1
|
Asgari R, Caceres-Valdiviezo M, Wu S, Hamel L, Humber BE, Agarwal SM, Fletcher PJ, Fulton S, Hahn MK, Pereira S. Regulation of energy balance by leptin as an adiposity signal and modulator of the reward system. Mol Metab 2025; 91:102078. [PMID: 39615837 PMCID: PMC11696864 DOI: 10.1016/j.molmet.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Leptin is an adipose tissue-derived hormone that plays a crucial role in body weight, appetite, and behaviour regulation. Leptin controls energy balance as an indicator of adiposity levels and as a modulator of the reward system, which is associated with liking palatable foods. Obesity is characterized by expanded adipose tissue mass and consequently, elevated concentrations of leptin in blood. Leptin's therapeutic potential for most forms of obesity is hampered by leptin resistance and a narrow dose-response window. SCOPE OF REVIEW This review describes the current knowledge of the brain regions and intracellular pathways through which leptin promotes negative energy balance and restrains neural circuits affecting food reward. We also describe mechanisms that hinder these biological responses in obesity and highlight potential therapeutic interventions. MAJOR CONCLUSIONS Additional research is necessary to understand how pathways engaged by leptin in different brain regions are interconnected in the control of energy balance.
Collapse
Affiliation(s)
| | - Maria Caceres-Valdiviezo
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Laboratory of Omic Sciences, School of Medicine, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Nutrition, Université de Montréal, QC, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting & Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Srour N, Caron A, Michael NJ. Do POMC neurons have a sweet tooth for leptin? Special issue: Role of nutrients in nervous control of energy balance. Biochimie 2024; 223:179-187. [PMID: 36122808 DOI: 10.1016/j.biochi.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Coordinated detection of changes in metabolic state by the nervous system is fundamental for survival. Hypothalamic pro-opiomelanocortin (POMC) neurons play a critical role in integrating metabolic signals, including leptin levels. They also coordinate adaptative responses and thus represent an important relay in the regulation of energy balance. Despite a plethora of work documenting the effects of individual hormones, nutrients, and neuropeptides on POMC neurons, the importance for crosstalk and additive effects between such signaling molecules is still underexplored. The ability of the metabolic state and the concentrations of nutrients, such as glucose, to influence leptin's effects on POMC neurons appears critical for understanding the function and complexity of this regulatory network. Here, we summarize the current knowledge on the effects of leptin on POMC neuron electrical excitability and discuss factors potentially contributing to variability in these effects, with a particular focus on the mouse models that have been developed and the importance of extracellular glucose levels. This review highlights the importance of the metabolic "environment" for determining hypothalamic neuronal responsiveness to metabolic cues and for determining the fundamental effects of leptin on the activity of hypothalamic POMC neurons.
Collapse
Affiliation(s)
- Nader Srour
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada; Montreal Diabetes Research Center, QC, Canada.
| | - Natalie Jane Michael
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Gallo R, Teijeiro A, Angulo-Aguado M, Djouder N. IL-17A produced by POMC neurons regulates diet-induced obesity. iScience 2024; 27:110259. [PMID: 39027371 PMCID: PMC11255842 DOI: 10.1016/j.isci.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/29/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Overeating leads to obesity, a low-grade inflammatory condition involving interleukin-17A (IL-17A). While pro-opiomelanocortin (POMC) neurons regulate feeding, their connection with IL-17A is not well understood. To impair IL-17A signaling in POMC neurons, IL-17A receptor (Il17ra) was deleted by crossing IL17ra-flox and Pomc-Cre mice. Despite effective deletion, these mice showed no differences in body weight or adiposity compared to control mice, challenging the idea that IL-17A induces obesity through POMC neuron regulation. However, both groups exhibited reduced weight gain and adiposity upon high-fat diet compared to mice carrying only the floxed alleles, suggesting independent effects of Pomc-Cre transgene on body weight. Further analysis reveals that POMC neurons express IL-17A, and reduction in number of POMC neurons in Pomc-Cre mice could be linked to decreased IL-17A expression, which correlates with reduced adipocyte gene expression associated with obesity. Our data underscore an unexpected crosstalk between IL-17A-producing POMC neurons and the endocrine system in obesity regulation.
Collapse
Affiliation(s)
- Rosa Gallo
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Ana Teijeiro
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Mariana Angulo-Aguado
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Neyens DM, Brenner L, Calkins R, Winzenried ET, Ritter RC, Appleyard SM. CCK-sensitive C fibers activate NTS leptin receptor-expressing neurons via NMDA receptors. Am J Physiol Regul Integr Comp Physiol 2024; 326:R383-R400. [PMID: 38105761 PMCID: PMC11381032 DOI: 10.1152/ajpregu.00238.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.
Collapse
Affiliation(s)
- Drew M Neyens
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Lynne Brenner
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Rowan Calkins
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Eric T Winzenried
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Robert C Ritter
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| |
Collapse
|
7
|
Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, Atasoy D, Yılmaz B. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol Metab 2024; 82:101904. [PMID: 38395148 PMCID: PMC10910127 DOI: 10.1016/j.molmet.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.
Collapse
Affiliation(s)
- Özge Başer
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Öykü Özen
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Sami Ağuş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Cihan Civan Civaş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, USA
| | - Bayram Yılmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye; Izmir Biomedicine and Genome Center, Izmir, Türkiye.
| |
Collapse
|
8
|
Guo DF, Williams PA, Laule C, Seaby C, Zhang Q, Sheffield VC, Rahmouni K. POMC Neuron BBSome Regulation of Body Weight is Independent of its Ciliary Function. FUNCTION 2023; 5:zqad070. [PMID: 38223458 PMCID: PMC10787280 DOI: 10.1093/function/zqad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - Paul A Williams
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Charles Seaby
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Health Care System, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Srour N, Lavoie O, Khouma A, Minbashi Moeini M, Plamondon J, Kinkead R, Michael NJ, Caron A. Electrophysiological Comparison of Definitive Pro-opiomelanocortin Neurons in the Arcuate Nucleus and the Retrochiasmatic Area of Male and Female Mice. Neuroscience 2023; 530:95-107. [PMID: 37619768 DOI: 10.1016/j.neuroscience.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) are considered a major site of leptin action. Due to increasing evidence that POMC neurons are highly heterogeneous and indications that the conventional molecular tools to study their functions have important limitations, a reassessment of leptin's effects on definitive POMC neurons is needed. POMC neurons are also expressed in the retrochiasmatic area (RCA), where their function is poorly understood. Furthermore, the response of POMC neurons to leptin in females is largely unknown. Therefore, the present study aimed to determine the differences in leptin responsiveness of POMC neurons in the ARC and the RCA using a mouse model allowing adult-inducible fluorescent labeling. We performed whole-cell patch clamp electrophysiology on 154 POMC neurons from male and female mice. We confirmed and extended the model by which leptin depolarizes POMC neurons, in both the ARC and the RCA. Furthermore, we characterized the electrophysiological properties of an underappreciated subpopulation representing ∼10% of hypothalamic POMC neurons that are inhibited by leptin. We also provide evidence that sex does not appear to be a major determinant of basal properties and leptin responsiveness of POMC neurons, but that females are overall less responsive to leptin compared to males.
Collapse
Affiliation(s)
- Nader Srour
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Axelle Khouma
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Moein Minbashi Moeini
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | - Richard Kinkead
- Quebec Heart and Lung Institute, Quebec City, QC, Canada; Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Natalie J Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Qi Y, Lee NJ, Ip CK, Enriquez R, Tasan R, Zhang L, Herzog H. Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons. Cell Metab 2023:S1550-4131(23)00177-8. [PMID: 37201523 DOI: 10.1016/j.cmet.2023.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ronaldo Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
13
|
Tang Q, Liu Q, Li J, Yan J, Jing X, Zhang J, Xia Y, Xu Y, Li Y, He J. MANF in POMC Neurons Promotes Brown Adipose Tissue Thermogenesis and Protects Against Diet-Induced Obesity. Diabetes 2022; 71:2344-2359. [PMID: 35972224 PMCID: PMC9630086 DOI: 10.2337/db21-1128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/07/2022] [Indexed: 01/25/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an emerging regulator in metabolic control. Hypothalamic proopiomelanocortin (POMC) neurons play critical roles in maintaining whole-body energy homeostasis. Whether MANF in POMC neurons is required for the proper regulation of energy balance remains unknown. Here, we showed that mice lacking MANF in POMC neurons were more prone to develop diet-induced obesity. In addition, the ablation of MANF induced endoplasmic reticulum (ER) stress and leptin resistance in the hypothalamus, reduced POMC expression and posttranslational processing, and ultimately decreased sympathetic nerve activity and thermogenesis in brown adipose tissue (BAT). Conversely, MANF overexpression in hypothalamic POMC neurons attenuated ER stress, increased POMC expression and processing, and then stimulated sympathetic innervation and activity in BAT, resulting in increased BAT thermogenesis, thus protecting mice against dietary obesity. Overall, our findings provide evidence that MANF is required for POMC neurons to combat obesity.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Corresponding author: Jinhan He,
| |
Collapse
|
14
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Ma Y, Murgia N, Liu Y, Li Z, Sirakawin C, Konovalov R, Kovzel N, Xu Y, Kang X, Tiwari A, Mwangi PM, Sun D, Erfle H, Konopka W, Lai Q, Najam SS, Vinnikov IA. Neuronal miR-29a protects from obesity in adult mice. Mol Metab 2022; 61:101507. [PMID: 35490865 PMCID: PMC9114687 DOI: 10.1016/j.molmet.2022.101507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity, a growing threat to the modern society, represents an imbalance of metabolic queues that normally signal to the arcuate hypothalamic nucleus, a critical brain region sensing and regulating energy homeostasis. This is achieved by various neurons many of which developmentally originate from the proopiomelanocortin (POMC)-expressing lineage. Within the mature neurons originating from this lineage, we aimed to identify non-coding genes in control of metabolic function in the adulthood. Methods In this work, we used microRNA mimic delivery and POMCCre-dependent CRISPR-Cas9 knock-out strategies in young or aged mice. Importantly, we also used CRISPR guides directing suicide cleavage of Cas9 to limit the off-target effects. Results Here we found that mature neurons originating from the POMC lineage employ miR-29a to protect against insulin resistance obesity, hyperphagia, decreased energy expenditure and obesity. Moreover, we validated the miR-29 family as a prominent regulator of the PI3K-Akt-mTOR pathway. Within the latter, we identified a direct target of miR-29a-3p, Nras, which was up-regulated in those and only those mature POMCCreCas9 neurons that were effectively transduced by anti-miR-29 CRISPR-equipped construct. Moreover, POMCCre-dependent co-deletion of Nras in mature neurons attenuated miR-29 depletion-induced obesity. Conclusions Thus, the first to our knowledge case of in situ Cre-dependent CRISPR-Cas9-mediated knock-out of microRNAs in a specific hypothalamic neuronal population helped us to decipher a critical metabolic circuit in adult mice. This work significantly extends our understanding about the involvement of neuronal microRNAs in homeostatic regulation. Delivery of miR-29a-3p to the arcuate hypothalamic nucleus attenuates obesity. Knock-out of genes in mature neurons by Cre-dependent CRISPR/Cas9 technique involving Cas9-cleaving sgRNAs to limit off-target effects. Deletion of miR-29a in mature PomcCre neurons leads to early-onset insulin resistance and later to hyperphagia and decreased energy expenditure. POMCCre-restricted deletion of miR-29a causes cell-autonomous Nras up-regulation leading to obesity. POMCCre-restricted knock-out of Nras, a direct target of miR-29a-3p, attenuates obesity in mice.
Collapse
Affiliation(s)
- Yuan Ma
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nicola Murgia
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixuan Li
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruslan Konovalov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nikolai Kovzel
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejia Kang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Anshul Tiwari
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Malonza Mwangi
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Donglei Sun
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Holger Erfle
- Advanced Biological Screening Facility, BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Witold Konopka
- Laboratory of Neuroplasticity and Metabolism, Department of Life Sciences and Biotechnology, Łukasiewicz PORT Polish Center for Technology Development, Wrocław, Poland
| | - Qingxuan Lai
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Daimon CM, Hentges ST. Inhibition of POMC neurons in mice undergoing activity-based anorexia selectively blunts food anticipatory activity without affecting body weight or food intake. Am J Physiol Regul Integr Comp Physiol 2022; 322:R219-R227. [PMID: 35043681 PMCID: PMC8858678 DOI: 10.1152/ajpregu.00313.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide β-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that β-endorphin targets, results in decreased FAA. The role of β-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to β-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T. Hentges
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
17
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
18
|
Yang Y, He Y, Liu H, Zhou W, Wang C, Xu P, Cai X, Liu H, Yu K, Pei Z, Hyseni I, Fukuda M, Tong Q, Xu J, Sun Z, O'Malley BW, Xu Y. Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Rep 2021; 37:110075. [PMID: 34879284 PMCID: PMC8715676 DOI: 10.1016/j.celrep.2021.110075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.
Collapse
Affiliation(s)
- Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenjun Zhou
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhou Pei
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Caron A, Jane Michael N. New Horizons: Is Obesity a Disorder of Neurotransmission? J Clin Endocrinol Metab 2021; 106:e4872-e4886. [PMID: 34117881 DOI: 10.1210/clinem/dgab421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/19/2022]
Abstract
Obesity is a disease of the nervous system. While some will view this statement as provocative, others will take it as obvious. Whatever our side is, the pharmacology tells us that targeting the nervous system works for promoting weight loss. It works, but at what cost? Is the nervous system a safe target for sustainable treatment of obesity? What have we learned-and unlearned-about the central control of energy balance in the last few years? Herein we provide a thought-provoking exploration of obesity as a disorder of neurotransmission. We discuss the state of knowledge on the brain pathways regulating energy homeostasis that are commonly targeted in anti-obesity therapy and explore how medications affecting neurotransmission such as atypical antipsychotics, antidepressants, and antihistamines relate to body weight. Our goal is to provide the endocrine community with a conceptual framework that will help expending our understanding of the pathophysiology of obesity, a disease of the nervous system.
Collapse
Affiliation(s)
- Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Montreal Diabetes Research Center, Montreal, QC, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
20
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
21
|
Freeman AK, Glendining KA, Jasoni CL. Developmental genes controlling neural circuit formation are expressed in the early postnatal hypothalamus and cellular lining of the third ventricle. J Neuroendocrinol 2021; 33:e13020. [PMID: 34423876 DOI: 10.1111/jne.13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
The arcuate nucleus of the hypothalamus is central in the regulation of body weight homeostasis through its ability to sense peripheral metabolic signals and relay them, through neural circuits, to other brain areas, ultimately affecting physiological and behavioural changes. The early postnatal development of these neural circuits is critical for normal body weight homeostasis, such that perturbations during this critical period can lead to obesity. The role for peripheral regulators of body weight homeostasis, including leptin, insulin and ghrelin, in this postnatal development is well described, yet some of the fundamental processes underpinning axonal and dendritic growth remain unclear. Here, we hypothesised that molecules known to regulate axonal and dendritic growth processes in other areas of the developing brain would be expressed in the postnatal arcuate nucleus and/or target nuclei where they would function to mediate the development of this circuitry. Using state-of-the-art RNAscope® technology, we have revealed the expression patterns of genes encoding Dcc/Netrin-1, Robo1/Slit1 and Fzd5/Wnt5a receptor/ligand pairs in the early postnatal mouse hypothalamus. We found that individual genes had unique expression patterns across developmental time in the arcuate nucleus, paraventricular nucleus of the hypothalamus, ventromedial nucleus of the hypothalamus, dorsomedial nucleus of the hypothalamus, median eminence and, somewhat unexpectedly, the third ventricle epithelium. These observations indicate a number of new molecular players in the development of neural circuits regulating body weight homeostasis, as well as novel molecular markers of tanycyte heterogeneity.
Collapse
Affiliation(s)
- Alice Katherine Freeman
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
A Runner's High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021; 11:biom11081077. [PMID: 34439743 PMCID: PMC8392752 DOI: 10.3390/biom11081077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise has wide-ranging benefits to cognitive functioning and mental state, effects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis has been implicated in many of these mental benefits of exercise. However, precise mechanisms behind these effects are not well known. Released peripherally during exercise, beta-endorphins are an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits of exercise. Although historically ignored due to their peripheral release and status as a peptide hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis, and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin appears to be a promising mechanism for understanding the specific ways that exercise promotes adult neurogenesis specifically and brain health broadly.
Collapse
|
23
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
24
|
Fortin SM, Chen J, Grill HJ, Hayes MR. The Mesencephalic Trigeminal Nucleus Controls Food Intake and Body Weight via Hindbrain POMC Projections. Nutrients 2021; 13:nu13051642. [PMID: 34068091 PMCID: PMC8152732 DOI: 10.3390/nu13051642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
The mesencephalic trigeminal nucleus (Mes5) processes oral sensory–motor information, but its role in the control of energy balance remains unexplored. Here, using fluorescent in situ hybridization, we show that the Mes5 expresses the melanocortin-4 receptor. Consistent with MC4R activation in other areas of the brain, we found that Mes5 microinjection of the MC4R agonist melanotan-II (MTII) suppresses food intake and body weight in the mouse. Furthermore, NTS POMC-projecting neurons to the Mes5 can be chemogenetically activated to drive a suppression in food intake. Taken together, these findings highlight the Mes5 as a novel target of melanocortinergic control of food intake and body weight regulation, although elucidating the endogenous role of this circuit requires future study. While we observed the sufficiency of Mes5 MC4Rs for food intake and body weight suppression, these receptors do not appear to be necessary for food intake or body weight control. Collectively, the data presented here support the functional relevance of the NTS POMC to Mes5 projection pathway as a novel circuit that can be targeted to modulate food intake and body weight.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
| | - Harvey J. Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.F.); (J.C.)
- Correspondence:
| |
Collapse
|
25
|
Meister J, Wang L, Pydi SP, Wess J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. J Neurochem 2021; 158:603-620. [PMID: 33540469 DOI: 10.1111/jnc.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
26
|
Shakya M, White A, Verchere CB, Low MJ, Lindberg I. Mice lacking PC1/3 expression in POMC-expressing cells do not develop obesity. Endocrinology 2021; 162:6167813. [PMID: 33693631 PMCID: PMC8253230 DOI: 10.1210/endocr/bqab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk. However, whether PC1/3-mediated POMC processing is absolutely tied to body weight regulation is not known. To investigate this question, we generated a Pomc-CreER T2; Pcsk1 lox/lox mouse model in which Pcsk1 is specifically and temporally knocked out in POMC-expressing cells of adult mice by injecting tamoxifen at eight weeks of age. We then measured the impact of Pcsk1 deletion on POMC cleavage to ACTH and α-MSH, and on body weight. In whole pituitary, POMC cleavage was significantly impacted by the loss of Pcsk1, while hypothalamic POMC-derived peptide levels remained similar in all genotypes. However, intact POMC levels were greatly elevated in Pomc-CreER T2; Pcsk1 lox/lox mice. Males expressed two-fold greater levels of pituitary PC1/3 protein than females, consistent with their increased POMC cleavage. Past studies show that mice with germline removal of PC1/3 do not develop obesity, while mice expressing mutant PC1/3 forms do develop obesity. We conclude that obesity pathways are not disrupted by PC1/3 loss solely in POMC-expressing cells, further disfavoring the idea that alterations in POMC processing underlie obesity in PCSK1 deficiency.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
| | - Surbhi
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology,
University of Manchester, Manchester, M13
9PT, United Kingdom
| | - C Bruce Verchere
- Departments of Pathology & Laboratory Medicine and
Surgery, University of British Columbia, British
Columbia, V5Z 4H4, Canada
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
- Correspondence: Iris Lindberg, PhD,
Department of Anatomy and Neurobiology, 20 Penn St., HSF2, S267, University of
Maryland-Baltimore, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|
27
|
Quarta C, Claret M, Zeltser LM, Williams KW, Yeo GSH, Tschöp MH, Diano S, Brüning JC, Cota D. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat Metab 2021; 3:299-308. [PMID: 33633406 PMCID: PMC8085907 DOI: 10.1038/s42255-021-00345-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Quarta
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER), Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Cota
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM U1215, Bordeaux, France.
| |
Collapse
|
28
|
Tang Q, Liu Q, Yang X, Wu T, Huang C, Zhang J, Zhang Z, Zhang G, Zhao Y, Zhou J, Huang H, Xia Y, Yan J, Li Y, He J. Sirtuin 6 supra-physiological overexpression in hypothalamic pro-opiomelanocortin neurons promotes obesity via the hypothalamus-adipose axis. FASEB J 2021; 35:e21408. [PMID: 33583107 DOI: 10.1096/fj.202002607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
Sirtuin 6 (Sirt6), a member of the Sirtuin family, has important roles in maintaining glucose and lipid metabolism. Our previous studies demonstrated that the deletion of Sirt6 in pro-opiomelanocortin (POMC)-expressing cells by the loxP-Cre system resulted in severe obesity and hepatic steatosis. However, whether overexpression of Sirt6 in hypothalamic POMC neurons could ameliorate diet-induced obesity is still unknown. Thus, we generated mice specifically overexpressing Sirt6 in hypothalamic POMC neurons (PSOE) by stereotaxic injection of Cre-dependent adeno-associated viruses into the arcuate nucleus of Pomc-Cre mice. PSOE mice showed increased adiposity and decreased energy expenditure. Furthermore, thermogenesis of BAT and lipolysis of WAT were both impaired, caused by reduced sympathetic nerve innervation and activity in adipose tissues. Mechanistically, Sirt6 overexpression decreasing STAT3 acetylation, thus lowering POMC expression in the hypothalamus underlined the observed phenotypes in PSOE mice. These results demonstrate that Sirt6 overexpression specifically in the hypothalamic POMC neurons exacerbates diet-induced obesity and metabolic disorders via the hypothalamus-adipose axis.
Collapse
Affiliation(s)
- Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Xuping Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Ueda HH, Naitou K, Nakamori H, Horii K, Shiina T, Masatani T, Shiraishi M, Shimizu Y. α-MSH-induced activation of spinal MC1R but not MC4R enhances colorectal motility in anaesthetised rats. Sci Rep 2021; 11:487. [PMID: 33436759 PMCID: PMC7803980 DOI: 10.1038/s41598-020-80020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear. In this study, we investigated the regulatory role of an anorexigenic neuropeptide, α-MSH, in the spinal defaecation centre in rats. Intrathecal administration of α-MSH to the L6-S1 spinal cord enhanced colorectal motility. The prokinetic effect of α-MSH was abolished by severing the pelvic nerves. In contrast, severing the colonic nerves or thoracic cord transection at the T4 level had no impact on the effect of α-MSH. RT-PCR analysis revealed MC1R mRNA and MC4R mRNA expression in the L6-S1 spinal cord. Intrathecally administered MC1R agonists, BMS470539 and SHU9119, mimicked the α-MSH effect, but a MC4R agonist, THIQ, had no effect. These results demonstrate that α-MSH binds to MC1R in the spinal defaecation centre and activates pelvic nerves, leading to enhancement of colorectal motility. This is, to our knowledge, the first report showing the functional role of α-MSH in the spinal cord. In conclusion, our findings suggest that α-MSH is a candidate for a neurotransmitter from supraspinal regions to the spinal defaecation centre.
Collapse
Affiliation(s)
- Hiromi H Ueda
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kazuhiro Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Yasutake Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan.
| |
Collapse
|
30
|
Neuropeptidomic Analysis of a Genetically Defined Cell Type in Mouse Brain and Pituitary. Cell Chem Biol 2020; 28:105-112.e4. [PMID: 33217339 DOI: 10.1016/j.chembiol.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Neuropeptides and peptide hormones are important cell-cell signaling molecules that mediate many physiological processes. Unlike classic neurotransmitters, peptides undergo cell-type-specific post-translational modifications that affect their biological activity. To enable the identification of the peptide repertoire of a genetically defined cell type, we generated mice with a conditional disruption of the gene for carboxypeptidase E (Cpe), an essential neuropeptide-processing enzyme. The loss of Cpe leads to accumulation of neuropeptide precursors containing C-terminal basic residues, which serve as tags for affinity purification. The purified peptides are subsequently identified using quantitative peptidomics, thereby revealing the specific forms of neuropeptides in cells with the disrupted Cpe gene. To validate the method, we used mice expressing Cre recombinase under the proopiomelanocortin (Pomc) promoter and analyzed hypothalamic and pituitary extracts, detecting peptides derived from proopiomelanocortin (as expected) and also proSAAS in POMC neurons. This technique enables the analyses of specific forms of peptides in any Cre-expressing cell type.
Collapse
|
31
|
Gervais M, Labouèbe G, Picard A, Thorens B, Croizier S. EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis. PLoS Biol 2020; 18:e3000680. [PMID: 33253166 PMCID: PMC7728393 DOI: 10.1371/journal.pbio.3000680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/10/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.
Collapse
Affiliation(s)
- Manon Gervais
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Delezie J, Gill JF, Santos G, Karrer-Cardel B, Handschin C. PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse. Sci Rep 2020; 10:16888. [PMID: 33060645 PMCID: PMC7567876 DOI: 10.1038/s41598-020-73794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The arcuate nucleus (ARC) of the hypothalamus is a key regulator of food intake, brown adipose tissue (BAT) thermogenesis, and locomotor activity. Whole-body deficiency of the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1β (PGC-1β) disrupts mouse circadian locomotor activity and BAT-regulated thermogenesis, in association with altered gene expression at the central level. We examined whether PGC-1β expression in the ARC is required for proper energy balance and locomotor behavior by generating mice lacking the PGC-1β gene specifically in pro-opiomelanocortin (POMC) neurons. POMC neuron-specific deletion of PGC-1β did not impact locomotor behavior, food intake, body composition, energy fuel utilization and metabolic rate in fed, 24-h fasted and 24-h refed conditions. In contrast, in the fed state, deletion of PGC-1β in POMC cells elevated core body temperature during the nighttime period. Importantly, this higher body temperature is not associated with changes in BAT function and gene expression. Conversely, we provide evidence that mice lacking PGC-1β in POMC neurons are more sensitive to the effect of leptin on heat dissipation. Our data indicate that PGC-1β-expressing POMC neurons are part of a circuit controlling body temperature homeostasis and that PGC-1β function in these neurons is involved in the thermoregulatory effect of leptin.
Collapse
Affiliation(s)
- Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Jonathan F Gill
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
| |
Collapse
|
33
|
Engle SE, Bansal R, Antonellis PJ, Berbari NF. Cilia signaling and obesity. Semin Cell Dev Biol 2020; 110:43-50. [PMID: 32466971 DOI: 10.1016/j.semcdb.2020.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.
Collapse
Affiliation(s)
- Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Patrick J Antonellis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
34
|
Chen X, Wyler SC, Li L, Arnold AG, Wan R, Jia L, Landy MA, Lai HC, Xu P, Liu C. Comparative Transcriptomic Analyses of Developing Melanocortin Neurons Reveal New Regulators for the Anorexigenic Neuron Identity. J Neurosci 2020; 40:3165-3177. [PMID: 32213554 PMCID: PMC7159888 DOI: 10.1523/jneurosci.0155-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.
Collapse
Affiliation(s)
- Xiameng Chen
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Steven C Wyler
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Li Li
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Amanda G Arnold
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Rong Wan
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Lin Jia
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
| | - Mark A Landy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pin Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chen Liu
- Department of Internal Medicine, Hypothalamic Research Center, Dallas, Texas 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
35
|
Georgescu T, Lyons D, Doslikova B, Garcia AP, Marston O, Burke LK, Chianese R, Lam BYH, Yeo GSH, Rochford JJ, Garfield AS, Heisler LK. Neurochemical Characterization of Brainstem Pro-Opiomelanocortin Cells. Endocrinology 2020; 161:bqaa032. [PMID: 32166324 PMCID: PMC7102873 DOI: 10.1210/endocr/bqaa032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.
Collapse
Affiliation(s)
- Teodora Georgescu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Centre for Neuroendocrinology & Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David Lyons
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | - Ana Paula Garcia
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Oliver Marston
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | | | | | - Lora K Heisler
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Xiao C, Liu N, Province H, Piñol RA, Gavrilova O, Reitman ML. BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice. Mol Metab 2020; 36:100969. [PMID: 32229422 PMCID: PMC7113433 DOI: 10.1016/j.molmet.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Haley Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Zakariassen HL, John LM, Lykkesfeldt J, Raun K, Glendorf T, Schaffer L, Lundh S, Secher A, Lutz TA, Le Foll C. Salmon calcitonin distributes into the arcuate nucleus to a subset of NPY neurons in mice. Neuropharmacology 2020; 167:107987. [PMID: 32035146 DOI: 10.1016/j.neuropharm.2020.107987] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/07/2023]
Abstract
The amylin receptor (AMY) and calcitonin receptor (CTR) agonists induce acute suppression of food intake in rodents by binding to receptors in the area postrema (AP) and potentially by targeting arcuate (ARC) neurons directly. Salmon calcitonin (sCT) induces more potent, longer lasting anorectic effects compared to amylin. We thus aimed to investigate whether AMY/CTR agonists target key neuronal populations in the ARC, and whether differing brain distribution patterns could mediate the observed differences in efficacy with sCT and amylin treatment. Brains were examined by whole brain 3D imaging and confocal microscopy following subcutaneous administration of fluorescently labelled peptides to mice. We found that sCT, but not amylin, internalizes into a subset of ARC NPY neurons, along with an unknown subset of ARC, AP and dorsal vagal motor nucleus cells. ARC POMC neurons were not targeted. Furthermore, amylin and sCT displayed similar distribution patterns binding to receptors in the AP, the organum vasculosum of the lamina terminalis (OVLT) and the ARC. Amylin distributed within the median eminence with only specs of sCT being present in this region, however amylin was only detectable 10 minutes after injection while sCT displayed a residence time of up to 2 hours post injection. We conclude that AMY/CTR agonists bind to receptors in a subset of ARC NPY neurons and in circumventricular organs. Furthermore, the more sustained and greater anorectic efficacy of sCT compared to rat amylin is not attributable to differences in brain distribution patterns but may more likely be explained by greater potency at both the CTR and AMY.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark; Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Linu Mary John
- Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Kirsten Raun
- Obesity Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Tine Glendorf
- Diabetes Pharmacology 2, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Lauge Schaffer
- Research Chemistry, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Sofia Lundh
- Pathology and Imaging, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Anna Secher
- Diabetes Pharmacology 2, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
38
|
Johnson C, Hong W, Micevych P. Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity. eNeuro 2020; 7:ENEURO.0315-19.2019. [PMID: 31941660 PMCID: PMC6984809 DOI: 10.1523/eneuro.0315-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
Estrogen and progesterone (P4) act in neural circuits to elicit lordosis, the stereotypical female sexual receptivity behavior. Estradiol acts through membrane receptors to rapidly activate a limbic-hypothalamic circuit consisting of the arcuate (ARH), medial preoptic (MPN), and ventromedial (VMH) nuclei of the hypothalamus. This initial activation results in a transient but necessary inhibition of lordosis, which appears to be a result of the release of β-endorphin (β-End) from proopiomelanocortin (POMC) terminals onto cells containing the µ-opioid receptor (MOR) in the MPN. To functionally examine the role of the MOR in the hypothalamic lordosis circuit, we transfected a channelrhodopsin (ChR2) adeno-associated virus into POMC cell bodies in the ARH and photostimulated POMC/β-End axon terminals in the MPN in sexually receptive female Pomc-cre mice. Following estrogen and P4 priming, sexual receptivity was assessed by measuring the lordosis quotient (LQ). Following an initial trial for sexual receptivity, mice were photostimulated during behavioral testing, and brains were processed for MOR immunohistochemistry (IHC). Photostimulation decreased the LQ only in ChR2-expressing Pomc-cre mice. Furthermore, photostimulation of ChR2 in POMC/β-End axon terminals in the MPN resulted in the internalization of MOR, indicating activation of the receptor. Our results suggest that the activation of the MOR in the MPN is sufficient to attenuate lordosis behavior in a hormone-primed, sexually receptive female mouse. These data support a central role of MOR in female sexual behavior, and provide further insight into the hypothalamus control of sexual receptivity.
Collapse
Affiliation(s)
- Caroline Johnson
- Department of Neurobiology David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Weizhe Hong
- Department of Neurobiology David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Paul Micevych
- Department of Neurobiology David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
39
|
Quaresma PGF, Teixeira PDS, Furigo IC, Wasinski F, Couto GC, Frazão R, List EO, Kopchick JJ, Donato J. Growth hormone/STAT5 signaling in proopiomelanocortin neurons regulates glucoprivic hyperphagia. Mol Cell Endocrinol 2019; 498:110574. [PMID: 31494175 PMCID: PMC6814575 DOI: 10.1016/j.mce.2019.110574] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Several hypothalamic neuronal populations are directly responsive to growth hormone (GH) and central GH action regulates glucose and energy homeostasis. However, the potential role of GH signaling in proopiomelanocortin (POMC) neurons has not been studied yet. Thus, we investigated whether POMC neurons are responsive to GH and if ablation of GH receptor (GHR) or STAT5 in POMC cells leads to metabolic imbalances. Approximately 60% of POMC neurons of the arcuate nucleus exhibited STAT5 phosphorylation after intracerebroventricular GH injection. Ablation of GHR or STAT5 in POMC cells did not affect energy or glucose homeostasis. However, glucoprivic hyperphagia was blunted in male and female GHR knockout mice, and in male POMC-specific STAT5 knockout mice. Additionally, the absence of GHR in POMC neurons decreased glycemia during prolonged food restriction in male mice. Thus, GH action in POMC neurons regulates glucoprivic hyperphagia as well as blood glucose levels during prolonged food restriction.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gisele C Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
40
|
Jarvela TS, Shakya M, Bachor T, White A, Low MJ, Lindberg I. Reduced Stability and pH-Dependent Activity of a Common Obesity-Linked PCSK1 Polymorphism, N221D. Endocrinology 2019; 160:2630-2645. [PMID: 31504391 PMCID: PMC6892424 DOI: 10.1210/en.2019-00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme. Recombinant N221D PC1/3 also showed enhanced susceptibility to heat stress. Enhanced susceptibility to tunicamycin-induced endoplasmic reticulum stress was observed in AtT-20/PC2 cell clones in which murine PC1/3 was replaced by human N221D PC1/3, as compared with wild-type human PC1/3. However, N221D PC1/3-expressing AtT-20/PC2 clones processed proopiomelanocortin to α-MSH similarly to wild-type PC1/3. We also generated a CRISPR-edited mouse line expressing the N221D mutation in the PCKSI gene. When homozygous N221D mice were fed either a standard or a high-fat diet, we found no increase in body weight compared with their wild-type sibling controls. Sexual dimorphism was observed in pituitary ACTH for both genotypes, with females exhibiting lower levels of pituitary ACTH. In contrast, hypothalamic α-MSH content for both genotypes was higher in females compared with males. Hypothalamic corticotropin-like intermediate peptide content was higher in wild-type females compared with wild-type, but not N221D, males. Taken together, these data suggest that the increased obesity risk linked to the N221D allele in humans may be due in part to PC1/3-induced loss of resilience to stressors rather than strictly to decreased enzymatic activity on peptide precursors.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Surbhi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tomas Bachor
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Room S267, Baltimore, Maryland 21210. E-mail:
| |
Collapse
|
41
|
Ganglioside deficiency in hypothalamic POMC neurons promotes body weight gain. Int J Obes (Lond) 2019; 44:510-524. [PMID: 31168055 DOI: 10.1038/s41366-019-0388-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucosylceramide synthase (GCS; gene: UDP-glucose:ceramide glucosyltransferase (Ugcg))-derived gangliosides comprise a specific class of lipids in the plasma membrane that modulate the activity of transmembrane receptors. GCS deletion in hypothalamic arcuate nucleus (Arc) neurons leads to prominent obesity. However, it has not yet been studied how ganglioside depletion affects individual Arc neuronal subpopulations. The current study investigates the effects of GCS deletion specifically in anorexigenic pro-opiomelanocortin (POMC) neurons. Additionally, we investigate insulin receptor (IR) signaling and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) binding to ATP-dependent K+ (KATP) channels of GCS-deficient POMC neurons. MATERIALS AND METHODS We generated Ugcgf/f-Pomc-Cre mice with ganglioside deficiency in POMC neurons. Moreover, the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 technology was used to inhibit GCS-dependent ganglioside biosynthesis in cultured mouse POMC neurons, yielding UgcgΔ-mHypoA-POMC cells that were used to study mechanistic aspects in further detail. Proximity ligation assays (PLAs) visualized interactions between gangliosides, IR, and KATP channel subunit sulfonylurea receptor-1 (SUR-1), as well as intracellular IR substrate 2 (IRS-2) phosphorylation and PIP3. RESULTS Chow-fed Ugcgf/f-Pomc-Cre mice showed a moderate but significant increase in body weight gain and they failed to display an increase of anorexigenic neuropeptide expression during the fasting-to-re-feeding transition. IR, IRS-2, p85, and overall insulin-evoked IR and IRS-2 phosphorylation were elevated in ganglioside-depleted UgcgΔ-mHypoA-POMC neurons. A PLA demonstrated that more insulin-evoked complex formation occurred between PIP3 and SUR-1 in ganglioside-deficient POMC neurons in vitro and in vivo. CONCLUSION Our work suggests that GCS deletion in POMC neurons promotes body weight gain. Gangliosides are required for an appropriate adaptation of anorexigenic neuropeptide expression in the Arc during the fasting-to-re-feeding transition. Moreover, gangliosides might modulate KATP channel activity by restraining PIP3 binding to the KATP channel subunit SUR-1. Increased PIP3/SUR-1 interactions in ganglioside-deficient neurons could in turn potentially lead to electrical silencing. This work highlights that gangliosides in POMC neurons of the hypothalamic Arc are important regulators of body weight.
Collapse
|
42
|
Obri A, Claret M. The role of epigenetics in hypothalamic energy balance control: implications for obesity. Cell Stress 2019; 3:208-220. [PMID: 31309172 PMCID: PMC6612891 DOI: 10.15698/cst2019.07.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite enormous social and scientific efforts, obesity rates continue to increase worldwide. While genetic factors contribute to obesity development, genetics alone cannot explain the current epidemic. Obesity is essentially the consequence of complex genetic-environmental interactions. Evidence suggests that contemporary lifestyles trigger epigenetic changes, which can dysregulate energy balance and thus contribute to obesity. The hypothalamus plays a pivotal role in the regulation of body weight, through a sophisticated network of neuronal systems. Alterations in the activity of these neuronal pathways have been implicated in the pathophysiology of obesity. Here, we review the current knowledge on the central control of energy balance with a focus on recent studies linking epigenetic mechanisms in the hypothalamus to the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| |
Collapse
|
43
|
Cakir I, Nillni EA. Endoplasmic Reticulum Stress, the Hypothalamus, and Energy Balance. Trends Endocrinol Metab 2019; 30:163-176. [PMID: 30691778 DOI: 10.1016/j.tem.2019.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
Overweight and obesity pose significant health problems globally, and are causatively linked to metabolic dysregulation. The hypothalamus integrates neural, nutritional, and hormonal cues to regulate homeostasis, including circadian rhythm, body temperature, thirst, food intake, energy expenditure, and glucose metabolism. Hypothalamic neuropeptides play a fundamental role in these processes. Studies during the past two decades suggest a role of central endoplasmic reticulum (ER) stress in the pathophysiology of obesity. This review covers recent findings on the role of ER stress and neuropeptide processing in the central regulation of energy homeostasis, with special emphasis on proopiomelanocortin (POMC)-encoding neurons. In addition, the role of neuroinflammation in the context of obesity is briefly discussed.
Collapse
Affiliation(s)
- Isin Cakir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eduardo A Nillni
- Department of Medicine, Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
44
|
Wang L, De Solis AJ, Goffer Y, Birkenbach KE, Engle SE, Tanis R, Levenson JM, Li X, Rausch R, Purohit M, Lee JY, Tan J, De Rosa MC, Doege CA, Aaron HL, Martins GJ, Brüning JC, Egli D, Costa R, Berbari N, Leibel RL, Stratigopoulos G. Ciliary gene RPGRIP1L is required for hypothalamic arcuate neuron development. JCI Insight 2019; 4:e123337. [PMID: 30728336 PMCID: PMC6413800 DOI: 10.1172/jci.insight.123337] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Intronic polymorphisms in the α-ketoglutarate-dependent dioxygenase gene (FTO) that are highly associated with increased body weight have been implicated in the transcriptional control of a nearby ciliary gene, retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Previous studies have shown that congenital Rpgrip1l hypomorphism in murine proopiomelanocortin (Pomc) neurons causes obesity by increasing food intake. Here, we show by congenital and adult-onset Rpgrip1l deletion in Pomc-expressing neurons that the hyperphagia and obesity are likely due to neurodevelopmental effects that are characterized by a reduction in the Pomc/Neuropeptide Y (Npy) neuronal number ratio and marked increases in arcuate hypothalamic-paraventricular hypothalamic (ARH-PVH) axonal projections. Biallelic RPGRIP1L mutations result in fewer cilia-positive human induced pluripotent stem cell-derived (iPSC-derived) neurons and blunted responses to Sonic Hedgehog (SHH). Isogenic human ARH-like embryonic stem cell-derived (ESc-derived) neurons homozygous for the obesity-risk alleles at rs8050136 or rs1421085 have decreased RPGRIP1L expression and have lower numbers of POMC neurons. RPGRIP1L overexpression increases POMC cell number. These findings suggest that apparently functional intronic polymorphisms affect hypothalamic RPGRIP1L expression and impact development of POMC neurons and their derivatives, leading to hyperphagia and increased adiposity.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Alain J. De Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Yossef Goffer
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Kathryn E. Birkenbach
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Staci E. Engle
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ross Tanis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jacob M. Levenson
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Xueting Li
- Institute of Human Nutrition graduate program, Columbia University, New York, New York, USA
| | - Richard Rausch
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Manika Purohit
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Jen-Yi Lee
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | - Jerica Tan
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Holly L. Aaron
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | | | - Jens C. Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Rui Costa
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Nicolas Berbari
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
45
|
Estrogen signaling in arcuate Kiss1 neurons suppresses a sex-dependent female circuit promoting dense strong bones. Nat Commun 2019; 10:163. [PMID: 30635563 PMCID: PMC6329772 DOI: 10.1038/s41467-018-08046-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Central estrogen signaling coordinates energy expenditure, reproduction, and in concert with peripheral estrogen impacts skeletal homeostasis in females. Here, we ablate estrogen receptor alpha (ERα) in the medial basal hypothalamus and find a robust bone phenotype only in female mice that results in exceptionally strong trabecular and cortical bones, whose density surpasses other reported mouse models. Stereotaxic guided deletion of ERα in the arcuate nucleus increases bone mass in intact and ovariectomized females, confirming the central role of estrogen signaling in this sex-dependent bone phenotype. Loss of ERα in kisspeptin (Kiss1)-expressing cells is sufficient to recapitulate the bone phenotype, identifying Kiss1 neurons as a critical node in this powerful neuroskeletal circuit. We propose that this newly-identified female brain-to-bone pathway exists as a homeostatic regulator diverting calcium and energy stores from bone building when energetic demands are high. Our work reveals a previously unknown target for treatment of age-related bone disease. Estrogen promotes negative energy balance and preserves skeletal physiology. Here the authors show that loss of estrogen signalling after ablating estrogen receptor alpha (ERa) in specific hypothalamic neuronal populations leads to a marked sex-dependent increase in bone mass in female mice.
Collapse
|
46
|
Engle SE, Antonellis PJ, Whitehouse LS, Bansal R, Emond MR, Jontes JD, Kesterson RA, Mykytyn K, Berbari NF. A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis 2019; 56:e23217. [PMID: 29806135 PMCID: PMC6167158 DOI: 10.1002/dvg.23217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 12/28/2022]
Abstract
The neuropeptide, melanin concentrating hormone (MCH), and its G protein-coupled receptor, melanin concentrating hormone receptor 1 (Mchr1), are expressed centrally in adult rodents. MCH signaling has been implicated in diverse behaviors such as feeding, sleep, anxiety, as well as addiction and reward. While a model utilizing the Mchr1 promoter to drive constitutive expression of Cre recombinase (Mchr1-Cre) exists, there is a need for an inducible Mchr1-Cre to determine the roles for this signaling pathway in neural development and adult neuronal function. Here, we generated a BAC transgenic mouse where the Mchr1 promotor drives expression of tamoxifen inducible CreER recombinase. Many aspects of the Mchr1-Cre expression pattern are recapitulated by the Mchr1-CreER model, though there are also notable differences. Most strikingly, compared to the constitutive model, the new Mchr1-CreER model shows strong expression in adult animals in hypothalamic brain regions involved in feeding behavior but diminished expression in regions involved in reward, such as the nucleus accumbens. The inducible Mchr1-CreER allele will help reveal the potential for Mchr1 signaling to impact neural development and subsequent behavioral phenotypes, as well as contribute to the understanding of the MCH signaling pathway in terminally differentiated adult neurons and the diverse behaviors that it influences.
Collapse
Affiliation(s)
- Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Patrick J Antonellis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Logan S Whitehouse
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Michelle R Emond
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio
| | - James D Jontes
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
47
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
48
|
Timper K, Paeger L, Sánchez-Lasheras C, Varela L, Jais A, Nolte H, Vogt MC, Hausen AC, Heilinger C, Evers N, Pospisilik JA, Penninger JM, Taylor EB, Horvath TL, Kloppenburg P, Brüning JC. Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Rep 2018; 25:383-397.e10. [PMID: 30304679 PMCID: PMC6349418 DOI: 10.1016/j.celrep.2018.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/06/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lars Paeger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Biocenter, University of Cologne, Cologne, Germany
| | - Carmen Sánchez-Lasheras
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Luis Varela
- Department of Biochemistry and Fraternal Order of Eagles Diabetes Research Center, Caver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Merly C Vogt
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A Christine Hausen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian Heilinger
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nadine Evers
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - J Andrew Pospisilik
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Eric B Taylor
- Department of Biochemistry and Fraternal Order of Eagles Diabetes Research Center, Caver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tamas L Horvath
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Biocenter, University of Cologne, Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
49
|
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons regulate energy balance and mediate the effects of some classes of anti-obesity therapeutics. In this issue of Cell Metabolism, D'Agostino et al. (2018) demonstrate that a small and often overlooked population of POMC neurons in the brainstem contributes to satiation induced by the FDA-approved drug lorcaserin.
Collapse
|
50
|
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018; 159:3458-3472. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.
Collapse
Affiliation(s)
- Cheng Qin
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaheng Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|