sympathetic tone regulation of adipose tissue and increased spontaneous activity. The mechanisms underlying sexual dimorphism in energy balance with the loss of Ceacam2 remain unknown. CONCLUSIONS/INTERPRETATION These studies identified a novel role for CEACAM2 in the regulation of metabolic rate and insulin sensitivity via effects on brown adipogenesis, sympathetic nervous outflow to brown adipose tissue, spontaneous activity and energy expenditure in skeletal muscle.
Collapse
Affiliation(s)
- P. R. Patel
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. K. Ramakrishnan
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - M. K. Kaw
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - C. K. Raphael
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. Ghosh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - J. S. Marino
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - G. Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. J. Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - R. E. Bourey
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Internal Medicine at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - J. W. Hill
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - D. Y. Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - D. A. Morgan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - J. K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - S. K. Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S. M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA,
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| |
Collapse
|
36
|
Centeno-Baez C, Dallaire P, Marette A. Resveratrol inhibition of inducible nitric oxide synthase in skeletal muscle involves AMPK but not SIRT1. Am J Physiol Endocrinol Metab 2011; 301:E922-30. [PMID: 21810931 DOI: 10.1152/ajpendo.00530.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The plant-derived polyphenol resveratrol (RSV) modulates life span and metabolism, and it is thought that these effects are largely mediated by activating the deacetylase enzyme SIRT1. However, RSV also activates the cell energy sensor AMP-activated protein kinase (AMPK). We have previously reported that AMPK activators inhibit inducible nitric oxide synthase (iNOS), a key proinflammatory mediator of insulin resistance in endotoxemia and obesity. The aim of this study was to evaluate whether RSV inhibits iNOS induction in insulin target tissues and to determine the role of SIRT1 and AMPK activation in this effect. We found that RSV (40 mg/kg ip) treatment decreased iNOS induction and NO production in skeletal muscle and white adipose tissue, but not in liver, of endotoxin (LPS)-challenged mice. This effect of the polyphenol was recapitulated in vitro, where RSV (10-80 μM) robustly inhibited iNOS protein induction and NO production in cytokine/LPS-treated L6 myocytes and 3T3-L1 adipocytes. However, no effect of RSV was observed on iNOS induction in FAO hepatocytes. Further studies using inhibitors of SIRT1 revealed that the deacetylase enzyme is not involved in RSV action on iNOS. In marked contrast, RSV activates AMPK in L6 myocytes, and blunting its activation using Compound C or RNA interference partly blocked the inhibitory effect of RSV on NO production. These results show that RSV specifically inhibits iNOS induction in muscle through a mechanism involving AMPK but not SIRT1 activation. This anti-inflammatory action of RSV likely contributes to the therapeutic effect of this plant polyphenol.
Collapse
Affiliation(s)
- Carolina Centeno-Baez
- Department of Medicine, Quebec Heart and Lung Institute (Laval Hospital), Ste-Foy, and Laval University Hospital Research Center, Metabolism, Vascular and Renal Health Axis, Quebec, Canada
| | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To summarize currently available information about the mechanisms involved in liver fat accumulation. RECENT FINDINGS The contribution of functional genomics approaches, such as those represented by high-throughput analysis and genetically modified mice, may envision a complex network involving fatty acid, triglyceride and phospholipid metabolisms and lipid droplet dynamics. Likewise, it may pose an exquisite regulation exerted through insulin, glucocorticoids, thyroid hormones, transcription factors and microRNAs, orchestrated with sexual differences and able to respond to environmental factors such as nutritional or viral influences among others. SUMMARY The information gathered will facilitate further research to complete gaps of interacting pieces among regulators and new contributing agents emerging from high-throughput analyses. With this new paradigm, new biomarkers able to discriminate the progression of hepatic steatosis into human steatohepatitis will eventually emerge, and hopefully new therapeutic approaches will be developed.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
38
|
Nouvion AL, Oubaha M, LeBlanc S, Davis EC, Jastrow H, Kammerer R, Breton V, Turbide C, Ergun S, Gratton JP, Beauchemin N. CEACAM1: a key regulator of vascular permeability. J Cell Sci 2010; 123:4221-30. [DOI: 10.1242/jcs.073635] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is an immunoglobulin-like cell surface co-receptor expressed on epithelial, hematopoietic and endothelial cells. CEACAM1 functions as an adhesion molecule, mainly binding to itself or other members of the CEA family. We and others have previously shown that CEACAM1 is crucial for in vivo vascular integrity during ischemic neo-vascularization. Here, we have deciphered the roles of CEACAM1 in normal and pathological vascularization. We have found that Ceacam1−/− mice exhibit a significant increase in basal vascular permeability related to increased basal Akt and endothelial nitric oxide synthase (eNOS) activation in primary murine lung endothelial cells (MLECs). Moreover, CEACAM1 deletion in MLECs inhibits VEGF-mediated nitric oxide (NO) production, consistent with defective VEGF-dependent in vivo permeability in Ceacam1−/− mice. In addition, Ceacam1-null mice exhibit increased permeability of tumor vasculature. Finally, we demonstrate that CEACAM1 is tyrosine-phosphorylated upon VEGF treatment in a SHP-1- and Src-dependent manner, and that the key residues of the long cytoplasmic domain of CEACAM1 are crucial for CEACAM1 phosphorylation and NO production. This data represents the first report, to our knowledge, of a functional link between CEACAM1 and the VEGFR2/Akt/eNOS-mediated vascular permeability pathway.
Collapse
Affiliation(s)
- Anne-Laure Nouvion
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Malika Oubaha
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Sarah LeBlanc
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Elaine C. Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Holger Jastrow
- Institute of Anatomy, University Hospital Essen, Essen 45147, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Tuebingen 72076, Germany
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Suleyman Ergun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Jean-Philippe Gratton
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
39
|
Houde VP, Brûlé S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010; 59:1338-48. [PMID: 20299475 PMCID: PMC2874694 DOI: 10.2337/db09-1324] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) pathway is a critical signaling component in the development of obesity-linked insulin resistance and operates a nutrient-sensing negative feedback loop toward the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Whereas acute treatment of insulin target cells with the mTOR complex 1 (mTORC1) inhibitor rapamycin prevents nutrient-induced insulin resistance, the chronic effect of rapamycin on insulin sensitivity and glucose metabolism in vivo remains elusive. RESEARCH DESIGN AND METHODS To assess the metabolic effects of chronic inhibition of the mTORC1/S6K1 pathway, rats were treated with rapamycin (2 mg/kg/day) or vehicle for 15 days before metabolic phenotyping. RESULTS Chronic rapamycin treatment reduced adiposity and fat cell number, which was associated with a coordinated downregulation of genes involved in both lipid uptake and output. Rapamycin treatment also promoted insulin resistance, severe glucose intolerance, and increased gluconeogenesis. The latter was associated with elevated expression of hepatic gluconeogenic master genes, PEPCK and G6Pase, and increased expression of the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) as well as enhanced nuclear recruitment of FoxO1, CRTC2, and CREB. These changes were observed despite normal activation of the insulin receptor substrate/PI 3-kinase/Akt axis in liver of rapamycin-treated rats, as expected from the blockade of the mTORC1/S6K1 negative feedback loop. CONCLUSIONS These findings unravel a novel mechanism by which mTORC1/S6K1 controls gluconeogenesis through modulation of several key transcriptional factors. The robust induction of the gluconeogenic program in liver of rapamycin-treated rats underlies the development of severe glucose intolerance even in the face of preserved hepatic insulin signaling to Akt and despite a modest reduction in adiposity.
Collapse
Affiliation(s)
- Vanessa P. Houde
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, and the Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Laval University, Quebec, Canada; and
| | - Sophie Brûlé
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, and the Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Laval University, Quebec, Canada; and
| | - William T. Festuccia
- Department of Medicine, Faculty of Medicine, Obesity-Metabolism Axis of the Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Obesity-Metabolism Axis of the Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Kerstin Bellmann
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, and the Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Laval University, Quebec, Canada; and
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Obesity-Metabolism Axis of the Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, and the Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Laval University, Quebec, Canada; and
- Corresponding author: André Marette,
| |
Collapse
|
40
|
Ghosh S, Kaw M, Patel PR, Ledford KJ, Bowman TA, McInerney MF, Erickson SK, Bourey RE, Najjar SM. Mice with null mutation of Ceacam I develop nonalcoholic steatohepatitis. Hepat Med 2010; 2010:69-78. [PMID: 21949477 PMCID: PMC3177946 DOI: 10.2147/hmer.s8902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsulinemia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet. Three-month-old male null and wild-type mice were fed a high-fat diet for 3 months and their NASH phenotype was examined. While high-fat feeding elevated hepatic triglyceride content in both strains of mice, it exacerbated macrosteatosis and caused NASH-characteristic fibrogenic changes and inflammatory responses more intensely in the null mouse. This demonstrates that CEACAM1-dependent insulin clearance pathways are linked with NASH pathogenesis.
Collapse
Affiliation(s)
- Sumona Ghosh
- Center for Diabetes and Endocrine Research, Toledo, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang S, Kaw M, Harris M, Ebraheim N, McInerney M, Najjar S, Lecka-Czernik B. Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. Bone 2010; 46:1138-45. [PMID: 20044046 PMCID: PMC2862391 DOI: 10.1016/j.bone.2009.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/17/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3(-)CD11b(-)CD45R(-)) population of osteoclast progenitors is decreased by 40% and the number of (CD3(-)CD11b(-)CD45R(+)) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however, MSC from L-SACC1 mice exhibit increased PPARgamma2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of altered bone homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- S. Huang
- Department Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614
| | - M. Kaw
- Department Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614
- Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH 43614
| | - M.T. Harris
- Department Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614
| | - N. Ebraheim
- Department Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614
| | - M.F. McInerney
- Department Medicinal and Biological Chemistry, University of Toledo Medical Center, Toledo, OH 43614
- Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH 43614
| | - S.M. Najjar
- Department Physiology and Pharmacology, University of Toledo Medical Center, Toledo, OH 43614
- Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH 43614
| | - B. Lecka-Czernik
- Department Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614
- Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH 43614
| |
Collapse
|
42
|
From Biology of Glucose Transporters to Integrative Pathophysiology of Insulin Resistance. Can J Diabetes 2010. [DOI: 10.1016/s1499-2671(10)43021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|