1
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
Affiliation(s)
- Siying Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Tong
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Bommarito PA, Blaauwendraad SM, Stevens DR, van den Dries MA, Spaan S, Pronk A, Tiemeier H, Gaillard R, Trasande L, Jaddoe VV, Ferguson KK. Prenatal Exposure to Nonpersistent Chemicals and Fetal-to-childhood Growth Trajectories. Epidemiology 2024; 35:874-884. [PMID: 39042458 PMCID: PMC11444368 DOI: 10.1097/ede.0000000000001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Prenatal exposure to nonpersistent chemicals, including organophosphate pesticides, phthalates, and bisphenols, is associated with altered fetal and childhood growth. Few studies have examined these associations using longitudinal growth trajectories or considering exposure to chemical mixtures. METHODS Among 777 participants from the Generation R Study, we used growth mixture models to identify weight and body mass index trajectories using weight and height measures collected from the prenatal period to age 13. We measured exposure biomarkers for organophosphate pesticides, phthalates, and bisphenols in maternal urine at three timepoints during pregnancy. Multinomial logistic regression was used to estimate associations between averaged exposure biomarker concentrations and growth trajectories. We used quantile g-computation to estimate joint associations with growth trajectories. RESULTS Phthalic acid (OR = 1.4; 95% CI = 1.01, 1.9) and bisphenol A (OR = 1.5; 95% CI = 1.0, 2.2) were associated with higher odds of a growth trajectory characterized by smaller prenatal and larger childhood weight relative to a referent trajectory of larger prenatal and average childhood weight. Biomarkers of organophosphate pesticides, individually and jointly, were associated with lower odds of a growth trajectory characterized by average prenatal and lower childhood weight. CONCLUSIONS Exposure to phthalates and bisphenol A was positively associated with a weight trajectory characterized by lower prenatal and higher childhood weight, while exposure to organophosphate pesticides was negatively associated with a trajectory of average prenatal and lower childhood weight. This study is consistent with the hypothesis that nonpersistent chemical exposures disrupt growth trajectories from the prenatal period through childhood.
Collapse
Affiliation(s)
- Paige A. Bommarito
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Danielle R. Stevens
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Michiel A. van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development (RAPID), TNO, Utrecht, CB, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development (RAPID), TNO, Utrecht, CB, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, NY
| | - Vincent V.W. Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Kelly K. Ferguson
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| |
Collapse
|
3
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
4
|
Zulkifli S, Mohd Nor NS, Sheikh Abdul Kadir SH, Mohd Ranai N, Abdul Khalil K. Distinct gut flora profile induced by postnatal trans-fat diet in gestationally bisphenol A-exposed rats. PLoS One 2024; 19:e0306741. [PMID: 38980850 PMCID: PMC11233015 DOI: 10.1371/journal.pone.0306741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
There has been much evidence showing the repercussions of prenatal bisphenol A (BPA) exposure with a postnatal high fat-diet (HFD) on offspring's health. However, the information on how the interaction between these two variables affects the gut microbiome is rather limited. Hence, we investigated the impact of a postnatal trans fat diet (TFD) on the gut microbiome of offspring exposed to BPA during the prenatal period in an animal model. Pregnant rats were divided into 5 mg/kg/day BPA, vehicle Tween80 (P80) or control (CTL) drinking water until delivery (N = 6 per group). Then, weaned male pups were further subdivided into three normal diet (ND) groups (CTLND, P80ND, and BPAND) and three TFD groups (CTLTFD, P80TFD, and BPATFD) (n = 6 per group). 180-250 g of faecal samples were collected on days 50 and 100 to assess the composition of the offspring's intestinal flora using next-generation sequencing. The alpha diversity indices of TFD offspring with and without BPA were markedly lower than their ND counterparts (p<0.001-p<0.05). The beta diversity, hierarchical cluster and network analyses of the offspring's microbiome demonstrated that the microbiome species of the TFD group with and without BPA were distinctly different compared to the ND group. Consistently, TFD and ND offspring pairings exhibited a higher number of significantly different species (p<0.0001-p<0.05) compared to those exposed to prenatal BPA exposure and different life stages comparisons, as shown by the multivariate parametric analysis DESeq2. Predictive functional profiling of the offspring's intestinal flora demonstrated altered expressions of genes involved in metabolic pathways. In summary, the gut flora composition of the rat offspring may be influenced by postnatal diet instead of prenatal exposure to BPA. Our data indicate the possibility of perturbed metabolic functions and epigenetic modifications, in offspring that consumed TFD, which may theoretically lead to metabolic diseases in middle or late adulthood. Further investigation is necessary to fully understand these implications.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohd Ranai
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Khalilah Abdul Khalil
- Department of Biomolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Lința AV, Lolescu BM, Ilie CA, Vlad M, Blidișel A, Sturza A, Borza C, Muntean DM, Crețu OM. Liver and Pancreatic Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2024; 25:7420. [PMID: 39000526 PMCID: PMC11242905 DOI: 10.3390/ijms25137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, the worldwide epidemic of metabolic diseases, namely obesity, metabolic syndrome, diabetes and metabolic-associated fatty liver disease (MAFLD) has been strongly associated with constant exposure to endocrine-disruptive chemicals (EDCs), in particular, the ones able to disrupt various metabolic pathways. EDCs have a negative impact on several human tissues/systems, including metabolically active organs, such as the liver and pancreas. Among their deleterious effects, EDCs induce mitochondrial dysfunction and oxidative stress, which are also the major pathophysiological mechanisms underlying metabolic diseases. In this narrative review, we delve into the current literature on EDC toxicity effects on the liver and pancreatic tissues in terms of impaired mitochondrial function and redox homeostasis.
Collapse
Affiliation(s)
- Adina V. Lința
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Cosmin A. Ilie
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Department of Functional Sciences—Chair of Public Health & Sanitary Management, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Vlad
- Department of Internal Medicine II—Chair of Endocrinology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania;
| | - Alexandru Blidișel
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Claudia Borza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Danina M. Muntean
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Octavian M. Crețu
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
6
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
7
|
Guo Y, Kang Y, Bai W, Liu Q, Zhang R, Wang Y, Wang C. Perinatal exposure to bisphenol A impairs cognitive function via the gamma-aminobutyric acid signaling pathway in male rat offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:1235-1244. [PMID: 37926988 DOI: 10.1002/tox.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Bisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three-week-old male rat offspring were selected for an open-field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real-time polymerase chain reaction (RT-PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA-T) and GABA transporter 1 (GAT-1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Kang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rongqiang Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
8
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Proença C, Freitas M, Rocha S, Ferreira de Oliveira JMP, Carvalho F, Fernandes E. Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:883-918. [PMID: 39287876 DOI: 10.1007/978-3-031-63657-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity represents a global health concern, affecting individuals of all age groups across the world. The prevalence of excess weight and obesity has escalated to pandemic proportions, leading to a substantial increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer. This chapter seeks to provide a comprehensive exploration of the pathways through which endocrine-disrupting chemicals can influence the pathophysiology of obesity. These mechanisms encompass aspects such as the regulation of food intake and appetite, intestinal fat absorption, lipid metabolism, and the modulation of inflammation. This knowledge may help to elucidate the role of exogenous molecules in both the aetiology and progression of obesity.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Liu H, Zhou Y, Li Y, Gong Z. Important roles of Hif1a in maternal or adult BPA exposure induced pancreatic injuries. Sci Rep 2023; 13:11502. [PMID: 37460698 PMCID: PMC10352259 DOI: 10.1038/s41598-023-38614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Bisphenol A (BPA) is a monomer to produce polycarbonate plastics and can be released into the environment through human activities, leading to its accumulation in animals, plants and humans through direct contact or environmental exposure. Epidemiological studies have reported that BPA exposure is associated with metabolic disorders. The pancreas is an important endocrine organ and plays an important role in metabolic disorders. To explore the possible long-term effects of BPA exposure on neonatal health, bioinformatic methods were used to identify differentially expressed genes (DEGs) by comparing the neonatal pancreas after maternal exposure to BPA with the adult pancreas after direct exposure to BPA. Two datasets about BPA exposure and pancreatic abnormality, GSE82175 and GSE126297 in Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were collected. Control (or BPA-exposed) offspring (maternal exposure) and Control (or BPA-exposed) adults (direct exposure) were defined as Control (or BPA) groups. The results showed that BPA disturbed the normal function of the pancreas in both offspring and adults, with offspring showing higher susceptibility to BPA than adults. Seventeen insulin secretion-related DEGs (Stxbp5l, Fam3d, Mia3, Igf1, Hif1a, Aqp1, Kif5b, Tiam1, Map4k4, Cyp51, Pde1c, Rab3c, Arntl, Clock, Edn3, Kcnb1, and Krt20) in the BPA group were identified, and 15 regulator DEGs (Zfp830, 4931431B13Rik, Egr1, Ddit4l, Cep55, G530011O06Rik, Hspa1b, Hspa1a, Cox6a2, Ibtk, Banf1, Slc35b2, Golt1b, Lrp8, and Pttg1) with opposite expression trends and a regulator gene Cerkl with the similar expression trend in the Control and BPA groups were identified. Hif1α might be an important molecular target for pancreatic cancer caused by BPA exposure, and pregnancy is a critical window of susceptibility to BPA exposure.
Collapse
Affiliation(s)
- Huiping Liu
- Department of Cardiopulmonary Function Examination, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yike Li
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Gong
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
11
|
Abulehia H, Mohd Nor NS, Sheikh Abdul Kadir SH, Abdul Aziz M, Zulkifli S. The effects of trans fat diet intake on metabolic parameters and pancreatic tissue in offspring of prenatal bisphenol A exposed rats. Sci Rep 2023; 13:9322. [PMID: 37291156 PMCID: PMC10250527 DOI: 10.1038/s41598-023-36043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
Bisphenol A (BPA) is a plasticiser used in the manufacturing of many products and its effects on human health remain controversial. Up till now, BPA involvement in metabolic syndrome risk and development is still not fully understood. In this study, we aimed to investigate the effect of prenatal BPA exposure with postnatal trans-fat diet intake on metabolic parameters and pancreatic tissue histology. Eighteen pregnant rats were divided into control (CTL), vehicle tween 80 (VHC), and BPA (5 mg/kg/day) from gestational day (GD) 2 until GD 21, then their weaning rat's offspring were fed with normal diet (ND) or trans-fat diet (TFD) from postnatal week (PNW) 3 until PNW 14. The rats were then sacrificed and the blood (biochemical analysis) and pancreatic tissues (histological analysis) were collected. Glucose, insulin, and lipid profile were measured. The study has shown that there was no significant difference between groups with regard to glucose, insulin, and lipid profiles (p > 0.05). All pancreatic tissues showed normal architecture with irregular islets of Langerhans in TFD intake groups compared to offspring that consumed ND. Furthermore, the pancreatic histomorphometry was also affected whereby the study findings revealed that there was a significant increase in the mean number of pancreatic islets in rats from BPA-TFD group (5.987 ± 0.3159 islets/field, p = 0.0022) compared to those fed with ND and BPA non-exposed. In addition, the results have found that prenatal BPA exposure resulted in a significant decrease in the pancreatic islets diameter of the BPA-ND group (183.3 ± 23.28 µm, p = 0.0022) compared to all other groups. In conclusion, prenatal BPA exposure with postnatal TFD in the offspring may affect glucose homeostasis and pancreatic islets in adulthood, and the effect may be more aggravated in late adulthood.
Collapse
Affiliation(s)
- Hala Abulehia
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Mardiana Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia
| | - Sarah Zulkifli
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| |
Collapse
|
12
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Zhuang Y, Sun X, Deng S, Wen Y, Xu Q, Guan Q. In vivo effects of low dose prenatal bisphenol A exposure on adiposity in male and female ICR offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114946. [PMID: 37105096 DOI: 10.1016/j.ecoenv.2023.114946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is known to exhibit endocrine disrupting activities and is associated with adiposity. We examined the obesogenic effect of prenatal BPA exposure in the present study. METHODS Pregnant ICR mice were exposed to vehicle or BPA via the drinking water at a dose of 0.5 μg/kg·d throughout the gestation. Obesity-related indexes were investigated in the 12-wk-old offspring. Primary mouse embryonic fibroblasts (MEFs) collected from treated embryos were used to test effects of BPA on adipocyte differentiation. RESULTS Offspring presented a significantly higher rate of weight gain than the control, with impaired insulin sensitivity and increased adipocyte size. Differentiation of MEFs from BPA-treated mice showed a higher propensity for the adipocyte commitment as well as up-regulation of genes enriched in lipid biosynthesis. TGF-β signaling pathway was found to modulate obesogenic effect of BPA in MEF model, but estrogen signaling pathway had no effect. CONCLUSIONS The present study provides strong evidence of the association between prenatal exposure to low dose of BPA and a significant increase in body weight in the offspring mice with a critical role played by TGF-β signaling pathway. The potential interactions modulating the binding of BPA and TGF-β that activate its obesogenic effects need to be examined.
Collapse
Affiliation(s)
- Yin Zhuang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangying Sun
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siting Deng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ya Wen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiujin Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China.
| | - Quanquan Guan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Kakimoto M, Fujii M, Sato I, Honma K, Nakayama H, Kirihara S, Fukuoka T, Ran S, Hirohata S, Kitamori K, Yamamoto S, Watanabe S. Antioxidant action of xanthine oxidase inhibitor febuxostat protects the liver and blood vasculature in SHRSP5/Dmcr rats. J Appl Biomed 2023; 21:80-90. [PMID: 37376883 DOI: 10.32725/jab.2023.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Xanthine oxidase (XO) generates reactive oxygen species during uric acid production. Therefore, XO inhibitors, which suppress oxidative stress, may effectively treat non-alcoholic steatohepatitis (NASH) and atherosclerosis via uric acid reduction. In this study, we examined the antioxidant effect of the XO inhibitor febuxostat on NASH and atherosclerosis in stroke-prone spontaneously hypertensive 5 (SHRSP5/Dmcr) rats. METHODS SHRSP5/Dmcr rats were divided into three groups: SHRSP5/Dmcr + high-fat and high-cholesterol (HFC) diet [control group, n = 5], SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) [fructose group, n = 5], and SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) + febuxostat (1.0 mg/kg/day) [febuxostat group, n = 5]. Glucose and insulin resistance, blood biochemistry, histopathological staining, endothelial function, and oxidative stress markers were evaluated. RESULTS Febuxostat reduced the plasma uric acid levels. Oxidative stress-related genes were downregulated, whereas antioxidant factor-related genes were upregulated in the febuxostat group compared with those in the fructose group. Febuxostat also ameliorated inflammation, fibrosis, and lipid accumulation in the liver. Mesenteric lipid deposition decreased in the arteries, and aortic endothelial function improved in the febuxostat group. CONCLUSIONS Overall, the XO inhibitor febuxostat exerted protective effects against NASH and atherosclerosis in SHRSP5/Dmcr rats.
Collapse
Affiliation(s)
- Mai Kakimoto
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Moe Fujii
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ikumi Sato
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Koki Honma
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hinako Nakayama
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Sora Kirihara
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Taketo Fukuoka
- Okayama University, Faculty of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shang Ran
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Satoshi Hirohata
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Kazuya Kitamori
- Kinjo Gakuin University, College of Human Life and Environment, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi, 463-8521, Japan
| | - Shusei Yamamoto
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shogo Watanabe
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Sun F, Huang Y, Chen H, Huang J, Zhang L, Wei S, Liu F, Chen D, Huang W. BPA and its alternatives BPF and BPAF exaggerate hepatic lipid metabolism disorders in male mice fed a high fat diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161521. [PMID: 36632902 DOI: 10.1016/j.scitotenv.2023.161521] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Alternatives to Bisphenol A (BPA), such as BPF and BPAF, have found increasing industrial applications. However, toxicological research on these BPA analogues remains limited. This study aimed to investigate the effects of BPA, BPF, and BPAF exposure on hepatotoxicity in mice fed with high-fat diets (HFD). Male mice were exposed to the bisphenols at a dose of 0.05 mg per kg body weight per day (mg/kg bw/day) for eight consecutive weeks, or 5 mg/kg bw/day for the first week followed by 0.05 mg/kg bw/day for seven weeks under HFD. The low dose (0.05 mg/kg bw/day) was corresponding to the tolerable daily intake (TDI) of BPA and the high dose (5 mg/kg bw/day) was corresponding to its no observed adverse effect level (NOAEL). Biochemical analysis revealed that exposure to these bisphenols resulted in liver damage. Metabolomics analysis showed disturbances of fatty acid and lipid metabolism in bisphenol-exposed mouse livers. BPF and BPAF exposure reduced lipid accumulation in HFD mouse liver by lowering glyceride and cholesterol levels. Transcriptomics analysis demonstrated that expression levels of genes related to fatty acid synthesis and metabolism were changed, which might be related to the activation of the PPAR signaling pathway. Besides, a feedback regulation mechanism might exist to maintain hepatic metabolic homeostasis. For the first time, this study demonstrated the effects of BPF and BPAF exposure in HFD-mouse liver. Considering the reality of the high prevalence of obesity nowadays and the ubiquitous environmental distribution of bisphenols, this study provides insight and highlights the adverse effects of BPA alternatives, further contributing to the consideration of the safe use of such compounds.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jialing Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuchao Wei
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fangyi Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci 2023; 24:ijms24054585. [PMID: 36902016 PMCID: PMC10002922 DOI: 10.3390/ijms24054585] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.
Collapse
|
17
|
Gong P, Bailbé D, Tolu S, Pommier G, Liu J, Movassat J. Preconceptional exposure of adult male rats to bisphenol S impairs insulin sensitivity and glucose tolerance in their male offspring. CHEMOSPHERE 2023; 314:137691. [PMID: 36592828 DOI: 10.1016/j.chemosphere.2022.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 μg/kg/day (BPS-4 sires) or 40 μg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.
Collapse
Affiliation(s)
- Pengfei Gong
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France; Université Paris Cité, UFR Sciences Du Vivant, F-75013, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France. http://bfa.univ-paris-diderot.fr
| |
Collapse
|
18
|
Eid RA, Abadi AM, El-Kott AF, Zaki MSA, Abd-Ella EM. The antioxidant effects of coenzyme Q10 on albino rat testicular toxicity and apoptosis triggered by bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42339-42350. [PMID: 36648721 DOI: 10.1007/s11356-022-24920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023]
Abstract
Polycarbonate plastics for packaging and epoxy resins are both made with the industrial chemical bisphenol A (BPA). This investigation looked at the histological structure, antioxidant enzymes, and albino rats' testis to determine how coenzyme Q10 (CoQ10) impacts BPA toxicity. For the experiments, three sets of 18 male adult rats were created: group 1 received no therapy, group 2 acquired BPA, and group 3 got the daily BPA treatment accompanied by coenzyme Q10, 1 h apart. The experimental period ran for 14 days. The biochemical biomarkers catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were altered as a result of BPA exposure. The testicular histological architecture, which is made up of apoptosis, was also exaggerated. Furthermore, rats given BPA and CoQ10 treatment may experience a diminution in these negative BPA effects. These protective properties of CoQ10 may be correlated with the ability to eliminate oxidizing substances that can harm living species. The outcomes might support the hypothesis that CoQ10 prevented oxidative damage and boosted rats' stress responses when BPA was introduced. Thus, by shielding mammals from oxidative stress, CoQ10 aids in the growth and development of the animals. BPA is extremely hazardous to humans and can persist in tissues. Human reproductive functions are a worry due to human exposure to BPA, especially for occupational workers who are typically exposed to higher doses of BPA. As a result, in order to reduce the health risks, BPA usage must be minimized across a diverse range of industries, and improper plastic container handling must be prohibited. By giving CoQ10 to patients, BPA's harmful effects on reproductive structures and functions may be avoided.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Abd-Ella
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt.,Department of Biology, College of Science and Art, Al-Baha University, Al-Mandaq, Al-Baha, Saudi Arabia
| |
Collapse
|
19
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
20
|
Molina-López AM, Bujalance-Reyes F, Urbano MT, Lora-Benítez A, Ayala-Soldado N, Moyano-Salvago R. Analysis of Blood Biochemistry and Pituitary-Gonadal Histology after Chronic Exposure to Bisphenol-A of Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113894. [PMID: 36360773 PMCID: PMC9659152 DOI: 10.3390/ijerph192113894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Bisphenol-A is an emerging pollutant that is widespread in the environment, and to which live beings are continuously and inadvertently exposed. It is a substance with an endocrine-disrupting capacity, causing alterations in the reproductive, immunological, and neurological systems, among others, as well as metabolic alterations. Our study aimed to assess its clinical signs, and effects on the most relevant blood biochemical parameters, and to evaluate pituitary and gonadal histology after a chronic exposure of adult mice to different BPA doses (0.5, 2, 4, 50 and 100 µg/kg BW/day) through their drinking water. The biochemical results showed that a marked significant reduction (p < 0.05) was produced in the levels of serum glucose, hypoproteinaemia and hypoalbuminemia in the groups exposed to the highest doses, whereas in the group exposed to 50 µg/kg BW/day the glucose and total protein levels dropped, and the animals exposed to 100 µg/kg BW/day experienced a diminution in albumin levels. In the case of the group exposed to 50 µg/kg BW/day, however, hypertriglyceridemia and hypercholesterolemia were determined, and the blood parameters indicating kidney alterations such as urea and creatinine experienced a significant increase (p < 0.05) with respect to the controls. Regarding the pituitary and gonads, none of the animals exposed presented histological alterations at the doses tested, giving similar images to those of the control group. These results suggest that continuous exposure to low BPA doses could trigger an inhibition of hepatic gluconeogenesis, which would result in a hypoglycaemic state, together with an induction of the enzymes responsible for lipidic synthesis, a mechanism by which the increase in the lipid and serum cholesterol levels could be explained. Likewise, the decline in the protein and albumin levels would be indicative of a possible hepatic alteration, and the increase in urea and creatinine would point to a possible renal perturbation, derived from continuous exposure to this xenobiotic. Based on our results, it could be said that chronic exposure to low BPA doses would not produce any clinical signs or histological pituitary-gonadal effects, but it could cause modifications in some blood biochemical parameters, that could initially indicate a possible hepatic and renal effect.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - María Teresa Urbano
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
- Correspondence: (A.M.M.-L.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes Desde la Perspectiva de Una Salud ENZOEM, Campus de Rabanales, Universidad de Córdoba, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
21
|
Eid RA, Abadi AM, kott AFE, Zaki MSA, Abd-ella EM. The Anti-Oxidant Effects of Coenzyme Q10 on Albino Rat Testicular Toxicity and Apoptosis Triggered by Bisphenol A.. [DOI: 10.21203/rs.3.rs-2073923/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Polycarbonate plastics for packaging and epoxy resins are both made with the industrial chemical bisphenol A (BPA). This investigation looked at the histological structure, antioxidant enzymes, and albino rats' testis to determine how Coenzyme Q10 (CoQ10) impacts BPA toxicity. For the experiments, 18 adult male rats were broken into three groups: group 1 received no therapy, group 2 acquired BPA, and group 3 got daily BPA treatment accompanied by coenzyme Q10, one hour apart. All experiment done for 14 days. The biochemical biomarkers catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were altered as a result of BPA exposure. The testicular histological architecture, which is made up of apoptosis, was also exaggerated. Furthermore, rats given BPA and CoQ10 treatment may experience a diminution in these negative BPA effects. These protective properties of CoQ10 may be correlated with the ability to eliminate oxidizing substances that can harm living species.The outcomes might support the hypothesis that CoQ10 prevented oxidative damage and boosted rats' stress responses when BPA was introduced. Thus, by shielding mammals from oxidative stress, CoQ10 aids in the growth and development of the animals.BPA is extremely hazardous to humans and can persist in tissues. Human reproductive functions are a worry due to human exposure to BPA, especially for occupational workers who are typically exposed to higher doses of BPA. As a result, in order to reduce the health risks, BPA usage must be minimized across a diverse range of industries, and improper plastic container handling must be prohibited. By giving CoQ10 to patients, BPA's harmful effects on reproductive structures and functions may be avoided.
Collapse
|
22
|
Morimoto S, Solís‐Lemus E, Jiménez‐Vivanco J, Castellanos‐Ruiz D, Díaz‐Díaz E, Mendoza‐Rodríguez CA. Maternal perinatal exposure to bisphenol S induces an estrogenic like effect in glucose homeostasis in male offspring. ENVIRONMENTAL TOXICOLOGY 2022; 37:2189-2200. [PMID: 35596937 PMCID: PMC9543293 DOI: 10.1002/tox.23585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). However, the recent studies have reported a possible association between BPS and disturbed glucose homeostasis, indicating that it may be a risk factor for type 1 and type 2 diabetes mellitus, obesity, and gestational diabetes mellitus. Nevertheless, the role of BPS in glucose metabolism remains controversial. In this study, we investigated the glucose metabolism of male Wistar rats born from dams that were BPS-exposed (groups: BPS-L (0.05 mg/kg/day), BPS-H (20 mg/kg/day)) during pregnancy and lactation. We observed that both BPS treated groups of animals presented a significant decrease in anogenital distance/weight1/3 , as compared to control animals, although no alterations in testosterone levels were observed. Furthermore, the BPS-L group presented a significant decrease in body weight from postnatal day (PND) 21 to adult stage. In addition, a significant increase in glucose tolerance, pancreatic β-cell proliferation, the frequency of small islets, and the average β-cell size at PND 36 was observed in this group. However, no changes in insulin serum levels and percentage of β-cells were recorded. Furthermore, these changes were not preserved at the adult stage (PND 120). The results suggest that the administration of low doses of BPS during the perinatal period induced an estrogenic like effect, with males apparently becoming more female-like in their responses to a glucose challenge.
Collapse
Affiliation(s)
- Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | - Edgar Solís‐Lemus
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jesica Jiménez‐Vivanco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Dafne Castellanos‐Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eulises Díaz‐Díaz
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | | |
Collapse
|
23
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
24
|
Maternal training during lactation modifies breast milk fatty acid composition and male offspring glucose homeostasis in rat. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159223. [PMID: 35987325 DOI: 10.1016/j.bbalip.2022.159223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
The perinatal exposome can modify offspring metabolism and health later in life. Within this concept, maternal exercise during gestation has been reported modifying offspring glucose sensing and homeostasis, while the impact of such exercise during lactation is little-known. We thus aimed at evaluating short- and long-term effects of it on offspring pancreatic function, assuming a link with changes in breast milk composition. Fifteen-week-old primiparous female Wistar rats exercised during lactation at a constant submaximal intensity (TR) or remained sedentary (CT). Male offspring were studied at weaning and at 7 months of age for growth, pancreas weight, glycemia and insulin responses. Milk protein content was determined by the bicinchoninic acid assay (BCA colorimetric method), and lipid content and fatty acid composition by gas chromatography. Mature milk from TR rats contained significantly less saturated (-7 %) and more monounsaturated (+18 %) and polyunsaturated (PUFA +12 %) fatty acids compared to CT rats, with no difference in total lipid and protein concentrations. In offspring from TR vs CT mothers, fasting glycemia was lower, pancreas weight was higher with a lower insulin content (-37 %) at weaning. Such outcomes were correlated with milk PUFA levels and indices of desaturase or elongase activities. These effects were no longer present at 7 months, whereas a more efficient muscle insulin sensitivity was observed. Maternal training during lactation led to a specific milk phenotype that was associated with a short-term impact on glucose homeostasis and pancreatic function of the male offspring.
Collapse
|
25
|
Fang R, Yang S, Gu X, Li C, Bi N, Wang HL. Early-life exposure to bisphenol A induces dysregulation of lipid homeostasis by the upregulation of SCD1 in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119201. [PMID: 35341816 DOI: 10.1016/j.envpol.2022.119201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Exposure of Bisphenol A (BPA) is closely associated with an increased prevalence of obesity-related metabolic syndrome. However, the potential mechanism of BPA-induced adipogenesis remains to be fully elucidated. Herein, potential mechanisms of BPA-induced adipogenesis in 3T3-L1 preadipocytes were evaluated using RNA-Seq. Then, using an early-life BPA exposure model, we further evaluated the effects of BPA exposure on lipid and glucose homeostasis. The results showed that lipid content in 3T3-L1 adipocytes was significantly increased after BPA exposure (p < 0.01) and male C57BL/6 mice with the dose of 500 μg/kg/day BPA by once-a-day oral administration for 8 weeks displayed a NAFLD-like phenotype. RNA-Seq analysis of preadipocytes showed that BPA exposure affected multiple biological processes including glycosphingolipid biosynthesis, regulation of lipolysis in adipocytes, PPAR signaling pathway and fatty acid metabolism. The dysregulation in a series of genes of mice was associated to de novo lipogenesis and lipid transport, which was linked to obesity. Importantly, we also found a significant expression increase of stearoyl-CoA desaturase 1 (SCD1) and a significant decrease of apolipoprotein D (APOD) in both fat (p < 0.01) and livers (p < 0.01) of male mice. Besides, the dysregulation of pro-inflammatory genes (TNF-α,IL-6 and SAA3) showed that BPA exposure promoted progression of hepatic inflammation. In conclusion, this study elucidated a novel mechanism in which obesity associated with BPA exposure by targeting SCD1. Exposure to BPA should be carefully examined in the chronic liver metabolic diseases.
Collapse
Affiliation(s)
- Ruyue Fang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Xiaozhen Gu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Changqing Li
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Nanxi Bi
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China
| | - Hui-Li Wang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
26
|
Nguyen HT, Li L, Eguchi A, Agusa T, Yamamoto K, Kannan K, Kim EY, Iwata H. Effects of gestational exposure to bisphenol A on the hepatic transcriptome and lipidome of rat dams: Intergenerational comparison of effects in the offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153990. [PMID: 35192832 DOI: 10.1016/j.scitotenv.2022.153990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Our previous studies demonstrated that prenatal bisphenol A (BPA) exposure affected the hepatic transcriptome and lipidome in rat offspring in a sex- and age-dependent manner. In this study, we investigated the effects of gestational exposure to BPA on the rat dams, after weaning period, and compared them with those of their offspring. Our results showed alterations in hepatic transcriptome related to insulin signaling, circadian rhythm, and infectious disease pathways in BPA-treated dams even 4 weeks after the exposure, whereas slight modifications on the lipid profile were found. Alterations in lipid and transcriptome profiles were more prominent in the prenatally BPA-exposed offspring at postnatal day (PND) 1 and 21 than those in the dams, suggesting that in utero exposure to BPA is more serious than exposure in the adulthood. Cryptochrome-1 (Cry1) and peroxisome proliferator-activated receptor delta (Ppard) were commonly altered in both dams and offspring. Nevertheless, the results of DIABLO (Data Integration Analysis for Biomarker discovery using Latent cOmponents), showed that multi-omics data successfully distinguished the exposed dams from the corresponding controls and their offspring with a high level of accuracy. The accuracy rates in BPA50 models (including control and 50 μg BPA/kg bw/day exposed groups) were smaller than those in BPA5000 models (control and 5000 μg BPA/kg bw/day exposed groups), suggesting dose-dependent severity in BPA effects. Palmitic acid and genes related to circadian rhythm, insulin responses, and lipid metabolism (e.g., 1-acylglycerol-3-phosphate O-acyltransferase 2 (Agpat2), B-cell CLL/lymphoma 10 (Bcl10), Cry1, Harvey rat sarcoma virus oncogene (Hras), and NLR family member X1 (Nlrx1)) were identified through DIABLO models as novel biomarkers of effects of BPA across two generations.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Lingyun Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba 2630022, Japan
| | - Tetsuro Agusa
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan; Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 8628502, Japan
| | - Kimika Yamamoto
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Seoul 130701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan.
| |
Collapse
|
27
|
Prenatal Bisphenol a Exposure and Postnatal Trans Fat Diet Alter Small Intestinal Morphology and Its Global DNA Methylation in Male Sprague-Dawley Rats, Leading to Obesity Development. Nutrients 2022; 14:nu14122382. [PMID: 35745112 PMCID: PMC9230851 DOI: 10.3390/nu14122382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we aimed to determine whether a postnatal trans fat diet (TFD) could aggravate prenatal bisphenol A (BPA) exposure effects on offspring’s small intestine and adulthood obesity, due to the relatively sparse findings on how the interaction between these two variables interrupt the small intestinal cells. Twelve pregnant rats were administered with either unspiked drinking water (control; CTL) or BPA-spiked drinking water throughout pregnancy. Twelve weaned pups from each pregnancy group were then given either a normal diet (ND) or TFD from postnatal week (PNW) 3 until PNW14, divided into control offspring on normal diet (CTL-ND), BPA-exposed offspring on normal diet (BPA-ND), control offspring on trans fat diet (CTL-TFD), and BPA offspring on trans fat diet (BPA-TFD) groups. Body weight (BW), waist circumference, and food and water intake were measured weekly in offspring. At PNW14, small intestines were collected for global DNA methylation and histological analyses. Marked differences in BW were observed starting at PNW9 in BPA-TFD (389.5 ± 10.0 g; p < 0.05) relative to CTL-ND (339.0 ± 7.2 g), which persisted until PNW13 (505.0 ± 15.6 g). In contrast, water and food intake between offspring were significantly different (p < 0.01−0.05) at earlier ages only (PNW4−6 and PNW7−9, respectively). Furthermore, substantial differences in the general parameters of the intestinal structures were exclusive to ileum crypt length alone, whereby both BPA-ND (150.5 ± 5.1 μm; p < 0.001), and BPA-TFD (130.3 ± 9.9 μm; p < 0.05) were significantly longer than CTL-ND (96.8 ± 8.9 μm). Moreover, BPA-ND (2.898 ± 0.147%; p < 0.05) demonstrated global small intestinal hypermethylation when compared to CTL-ND and CTL-TFD (1.973 ± 0.232% and 1.913 ± 0.256%, respectively). Prenatal BPA exposure may significantly affect offspring’s physiological parameters and intestinal function. Additionally, our data suggest that there might be compensatory responses to postnatal TFD in the combined BPA prenatal group (BPA-TFD).
Collapse
|
28
|
Dos Santos RS, Medina-Gali RM, Babiloni-Chust I, Marroqui L, Nadal A. In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model. Int J Mol Sci 2022; 23:ijms23095040. [PMID: 35563431 PMCID: PMC9102687 DOI: 10.3390/ijms23095040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.
Collapse
Affiliation(s)
- Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
29
|
Are BPA Substitutes as Obesogenic as BPA? Int J Mol Sci 2022; 23:ijms23084238. [PMID: 35457054 PMCID: PMC9031831 DOI: 10.3390/ijms23084238] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic diseases, such as obesity, Type II diabetes and hepatic steatosis, are a significant public health concern affecting more than half a billion people worldwide. The prevalence of these diseases is constantly increasing in developed countries, affecting all age groups. The pathogenesis of metabolic diseases is complex and multifactorial. Inducer factors can either be genetic or linked to a sedentary lifestyle and/or consumption of high-fat and sugar diets. In 2002, a new concept of “environmental obesogens” emerged, suggesting that environmental chemicals could play an active role in the etiology of obesity. Bisphenol A (BPA), a xenoestrogen widely used in the plastic food packaging industry has been shown to affect many physiological functions and has been linked to reproductive, endocrine and metabolic disorders and cancer. Therefore, the widespread use of BPA during the last 30 years could have contributed to the increased incidence of metabolic diseases. BPA was banned in baby bottles in Canada in 2008 and in all food-oriented packaging in France from 1 January 2015. Since the BPA ban, substitutes with a similar structure and properties have been used by industrials even though their toxic potential is unknown. Bisphenol S has mainly replaced BPA in consumer products as reflected by the almost ubiquitous human exposure to this contaminant. This review focuses on the metabolic effects and targets of BPA and recent data, which suggest comparable effects of the structural analogs used as substitutes.
Collapse
|
30
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
31
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
32
|
Sirasanagandla SR, Al-Huseini I, Al Mushaiqri M, Al-Abri N, Al-Ghafri F. Maternal resveratrol supplementation ameliorates bisphenol A-induced atherosclerotic lesions formation in adult offspring ApoE -/- mice. 3 Biotech 2022; 12:36. [PMID: 35070626 PMCID: PMC8727657 DOI: 10.1007/s13205-021-03078-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
Current evidence suggests that intrauterine bisphenol A (BPA) exposure increases the risk of developing cardiovascular diseases in later stages of life. The beneficial effect of resveratrol (Rsv) on developmental programming of atherosclerosis lesions formation in offspring is seldom reported. Hence, we sought to study the effect of maternal Rsv in ameliorating perinatal BPA exposure-induced atherosclerosis lesions formation in adult offspring using the apolipoprotein E-deficient (ApoE-/-) mice model. The pregnant ApoE-/- mice were allocated into three groups: control, BPA, BPA + resveratrol (BPA + Rsv). The BPA group mice received BPA in their drinking water (1 μg/ml). BPA + Rsv group mice received BPA in their drinking water (1 μg/ml) and were treated orally with Rsv (20 mg kg-1 day-1). All the treatments were continued throughout the gestation and lactation period. Quantitative analysis of Sudan IV-stained aorta revealed a significantly increased area of atherosclerotic lesions in both female (p < 0.01) and male adult offspring mice (p < 0.01) in the BPA group. Supplementation with Rsv significantly reduced the BPA-induced atherosclerotic lesion development in the female offspring mice (p < 0.05). Transmission electron microscopy revealed the presence of a significantly high incidence of autophagic endothelial, smooth muscle, and macrophage cells in the aorta of BPA-exposed mice. Rsv treatment reduced the incidence of autophagic cells in BPA-exposed mice. In conclusion, maternal Rsv supplementation significantly prevents the BPA-induced atherosclerotic lesions formation in a sex-dependent manner potentially by acting as an autophagy modulator. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03078-y.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- grid.412846.d0000 0001 0726 9430Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, PO Box 35, Muscat, PC 123 Oman
| | - Isehaq Al-Huseini
- grid.412846.d0000 0001 0726 9430Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| | - Mohamed Al Mushaiqri
- grid.412846.d0000 0001 0726 9430Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, PO Box 35, Muscat, PC 123 Oman
| | - Nadia Al-Abri
- grid.412846.d0000 0001 0726 9430Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| | - Fatma Al-Ghafri
- grid.412846.d0000 0001 0726 9430Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| |
Collapse
|
33
|
Merrill AK, Anderson T, Conrad K, Marvin E, James-Todd T, Cory-Slechta DA, Sobolewski M. Protracted Impairment of Maternal Metabolic Health in Mouse Dams Following Pregnancy Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals, a Pilot Study. TOXICS 2021; 9:346. [PMID: 34941779 PMCID: PMC8706199 DOI: 10.3390/toxics9120346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.
Collapse
Affiliation(s)
- Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Timothy Anderson
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard University, Boston, MA 02115, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| |
Collapse
|
34
|
Schaffert A, Krieg L, Weiner J, Schlichting R, Ueberham E, Karkossa I, Bauer M, Landgraf K, Junge KM, Wabitsch M, Lehmann J, Escher BI, Zenclussen AC, Körner A, Blüher M, Heiker JT, von Bergen M, Schubert K. Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. ENVIRONMENT INTERNATIONAL 2021; 156:106730. [PMID: 34186270 DOI: 10.1016/j.envint.2021.106730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), which is used in a variety of consumer-related plastic products, was reported to cause adverse effects, including disruption of adipocyte differentiation, interference with obesity mechanisms, and impairment of insulin- and glucose homeostasis. Substitute compounds are increasingly emerging but are not sufficiently investigated.We aimed to investigate the mode of action of BPA and four of its substitutes during the differentiation of human preadipocytes to adipocytes and their molecular interaction with peroxisome proliferator-activated receptor γ (PPARγ), a pivotal regulator of adipogenesis.Binding and effective biological activation of PPARγ were investigated by surface plasmon resonance and reporter gene assay, respectively. Human preadipocytes were continuously exposed to BPA, BPS, BPB, BPF, BPAF, and the PPARγ-antagonist GW9662. After 12 days of differentiation, lipid production was quantified via Oil Red O staining, and global protein profiles were assessed using LC-MS/MS-based proteomics. All tested bisphenols bound to human PPARγ with similar efficacy as the natural ligand 15d-PGJ2in vitroand provoked an antagonistic effect on PPARγ in the reporter gene assay at non-cytotoxic concentrations. During the differentiation of human preadipocytes, all bisphenols decreased lipid production. Global proteomics displayed a down-regulation of adipogenesis and metabolic pathways, similar to GW9662. Interestingly, pro-inflammatory pathways were up-regulated, MCP1 release was increased, and adiponectin decreased. pAKT/AKT ratios revealed significantly reduced insulin sensitivity by BPA, BPB, and BPS upon insulin stimulation.Thus, our results show that not only BPA but also its substitutes disrupt crucial metabolic functions and insulin signaling in adipocytes under low, environmentally relevant concentrations. This effect, mediated through inhibition of PPARγ, may promote hypertrophy of adipose tissue and increase the risk of developing metabolic syndrome, including insulin resistance.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Juliane Weiner
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Kristin M Junge
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| |
Collapse
|
35
|
Manzan-Martins C, Paulesu L. Impact of bisphenol A (BPA) on cells and tissues at the human materno-fetal interface. Tissue Cell 2021; 73:101662. [PMID: 34628212 DOI: 10.1016/j.tice.2021.101662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor extensively used in the production of polycarbonate plastics and epoxy resins and a component of liquid and food containers. It is a hazard in the prenatal period because of its presence in the placenta, fetal membranes, amniotic fluid, maternal and fetal blood and its ability to cross the placenta and reach the fetus. Estimation of the risk of BPA exposure during in utero life is extremely important in order to prevent complications of pregnancy and fetal growth. This review describes in vitro models of the human materno-fetal interface. It also outlines the effects of BPA at doses indicated as "physiological", namely at the concentrations found in the general population, and at "supraphysiological" and "subphysiological" doses, i.e. above and below the physiological range. This work will help clarify the discrepancies observed in studies on the effects of BPA on human reproduction and pregnancy, and it will be useful for the choice of appropriate in vitro models for future studies aimed at identifying the potential impact of BPA on specific functional processes.
Collapse
Affiliation(s)
| | - L Paulesu
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
36
|
Biemann R, Blüher M, Isermann B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101546. [PMID: 33966978 DOI: 10.1016/j.beem.2021.101546] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Increasing evidence from epidemiological, animal and in vitro studies suggests that the increased production of synthetic chemicals that interfere with the proper functioning of the hormonal system, so-called endocrine-disrupting compounds (EDCs), might be involved in the development and rapid spread of obesity, coined the obesity epidemic. Recent findings have demonstrated that EDCs may interfere with hormonal receptors that regulate adipogenesis and metabolic pathways. Furthermore, prenatal exposure to EDCs has been shown to influence the metabolism of the developing embryo through epigenetic mechanisms and to promote obesity in subsequent generations. In this Review, we discuss the potential impact of bisphenol A (BPA) and phthalate-based plasticizers on obesity and obesity-related metabolic disorders. Special emphasis is given to the obesogenic effects of prenatal exposure and strategies for identifying, regulating, and replacing EDCs.
Collapse
Affiliation(s)
- Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Liebigstr. 21, 04103, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 21, 04103, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| |
Collapse
|
37
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
38
|
Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021; 9:666. [PMID: 34200822 PMCID: PMC8230545 DOI: 10.3390/biomedicines9060666] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A is a compound commonly found in products meant for daily use. It was one of the first compounds to be identified as an endocrine disruptor that was capable of disrupting the endocrine system and producing very similar effects to those of metabolic syndrome. It has recently gained popularity in the scientific arena as a risk factor for obesity and diabetes due to its ability to imitate natural oestrogens and bind to their receptors. The aim was to study the possible relationship between the Bisphenol A endocrine disruptor with diabetes and obesity. The analysis of the articles allows us to conclude that Bisphenol A is an additional risk factor to consider in the development of diabetes and obesity, since it is capable of stimulating the hypertrophy of adipocytes and altering the endocrine system by mimicking the effects of the oestrogen molecule, since epidemiological studies carried out have suggested that the same disruptions seen in experimental studies on animals can be found in humans; however, despite many countries having developed policies to limit exposure to this disruptor in their populations, there is a lack of international agreement. Understanding its relationship with obesity and diabetes will help to raise awareness in the population and adopt public health campaigns to prevent exposure-especially among young people-to these substances.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Irene Mas-Pérez
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Maria Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| |
Collapse
|
39
|
Szkudelska K, Okulicz M, Szkudelski T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23301-23309. [PMID: 33447972 PMCID: PMC8113171 DOI: 10.1007/s11356-021-12411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
40
|
Callaghan MA, Alatorre-Hinojosa S, Connors LT, Singh RD, Thompson JA. Plasticizers and Cardiovascular Health: Role of Adipose Tissue Dysfunction. Front Pharmacol 2021; 11:626448. [PMID: 33716730 PMCID: PMC7947604 DOI: 10.3389/fphar.2020.626448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1950s, the production of plastics has increased 200-fold, reaching 360 million tonnes in 2019. Plasticizers, additives that modify the flexibility and rigidity of the product, are ingested as they migrate into food and beverages. Human exposure is continuous and widespread; between 75 and 97% of urine samples contain detectable levels of bisphenols and phthalates, the most common plasticizers. Concern over the toxicity of plasticizers arose in the late 1990s, largely focused around adverse developmental and reproductive effects. More recently, many studies have demonstrated that exposure to plasticizers increases the risk for obesity, type 2 diabetes, and cardiovascular disease (CVD). In the 2000s, many governments including Canada, the United States and European countries restricted the use of certain plasticizers in products targeted towards infants and children. Resultant consumer pressure motivated manufacturers to substitute plasticizers with analogues, which have been marketed as safe. However, data on the effects of these new substitutes are limited and data available to-date suggest that many exhibit similar properties to the chemicals they replaced. The adverse effects of plasticizers have largely been attributed to their endocrine disrupting properties, which modulate hormone signaling. Adipose tissue has been well-documented to be a target of the disrupting effects of both bisphenols and phthalates. Since adipose tissue function is a key determinant of cardiovascular health, adverse effects of plasticizers on adipocyte signaling and function may underlie their link to cardiovascular disease. Herein, we discuss the current evidence linking bisphenols and phthalates to obesity and CVD and consider how documented impacts of these plasticizers on adipocyte function may contribute to the development of CVD.
Collapse
Affiliation(s)
- Mikyla A Callaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | | | - Liam T Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Calgary, AB, Canada.,Alberta Children's Health Research Institute, Calgary, AB, Canada
| |
Collapse
|
41
|
Martínez-Ibarra A, Martínez-Razo LD, MacDonald-Ramos K, Morales-Pacheco M, Vázquez-Martínez ER, López-López M, Rodríguez Dorantes M, Cerbón M. Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116380. [PMID: 33387779 DOI: 10.1016/j.envpol.2020.116380] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer. In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.
Collapse
Affiliation(s)
- A Martínez-Ibarra
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - L D Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - K MacDonald-Ramos
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - M Morales-Pacheco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - E R Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - M López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | | | - M Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
42
|
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E716. [PMID: 33467592 PMCID: PMC7830729 DOI: 10.3390/ijerph18020716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance and eventual pancreatic β-cell dysfunction, resulting in persistent high blood glucose levels. Endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) are currently under scrutiny as they are implicated in the development of metabolic diseases, including T2DM. BPA is a pervasive EDC, being the main constituent of polycarbonate plastics. It can enter the human body by ingestion, through the skin, and cross from mother to offspring via the placenta or breast milk. BPA is a xenoestrogen that alters various aspects of beta cell metabolism via the modulation of oestrogen receptor signalling. In vivo and in vitro models reveal that varying concentrations of BPA disrupt glucose homeostasis and pancreatic β-cell function by altering gene expression and mitochondrial morphology. BPA also plays a role in the development of insulin resistance and has been linked to long-term adverse metabolic effects following foetal and perinatal exposure. Several epidemiological studies reveal a significant association between BPA and the development of insulin resistance and impaired glucose homeostasis, although conflicting findings driven by multiple confounding factors have been reported. In this review, the main findings of epidemiological and functional studies are summarised and compared, and their respective strengths and limitations are discussed. Further research is essential for understanding the exact mechanism of BPA action in various tissues and the extent of its effects on humans at environmentally relevant doses.
Collapse
Affiliation(s)
- Francesca Farrugia
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Alexia Aquilina
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Josanne Vassallo
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| | - Nikolai Paul Pace
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| |
Collapse
|
43
|
Loganathan N, McIlwraith EK, Belsham DD. Bisphenol A Induces Agrp Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology 2021; 111:678-695. [PMID: 32575098 DOI: 10.1159/000509592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical and obesogen. Although limited evidence exists of the effects of BPA on hypothalamic agouti-related peptide (AgRP) levels, the mechanisms underlying these effects remain unknown. Given that AgRP is a potent orexigenic neuropeptide, determining the mechanism by which BPA increases AgRP is critical to preventing the progression to metabolic disease. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we investigated the response of Agrp-expressing mouse hypothalamic cell lines to BPA treatment. The percentage of total BPA entering hypothalamic cells in culture was quantified using an enzyme-linked immunosorbent assay. In order to identify the mechanism underlying BPA-mediated changes in Agrp, siRNA knockdown of transcription factors, FOXO1, CHOP, ATF3, ATF4, ATF6, and small-molecule inhibitors of endoplasmic reticulum stress, JNK or MEK/ERK were used. RESULTS BPA increased mRNA levels of Agrp in six hypothalamic cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-46, mHypoE-44, and mHypoE-42). Interestingly, only 18% of the total BPA in the culture medium entered the cells after 24 h, suggesting that the exposure concentration is much lower than the treatment concentration. BPA increased pre-Agrp mRNA levels, indicating increased Agrp transcription. Knockdown of the transcription factor ATF3 prevented BPA-mediated increase in Agrp, pre-Agrp, and in part Npy mRNA levels. However, chemical chaperone, sodium phenylbutyrate, JNK inhibitor, SP600125, or the MEK/ERK inhibitor PD0352901 did not block BPA-induced Agrp upregulation. CONCLUSION Overall, these results indicate that hypothalamic Agrp is susceptible to dysregulation by BPA and implicate ATF3 as a common mediator of the orexigenic effects of BPA in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada,
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada,
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
44
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
45
|
Philips EM, Jaddoe VWV, Deierlein A, Asimakopoulos AG, Kannan K, Steegers EAP, Trasande L. Exposures to phthalates and bisphenols in pregnancy and postpartum weight gain in a population-based longitudinal birth cohort. ENVIRONMENT INTERNATIONAL 2020; 144:106002. [PMID: 32745783 PMCID: PMC7572597 DOI: 10.1016/j.envint.2020.106002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 07/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Experimental evidence suggests that exposures to phthalates and bisphenols may interfere with processes related to glucose and lipid metabolism, insulin sensitivity, and body weight. Few studies have considered the possible influence of chemical exposures during pregnancy on maternal weight gain or metabolic health outcomes postpartum. OBJECTIVE To examine the associations of early and mid-pregnancy bisphenol and phthalate urine concentrations with maternal weight gain 6 years postpartum. METHODS We analyzed urine samples for bisphenol, phthalate and creatinine concentrations from early and mid-pregnancy in 1192 women in a large, population-based birth cohort in Rotterdam, the Netherlands, and examined postpartum weight gain using maternal anthropometrics before pregnancy and 6 years postpartum. We have used covariate-adjusted linear regressions to evaluate associations of early and mid-pregnancy bisphenols and phthalate metabolites with weight change. Mediator and interaction models have been used to assess the role of gestational weight gain and breastfeeding, respectively. Sensitivity analysis is performed among women without subsequent pregnancies. RESULTS Among all 1192 mothers included in the analysis, each log unit increase in the average bisphenol A and all assessed phthalate groupings were associated with increased maternal weight gain. As a proxy for phthalate exposure, each log unit increase in averaged phthalic acid was associated with 734 g weight gain (95% CI 273-1196 g) between pre-pregnancy and 6 years postpartum. Mediation by gestational weight gain was not present. Breastfeeding and ethnicity did not modify the effects. Stratification revealed these associations to be strongest among overweight and obese women. Among women without subsequent pregnancies (n = 373) associations of bisphenols, HMW phthalate metabolites and di-2-ethylhexylphthalate metabolites attenuated. For phthalic acid, LMW phthalate metabolites and di-n-octylphthalate metabolites associations increased. Similarly to the whole group, stratification yielded significant results among overweight and obese women. DISCUSSION In a large population-based birth cohort, early and mid-pregnancy phthalate exposures are associated with weight gain 6 years postpartum, particularly among overweight and obese women. These data support ongoing action to replace phthalates with safer alternatives.
Collapse
Affiliation(s)
- Elise M Philips
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Andrea Deierlein
- New York University College of Global Public Health, New York City, NY, United States
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, United States; Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eric A P Steegers
- Department of Obstetrics & Gynecology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- New York University College of Global Public Health, New York City, NY, United States; Department of Pediatrics, New York University School of Medicine, New York City, NY, United States; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, United States; Department of Population Health, New York University School of Medicine, New York City, NY, United States; New York Wagner School of Public Service, New York City, NY, United States.
| |
Collapse
|
46
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
47
|
Sol CM, Santos S, Duijts L, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Philips EM, Trasande L, Jaddoe VWV. Fetal exposure to phthalates and bisphenols and childhood general and organ fat. A population-based prospective cohort study. Int J Obes (Lond) 2020; 44:2225-2235. [PMID: 32920592 DOI: 10.1038/s41366-020-00672-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Fetal exposure to phthalates and bisphenols might have long-lasting effects on growth and fat development. Not much is known about the effects on general and organ fat development in childhood. We assessed the associations of fetal exposure to phthalates and bisphenols with general and organ fat measures in school-aged children. METHODS In a population-based, prospective cohort study among 1128 mother-child pairs, we measured maternal urinary phthalate metabolites and bisphenol concentrations in first, second, and third trimester. Offspring body mass index, fat mass index by dual-energy X-ray absorptiometry, and visceral and pericardial fat indices and liver fat fraction were measured by magnetic resonance imaging at 10 years. RESULTS After adjustment for confounders and correction for multiple testing, an interquartile range increase in first trimester phthalic acid concentrations remained associated with a 0.14 (95% confidence interval: 0.05, 0.22) standard deviation score increase in pericardial fat index. We also observed tendencies for associations of higher maternal low molecular weight phthalate urinary concentrations in second trimester with childhood pericardial fat index, but these were not significant after adjustment for multiple testing. High molecular weight phthalate, di-2-ethylhexyl phthalate, and di-n-octyl phthalate concentrations were not associated with childhood outcomes. Maternal urinary bisphenol concentrations were not associated with childhood adiposity. CONCLUSIONS Maternal first trimester phthalic acid concentrations are associated with increased childhood pericardial fat index at 10 years of age, whereas maternal bisphenol concentrations are not associated with childhood adiposity. We did not find significant sex-specific effects. These findings should be considered as hypothesis generating and need further replication and identification of underlying mechanisms.
Collapse
Affiliation(s)
- Chalana M Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Department of Chemistry, the Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, 12201, USA.,Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elise M Philips
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA.,Department of Population Health, New York University School of Medicine, New York City, NY, USA.,New York University Wagner School of Public Service, New York City, NY, 10016, USA.,New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Department of Paediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Lim JE, Choi B, Jee SH. Urinary bisphenol A, phthalate metabolites, and obesity: do gender and menopausal status matter? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34300-34310. [PMID: 32557043 DOI: 10.1007/s11356-020-09570-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Previous studies of urinary bisphenol A (BPA), phthalate metabolites, and obesity risk have shown inconsistent results. Menopausal status is one of the main factors that affect hormone secretion change in women. In this study, we examined whether urinary BPA and phthalate metabolite levels are associated with obesity and whether the associations differ by sex and menopausal status in a sample of Korean adult populations. We recruited participants at three branches (Yeouido, Gangnam, and Gwanghwamun) of the Korea Medical Institute, a nationwide health check-up center, from 2015 to 2016. Urinary BPA level was measured by high-performance liquid chromatography-tandem mass spectrometry (Agilent 6490 Triple Quad LC-MS/MS; Agilent Technologies, CA, USA). Urinary six phthalate metabolites were analyzed with ultra-high-performance liquid chromatography-tandem mass spectrometry (TSQ Quantum Access Mass; Thermo Fisher Scientific, MA, USA). Participants with body mass index ≥ 25 kg/m2 were defined as general obesity group. Men with waist circumference (WC) ≥ 90 cm and women with WC ≥ 85 cm were defined as abdominal obesity group. Age, sex, alcohol intake, smoking, and exercise were considered in multivariate logistic regression models. Among the total of 702 participants, 211 participants were classified into the general obesity group, and 131 participants were classified into the abdominal obesity group. Urinary phthalate metabolite levels were not associated with general and abdominal obesity in men and women. However, in women, urinary BPA concentration was positively associated with abdominal obesity (OR = 1.50, 95% CI 1.00-2.26). Also, the association was stronger in postmenopausal women (OR = 2.23, 1.01-4.92), while it was weak in premenopausal women (OR = 1.31, 0.78-2.20). In this study, urinary BPA concentration was associated with abdominal obesity in women, especially postmenopausal women. Future studies should consider sex and menopausal status when investigating associations between urinary BPA, phthalate metabolites levels, and obesity.
Collapse
Affiliation(s)
- Jung-Eun Lim
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - BongKyoo Choi
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
- Center for Work and Health Research, Irvine, CA, USA
| | - Sun Ha Jee
- Institute for Health Promotion & Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food Chem Toxicol 2020; 145:111681. [PMID: 32805339 DOI: 10.1016/j.fct.2020.111681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/19/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Bisphenol-A (BPA) is a widespread endocrine disrupting chemical that constitutes a risk factor for type 2 diabetes mellitus (T2DM). Data from animal and human studies have demonstrated that early exposure to BPA results in adverse metabolic outcomes in adult life. In the present work, we exposed pregnant heterozygous estrogen receptor β (ERβ) knock out (BERKO) mice to 10 μg/kg/day BPA, during days 9-16 of pregnancy, and measured β-cell mass and proliferation in wildtype (WT) and BERKO male offspring at postnatal day 30. We observed increased pancreatic β-cell proliferation and mass in WT, yet no effect was produced in BERKO mice. Dispersed islet cells in primary culture treated with 1 nM BPA showed an enhanced pancreatic β-cell replication rate, which was blunted in pancreatic β-cells from BERKO mice and mimicked by the selective ERβ agonist WAY200070. This increased β-cell proliferation was found in male adult as well as in neonate pancreatic β-cells, suggesting that BPA directly impacts β-cell division at earliest stages of life. These findings strongly indicate that BPA during pregnancy upregulates pancreatic β-cell division and mass in an ERβ-dependent manner. Thus, other natural or artificial chemicals may use this ERβ-mediated pathway to promote similar effects.
Collapse
|
50
|
Haq MEU, Akash MSH, Rehman K, Mahmood MH. Chronic exposure of bisphenol A impairs carbohydrate and lipid metabolism by altering corresponding enzymatic and metabolic pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103387. [PMID: 32339907 DOI: 10.1016/j.etap.2020.103387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 05/26/2023]
Abstract
Bisphenol-A (BPA), a widespread endocrine-disrupting chemical, has been recognized as a risk factor for metabolic disorders. BPA is considered to be involved in the impairment of carbohydrate and lipid metabolism but the underlying mechanisms still need to be elucidated. Present study was aimed to investigate the impact of BPA exposure on enzymatic and metabolic pathways that are responsible to regulate the carbohydrate and lipid metabolism. Experimental rats were exposed to different doses of BPA (50, 500, 2500 and 5000 μg/kg/day orally) dissolved in 1.5% dimethyl sulfoxide for a period of 3 months. Serum level of key metabolic enzymes (α-amylase, α-glucosidase, hexokinase, glucose-6-phosphatase and HMG-CoA-reductase) was measured by ELISA method. BPA-exposure suppressed the mRNA expression of gene encoding insulin resulting in poor insulin production. While hexokinase, acetyl-CoA carboxylase and squalene epoxide were up-regulated upon BPA exposure that justified the increased lipid profile. Moreover, BPA exposure showed considerably decreased glucose uptake through insulin signaling via Akt/GLUT4 pathways. There was a significant (p < 0.001) reduction in tissue level of glucose transporters. BPA significantly (p < 0.001) decreased the serum levels of oxidative stress biomarkers (GSH, CAT, and SOD). Serum levels of leptin, TNF-α, and IL-6 were rapidly increased upon exposure to BPA (p < 0.001). It was clearly evident from this study that BPA disturbed the carbohydrate and lipid metabolism after chronic exposure. It also accelerated the inflammatory processes by increasing the oxidative stress which ultimately lead towards the insulin resistance and impaired carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Muhammad Ejaz Ul Haq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan; Department of Pharmacology, Government College University Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | | |
Collapse
|