1
|
Meijer OC, Kooijman S, Kroon J, Winter EM. The importance of the circadian trough in glucocorticoid signaling: a variation on B-flat. Stress 2023; 26:2275210. [PMID: 37874158 DOI: 10.1080/10253890.2023.2275210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
Glucocorticoid hormones are essential for health, but overexposure may lead to many detrimental effects, including metabolic, psychiatric, and bone disease. These effects may not only be due to increased overall exposure to glucocorticoids, but also to elevated hormone levels at the time of the physiological circadian trough of glucocorticoid levels. The late Mary Dallman developed a model that allows the differentiation between the effects of overall 24-hour glucocorticoid overexposure and the effects of a lack of circadian rhythmicity. For this, she continuously treated rats with a low dose of corticosterone (or "B"), which leads to a constant hormone level, without 24-hour overexposure using subcutaneously implanted pellets. The data from this "B-flat" model suggest that even modest elevations of glucocorticoid signaling during the time of the normal circadian trough of hormone secretion are a substantial contributor to the negative effects of glucocorticoids on health.
Collapse
Affiliation(s)
- Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elizabeth M Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Schilperoort M, Kroon J, Kooijman S, Smit AE, Gentenaar M, Mletzko K, Schmidt FN, van Ruijven L, Busse B, Pereira AM, Appelman‐Dijkstra NM, Bravenboer N, Rensen PC, Meijer OC, Winter EM. Loss of glucocorticoid rhythm induces an osteoporotic phenotype in female mice. Aging Cell 2021; 20:e13474. [PMID: 34592793 PMCID: PMC8520718 DOI: 10.1111/acel.13474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis is a widespread health problem that is accompanied with increased fracture risk. Detrimental effects of anti-inflammatory GC therapy on bone have been ascribed to the excess in GC exposure, but it is unknown whether there is also a role for disruption of the endogenous GC rhythm that is inherent to GC therapy. To investigate this, we implanted female C57Bl/6J mice with slow-release corticosterone (CORT) pellets to blunt the rhythm in CORT levels without inducing hypercortisolism. Flattening of CORT rhythm reduced cortical and trabecular bone volume and thickness, whilst bone structure was maintained in mice injected with supraphysiologic CORT at the time of their endogenous GC peak. Mechanistically, mice with a flattened CORT rhythm showed disrupted circadian gene expression patterns in bone, along with changes in circulating bone turnover markers indicative of a negative balance in bone remodelling. Indeed, double calcein labelling of bone in vivo revealed a reduced bone formation in mice with a flattened CORT rhythm. Collectively, these perturbations in bone turnover and structure decreased bone strength and stiffness, as determined by mechanical testing. In conclusion, we demonstrate for the first time that flattening of the GC rhythm disrupts the circadian clock in bone and results in an osteoporotic phenotype in mice. Our findings indicate that at least part of the fracture risk associated with GC therapy may be the consequence of a disturbed GC rhythm, rather than excess GC exposure alone, and that a dampened GC rhythm may contribute to the age-related risk of osteoporosis.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Jan Kroon
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Sander Kooijman
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Annelies E. Smit
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Max Gentenaar
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics (IOBM)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and Biomechanics (IOBM)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leo van Ruijven
- Department of Functional AnatomyAcademic Center for Dentistry Amsterdam (ACTA)AmsterdamThe Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics (IOBM)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alberto M. Pereira
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Natasha M. Appelman‐Dijkstra
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Department of MedicineCenter for Bone QualityLeiden University Medical CenterLeidenThe Netherlands
| | - Nathalie Bravenboer
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Department of MedicineCenter for Bone QualityLeiden University Medical CenterLeidenThe Netherlands
- Department of Clinical ChemistryVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Patrick C.N. Rensen
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Onno C. Meijer
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Elizabeth M. Winter
- Department of MedicineDivision of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
- Department of MedicineCenter for Bone QualityLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Morales JO, Walker N, Warne RW, Boyles JG. Heterothermy as a mechanism to offset energetic costs of environmental and homeostatic perturbations. Sci Rep 2021; 11:19038. [PMID: 34561468 PMCID: PMC8463709 DOI: 10.1038/s41598-021-96828-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Environmental and biotic pressures impose homeostatic costs on all organisms. The energetic costs of maintaining high body temperatures (Tb) render endotherms sensitive to pressures that increase foraging costs. In response, some mammals become more heterothermic to conserve energy. We measured Tb in banner-tailed kangaroo rats (Dipodomys spectabilis) to test and disentangle the effects of air temperature and moonlight (a proxy for predation risk) on thermoregulatory homeostasis. We further perturbed homeostasis in some animals with chronic corticosterone (CORT) via silastic implants. Heterothermy increased across summer, consistent with the predicted effect of lunar illumination (and predation), and in the direction opposite to the predicted effect of environmental temperatures. The effect of lunar illumination was also evident within nights as animals maintained low Tb when the moon was above the horizon. The pattern was accentuated in CORT-treated animals, suggesting they adopted an even further heightened risk-avoidance strategy that might impose reduced foraging and energy intake. Still, CORT-treatment did not affect body condition over the entire study, indicating kangaroo rats offset decreases in energy intake through energy savings associated with heterothermy. Environmental conditions receive the most attention in studies of thermoregulatory homeostasis, but we demonstrated here that biotic factors can be more important and should be considered in future studies.
Collapse
Affiliation(s)
- Javier Omar Morales
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Nikki Walker
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Robin W Warne
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Justin G Boyles
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
- Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, Illinois, 62901, USA
| |
Collapse
|
4
|
Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL, Harkany T. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 2018; 37:e100087. [PMID: 30209240 PMCID: PMC6213283 DOI: 10.15252/embj.2018100087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.
Collapse
Affiliation(s)
- Alán Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Zahola
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Patrick Leitgeb
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andras G Miklosi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gloria Arque
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Miklós Palkovits
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Tomas Gm Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Departments of Comparative Medicine and Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
5
|
Nagpal J, Herget U, Choi MK, Ryu S. Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell Tissue Res 2018; 375:5-22. [PMID: 30109407 DOI: 10.1007/s00441-018-2900-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.
Collapse
Affiliation(s)
- Jatin Nagpal
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd. Mail Code 156-29, Pasadena, CA, 91125, USA
| | - Min K Choi
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Soojin Ryu
- German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
6
|
Bains JS, Wamsteeker Cusulin JI, Inoue W. Stress-related synaptic plasticity in the hypothalamus. Nat Rev Neurosci 2015; 16:377-88. [PMID: 26087679 DOI: 10.1038/nrn3881] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress necessitates an immediate engagement of multiple neural and endocrine systems. However, exposure to a single stressor causes adaptive changes that modify responses to subsequent stressors. Recent studies examining synapses onto neuroendocrine cells in the paraventricular nucleus of the hypothalamus demonstrate that stressful experiences leave indelible marks that alter the ability of these synapses to undergo plasticity. These adaptations include a unique form of metaplasticity at glutamatergic synapses, bidirectional changes in endocannabinoid signalling and bidirectional changes in strength at GABAergic synapses that rely on distinct temporal windows following stress. This rich repertoire of plasticity is likely to represent an important building block for dynamic, experience-dependent modulation of neuroendocrine stress adaptation.
Collapse
Affiliation(s)
- Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jaclyn I Wamsteeker Cusulin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Wataru Inoue
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
7
|
Ghosal S, Bundzikova-Osacka J, Dolgas CM, Myers B, Herman JP. Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology 2014; 45:142-53. [PMID: 24845185 PMCID: PMC4076411 DOI: 10.1016/j.psyneuen.2014.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, leading to adrenocortical secretion of glucocorticoids. The magnitude and duration of the HPA axis response is mediated in large part by the glucocorticoid receptor (GR). The nucleus of the solitary tract (NTS) abundantly expresses the GR and is a key brain region for processing autonomic and endocrine stress responses. This study tests the hypothesis that GR within the NTS plays an important role in inhibiting stress-induced endocrine and behavioral responses. Cohorts of rats received bilateral micropellet (30 μg) implantations of crystalline corticosterone, mifepristone (a GR antagonist) or cholesterol (control) directed into the region of the NTS, and were subsequently subjected to either acute psychogenic (restraint) stress or chronic variable stress (CVS). We found that NTS GR antagonism increased acute stress-induced corticosterone levels, whereas GR activation within the NTS attenuated this response. Following CVS, basal and 15 min post-restraint plasma corticosterone levels were increased by NTS GR antagonism, which was associated with an increase in Fos immunoreactivity within the PVN. Using the elevated plus maze (EPM) and forced swim test (FST), we assessed the effect of NTS GR inhibition on anxiety- and depression-like behaviors, respectively. GR inhibition within the NTS decreased open arm exploratory behavior in the EPM and increased immobility in the FST relative to controls. Together, the findings reveal a novel role of NTS GR signaling for inhibiting both endocrine and behavioral responses to stress.
Collapse
Affiliation(s)
- Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Metabolic Diseases Institute, Cincinnati, OH 45237, United States.
| | | | | | | | | |
Collapse
|
8
|
Talani G, Licheri V, Masala N, Follesa P, Mostallino MC, Biggio G, Sanna E. Increased voluntary ethanol consumption and changes in hippocampal synaptic plasticity in isolated C57BL/6J mice. Neurochem Res 2013; 39:997-1004. [PMID: 24343529 DOI: 10.1007/s11064-013-1216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
Social isolation (SI) is a notable model of prolonged mild stress, characterized by multiple neurochemical and behavioral alterations, that appears particularly suitable for studying different aspects of the interplay between stress and ethanol (EtOH) consumption in order to characterize potential molecular mechanisms, including changes in the function of inhibitory GABAergic synapses, underlying such interaction. In C57BL/6J mice, SI is associated with an altered hippocampal concentration of the neuroactive steroids 3α-hydroxy-5α-pregnan-20-one (3α-5α-THP), an increased expression of the α4 and δ subunit of γ-aminobutyric acid type A receptors (GABAARs) in the dentate gyrus (DG), and a parallel enhancement of the stimulatory action of 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP) on GABAergic tonic currents recorded in voltage-clamped DG granule cells (DGGCs). In addition, SI in C57BL/6J mice determines an increase in voluntary EtOH consumption and EtOH preference when compared to group-housed (GH) control animals. Furthermore, in hippocampal slices of SI mice we also observed a marked reduction of both cellular excitability and long term potentiation (LTP) in pyramidal neurons of the CA1 hippocampal sub-region, effects that were prevented by the long term treatment of SI mice with the neuroactive steroid precursor progesterone. In this article, we summarize some of our recent findings on the effects of SI in C57BL/6J mice on voluntary EtOH intake, regulation of GABAARs gene expression and function and hippocampal long term synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Talani
- Institute of Neuroscience, National Research Council, 09042, Monserrato, Cagliari, Italy,
| | | | | | | | | | | | | |
Collapse
|
9
|
Hawkley LC, Cole SW, Capitanio JP, Norman GJ, Cacioppo JT. Effects of social isolation on glucocorticoid regulation in social mammals. Horm Behav 2012; 62:314-23. [PMID: 22663934 PMCID: PMC3449017 DOI: 10.1016/j.yhbeh.2012.05.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans.
Collapse
Affiliation(s)
- Louise C Hawkley
- Department of Psychology and Center for Cognitive and Social Neuroscience, University of Chicago, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
10
|
Weiser MJ, Osterlund C, Spencer RL. Inhibitory effects of corticosterone in the hypothalamic paraventricular nucleus (PVN) on stress-induced adrenocorticotrophic hormone secretion and gene expression in the PVN and anterior pituitary. J Neuroendocrinol 2011; 23:1231-40. [PMID: 21910768 PMCID: PMC3220769 DOI: 10.1111/j.1365-2826.2011.02217.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endogenous glucocorticoid negative-feedback influence on the hypothalamic-pituitary-adrenal (HPA) axis depends on glucocorticoid actions exerted on multiple glucocorticoid-sensitive tissues and differential glucocorticoid effects that are expressed within several distinct temporal domains. The relative contribution and underlying molecular mechanisms of action for the effects of location and timing of glucocorticoid exposure on HPA axis activity remain to be determined. In the present study, we examined the effects of acute exposure to corticosterone (CORT) at the level of the paraventricular nucleus (PVN) on the HPA axis response to a subsequent stressor in a short-term (1 h) timeframe. Intra-PVN CORT microinjection 1 h before restraint suppressed the adrenocorticotrophic hormone (ACTH) response and blunted restraint-induced corticotrophin-releasing hormone (CRH) heterogeneous nuclear (hn)RNA expression in the PVN and pro-opiomelanocortin hnRNA expression in the anterior pituitary (AP); however, it had no effect on restraint-induced plasma prolactin levels and c-fos mRNA expression (PVN and AP). This pattern of results suggests that CORT acts locally at the level of the PVN within a short-term timeframe to suppress stress-induced excitation-exocytosis coupling within CRH neurones and CRH gene induction without altering the stress-associated trans-synaptic input and intracellular signal transduction that converges on PVN c-fos gene induction. The present study is the first to demonstrate that an acute infusion of CORT into the PVN is sufficient to suppress the ACTH response to stress initiated 1 h after CORT infusion.
Collapse
Affiliation(s)
- M J Weiser
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
11
|
Solomon MB, Sakai RR, Woods SC, Foster MT. Differential effects of glucocorticoids on energy homeostasis in Syrian hamsters. Am J Physiol Endocrinol Metab 2011; 301:E307-16. [PMID: 21540447 PMCID: PMC3275152 DOI: 10.1152/ajpendo.00009.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syrian hamsters, like many humans, increase food intake and body adiposity in response to stress. We hypothesized that glucocorticoids (cortisol and corticosterone) mediate these stress-induced effects on energy homeostasis. Because Syrian hamsters are dual secretors of cortisol and corticosterone, differential effects of each glucocorticoid on energy homeostasis were investigated. First, adrenal intact hamsters were injected with varying physiological concentrations of cortisol, corticosterone, or vehicle to emulate our previously published defeat regimens (i.e., 1 injection/day for 5 days). Neither food intake nor body weight was altered following glucocorticoid injections. Therefore, we investigated the effect of sustained glucocorticoid exposure on energy homeostasis. This was accomplished by implanting hamsters with supraphysiological steady-state pellets of cortisol, corticosterone, or cholesterol as a control. Cortisol, but not corticosterone, significantly decreased food intake, body mass, and lean and fat tissue compared with controls. Despite decreases in body mass and adiposity, cortisol significantly increased circulating free fatty acids, triglyceride, cholesterol, and hepatic triglyceride concentrations. Although corticosterone did not induce alterations in any of the aforementioned metabolic end points, Syrian hamsters were responsive to the effects of corticosterone since glucocorticoids both induced thymic involution and decreased adrenal mass. These findings indicate that cortisol is the more potent glucocorticoid in energy homeostasis in Syrian hamsters. However, the data suggest that cortisol alone does not mediate stress-induced increases in food intake or body mass in this species.
Collapse
Affiliation(s)
- Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, Obesity Research Center, Metabolic Disease Institute, University of Cincinnati, 2170 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
12
|
Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress. Physiol Behav 2011; 104:242-7. [PMID: 21315096 DOI: 10.1016/j.physbeh.2011.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 11/23/2022]
Abstract
Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC), bed nucleus of the stria terminalis (BST), and amygdala in response to chronic variable stress (CVS). Following 14 days of CVS, the presynaptic protein synaptophysin was assessed in male and female rats. Our results demonstrate that synaptophysin staining density was higher in females than males in all brain areas evaluated, indicating sex differences in the organization of presynaptic innervation. After CVS, the PVN, principal nucleus of the BST (BSTpr), and basolateral nucleus of the amygdala (BLA) displayed significantly reduced synaptophysin density in females but not males. Furthermore, males showed an increase in synaptophysin in the PVN after CVS, suggesting a sex difference in the modulation of presynaptic inputs to the PVN following chronic stress. Overall, these data suggest marked sex differences in PVN, BSTpr, and BLA presynaptic innervation as a consequence of chronic stress, which may be associated with differential stress responsivity and perhaps susceptibility to pathologies in males and females.
Collapse
|
13
|
Sanna E, Talani G, Obili N, Mascia MP, Mostallino MC, Secci PP, Pisu MG, Biggio F, Utzeri C, Olla P, Biggio G, Follesa P. Voluntary Ethanol Consumption Induced by Social Isolation Reverses the Increase of α(4)/δ GABA(A) Receptor Gene Expression and Function in the Hippocampus of C57BL/6J Mice. Front Neurosci 2011; 5:15. [PMID: 21347217 PMCID: PMC3039156 DOI: 10.3389/fnins.2011.00015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/25/2011] [Indexed: 11/20/2022] Open
Abstract
Post-weaning social isolation (SI) is a model of prolonged mild stress characterized by behavioral and neurochemical alterations. We used SI in C57BL/6J mice to investigate the effects of ethanol (EtOH) in the free-choice drinking paradigm on gene expression and function of γ-aminobutyric acid type A receptors (GABAARs) and the role of neuroactive steroids in the actions of EtOH in the hippocampus. SI stress induced a marked reduction in hippocampal 3α-hydroxy-5α-pregnan-20-one (3α,5α-TH PROG) and was associated with molecular and functional changes of the GABAAR. The gene expression of the α4 and δ subunits was increased in the hippocampus of SI C57BL/6J mice; the expression of the γ2 subunit was decreased whereas that of the α1 did not change. Patch-clamp recordings in dentate gyrus (DG) granule cells obtained from SI C57BL/6J mice revealed a greater enhancement of tonic currents induced by α-(4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP) compared to that in control C57BL/6J mice. These neurochemical, molecular and functional changes observed in SI C57BL/6J mice were associated with an increased EtOH intake and EtOH preference. Nevertheless, the increase in EtOH consumption did not restore the reduction in hippocampal 3α,5α-TH PROG induced by SI. EtOH self-administration blocked the changes in gene expression of the α4 subunit but not those of the δ and γ2 subunits induced by SI. In addition, EtOH self-administration did not block the SI-induced changes in GABAAR-mediated tonic inhibition in hippocampal granule cells but increased the frequency of basal GABAergic sIPSCs in DG granule cells. We conclude that self-administration of EtOH selectively abolishes the increase of α4 subunit but not other neurochemical, molecular, and functional modifications induced by SI prolonged mild stress.
Collapse
Affiliation(s)
- Enrico Sanna
- Section of Neuroscience, Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari Monserrato, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sarabdjitsingh RA, Spiga F, Oitzl MS, Kershaw Y, Meijer OC, Lightman SL, de Kloet ER. Recovery from disrupted ultradian glucocorticoid rhythmicity reveals a dissociation between hormonal and behavioural stress responsiveness. J Neuroendocrinol 2010; 22:862-71. [PMID: 20403086 PMCID: PMC4976802 DOI: 10.1111/j.1365-2826.2010.02004.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultradian release of glucocorticoids is thought to be essential for homeostasis and health. Furthermore, deviation from this pulsatile release pattern is considered to compromise resilience to stress-related disease, even after hormone levels have normalised. In the present study, we investigate how constant exposure to different concentrations of corticosterone affects diurnal and ultradian pulsatility. The rate of recovery in pulsatile hypothalamic-pituitary-adrenal (HPA) activity after withdrawal of exogenous corticosterone is also examined. Finally, the behavioural and neuroendocrine responsiveness to an audiogenic stressor is studied. Adrenally intact male rats were subcutaneously implanted with vehicle, 40% or 100% corticosterone pellets for 7 days. The continuous release of corticosterone from these implants abolished diurnal and ultradian corticosterone variation, as measured with high-frequency automated blood sampling. Pellet removal on post-surgery day 8 allowed rapid recovery of endogenous rhythms in animals previously exposed to daily average concentrations (40%) but not after exposure to high concentrations (100%) of corticosterone. Behavioural and neuroendocrine responsiveness to stress was distinctly different between the treatment groups. Audiogenic stimulation 1 day after pellet removal resulted in a similar corticosterone response in animals previously exposed to 40% corticosterone or vehicle. The 40% pellet group, however, showed less and shorter behavioural activity (i.e. locomotion, risk assessment) to noise stress compared to 100% corticosterone and vehicle-treated animals. In conclusion, unlike the animals impanted with 100% corticosterone, we find that basal HPA axis activity in the 40% group, which had mean daily levels of circulating corticosterone in the physiological range, rapidly reverts to the characteristic pulsatile pattern of corticosterone secretion. Upon reinstatement of the ultradian rhythm, and despite the fact that these animals did not differ from controls in their response to noise stress, they did show substantial changes in their behavioural response to stress.
Collapse
Affiliation(s)
- R A Sarabdjitsingh
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research (LACDR)/Leiden University Medical Centre (LUMC), University of Leiden, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Foster MT, Warne JP, Ginsberg AB, Horneman HF, Pecoraro NC, Akana SF, Dallman MF. Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropin, and corticosterone concentrations after restraint. Endocrinology 2009; 150:2325-33. [PMID: 19106219 PMCID: PMC2671911 DOI: 10.1210/en.2008-1426] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have shown reduced hypothalamo-pituitary-adrenal responses to both acute and chronic restraint stressors in rats allowed to ingest highly palatable foods (32% sucrose +/- lard) prior to restraint. In this study we tested the effects of prior access (7 d) to chow-only, sucrose/chow, lard/chow, or sucrose/lard/chow diets on central corticotropin-releasing factor (CRF) expression in rats studied in two experiments, 15 and 240 min after onset of restraint. Fat depot, particularly intraabdominal fat, weights were increased by prior access to palatable food, and circulating leptin concentrations were elevated in all groups. Metabolite concentrations were appropriate for values obtained after stressors. For unknown reasons, the 15-min experiment did not replicate previous results. In the 240-min experiment, ACTH and corticosterone responses were inhibited, as previously, and CRF mRNA in the hypothalamus and oval nucleus of the bed nuclei of the stria terminalis were reduced by palatable foods, suggesting strongly that both neuroendocrine and autonomic outflows are decreased by increased caloric deposition and palatable food. In the central nucleus of the amygdala, CRF was increased in the sucrose-drinking group and decreased in the sucrose/lard group, suggesting that the consequence of ingestion of sucrose uses different neural networks from the ingestion of lard. The results suggest strongly that ingestion of highly palatable foods reduces activity in the central stress response network, perhaps reducing the feeling of stressors.
Collapse
Affiliation(s)
- Michelle T Foster
- Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Serova LI, Gueorguiev V, Cheng SY, Sabban EL. Adrenocorticotropic hormone elevates gene expression for catecholamine biosynthesis in rat superior cervical ganglia and locus coeruleus by an adrenal independent mechanism. Neuroscience 2008; 153:1380-9. [PMID: 18440707 DOI: 10.1016/j.neuroscience.2008.02.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 01/22/2023]
Abstract
Classically, upon hypothalamic stimulation, adrenocorticotropic hormone (ACTH) is released from the pituitary and acts on melanocortin 2 receptors (MC2R) in the adrenal cortex, stimulating glucocorticoid synthesis and release. Our earlier studies suggested that ACTH might have a direct effect on sympathetic ganglia. To analyze further the involvement of ACTH in regulation of gene expression of norepinephrine (NE) biosynthetic enzymes, we examined the effect of bilateral adrenalectomy (ADX) of Sprague-Dawley male rats. Fourteen days post-ADX, as expected, plasma ACTH was elevated, and levels of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and MC2R mRNAs in superior cervical ganglia (SCG), and TH mRNA in locus coeruleus (LC) were increased compared with sham-operated animals. To determine effect of pulsatile elevation of ACTH, corticosterone pellets were implanted to ADX rats. Similar to immobilization (IMO) stress ACTH injections to these animals caused a rise in ACTH in plasma and triggered elevation of TH and DBH mRNAs in SCG and in LC with single and repeated daily injections, and MC2R mRNA in SCG with single injections. To study the effect of ACTH in isolated cells, primary cultures of rat SCG were transfected with TH and DBH promoter constructs and treated with ACTH. In agreement with the in vivo data, ACTH elevated their promoter activities similar to levels triggered by cyclic AMP analog. ACTH in the human SK-N-SH neuroblastoma cells increased TH and DBH promoter activity and endogenous DBH mRNA levels. The results show that ACTH can have a direct effect on transcription and gene expression of NE biosynthetic enzymes even without contribution of adrenal hormones.
Collapse
Affiliation(s)
- L I Serova
- Department of Biochemistry and Molecular Biology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
17
|
Biggio G, Concas A, Follesa P, Sanna E, Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol Ther 2007; 116:140-71. [PMID: 17555824 PMCID: PMC3000046 DOI: 10.1016/j.pharmthera.2007.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 04/06/2007] [Indexed: 12/27/2022]
Abstract
Neurosteroids play a crucial role in stress, alcohol dependence and withdrawal, and other physiological and pharmacological actions by potentiating or inhibiting neurotransmitter action. This review article focuses on data showing that the interaction among stress, ethanol, and neuroactive steroids may result in plastic molecular and functional changes of GABAergic inhibitory neurotransmission. The molecular mechanisms by which stress-ethanol-neuroactive steroids interactions can produce plastic changes in GABA(A) receptors have been studied using different experimental models in vivo and in vitro in order to provide useful evidence and new insights into the mechanisms through which acute and chronic ethanol and stress exposure modulate the activity of GABAergic synapses. We show detailed data on a) the effect of acute and chronic stress on peripheral and brain neurosteroid levels and GABA(A) receptor gene expression and function; b) ethanol-stimulated brain steroidogenesis; c) plasticity of GABA(A) receptor after acute and chronic ethanol exposure. The implications of these new mechanistic insights to our understanding of the effects of ethanol during stress are also discussed. The understanding of these neurochemical and molecular mechanisms may shed new light on the physiopathology of diseases, such as anxiety, in which GABAergic transmission plays a pivotal role. These data may also lead to the need for new anxiolytic, hypnotic and anticonvulsant selective drugs devoid of side effects.
Collapse
Affiliation(s)
- Giovanni Biggio
- Department of Experimental Biology, Center of Excellence for the Neurobiology of Dependence, University of Cagliari, Cagliari, Italy.
| | | | | | | | | |
Collapse
|
18
|
Warne JP, Foster MT, Horneman HF, Pecoraro NC, Ginsberg AB, Akana SF, Dallman MF. Afferent signalling through the common hepatic branch of the vagus inhibits voluntary lard intake and modifies plasma metabolite levels in rats. J Physiol 2007; 583:455-67. [PMID: 17584842 PMCID: PMC2277022 DOI: 10.1113/jphysiol.2007.135996] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The common hepatic branch of the vagus nerve is a two-way highway of communication between the brain and the liver, duodenum, stomach and pancreas that regulates many aspects of food intake and metabolism. In this study, we utilized the afferent-specific neurotoxin capsaicin to examine if common hepatic vagal sensory afferents regulate lard intake. Rats implanted with a corticosterone pellet were made diabetic using streptozotocin (STZ) and a subset received steady-state exogenous insulin replacement into the superior mesenteric vein. These were compared with non-diabetic counterparts. Each group was then subdivided into those whose common hepatic branch of the vagus was treated with vehicle or capsaicin. Five days after surgery, the rats were offered the choice of chow and lard to consume for a further 5 days. The STZ-diabetic rats ate significantly less lard than the non-diabetic rats. Capsaicin treatment restored lard intake to that of the insulin-replaced, STZ-diabetic rats, but modified neither chow nor total caloric intake. This increased lard intake led to selective fat deposition into the mesenteric white adipose tissue depot, as opposed to an increase in all visceral fat pad depots evident after insulin replacement-induced lard intake. Capsaicin treatment also increased the levels of circulating glucose and triglycerides and negated the actions of insulin on these and free fatty acids and ketone bodies. Collectively, these data suggest that afferent signalling through the common hepatic branch of the vagus inhibits lard, but not chow, intake, directs fat deposition and regulates plasma metabolite levels.
Collapse
Affiliation(s)
- James P Warne
- Department of Physiology, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Dallman MF, Warne JP, Foster MT, Pecoraro NC. Glucocorticoids and insulin both modulate caloric intake through actions on the brain. J Physiol 2007; 583:431-6. [PMID: 17556388 PMCID: PMC2277039 DOI: 10.1113/jphysiol.2007.136051] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glucocorticoids act primarily in a feed-forward fashion on brain to activate CNS pathways that implement wanting appropriate to physiological needs. Thus, depending on the available conditions, elevated glucocorticoids may augment the behavioural want to run, fight or feed. Although glucocorticoids stimulate intake of chow, fat and sucrose, insulin appears to sculpt calorie-associated desires toward foods high in fat, acting through hepatic branch afferents of the vagus nerve. Both conditions of reduced food allowance and chronic stress excite glucocorticoid-augmented central neural networks that may lead toward ultimate abdominal obesity.
Collapse
Affiliation(s)
- Mary F Dallman
- Department of Physiology, University of California San Francisco, San Francisco, CA 94143-0444, USA.
| | | | | | | |
Collapse
|
20
|
Scheuer DA, Bechtold AG, Vernon KA. Chronic activation of dorsal hindbrain corticosteroid receptors augments the arterial pressure response to acute stress. Hypertension 2006; 49:127-33. [PMID: 17088452 PMCID: PMC5730874 DOI: 10.1161/01.hyp.0000250088.15021.c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Augmented cardiovascular responses to acute stress can predict cardiovascular disease in humans. Chronic systemic increases in glucocorticoids produce enhanced cardiovascular responses to psychological stress; however, the site of action is unknown. Recent evidence indicates that glucocorticoids can act within the dorsal hindbrain to modulate cardiovascular function. Therefore, we tested the hypothesis that the endogenous glucocorticoid corticosterone can act in the dorsal hindbrain to enhance cardiovascular responses to restraint stress in conscious rats. Adrenal-intact animals with indwelling arterial catheters were treated for 4 or 6 days with 3- to 4-mg pellets of corticosterone or silastic (sham pellets) implanted on the dorsal hindbrain surface. Corticosterone pellets were also implanted either on the surface of the dura or subcutaneously to control for the systemic effects of corticosterone (systemic corticosterone). The integrated increase in arterial pressure during 1 hour of restraint stress was significantly (P<0.05) greater in dorsal hindbrain corticosterone (912+/-98 mm Hg per 60 minutes) relative to dorsal hindbrain sham (589+/-57 mm Hg per 60 minutes) or systemic corticosterone (592+/-122 mm Hg per 60 minutes) rats. The plasma glucose response after 10 minutes of stress was also significantly higher in dorsal hindbrain corticosterone-treated rats relative to both other groups. There were no significant between-group differences in the heart rate or corticosterone responses to stress. There were no differences in baseline values for any measured parameters. We conclude that corticosterone can act selectively in the dorsal hindbrain in rats with normal plasma corticosterone levels to augment the arterial pressure response to restraint stress.
Collapse
Affiliation(s)
- Deborah A Scheuer
- School of Medicine, University of Florida, Gainesville 32610-0274, USA.
| | | | | |
Collapse
|
21
|
Bechtold AG, Scheuer DA. Glucocorticoids act in the dorsal hindbrain to modulate baroreflex control of heart rate. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1003-11. [PMID: 16269575 PMCID: PMC5730876 DOI: 10.1152/ajpregu.00345.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3-4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 +/- 2 mmHg) relative to both DHB Sham (108 +/- 3 mmHg) and Dura Cort rats (109 +/- 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 +/- 2 mmHg) compared with DHB Sham (105 +/- 2 mmHg) and Dura Cort animals (106 +/- 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 +/- 0.12 beats x min(-1) x mmHg(-1)) relative to DHB Sham and Dura Cort rats (3.51 +/- 0.28 and 3.37 +/- 0.27 beats x min(-1) x mmHg(-1), P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.
Collapse
Affiliation(s)
- Andrea G Bechtold
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | |
Collapse
|
22
|
Stanley SA, Murphy KG, Bewick GA, Kong WM, Opacka-Juffry J, Gardiner JV, Ghatei M, Small CJ, Bloom SR. Regulation of rat pituitary cocaine- and amphetamine-regulated transcript (CART) by CRH and glucocorticoids. Am J Physiol Endocrinol Metab 2004; 287:E583-90. [PMID: 15138156 DOI: 10.1152/ajpendo.00576.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) was originally isolated from rat brain, but CART is also synthesized and stored in the anterior pituitary. The localization of pituitary CART and factors regulating its synthesis are largely unknown. The regulation of pituitary CART synthesis and release in response to CRH and glucocorticoids was examined in vitro and in vivo. CART immunoreactivity (CART-IR) was released from anterior pituitary segments. This release was increased 15-fold in response to corticotropin-releasing hormone (CRH). Intraperitoneal administration of CRH to rats significantly increased plasma CART-IR. Furthermore, CART-IR content and plasma CART-IR were significantly increased in adrenalectomized rats, and anterior pituitary CART mRNA expression, CART-IR content, and plasma CART-IR were significantly decreased in corticosterone-treated rats. Plasma CART-IR showed a pattern of diurnal variation similar to that of ACTH and corticosterone, and plasma CART-IR was positively correlated with corticosterone. CART-IR was detectable in the medium of the corticotroph cell line AtT-20. Dual in situ hybridization for prepro-CART (ppCART) mRNA expression and immunocytochemistry for ACTH showed localization of ppCART mRNA to a subpopulation of ACTH-immunoreactive cells. These findings demonstrate that pituitary CART expression and release are regulated by CRH and the glucocorticoid environment and that pituitary CART is partly localized to corticotrophs.
Collapse
Affiliation(s)
- S A Stanley
- Endocrine Unit, Faculty of Medicine, ICSTM, Hammersmith Hospital, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Scheuer DA, Bechtold AG, Shank SS, Akana SF. Glucocorticoids act in the dorsal hindbrain to increase arterial pressure. Am J Physiol Heart Circ Physiol 2004; 286:H458-67. [PMID: 14512285 DOI: 10.1152/ajpheart.00824.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid receptors (GRs) are present at a high density in the nucleus of the solitary tract (NTS), an area of the dorsal hindbrain (DHB) that is critical for blood pressure regulation. However, whether these receptors play any role in the regulation of blood pressure is unknown. We tested the hypothesis that glucocorticoids act in the DHB to increase arterial pressure using two experimental strategies. In one approach, we implanted pellets of corticosterone (Cort) or sham pellets onto the DHB over the NTS. Compared with rats with sham pellets, rats with DHB Cort pellets had an increased ( P < 0.05) mean arterial pressure (111 ± 2 vs. 104 ± 1 mmHg) and heart rate (355 ± 9 vs. 326 ± 5 beats/min) after 4 days. In the second approach, we implanted subcutaneous Cort pellets to increase the systemic Cort concentration and then subsequently implanted pellets of the GR antagonist mifepristone (Mif; previously RU-38486) or sham pellets onto the DHB. Two days of DHB Mif treatment reduced ( P < 0.05) mean arterial pressure in those rats with elevated plasma Cort levels (118 ± 2 vs. 108 ± 1 mmHg for sham vs. Mif DHB pellets). Cort and Mif pellets placed on the dura had no effects on arterial pressure or heart rate, ruling out systemic cardiovascular effects of the steroids. DHB Cort treatment had no effects on plasma Cort concentration or adrenal weight, indicating that the contents of the DHB Cort pellet did not diffuse into the systemic circulation or into the forebrain areas that regulate plasma Cort concentration in concentrations sufficient to produce physiological effects. Immunohistochemistry for the occupied GRs demonstrated that the Cort and Mif from the DHB pellets were delivered to the DHB with minimal diffusion to the ventral hindbrain or forebrain. We conclude that glucocorticoids act in the DHB to increase arterial pressure.
Collapse
Affiliation(s)
- Deborah A Scheuer
- Dept. of Pharmacology, Univ. of Missouri-Kansas City, 2411 Holmes St., Rm. MG 111, Kansas City, MO 64108, USA.
| | | | | | | |
Collapse
|
24
|
Chan O, Chan S, Inouye K, Shum K, Matthews SG, Vranic M. Diabetes impairs hypothalamo-pituitary-adrenal (HPA) responses to hypoglycemia, and insulin treatment normalizes HPA but not epinephrine responses. Diabetes 2002; 51:1681-9. [PMID: 12031953 DOI: 10.2337/diabetes.51.6.1681] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We recently established that in addition to plasma adrenocorticotrophic hormone (ACTH) and corticosterone, hypothalamic corticotrophin-releasing hormone (CRH) mRNA and hippocampal type 1 glucocorticoid receptor (GR1) mRNA were also upregulated in uncontrolled streptozotocin-induced diabetes. In the current study, control, diabetic, and insulin-treated diabetic rats underwent a hyperinsulinemic-hypoglycemic glucose clamp to evaluate central mechanisms of hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia. Increases in plasma ACTH, corticosterone, and epinephrine were significantly lower in diabetic rats versus controls. Insulin treatment restored ACTH and corticosterone but not epinephrine responses to hypoglycemia in diabetic rats. Glucagon and norepinephrine responses to hypoglycemia were not affected by diabetes or insulin treatment. In response to hypoglycemia, hypothalamic CRH mRNA and pituitary proopiomelanocortin mRNA expression increased in control and insulin-treated but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal GR1 mRNA expression in control and insulin-treated diabetic rats but not in diabetic rats. In contrast, type 2 glucocortoid receptor (GR2) mRNA was not altered by hypoglycemia. In conclusion, despite increased basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that the defect in CRH response could be related to the defective GR1 response. It is intriguing that insulin treatment restored the HPA response to hypoglycemia but, surprisingly, not the deficient epinephrine response. This is important because during severe hypoglycemia, epinephrine is an important counterregulatory hormone.
Collapse
Affiliation(s)
- Owen Chan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Avishai-Eliner S, Eghbal-Ahmadi M, Tabachnik E, Brunson KL, Baram TZ. Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology 2001; 142:89-97. [PMID: 11145570 PMCID: PMC3100725 DOI: 10.1210/endo.142.1.7917] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early-life experiences, including maternal interaction, profoundly influence hormonal stress responses during adulthood. In rats, daily handling during a critical neonatal period leads to a significant and permanent modulation of key molecules that govern hormonal secretion in response to stress. Thus, hippocampal glucocorticoid receptor (GR) expression is increased, whereas hypothalamic CRH-messenger RNA (mRNA) levels and stress-induced glucocorticoid release are reduced in adult rats handled early in life. Recent studies have highlighted the role of augmented maternal sensory input to handled rats as a key determinant of these changes. However, the molecular mechanisms, and particularly the critical, early events leading from enhanced sensory experience to long-lasting modulation of GR and CRH gene expression, remain largely unresolved. To elucidate the critical primary genes governing this molecular cascade, we determined the sequence of changes in GR-mRNA levels and in hypothalamic and amygdala CRH-mRNA expression at three developmental ages, and the temporal relationship between each of these changes and the emergence of reduced hormonal stress-responses. Down-regulation of hypothalamic CRH-mRNA levels in daily-handled rats was evident already by postnatal day 9, and was sustained through postnatal days 23 and 45, i.e. beyond puberty. In contrast, handling-related up-regulation of hippocampal GR-mRNA expression emerged subsequent to the 23rd postnatal day, i.e. much later than changes in hypothalamic CRH expression. The hormonal stress response of handled rats was reduced starting before postnatal day 23. These findings indicate that early, rapid, and persistent changes of hypothalamic CRH gene expression may play a critical role in the mechanism(s) by which early-life experience influences the hormonal stress-response long-term.
Collapse
Affiliation(s)
- S Avishai-Eliner
- Departments of Anatomy/Neurobiology, University of California at Irvine, Irvine, California 92697-4475, USA
| | | | | | | | | |
Collapse
|
26
|
Muglia LJ, Jacobson L, Luedke C, Vogt SK, Schaefer ML, Dikkes P, Fukuda S, Sakai Y, Suda T, Majzoub JA. Corticotropin-releasing hormone links pituitary adrenocorticotropin gene expression and release during adrenal insufficiency. J Clin Invest 2000; 105:1269-77. [PMID: 10792002 PMCID: PMC315436 DOI: 10.1172/jci5250] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Corticotropin-releasing hormone (CRH)-deficient (KO) mice provide a unique system to define the role of CRH in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Despite several manifestations of chronic glucocorticoid insufficiency, basal pituitary proopiomelanocortin (POMC) mRNA, adrenocorticotrophic hormone (ACTH) peptide content within the pituitary, and plasma ACTH concentrations are not elevated in CRH KO mice. The normal POMC mRNA content in KO mice is dependent upon residual glucocorticoid secretion, as it increases in both KO and WT mice after adrenalectomy; this increase is reversed by glucocorticoid, but not aldosterone, replacement. However, the normal plasma levels of ACTH in CRH KO mice are not dependent upon residual glucocorticoid secretion, because, after adrenalectomy, these levels do not undergo the normal increase seen in KO mice despite the increase in POMC mRNA content. Administration of CRH restores ACTH secretion to its expected high level in adrenalectomized CRH KO mice. Thus, in adrenal insufficiency, loss of glucocorticoid feedback by itself can increase POMC gene expression in the pituitary; but CRH action is essential for this to result in increased secretion of ACTH. This may explain why, after withdrawal of chronic glucocorticoid treatment, reactivation of CRH secretion is a necessary prerequisite for recovery from suppression of the HPA axis.
Collapse
Affiliation(s)
- L J Muglia
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Karten YJ, Nair SM, van Essen L, Sibug R, Joëls M. Long-term exposure to high corticosterone levels attenuates serotonin responses in rat hippocampal CA1 neurons. Proc Natl Acad Sci U S A 1999; 96:13456-61. [PMID: 10557342 PMCID: PMC23969 DOI: 10.1073/pnas.96.23.13456] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.
Collapse
Affiliation(s)
- Y J Karten
- Institute for Neurobiology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Muglia LJ, Jacobson L, Weninger SC, Luedke CE, Bae DS, Jeong KH, Majzoub JA. Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice. J Clin Invest 1997; 99:2923-9. [PMID: 9185516 PMCID: PMC508144 DOI: 10.1172/jci119487] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The normal pattern of daily glucocorticoid production in mammals requires circadian modulation of hypothalamicpituitary-adrenal axis activity. To assess both the factors responsible for imparting this diurnal profile and its physiologic importance, we have exploited corticotropin-releasing hormone (CRH)-deficient mice generated by homologous recombination in embryonic stem cells. CRH-deficient mice have lost normal circadian variations in plasma ACTH and glucocorticoid while maintaining normal circadian locomotor activity. Constant peripheral infusion of CRH produced marked diurnal excursions of plasma glucocorticoid, indicating that CRH acts in part as a permissive factor for other circadian modulators of adrenocortical activity. The presence of atrophic adrenals in CRH-deficient mice without an overt deficit in basal plasma ACTH concentration suggests that the diurnal increase in ACTH is essential to maintain normal adrenal function.
Collapse
Affiliation(s)
- L J Muglia
- Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The hypothalamic ventromedial nuclei couple activity in the hypothalamo-pituitary-adrenal axis to the morning fed or fasted state. J Neurosci 1997. [PMID: 8987842 DOI: 10.1523/jneurosci.16-24-08170.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Function in the adrenocortical system is markedly altered by availability of food. Basal activity is lowest and stress responsivity highest in the morning when nocturnal rats eat approximately 90% of their daily calories during the dark. After an overnight fast, basal corticotrophin and corticosteroid levels are elevated, and responsivity to stressors is decreased. Central neural sites that control these changes are unidentified. The hypothalamic ventromedial nuclei (VMN) appear to signal satiety; lesions result in increased food intake, obesity, and elevated basal insulin and corticosteroids. Thus, the VMN are good candidates for calorically mediated control of adrenocortical system function in satiated rats. We injected colchicine into the VMN to cause reversible inhibition of activity (Avrith and Mogenson, 1978) and tested the effects on basal and stimulated function in the adrenocortical system. Colchicine-injected rats that fed ad libitum exhibited increased basal but reduced corticotrophin and corticosterone responses to restraint in the morning compared with controls. By contrast, after an overnight fast, control rats had increased basal adrenocortical hormones and decreased stress responses that did not differ from colchicine-injected rats. Colchicine was visualized within cells in the VMN for up to 5 d using fluorescein/colchicine, and the treatment did not cause increased gliosis; moreover, the functional effects of the injections were reversed within 15 d. We conclude that (1) the VMN serve to couple activity in the adrenocortical system to energy intake and (2) discrete colchicine injections provide a behaviorally and neuroendocrinologically useful period of inhibition without causing permanent functional damage.
Collapse
|
30
|
Bennett MC, Mlady GW, Fleshner M, Rose GM. Synergy between chronic corticosterone and sodium azide treatments in producing a spatial learning deficit and inhibiting cytochrome oxidase activity. Proc Natl Acad Sci U S A 1996; 93:1330-4. [PMID: 8577764 PMCID: PMC40080 DOI: 10.1073/pnas.93.3.1330] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously, we developed a rat model of persistent mitochondrial dysfunction based upon the chronic partial inhibition of the mitochondrial enzyme cytochrome oxidase (EC 1.9.3.1). Continuous systemic infusion of sodium azide at approximately 1 mg/kg per hr inhibited cytochrome oxidase activity and produced a spatial learning deficit. In other laboratories, glucocorticoids have been reported to exacerbate neuronal damage from various acute metabolic insults. Therefore, we tested the hypothesis that corticosterone, the primary glucocorticoid in the rat, would potentiate the sodium azide-induced learning deficit. To this end, we first identified nonimpairing doses of sodium azide (approximately 0.75 mg/kg per hr) and corticosterone (100-mg pellet, 3-week sustained-release). We now report that chronic co-administration of these individually nonimpairing treatments produced a severe learning deficit. Moreover, the low dose of corticosterone, which did not elevate serum corticosterone, acted synergistically with sodium azide to inhibit cytochrome oxidase activity. The latter result represents a previously unidentified effect of glucocorticoids that provides a candidate mechanism for glucocorticoid potentiation of neurotoxicity induced by metabolic insult. These results may have the clinical implication of expanding the definition of hypercortisolism in patient populations with compromised oxidative metabolism. Furthermore, they suggest that glucocorticoid treatment may contribute to pathology in disease or trauma conditions that involve metabolic insult.
Collapse
Affiliation(s)
- M C Bennett
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
31
|
de Kloet ER, Oitzl MS, Joëls M. Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol 1993; 13:433-55. [PMID: 8252612 DOI: 10.1007/bf00711582] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Corticosteroids readily enter the brain and control gene expression in nerve cells via binding to intracellular receptors, which act as gene transcription factors. In the rat brain corticosterone binds to mineralocorticoid receptors (MRs) with a 10-fold higher affinity than to glucocorticoid receptors (GRs). As a consequence, these MRs are extensively occupied under basal resting conditions, while substantial GR occupation occurs at the circadian peak and following stress. Both receptors are colocalized in most, but not all, hippocampal neurons. In addition, some neurons contain aldosterone-selective MRs, if corticosterone is enzymatically inactivated. These aldosterone target neurons are presumably localized in the anterior hypothalamus, where they underlie central control of salt appetite and cardiovascular regulation. 2. The data show that MR- and GR-mediated effects proceed in a coordinate and often antagonistic mode of action: (i) in hippocampus MR activation maintains excitability, while GR occupancy suppresses excitability, which is transiently raised by excitatory stimuli; (ii) central MRs participate in control of the sensitivity of the neuroendocrine stress response system, while GRs are involved in termination of the stress response; (iii) MRs in the hippocampus have a role in regulation of behavioral reactivity and response selection. GR-mediated effects facilitate storage of information. 3. On the basis of these data, we propose that a relative deficiency or excess of MR- over GR-mediated neuronal effects may lead to a condition of enhanced or reduced responsiveness to environmental influences, alter behavioral adaptation, and promote susceptibility to stress. The findings may serve development of novel therapeutic strategies for treatment of stress-related brain diseases.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/physiology
- Genetic Variation
- Hippocampus/physiology
- Homeostasis
- Humans
- Learning/physiology
- Memory/physiology
- Models, Neurological
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/biosynthesis
- Receptors, Mineralocorticoid/metabolism
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/metabolism
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- E R de Kloet
- Division of Medical Pharmacology, University of Leiden, The Netherlands
| | | | | |
Collapse
|