1
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
3
|
Morris MT, Pascoe JL, Busada JT. In vitro to in vivo evidence for chemical disruption of glucocorticoid receptor signaling. Toxicol Rep 2025; 14:102053. [PMID: 40491580 PMCID: PMC12148463 DOI: 10.1016/j.toxrep.2025.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 06/11/2025] Open
Abstract
Glucocorticoids are steroid hormones that regulate stress homeostasis, metabolism, and inflammatory responses. Dysregulation of the glucocorticoid receptor (GR) is linked to diseases such as obesity, mood disorders, and immune dysfunction. Endocrine-disrupting chemicals (EDCs) are widespread environmental contaminants known to interfere with hormone signaling, but their impact on glucocorticoid signaling remains unclear. While several GR-disrupting compounds have been identified in vitro, their in vivo effects remain largely unknown. In this study, we identified the agricultural agents dichlorodiphenyltrichloroethane (DDT) and ziram as GR-disruptors in vitro. In vivo, corticosterone co-treatment with DDT or the GR antagonist RU-486 inhibited the expression of classic GR-regulated transcripts in the liver. Furthermore, chronic exposure to DDT or RU-486 significantly reduced circulating B lymphocyte populations. These findings underscore the need to translate in vitro discoveries into in vivo models to assess the clinical relevance of GR-disrupting compounds. Moreover, they highlight the potential for xenobiotic-induced GR disruption to impair metabolic and immune homeostasis, potentially increasing disease susceptibility.
Collapse
Affiliation(s)
- Maeve T. Morris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jordan L. Pascoe
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jonathan T. Busada
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Kapoor H, Dhawan G, Kapoor R, Calabrese V. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes. Mech Ageing Dev 2025; 225:112065. [PMID: 40287100 DOI: 10.1016/j.mad.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Kaempferol is a polyphenol in various fruits and vegetables. It is also commercially developed and sold to consumers as a supplement. It has been extensively assessed in clinical trials for clinical utility based upon its numerous experimentally based chemopreventive properties. Kaempferol has been evaluated at the levels of molecule, cell, and individual animal, showing a broad spectrum of biological effects. Kaempferol-induced hormetic concentration responses are common, being reported in many cell types and biological models for numerous endpoints. While the hormetic effects of kaempferol are biologically diverse, there has been a strong focus on age-related endpoints affecting numerous organ systems and endpoints, indicating that kaempferol is a senolytic agent, showing similar properties as quercetin and fisetin. This paper offers the first integrated evaluation of kaempferol-induced hormetic dose responses, their quantitative characteristics, mechanistic explanations, extrapolative strengths or limitations, and related experimental design, biomedical, therapeutic, ageing, and public health, including ageing related applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, University of Massachusetts, Morrill I-N344, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Linda Baldwin
- Independent Researcher, Sapphire Lane, Greenfield, MA 01301, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Harshita Kapoor
- Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India; Independent Consultant, Hartford, CT, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
5
|
Wu PS, Yen JH, Chen PY, Wu MJ. Molecular Mechanisms of Biochanin A in AML Cells: Apoptosis Induction and Pathway-Specific Regulation in U937 and THP-1. Int J Mol Sci 2025; 26:5317. [PMID: 40508126 PMCID: PMC12154116 DOI: 10.3390/ijms26115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/20/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Biochanin A, a naturally occurring isoflavone derived from legumes, possesses anti-inflammatory, estrogenic, and anticancer activities. In this study, we investigated the cytotoxic effects and underlying molecular mechanisms of Biochanin A in acute myeloid leukemia (AML) cell lines, U937 and THP-1, using in vitro cytotoxicity assays, RNA sequencing, and bioinformatic analyses. Biochanin A induced dose-dependent apoptosis, as evidenced by caspase-7 activation and PARP1 cleavage. Over-representation analysis (ORA) revealed that differentially expressed genes (DEGs) were significantly enriched in pathways related to inflammatory responses, DNA replication, and cell cycle regulation. Gene set enrichment analysis (GSEA) further confirmed the upregulation of apoptosis- and inflammation-related pathways and the downregulation of MYC targets, cholesterol biosynthesis, and G2/M checkpoint gene sets. RT-qPCR analysis demonstrated that Biochanin A downregulated oncogenes such as RUNX1, BCL2, and MYC while upregulating CHOP (GADD153), CDKN1A (p21), and SQSTM1 (p62), contributing to apoptosis and cell cycle arrest across both cell lines. Notably, Biochanin A downregulated PLK1 and UHRF1 in THP-1 cells, indicating a disruption of mitotic progression and epigenetic regulation. In contrast, in U937 cells, Biochanin A upregulated TXNIP and downregulated CCND2, highlighting the involvement of oxidative stress and G1/S cell cycle arrest. These findings support the potential of Biochanin A as a promising therapeutic candidate for AML through both shared and distinct regulatory pathways.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (J.-H.Y.); (P.-Y.C.)
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| |
Collapse
|
6
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
7
|
Trendel J, Trendel S, Sha S, Greulich F, Goll S, Wudy SI, Kleigrewe K, Kubicek S, Uhlenhaut NH, Kuster B. The human proteome with direct physical access to DNA. Cell 2025:S0092-8674(25)00507-0. [PMID: 40409270 DOI: 10.1016/j.cell.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/10/2025] [Accepted: 04/27/2025] [Indexed: 05/25/2025]
Abstract
In a human cell, DNA is packed with histones, RNA, and chromatin-associated proteins, forming a cohesive gel. At any given moment, only a subset of the proteome has physical access to the DNA and organizes its structure, transcription, replication, repair, and other essential molecular functions. We have developed a "zero-distance" photo-crosslinking approach to quantify proteins in direct contact with DNA in living cells. Collecting DNA interactomes from human breast cancer cells, we present an atlas of over one thousand proteins with physical access to DNA and hundreds of peptide-nucleotide crosslinks pinpointing protein-DNA interfaces with single-amino-acid resolution. Quantitative comparisons of DNA interactomes from differentially treated cells recapitulate the recruitment of key transcription factors as well as DNA repair proteins and uncover fast-acting restrictors of chromatin accessibility on a timescale of minutes. This opens a direct way to explore genomic regulation in a hypothesis-free manner, applicable to many organisms and systems.
Collapse
Affiliation(s)
- Jakob Trendel
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | | | - Shuyao Sha
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany
| | - Sandra Goll
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - N Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany; Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
8
|
Eerlings R, Lee XY, Van Eynde W, Moris L, El Kharraz S, Smeets E, Devlies W, Claessens F, Verstrepen KJ, Voet A, Helsen C. Rewiring Estrogen Receptor α into Bisphenol Selective Receptors Using Darwin Assembly-Based Directed Evolution (DADE) in Saccharomyces cerevisiae. ACS Synth Biol 2025. [PMID: 40347189 DOI: 10.1021/acssynbio.5c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Bisphenols are widely used in manufacturing plastics and resins, but their environmental persistence raises concerns to human health and ecosystems. Accurate measurements for bisphenols are crucial for effective monitoring and regulation. Analytical methods detect only preselected bisphenols, while bioassays assessing estrogen receptor α activation suffer from poor sensitivity and strong background signals due to estrogenic contaminations. To develop a bioassay in Saccharomyces cerevisiae with increased sensitivity and specificity for bisphenols, we performed multi-site directed mutagenesis and directed evolution of more than 108 stably integrated estrogen receptor variants. By mutating the estrogen receptor α towards recognition of bisphenol A in yeast, we determined the preBASE variant (M421G_V422G_V533D_L536G_Y537S) with elevated bisphenol A sensitivity (EC50:329 nM) and lost estrogen responsiveness (EC50:0,17 mM). Further engineering yielded an off-target mutant, identified as the Bisphenol-Affinity and Specificity-Enhanced (BASE) variant (M421G_V422G_V533D_L536G_Y537S_L544I) that uses bisphenols as its primary agonist (EC50:32 mM) and impaired estrogen sensitivity (EC50:85M). The rewiring into a bisphenol receptor was confirmed in ligand binding assays to purified ligand binding domains. Taken together, the identified variants form stepping stones for further protein engineering to generate bisphenol specific high-throughput yeast-based bioassays.
Collapse
Affiliation(s)
- Roy Eerlings
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Xiao Yin Lee
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Wout Van Eynde
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Lisa Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Wout Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001 Heverlee, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Rivera-Núñez Z, Kinkade C, Brinker A, Zhang R, Buckley B, Brunner J, Ohman-Strickland P, Qiu X, Qasem RJ, Fallon JK, Smith PC, Miller RK, Salafia CS, O’Connor TG, Aleksunes LM, Barrett ES. Mycoestrogen Exposure during Pregnancy: Impact of the ABCG2 Q141K Variant on Birth and Placental Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57001. [PMID: 40126888 PMCID: PMC12052082 DOI: 10.1289/ehp14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Zearalenone (ZEN) is an estrogenic mycotoxin ("mycoestrogen") that contaminates global grain crops leading to detectable concentrations of ZEN and its metabolites, including the synthetic version α -zearalanol (also called zeranol; ZER), in human populations. Despite in vitro and in vivo animal evidence of endocrine disruption by ZEN, there has been limited investigation in humans. OBJECTIVES To examine markers of fetal growth following prenatal exposure to ZEN and evaluate the role of the placental efflux transporter BCRP/ABCG2 in protecting against ZEN's potential fetoplacental toxicity. METHODS Placentas were collected from participants (n = 271 ) in the Understanding Pregnancy Signals and Development cohort (Rochester, New York, USA). Placental ZEN and its metabolites were analyzed from tissue samples using HPLC-MS. Birth weights and placental weights were obtained from medical records and direct measurement, respectively; fetoplacental weight ratio (FPR) was calculated by dividing birth weight by placental weight. Covariate-adjusted generalized linear regression models were used to examine ZEN, ZER, and total mycoestrogens (sum of ZEN, ZER, and their metabolites) in relation to birth length, birth weight, placental weight and FPR. We additionally stratified models by infant sex and ABCG2 C421A (Q141K) genotype. RESULTS Mycoestrogens were detected in 84% of placentas (median ZEN: 0.010 ng / g ) and total mycoestrogens were associated with lower FPR [- 0.20 ; 95% confidence interval (CI): - 0.32 , - 0.08 ], particularly in female infants (- 0.31 ; 95% CI: - 0.52 , - 0.09 ). Associations with birth weight were inverse and overall nonsignificant. Among the 17% of participants with the reduced function 421A ABCG2 variant (AA or AC), total mycoestrogens were associated with lower birth weight (- 113.5 g ; 95% CI: - 226.5 , - 0.50 ), whereas in wild-type individuals, total mycoestrogens were associated with higher placental weight (9.9; 95% CI: 0.57, 19.2) and reduced FPR (- 0.19 ; 95% CI: - 0.33 , - 0.05 ). DISCUSSION Results from this epidemiological study of prenatal mycoestrogen exposure and perinatal health suggest that mycoestrogens may reduce placental efficiency, resulting in lower birth weight, particularly in female and ABCG2 421A infants. https://doi.org/10.1289/EHP14478.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Carolyn Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ranran Zhang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Rani J. Qasem
- Department of Applied Pharmaceutical Sciences, School of Pharmacy, Isra University, Amman, Jordan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
Kinkade CW, Brinker A, Buckley B, Waysack O, Fernandez ID, Kautz A, Meng Y, Shi H, Brunner J, Ohman-Strickland P, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES, Rivera-Núñez Z. Sociodemographic and dietary predictors of maternal and placental mycoestrogen concentrations in a US pregnancy cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:382-392. [PMID: 39363096 PMCID: PMC11968447 DOI: 10.1038/s41370-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/β signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - I Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Huishan Shi
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
11
|
Messina M, Barnes S, Setchell KD. Perspective: Isoflavones-Intriguing Molecules but Much Remains to Be Learned about These Soybean Constituents. Adv Nutr 2025; 16:100418. [PMID: 40157603 DOI: 10.1016/j.advnut.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones are naturally occurring compounds found in a wide range of plants, but among commonly consumed foods are especially abundant in soybeans and foods derived from this legume. Much of the substantial amount of research conducted on soy protein and soy foods over the past 30 y is because of their isoflavone content. Research interest in isoflavones increased dramatically beginning in the early 1990s as evidence highlighted their possible role in the prevention of a wide range of cancers, including breast, prostate, and colon cancer. Recognition that isoflavones preferentially bind to estrogen receptor (ER)β in comparison with ERα provided a conceptual basis for classifying these diphenolic molecules as selective ER modulators (SERMs). Isoflavone research soon greatly expanded beyond cancer to include areas such as coronary artery disease, bone health, cognitive function, and vasomotor symptoms of menopause. Nevertheless, safety concerns about isoflavones, based primarily on the results of rodent studies and presumed estrogenic effects, also arose. However, recent work challenges the traditional view of the estrogenicity of isoflavones. Furthermore, safety concerns have largely been refuted by intervention and population studies. On the other hand, investigation of the proposed benefits of isoflavones has produced inconsistent data. The small sample size and short duration common to many intervention trials, combined with marked interindividual differences in isoflavone metabolism, likely contribute to the conflicting findings. Also, many different intervention products have been employed, which vary not only in the total amount, but also in the relative proportion of the 3 soybean isoflavones, and the form in which they are delivered (glycoside compared with aglycone). For those interested in exploring the proposed benefits of isoflavones, studies justify an intake recommendation of ∼50 mg/d, an amount provided by ∼2 servings of traditional Asian soy foods.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Science and Research, Soy Nutrition Institute Global, Washington, DC, United States.
| | - Stephen Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth Dr Setchell
- Clinical Mass Spectrometry, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
12
|
Guillén-Castrillo M, Fierro R, Damián-Matsumura P, Gaona-Domínguez S, Tarragó-Castellanos R. Neonatal co-administration of the phytoestrogens genistein and daidzein disrupts sexual behavior and fertility. Physiol Behav 2025; 293:114812. [PMID: 39884525 DOI: 10.1016/j.physbeh.2025.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Phytoestrogens are non-steroidal compounds that, can act as agonists and/or antagonists by binding to estrogen receptors; consequently they can modify estrogen-dependent processes of neonatal sexual differentiation. Results of the analysis of the sexual behavior of experimental rats that received 6.8 mg of isoflavones/kg/day, showed significantly more mating activity, but fewer ejaculations (p < 0.01), and a lower copulatory efficiency than the control group. Aggressive behavior was prominent in the phytoestrogen-treated males (p < 0.05), but defensive behavior was infrequent. Phytoestrogens may interfere with the development of male and female traits by competing with estradiol in contexts of sexual behavior. Compared to the control group, the phytoestrogen-treated males exhibited delayed olfactory perception and uncertain preference. The ventrolateral area of the medial hypothalamus is influenced by neonatal neuro estrogens that can produce changes in differentiation, such as the aggressiveness manifested by the males. A probable explanation is that this is due to the inhibition of aromatase by isoflavones. Regarding fertility, the females impregnated by the control males had more offspring (12.2 ± 2.10), than those of the experimental males (4.02 ± 1.13, p < 0.01). Spermatozoa analysis showed a low concentration (p < 0.05) due to isoflavone treatment, with increased immaturity (p < 0.01) and more dead spermatozoa (p < 0.05). We conclude that neonatal administration of genistein and daidzein alters olfactory functions, aggressiveness, sexual behaviors, and fertility through changes in spermatozoa quality. The most notable effect was the decreased of fertility in experimental male demonstrated by the lower number of pregnant females and smaller litters.
Collapse
Affiliation(s)
- Marissa Guillén-Castrillo
- Maestría en Biología de la Reproducción. Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma, 1A Sección, Alcaldía Iztapalapa, C.P, 09310, Ciudad de México, México.
| | - Reyna Fierro
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | - Pablo Damián-Matsumura
- Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | | | - Rosario Tarragó-Castellanos
- Departamento de Biología de la Reproducción. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| |
Collapse
|
13
|
Nakamoto M, Nishita Y, Tange C, Zhang S, Shimokata H, Sakai T, Otsuka R. Isoflavone intake is associated with longitudinal changes in hippocampal volume, but not total grey matter volume, in Japanese middle-aged and older community dwellers. Eur J Nutr 2025; 64:151. [PMID: 40205227 DOI: 10.1007/s00394-025-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE This study aimed to clarify the associations between isoflavone intake and the volume changes of brain regions, specifically the hippocampus and total grey matter (TGM), over 10 years in Japanese middle-aged and older community dwellers. METHODS Data from the National Institute for Longevity Sciences-Longitudinal Study of Aging of 654 men and 671 women aged 40-85 years at baseline (6th wave survey, 2008-2010) who participated in the follow-up study (9th wave survey, 2018-2022) were analyzed. Total isoflavone intake was estimated based on a 3-day dietary record and categorized into quintile groups. The volumes of the hippocampus and TGM were measured by T1-weighted magnetic resonance imaging and longitudinal FreeSurfer software. Estimated mean brain volume changes by quintile of total isoflavone intake were assessed by a general linear model, with a stratified analysis by age group (< 65/≥65 years). RESULTS There were no significant associations between quintile of isoflavone intake and both brain volume changes over 10 years in all participants. On stratification by age group, the multivariable-adjusted difference over time and % change in hippocampal volume were more strongly associated with quintile of total isoflavone intake in those aged ≥ 65 years (difference over time: p for trend = 0.009; % change: p for trend = 0.012). There were no significant longitudinal associations between quintile of total isoflavone intake and TGM volume change in both age groups. CONCLUSION In older Japanese people aged ≥ 65 years, increased intake of total isoflavones might be a new nutritional strategy to prevent hippocampal atrophy.
Collapse
Affiliation(s)
- Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima city, Tokushima, 770-8503, Japan.
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Yukiko Nishita
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shu Zhang
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Aichi, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima city, Tokushima, 770-8503, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
14
|
Liu X, Li P, Yang X, Xie T, Xu H. Exploration of the molecular mechanism of modified Danggui Liuhuang Decoction in treating central precocious puberty and its effects on hypothalamic-pituitary-gonadal axis hormones. Hereditas 2025; 162:56. [PMID: 40200320 PMCID: PMC11980125 DOI: 10.1186/s41065-025-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
AIM To evaluate the molecular mechanism of modified Danggui Liuhuang Decoction (MDGLHD) in treating central precocious puberty (CPP). METHODS CPP-related genes were obtained from GEO dataset, MalaCard, DisGeNET and GeneCards databases. MDGLHT ingredients and targets were obtained in TCMSP, HERB, and SwissTargetPrediction databases. Protein-protein interaction (PPI) network was constructed and analyzed using STRING database and Cytoscape 3.9.1. Genetic ontological (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed with DAVID and Metascape databases. Molecular docking was performed with PyMoL and AutoDock-Vina software. The GnRH secretion model was established by E2 induction of GT1-7 cells. CCK-8, ELISA and qRT-PCR were used to detect the effects of MDGLHD on gonadotropin-releasing hormone (GnRH) secretion and endocrine signaling receptor gene expression. RESULTS 318 potential targets of MDGLHD in CPP treatment were screened out. Quercetin, kaempferol, and (S)-Canadine were considered to be the most important active ingredients in MDGLHD. Bioinformatics analysis showed that these targets were associated with response to hormone, JAK-STAT signaling pathway and HIF-1 signaling pathway. Quercetin, kaempferol, and (s)-Canadine had good binding affinity with tumor protein p53 (TP53), estrogen receptor 1(ESR1), Jun proto-oncogene (JUN), MYC proto-oncogene (MYC) and AKT serine/threonine kinase 1 (AKT1). In vitro experiments showed that MDGLHD extract can inhibit GnRH secretion and the expression of neuroendocrine signaling receptor protein gene. CONCLUSION MDGLHD treatment of CPP is achieved through multi-components, multi-targets and multi-pathways, and inhibition of GnRH secretion and neuroendocrine signaling.
Collapse
Affiliation(s)
- Xiaqing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, P. R. China
| | - Pinggan Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, P. R. China
| | - Xiangna Yang
- Department of Traditional Chinese Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, 510620, Guangdong, P. R. China
| | - Ting Xie
- Department of Children's Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, 510620, Guangdong, P. R. China
| | - Hua Xu
- Pediatrics of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Airport Road, Guangzhou, 510405, Guangdong, P. R. China.
| |
Collapse
|
15
|
Chen S, Zhang X, Zhang L, Cheng W, Jin Y, Ma Q, Ma L, Zhang S, Lin J. Association Between Dietary Soy Isoflavones Intake and the Risk of Hyperemesis Gravidarum: A Cross-Sectional Study in Chinese Pregnant Women. Nutrients 2025; 17:1282. [PMID: 40219039 PMCID: PMC11990840 DOI: 10.3390/nu17071282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
(1) Background: Diet plays a crucial role in the intake of phytoestrogens, which are closely related to the pathogenesis of some pregnancy complications. However, no studies have explored the potential association between soy isoflavones, a type of phytoestrogen, and the risk of hyperemesis gravidarum (HG). This study aims to investigate the correlation between dietary intake of soy isoflavones and the risk of HG. (2) Methods: As part of the China Birth Cohort Study (CBCS), 2418 pregnant Chinese women (mean age: 31.2 ± 3.4 years) were enrolled between April 2021 and September 2022. Dietary intake was evaluated using a validated 108-item semi-quantitative food frequency questionnaire, with soy isoflavones intake estimated based on five food groups. HG was defined as a condition characterized by a pregnancy-specific vomiting score (PUQE) ≥ 13, weight loss of ≥5% due to severe nausea and vomiting before 16 weeks of gestation, inability to eat or drink normally, significant limitations in daily activities due to severe nausea or vomiting, or the need for hospitalization caused by the condition. The association between soy isoflavones intake and HG was analyzed using binary logistic regression and restricted cubic spline regression. (3) Results: Among all participants, 212 women (8.8%) were diagnosed with HG. The dietary intake of soy isoflavones was 14.56 (IQR: 9.89, 25.36) mg/d. After full adjustment for confounding factors, the results indicated that individuals with the highest dietary intake of soy isoflavones had a lower risk of developing HG (OR: 0.56, 95% CI: 0.36, 0.88. Ptrend = 0.012). (4) Conclusions: Higher dietary intake of soy isoflavones is associated with a reduced risk of HG. We advocate for a dietary approach to the management of HG that prioritizes the intake of legume-rich foods, particularly those abundant in soy isoflavones.
Collapse
Affiliation(s)
- Siyang Chen
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Xinyu Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Lan Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Wenjie Cheng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Yuan Jin
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Qian Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shunming Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jing Lin
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (S.C.); (X.Z.); (L.Z.); (W.C.); (Y.J.); (Q.M.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
16
|
Arévalo-Salina EL, Nishigaki T, Olvera L, González-Andrade M, Xolalpa-Villanueva W, López-Romero EO, Soberón X, Saab-Rincón G. Change in selectivity of estrogen receptor alpha ligand-binding domain by mutations at residues H524/L525. Biochim Biophys Acta Gen Subj 2025; 1869:130775. [PMID: 39956471 DOI: 10.1016/j.bbagen.2025.130775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/29/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The estrogen receptor alpha (ERα) features a large ligand-binding pocket capable of accommodating a variety of conformationally diverse molecules, each eliciting unique cellular responses. This structural plasticity facilitates various conformational changes, exposing different interaction surfaces for cellular proteins, triggering a myriad of biological outcomes. Alterations in the ligand-binding domain, particularly through amino acid substitutions, can modify the recognition and selectivity of ERα for agonists versus antagonists. In our study, we engineered a small library of ERα variants by modifying residues 524 and 525. These modifications resulted in variants with up to seventy-fold increased selectivity for the antagonist endoxifen and up to fifty-fold increased selectivity for the antagonist 4-hydroxytamoxifen (4-OHT) over the natural ligand estradiol. Analyzing these variants elucidates the critical roles of residues 524 and 525 in determining agonist specificity for estradiol. This advancement holds significant potential for developing selective recognition molecules, a crucial step towards creating a biosensor for endoxifen, the active metabolite used in breast cancer treatment.
Collapse
Affiliation(s)
- Emma L Arévalo-Salina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Wendy Xolalpa-Villanueva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Edith O López-Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
17
|
Yatung S, Trivedi AK. Time- and season-dependent changes in the steroidogenic markers in female tree sparrow (Passer montanus). Photochem Photobiol Sci 2025; 24:607-628. [PMID: 40220241 DOI: 10.1007/s43630-025-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Seasonal breeders display elevated sex steroid hormone production during reproductive seasons, resulting in significant physiological and structural alterations. One such seasonal breeder adapted to the changing environment is a Tree sparrow (Passer montanus). The study aims to investigate 24-h rhythmicity and annual variations in the expression of steroidogenic gene markers of adult female tree sparrows. Two experiments were conducted; in experiment one, birds (n = 5 birds/time points) were sampled at six time points, i.e., ZT1, ZT5, ZT9, ZT13, ZT17, and ZT21 (ZT = Zeitgeber time, ZT0 = sunrise time) during the reproductive stage; subsequently, hypothalamus and ovary were harvested for gene expression analysis. In experiment two, birds (n = 5/month) were sampled at mid-day every month for a year. Feather molt, follicular diameter, body mass, and bill coloration were recorded. The hypothalamus and ovary were harvested for gene expression studies. Blood plasma cholesterol and progesterone were also measured. The study indicates a larger follicular size during May and June. Whereas, maximum molt was observed during the post-reproductive phase. Cholesterol levels were highest prior breeding phase and higher progesterone levels paralleled larger follicular size. While higher levels of GnIh (gonadotropin-inhibitory hormone) and Dio3 (type 3 deiodinase) were observed during the non-breeding phase, elevated expression of Tshβ (thyroid stimulating hormone subunit beta), Dio2 (type 2 deiodinase), and GnRh (gonadotropin-releasing hormone) was noted during the reproductive period. The study also reveals 24-h rhythmicity in selected steroidogenic markers (StAR, Nr4a1, Er, Scp2, Cyp17a1, Foxl2, Cyp11a1, Hsd11b2, Cyp11b, Cyp19a1, and Vdac1) and seasonal variations directly influence steroidogenesis, which connects with the annual reproductive cycle.
Collapse
Affiliation(s)
- Subu Yatung
- Department of Zoology, Mizoram University (Central), Tanhril, Aizawl, 796004, India
| | - Amit Kumar Trivedi
- Department of Zoology, Mizoram University (Central), Tanhril, Aizawl, 796004, India.
| |
Collapse
|
18
|
Metri NA, Mandl A, Paller CJ. Harnessing nature's therapeutic potential: A review of natural products in prostate cancer management. Urol Oncol 2025; 43:221-243. [PMID: 39794185 DOI: 10.1016/j.urolonc.2024.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in the United States. The global burden of this disease is rising, placing significant strain on healthcare systems worldwide. Although definitive therapies like surgery and radiation are often effective, prostate cancer can recur and progress to castration-resistant prostate cancer in some cases. Conventional treatments for prostate cancer often have substantial side effects that can greatly impact patients' quality of life. Therefore, many patients turn to complementary therapies to improve outcomes, manage side effects, and enhance overall well-being. Natural products show promise as complementary treatments for prostate cancer, offering anticancer properties with a low risk of adverse effects. While preclinical research has produced encouraging results, their role in prostate cancer treatment remains controversial, largely due to inconsistent and limited success in clinical trials. This review explores the mechanisms of action of key natural products in prostate cancer management and summarizes clinical trials evaluating their efficacy and safety. It underscores the need for high-quality, rigorously designed, and adequately powered studies to validate the therapeutic potential and safety of these supplements in cancer care. Additionally, we propose future directions to enhance their role in addressing the complex challenges associated with prostate cancer.
Collapse
Affiliation(s)
- Nicole A Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Channing J Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
19
|
Montoya G, van Ravenzwaay B, Seefelder W, Haake V, Kamp H. Unanticipated differences in the rat plasma metabolome of genistein and daidzein. Arch Toxicol 2025; 99:1387-1406. [PMID: 39954026 PMCID: PMC11968494 DOI: 10.1007/s00204-025-03967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Genistein (GEN) and daidzein (DAI) are soy isoflavones known to bind to estrogen receptors. Overall health effects of GEN and DAI in humans exhibit a dual nature, presenting both health benefits and concerns related to their interaction with the estrogen receptor. The metabolomes of these isoflavones were determined in 28-day oral studies in male and female Wistar rats to elucidate (1) metabolites changes, (2) compare their metabolomes with other compounds and (3) identify toxicological modes of action (MoA). Dose levels for GEN were 1000 and 300 mg/kg bw by gavage and 1000 and 300 ppm (via diet). DAI gavage dose levels were 1000 and 100 mg/kg bw. Results were evaluated using the MetaMap®Tox data base. Both compounds demonstrated metabolome profiles which were associated with estrogenic profiles and compounds, predominantly in females. However, the metabolomes were compound specific with relatively few common metabolite changes. There were no relevant matches between any GEN and any DAI treatment group indicating that both compounds are substantially different from metabolome perspective. Ranking of the metabolome patters for GEN and DAI with ≥ 1000 compounds in the MetaMap®Tox database revealed correlations with estrogenic and other hormonally active compounds. GEN-treated females correlated best with Cabergoline, a dopamine D2 receptor agonist, DAI females with tamoxifen and diethylstilbestrol, suggesting that even their estrogenic activity may be different. Beyond estrogenic effects, the high dose (HD) DAI metabolome indicated altered fatty acid metabolism associated with PPAR-alpha activation. For GEN, there was an indication of ethanolamine-like liver effects. Dose levels without estrogenic effects for GEN were 1000 and 100 mg/kg bw for males and females respectively, there were no estrogenic effects in the feeding studies. For DAI males, the no estrogenic effect level was 300 mg/kg bw, for females < 100 mg/kg bw, suggesting that DAI may be a more potent estrogen than GEN in rats.
Collapse
Affiliation(s)
- Gina Montoya
- Société Des Produits Nestlé S.A, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Naoi M, Wu Y, Maruyama W, Shamoto-Nagai M. Phytochemicals Modulate Biosynthesis and Function of Serotonin, Dopamine, and Norepinephrine for Treatment of Monoamine Neurotransmission-Related Psychiatric Diseases. Int J Mol Sci 2025; 26:2916. [PMID: 40243512 PMCID: PMC11988947 DOI: 10.3390/ijms26072916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Serotonin (5-HT), dopamine (DA), and norepinephrine (NE) are key monoamine neurotransmitters regulating behaviors, mood, and cognition. 5-HT affects early brain development, and its dysfunction induces brain vulnerability to stress, raising the risk of depression, anxiety, and autism in adulthood. These neurotransmitters are synthesized from tryptophan and tyrosine via hydroxylation and decarboxylation, and are metabolized by monoamine oxidase (MAO). This review aims to summarize the current findings on the role of dietary phytochemicals in modulating monoamine neurotransmitter biosynthesis, metabolism, and function, with an emphasis on their potential therapeutic applications in neuropsychiatric disorders. Phytochemicals exert antioxidant, neurotrophic, and neurohormonal activities, regulate gene expression, and induce epigenetic modifications. Phytoestrogens activate the estrogen receptors or estrogen-responsive elements of the promoter of target genes, enhance transcription of tryptophan hydroxylase and tyrosine hydroxylase, while inhibiting that of MAO. These compounds also influence the interaction between genetic and environmental factors, potentially reversing dysregulated neurotransmission and the brain architecture associated with neuropsychiatric conditions. Despite promising preclinical findings, clinical applications of phytochemicals remain challenging. Advances in nanotechnology and targeted delivery systems offer potential solutions to enhance clinical efficacy. This review discusses mechanisms, challenges, and strategies, underscoring the need for further research to advance phytochemical-based interventions for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 320-195, Aichi, Japan; (Y.W.); (W.M.); (M.S.-N.)
| | | | | | | |
Collapse
|
21
|
Telang NT. Natural Bioactive Agents: Testable Stem Cell-Targeting Alternatives for Therapy-Resistant Breast Cancer. Int J Mol Sci 2025; 26:2529. [PMID: 40141171 PMCID: PMC11942498 DOI: 10.3390/ijms26062529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of estrogen receptor-α (ER-α), progesterone receptor (PR) hormone receptors, and/or of human epidermal growth factor receptor-2 (HER-2). The breast cancer subtypes Luminal A, Luminal B, and HER-2-enriched express hormone/growth factor receptors and exhibit a favorable response to hormone receptor modulators and growth factor receptor antagonists. The triple-negative breast cancer subtype lacks the expression of hormone/growth factor receptors and responds only to cytotoxic conventional chemotherapy. The clinical limitations, due to the modest therapeutic responses of chemo-resistant cancer-initiating stem cells, emphasize the need for the identification of stem cells targeting testable alternatives for therapy-resistant breast cancer. Developed drug-resistant stem cell models exhibit upregulated expression of select cellular biomarker tumor spheroid (TS) formations and cluster of differentiation44 (CD44), DNA-binding protein (NANOG), and octamer-binding protein-4 (OCT-4) molecular biomarkers that represent novel experimentally modifiable quantitative endpoints. Naturally occurring dietary phytochemicals and nutritional herbs containing polyphenols, flavones, terpenes, saponins, lignans, and tannins have documented human consumption, lack systemic toxicity, lack phenotypic drug resistance, and exhibit preclinical efficacy. Constituent bioactive agents may provide testable stem cell-targeting alternatives. The present report provides an overview of (i) clinically relevant cellular models and drug-resistant cancer stem cell models for breast cancer subtypes, (ii) evidence for preclinical efficacy and mechanistic leads for natural phytochemicals and nutritional herbs, and (iii) the potential for the stem cell-targeting efficacy of natural bioactive agents as testable drug candidates for therapy-resistant breast cancer.
Collapse
Affiliation(s)
- Nitin T Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645-1559, USA
| |
Collapse
|
22
|
Ridlon M, Spiegelhoff A, Kennedy CL, Lavery T, Wang K, Tlapa J, Jordan T, Tanaka LF, Stietz KK. Developmental polychlorinated biphenyl (PCB) exposure impacts on voiding physiology persist into adulthood and influence sensitivity to bladder stimuli in mice. Curr Res Toxicol 2025; 8:100227. [PMID: 40144452 PMCID: PMC11937689 DOI: 10.1016/j.crtox.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Polychlorinated biphenyls (PCBs) are toxicants present in the environment, foodstuff, animal and human tissues. PCBs are linked to numerous adverse health effects; however, impacts of developmental PCB exposure on lower urinary tract function are a comparatively newer area of interest. We have previously found developmental exposure (in utero and lactational) to a human-relevant PCB mixture in mice leads to sex- and dose- dependent changes to urinary voiding physiology at 6 weeks of age. This study expands upon previous findings to investigate if developmental PCB-induced urinary voiding phenotypes persist or shift as mice age to 12 weeks of age. Urinary voiding physiology testing through void spot assays, uroflowmetry, and cystometry demonstrated several sex- and dose- dependent effects of PCB exposure at 12 weeks of age. Further, patterns of dysfunction were either maintained, newly acquired, or reversed compared to those from younger adult mice in a previous study. Here, developmental PCB exposure decreased number of small urine spots in adult male and female mice in a dose dependent manner, and female mice had more frequent voiding events assessed by anesthetized cystometry. Mice also had PCB dose-dependent changes to urinary voiding physiology when challenged with intravesical capsaicin infusion to target transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways. PCBs either blocked or exacerbated capsaicin induced responses depending on the endpoint examined, suggesting this pathway may play a role in PCB-dependent changes in voiding. PCBs also had subtle impacts on prostate wet weight, with high PCB doses reducing tissue mass compared to low PCB doses, while none differed from vehicle. This study demonstrates developmental exposure to PCBs continues to impact lower urinary tract function in adulthood to at least 12 weeks of age both during homeostatic conditions and upon challenge of capsaicin. Better understanding of how early life stressors like PCBs contribute to aging-associated voiding dysfunction are imperative as these findings may help mitigate risk or improve treatment strategies for patients suffering from lower urinary tract symptoms.
Collapse
Affiliation(s)
- Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Julia Tlapa
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Tamryn Jordan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Lindsey Felth Tanaka
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Kimberly Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
23
|
Brong A, Kontrogianni-Konstantopoulos A. Sex Chromosomes and Sex Hormones: Dissecting the Forces That Differentiate Female and Male Hearts. Circulation 2025; 151:474-489. [PMID: 39960989 PMCID: PMC11839176 DOI: 10.1161/circulationaha.124.069493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The heart is a highly sex-biased organ, as sex shapes innumerable aspects of heart health and disease. Sex chromosomes and sex hormones -testosterone, progesterone, and estrogen- establish and perpetuate the division between male and female myocardium. Of these differentiating factors, the insulating effects of estrogen have been rigorously interrogated and reviewed, whereas the influence of sex chromosomes, testosterone, and progesterone remains in dispute or ill-defined. Here, we synthesize growing evidence that sex chromosomes and sex hormones substantially bias heart form, function, and dysfunction in a context-dependent fashion. The discrete protective functions ascribed to each of the 3 estrogen receptors are also enumerated. Subsequently, we overview obstacles that have historically discouraged the inclusion of female subjects in basic science such as the impact of the female estrus cycle and reproductive senescence on data reliability and reproducibility. Furthermore, we weigh the utility of several common strategies to intercept and rescue sex-specific protection. Last, we warn of common compounds in animal chow and cell culture that interfere with estrogen signaling. In sum, we survey the controversies and challenges that stem from sex-inclusive cardiovascular research, comparing the possible causes of cardiac sex bias, elucidating sex chromosome or hormone-dependent processes in the heart, describing common lapses that imperil female and male cell and animal work, and illuminating facets of the female heart yet unexplored or still uncertain.
Collapse
Affiliation(s)
- Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Iskandarani L, Romanelli S, Hales BF, Robaire B. The effects of bisphenol A and its analogs on steroidogenesis in MA-10 Leydig cells and KGN granulosa cells†. Biol Reprod 2025; 112:399-414. [PMID: 39520287 PMCID: PMC11833478 DOI: 10.1093/biolre/ioae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols are a family of chemicals used in the manufacture of consumer products containing polycarbonate plastics and epoxy resins. Studies have shown that exposure to bisphenol A (BPA) may disrupt steroidogenesis and induce adverse effects on male and female reproduction, but little is known about BPA replacements. We determined the effects of six bisphenols on the steroidogenic function of MA-10 Leydig cells and KGN granulosa cells by measuring the levels of progesterone and estradiol produced by these cells as well as the expression of transcripts involved in steroid and cholesterol biosynthesis. MA-10 and KGN cells were exposed for 48 h to one of six bisphenols (0.01-50 μM): BPA, bisphenol F, bisphenol S, bisphenol AF, bisphenol M, or bisphenol TMC, under both basal and dibutyryl cAMP (Bu2cAMP)-stimulated conditions. In MA-10 cells, most bisphenols increased the Bu2cAMP-stimulated production of progesterone. In KGN cells, there was a general decrease in progesterone production, while estradiol levels were increased following exposure to many bisphenols. Quantitative real-time polymerase chain reaction analyses revealed that all six bisphenols (≥1 μM) upregulated the expression of STAR, a cholesterol transporter, in both cell lines after stimulation. Key transcripts directly involved in steroid and cholesterol biosynthesis were significantly altered in a cell line, chemical, and concentration-dependent manner. Thus, BPA and five of its analogs can disrupt steroid production in two steroidogenic cell lines and alter the levels of transcripts involved in this process. Importantly, BPA replacements do not appear to have fewer effects than BPA.
Collapse
Affiliation(s)
- Lama Iskandarani
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sabrina Romanelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Kircali-Haznedar N, Mumusoglu S, Bilgic P. How phytochemicals influence reproductive outcomes in women receiving assisted reproductive techniques: a systematic review. Nutr Rev 2025; 83:e304-e316. [PMID: 38641329 DOI: 10.1093/nutrit/nuae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
CONTEXT Over the past few years, there has been an increasing amount of scholarly literature suggesting a connection between the nutritional status of pregnant mothers and early fetal development, as well as the long-term health consequences of their offspring. Multiple studies have documented that alterations in dietary patterns prior to conception have the potential to affect the initial stages of embryonic development. OBJECTIVES The aim of this study was to perform a comprehensive review of the research pertaining to the correlation between phytochemicals ( specifically, polyphenols, carotenoids and phytoestrogens) and assisted reproductive technology (ART). DATA SOURCES PubMed, Scopus, Web of Science, and Clinical Trials databases were searched from January 1978 to March 2023. STUDY SELECTION This study comprised observational, randomized controlled, and cohort studies that examined the effects of phytochemicals on ART results. The study's outcomes encompass live birth rate, clinical pregnancy, and ongoing pregnancy. DATA EXTRACTION The assessment of study quality was conducted by 2 researchers, independently, using the Quality Criteria Checklist for Primary Research. RESULTS A total of 13 studies were included, of which there were 5 randomized controlled studies, 1 nonrandomized controlled study, 6 prospective cohort studies, and 1 retrospective cohort study. CONCLUSION This research focused on investigating the impact of phytochemicals on ART and has highlighted a dearth of articles addressing that topic. Collaboration among patients, physicians, and nutritionists is crucial for doing novel research. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023426332.
Collapse
Affiliation(s)
- Nagihan Kircali-Haznedar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Selcuk University, Selcuklu, Konya, Türkiye
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Pelin Bilgic
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Türkiye
| |
Collapse
|
26
|
Ronchetti S, Labombarda F, Del Core J, Roig P, De Nicola AF, Pietranera L. The phytoestrogen genistein improves hippocampal neurogenesis and cognitive impairment and decreases neuroinflammation in an animal model of metabolic syndrome. J Neuroendocrinol 2025; 37:e13480. [PMID: 39676329 DOI: 10.1111/jne.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology. In humans, MS increases the risk of cognitive impairment, dementia, and Alzheimer's disease. Genistein (GEN) is a phytoestrogen found in soy that lacks feminizing and carcinogenic effects and was found to have neuroprotective and anti-inflammatory effects in many pathological conditions. Considering that multiple data support that natural phytoestrogens may be therapeutic options for CNS maladies, we aim to elucidate if these properties also apply to a rat model of MS. Thus, GEN effects on neuroinflammation, neurogenesis, and cognition were evaluated in SHR eating a fat/carbohydrate-enriched diet. To characterize the neuropathology and cognitive dysfunction of MS we fed SHR with a high-fat diet (4520 kcal/kg) along with a 20% sucrose solution to drink. MS rats displayed a significant increase in body weight, BMI and obesity indexes along with an increased in fasting glucose levels, glucose intolerance, high blood pressure, and high blood triglyceride levels. MS rats were injected with GEN during 2 weeks a dose of 10 mg/kg. We found that MS rats showed a decreased number of DCX+ neural progenitors in the dentate gyrus and treatment with GEN increased this parameter. Expression of GFAP was increased in the DG and CA1 areas of the hippocampus and treatment decreased astrogliosis in all of them. We measured the expression of IBA1+ microglia in the same regions and classified microglia according to their morphology: we found that MS rats presented an increased proportion of the hypertrophied phenotype and GEN produced a shift in microglial phenotypes toward a ramified type. Furthermore, colocalization of IBA1 with the proinflammatory marker TNFα showed increased proportion of proinflammatory microglia in MS and a reduction with GEN treatment. On the other hand, colocalization with the anti-inflammatory marker Arg1 showed that MS has decreased proportion of anti-inflammatory microglia and GEN treatment increased this parameter. Cognitive dysfunction was evaluated in rats with MS using a battery of behavioral tests that assessed hippocampus-dependent spatial and working memory, such as the novel object recognition test (NOR), the novel object location test (NOL), and the free-movement pattern Y-maze (FMP-YMAZE) and the d-YMAZE. In all of them, MS performed poorly and GEN was able to improve cognitive impairments. These results indicate that GEN was able to exert neuroprotective actions increasing neurogenesis and improving cognitive impairments while decreasing astrogliosis, microgliosis, and neuroinflammatory environment in MS rats. Together, these results open an interesting possibility for proposing this phytoestrogen as a neuroprotective therapy for MS.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian Del Core
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Moralia MA, Bothorel B, Andry V, Goumon Y, Simonneaux V. Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod. CHEMOSPHERE 2025; 370:143955. [PMID: 39701315 DOI: 10.1016/j.chemosphere.2024.143955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition). Changes in body weight, food intake, and pelage color were monitored weekly and, at the end of the exposure, expression of hypophysio-hypothalamic markers of photoperiodic (TSHβ, deiodinases), reproductive (Rfrp, kisspeptin) and metabolic (somatostatin, Pomc) integration, reproductive organ activity, and glycemia were assessed. Our results revealed sex-specific effects of BPA on acquiring SP and LP phenotypes. During LP to SP transition, females exposed to 500 μg/kg/d BPA exhibited delayed body weight loss and reduced feed efficiency associated with a lower expression of somatostatin, while males exposed to 5 μg/kg/d BPA showed an accelerated acquisition of SP-induced metabolic parameters. During SP to LP transition, females exposed to 5 μg/kg/d BPA displayed a faster LP adaptation in reproductive and metabolic parameters, along with kisspeptin downregulation occurring 5 weeks earlier and Pomc upregulation delayed for up to 10 weeks. In males, BPA exposure led to decreased expression of central photoperiodic integrators, with no effect on the acquisition of the LP phenotype. This pioneering study investigating EDCs' effects on mammalian seasonal physiology shows that BPA alters the dynamics of metabolic adaptation to both SP and LP transitions with marked sex dimorphism, causing temporal discordance in seasonal adaptation between males and females. These findings emphasize the importance of investigating EDCs' effects on non-conventional animal models, providing insights into wildlife physiology.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Béatrice Bothorel
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Valérie Simonneaux
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
28
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2025; 39:957-979. [PMID: 39707600 PMCID: PMC11832364 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| |
Collapse
|
29
|
Le Roux CE, Farthing AL, Lucas EK. Dietary phytoestrogens recalibrate socioemotional behavior in C57Bl/6J mice in a sex- and timing-dependent manner. Horm Behav 2025; 168:105678. [PMID: 39826371 PMCID: PMC11830535 DOI: 10.1016/j.yhbeh.2025.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Estrogens are potent regulators of socioemotional behavior across species. Ubiquitous in human and animal diets, plant-derived phytoestrogens (PE) bind estrogen receptors. While prior work has examined the impact of PE exposure on socioemotional behavior, findings are inconsistent across studies. To investigate whether the timing of PE diet initiation may govern differential behavioral effects, we compared the impacts of PE-free (<20 mg/kg) versus PE-rich (810 mg/kg) diet exposure across the lifetime versus acutely in adulthood. Reproductive physiology was assessed through age at puberty onset and gonadal size. In adulthood, all mice underwent a behavioral battery consisting of the open field, elevated plus maze, and social interaction tests, followed by assessment of emotional memory dynamics with cued threat conditioning, extinction, recall, and renewal. Lifetime PE exposure delayed puberty onset and increased adult gonadal size selectively in males, whereas both lifetime and adult-only PE exposure decreased adult body weight in both sexes. In males, adult-only exposure increased open-arm avoidance in the elevated plus maze but enhanced threat memory extinction. In females, lifetime PE exposure increased open-arm avoidance, reduced sociability, and impaired threat memory extinction. Interestingly, lifetime PE exposure increased the context-dependent renewal of threat memory in both sexes. These findings demonstrate sex- and timing-dependent effects of PE exposure. Male lifetime PE exposure impacts reproductive measures with limited behavioral effects, whereas female lifetime exposure broadly impairs socioemotional behavior. Conversely, adult-only PE exposure altered behavior in males with limited impact in females. This study highlights the importance of diet composition, exposure period, and sex in rodent behavioral studies.
Collapse
Affiliation(s)
- Cameron E Le Roux
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy L Farthing
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Elizabeth K Lucas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Klasik-Ciszewska S, Londzin P, Grzywnowicz K, Borymska W, Zych M, Kaczmarczyk-Żebrowska I, Folwarczna J. Effect of Chrysin, a Flavonoid Present in Food, on the Skeletal System in Rats with Experimental Type 1 Diabetes. Nutrients 2025; 17:316. [PMID: 39861446 PMCID: PMC11767798 DOI: 10.3390/nu17020316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D). METHODS The experiments were carried out on mature male Wistar rats. T1D was induced by a single streptozotocin injection. Administration of chrysin (50 or 100 mg/kg p.o., once daily) began two weeks later and lasted four weeks. Serum bone turnover markers, bone mass, density and mineralization, mechanical properties and histomorphometric parameters of cancellous and compact bone were examined. RESULTS T1D profoundly affected bone metabolism, leading to worsening of bone strength in comparison with the healthy controls. After administration of chrysin, slight improvement of only some parameters was demonstrated in relation to the diabetic controls. CONCLUSIONS Results of the present study indicate that chrysin may exert some very limited favorable effects on the skeletal system in diabetic conditions.
Collapse
Affiliation(s)
- Sylwia Klasik-Ciszewska
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.-C.); (P.L.); (K.G.)
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.-C.); (P.L.); (K.G.)
| | - Kacper Grzywnowicz
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.-C.); (P.L.); (K.G.)
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (W.B.); (M.Z.); (I.K.-Ż.)
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (W.B.); (M.Z.); (I.K.-Ż.)
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (W.B.); (M.Z.); (I.K.-Ż.)
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.K.-C.); (P.L.); (K.G.)
| |
Collapse
|
31
|
Calivarathan L, Mathur PP. Effect of Endocrine Disruptors on Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:115-125. [PMID: 40301255 DOI: 10.1007/978-3-031-82990-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Several classes of exogenous chemicals interfere with the endocrine system and disrupt the normal functioning of hormones, leading to a wide range of adverse health effects. The male reproductive system is particularly vulnerable to endocrine disruption, as it involves complex interactions between endocrine, paracrine, and autocrine signals that regulate spermatogenesis and steroidogenesis within the testes. Exposure to endocrine disruptors (EDs) has been associated with reduced semen quality, including decreased sperm concentration, motility, and morphology. Some endocrine disruptors have also been linked to alterations in testosterone levels, which impact overall male reproductive health. Bisphenol A, phthalates, dioxins, polychlorinated biphenyls, organophosphate pesticides, and phytoestrogens are well-known endocrine disruptors that interfere with male reproductive functions. Furthermore, these substances have been associated with an increased risk of reproductive disorders such as cryptorchidism, hypospadias, and testicular cancer. Due to the presence of endocrine-disrupting chemicals in numerous consumer goods and personal care products, people encounter these harmful substances through ingestion, absorption, inhalation, and skin contact. However, the duration of exposure to a particular endocrine disruptor or exposure during a particular stage of development is the determining factor for testicular function. This chapter provides a comprehensive overview of the effects of endocrine disruptors on testicular function, from molecular mechanisms to clinical outcomes.
Collapse
Affiliation(s)
- Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, India
| | | |
Collapse
|
32
|
Viscardi G, Back S, Ahmed A, Yang S, Mejia SB, Zurbau A, Khan TA, Selk A, Messina M, Kendall CW, Jenkins DJ, Sievenpiper JL, Chiavaroli L. Effect of Soy Isoflavones on Measures of Estrogenicity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2025; 16:100327. [PMID: 39433088 PMCID: PMC11784794 DOI: 10.1016/j.advnut.2024.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024] Open
Abstract
Despite recommendations to increase plant food consumption for public and planetary health and the role that soy foods can play in plant-predominant diets, controversies around the effects of soy foods, especially soy isoflavones, are a barrier to their intake. Given their cardioprotective effects and ability to alleviate menopausal symptoms, addressing these concerns is particularly relevant to women. This systematic review and meta-analysis of randomized controlled trials aimed to determine the effect of soy isoflavones on measures of estrogenicity in postmenopausal women. MEDLINE, Embase, and Cochrane Library were searched through August 2024 for randomized trials ≥3-mo investigating soy isoflavones compared with non-isoflavone controls in postmenopausal women. Outcomes included endometrial thickness (ET), vaginal maturation index (VMI), follicle-stimulating hormone (FSH), and estradiol. Independent authors extracted data and assessed risk of bias. Grading of Recommendations, Assessment, Development and Evaluation was used to assess certainty of evidence. We included 40 trials (52 trial comparisons, n = 3285) assessing the effect of a median reported dose of 75 mg/d of soy isoflavones in substitution for non-isoflavone controls over a median of 24 wk. Soy isoflavones had no statistically significant effect on any measure of estrogenicity; ET [mean difference, -0.22 mm (95% confidence interval, -0.45, 0.01 mm), PMD = 0.059], VMI [2.31 (-2.14, 6.75), PMD = 0.310], FSH [-0.02 IU/L (-2.39, 2.35 IU/L), PMD = 0.987], and estradiol [1.61 pmol/L (-1.17, 4.38 pmol/L), PMD = 0.256]. The certainty of evidence was high to moderate for all outcomes. Current evidence suggests that soy isoflavones do not exhibit estrogenic effects compared with non-isoflavone controls on 4 measures of estrogenicity in postmenopausal women. This synthesis supports that soy isoflavones likely act as selective estrogen receptor modulators, differing clinically from the hormone estrogen. Addressing public health concerns may promote soy foods as high-quality plant protein sources with low environmental impact and cost, particularly benefiting postmenopausal women and aligning with sustainable dietary patterns and guidelines. This study was registered in PROSPERO as CRD42023439239.
Collapse
Affiliation(s)
- Gabrielle Viscardi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Songhee Back
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shuting Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amanda Selk
- Department of Gynecology, Women's College Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, Mount Sinai Hospital (Toronto), Sinai Health, Toronto, Ontario, Canada; Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Liu Y, Wang F, Li L, Fan B, Kong Z, Tan J, Li M. The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117615. [PMID: 39755088 DOI: 10.1016/j.ecoenv.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered. The research into fluorinated pesticides is somewhat superficial, with the majority of review articles in this field focusing on the structural characteristics, biodegradation processes, and environmental risks associated with these pesticides. In this study, we compared and investigated the research development processes of seven types of fluorine-containing pesticides and five types of fluorinated endocrine disruptors. The varying toxic effects of these endocrine disruptors are highly dependent on exposure conditions. Their actions are complex, affecting behavioral substances throughout the organism, and monitoring some complex biological phenotypes, sex- or age-specific effects, and behavioral learning poses significant challenges. The findings will serve as a reference for future studies on the toxicity of pesticides to humans and other organisms.
Collapse
Affiliation(s)
- Yalan Liu
- College of Food Science and Technology, Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, PR China; State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Fengzhong Wang
- State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Lin Li
- State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Bei Fan
- State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, PR China.
| | - Minmin Li
- State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
34
|
Belgodere J, Benz MC, Kpeli GW, Elliott JR, Elliott S, North JD, Ponder IJ, Ma P, Dietrich SR, Cheng T, Nguyen K, Tilghman SL, McLachlan JA, Zou B, Anbalagan M, Rowan B, Mondrinos M, Wiese TE, Hoang VT, Collins-Burow BM, Martin EC, Burow ME, Boué SM. Context-Dependent Estrogenic Actions of (+)-Pisatin Produced in Elicited Green or Snow Pea ( Pisum sativum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28255-28269. [PMID: 39665386 PMCID: PMC11674159 DOI: 10.1021/acs.jafc.4c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Legumes are a predominant source of isoflavones, termed phytoestrogens, that mimic 17β-estradiol (E2). Phytoalexins are inducible isoflavones produced in plants subjected to environmental stressors (e.g., UV, heat, or fungi). This study investigated estrogenic activity of snow and green peas elicited with Aspergillus sojae. Elicited extracts increased estrogenic activity and proliferation of breast cancer cells (MCF-7 or T47D) in a dose-dependent manner but exhibited antiestrogenic activity when combined with synthetic E2. HPLC analysis of elicited pea extracts identified (+)-pisatin as the primary phytoalexin, which was produced significantly (p < 0.0001) more in snow pea compared to green pea. RNA sequencing results suggested potential functional effects on endothelial cells and tissue vascularization. Indeed, (+)-pisatin enhanced metrics of network assembly and maturation in a microphysiological model of bulk tissue vasculogenesis. Thus, context-dependent functional effects of (+)-pisatin and pharmacologically similar phytoestrogens on the entire tissue microenvironment should be considered in preclinical investigation as potential therapeutic agents.
Collapse
Affiliation(s)
- Jorge
A. Belgodere
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
- Department
of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana 70803, United States
- Tulane
Cancer
Center, Tulane University, New Orleans, Louisiana 70112, United States
| | - Megan C. Benz
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - G. Wills Kpeli
- Department
of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70112, United States
| | - Jack R. Elliott
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Steven Elliott
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Jack D. North
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Isaac J. Ponder
- Department
of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Peng Ma
- Xavier
University
School of Pharmacy, Xavier University, New Orleans, Louisiana 70125, United States
| | - Sophie R. Dietrich
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Thomas Cheng
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Khoa Nguyen
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Syreeta L. Tilghman
- Pharmaceutical
Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - John A. McLachlan
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Binghao Zou
- Department
of Structural and Cellular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Muralidharan Anbalagan
- Department
of Structural and Cellular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Brian Rowan
- Department
of Structural and Cellular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Mark Mondrinos
- Department
of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70112, United States
| | - Thomas E. Wiese
- Xavier
University
School of Pharmacy, Xavier University, New Orleans, Louisiana 70125, United States
| | - Van T. Hoang
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
- Tulane
Cancer
Center, Tulane University, New Orleans, Louisiana 70112, United States
| | - Bridgette M. Collins-Burow
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
- Tulane
Cancer
Center, Tulane University, New Orleans, Louisiana 70112, United States
| | - Elizabeth C. Martin
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
- Tulane
Cancer
Center, Tulane University, New Orleans, Louisiana 70112, United States
| | - Matthew E. Burow
- Tulane Department
of Medicine, Section of Hematology & Medical Oncology, Tulane University Health Science Center, New Orleans, Louisiana 70112, United States
- Tulane
Cancer
Center, Tulane University, New Orleans, Louisiana 70112, United States
| | - Stephen M. Boué
- U.S.
Department
of Agriculture, Agricultural Research Service, Southern Regional Research
Center, New Orleans, Louisiana 70124, United States
| |
Collapse
|
35
|
Inpan R, Dukaew N, Na Takuathung M, Teekachunhatean S, Koonrungsesomboon N. Effects of isoflavone interventions on bone turnover markers and factors regulating bone metabolism in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos 2024; 20:2. [PMID: 39708251 DOI: 10.1007/s11657-024-01467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/18/2024] [Indexed: 12/23/2024]
Abstract
This study examined how isoflavone interventions impact bone health in postmenopausal women. Analyzing 73 trials found that isoflavones reduce bone resorption markers, enhance bone minerals, and increase hormones regulating bone metabolism. This suggests that isoflavones could help address bone health issues in postmenopausal women. PURPOSE This study aimed to assess the impact of isoflavone interventions on bone turnover markers and various biochemical markers of bone metabolism through systematic review and meta-analysis. METHODS Four electronic databases, including PubMed, Embase, Scopus, and Cochrane Library, were searched in September 2023 for investigating the effects of isoflavones on bone turnover markers as well as signaling molecules regulating osteoclast differentiation, bone minerals, and hormones regulating bone metabolism in postmenopausal women. The main effect estimates, obtained using a random-effects model, were summarized using the mean difference (MD) or standardized mean difference (SMD), as appropriate. RESULTS A total of 73 randomized controlled trials were included, comparing an isoflavone intervention to a placebo. Our findings demonstrated that isoflavone interventions significantly reduced bone resorption markers, that is, β cross-linked C-telopeptide of type 1 collagen (β-CrossLaps) (MD = - 0.0943 ng/mL; P = 0.0071) and pyridinoline (PYD) (SMD = - 0.9111; P = 0.0247). Moreover, isoflavone interventions positively affected bone mineral parameters by increasing serum calcium levels (MD = 0.3430 mg/dL; P = 0.0267) and decreasing serum phosphorus levels (MD = - 0.0648 mg/dL; P = 0.0435). Hormones involved in regulating bone metabolism, particularly insulin-like growth factor type 1 (IGF-1), exhibited significant increases following isoflavone interventions (MD = 9.8163 ng/mL; P < 0.0001). Subgroup analysis suggested that the effects of isoflavones on bone turnover markers are influenced by factors such as the duration since menopause and the intervention duration. CONCLUSION This systematic review and meta-analysis highlight the potential of isoflavone interventions to rectify imbalances in bone remodeling, enhance bone mineral homeostasis, and optimize hormones regulating bone metabolism in postmenopausal women.
Collapse
Affiliation(s)
- Ratchanon Inpan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- School of Health Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supanimit Teekachunhatean
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
36
|
Yamada ALYDS, Merenda MEZ, Pereira LC, Bonneti NMD, Martins IDO, Komarcheuski AS, Henríquez LBF, Watanabe EK, Coelho GBC, Janeiro V, Mascarenhas NMF, Vasconcellos RS. Effects of Isoflavone Intake on Energy Requirement, Satiety, and Body Composition of Neutered Adult Cats. Animals (Basel) 2024; 14:3574. [PMID: 39765478 PMCID: PMC11672616 DOI: 10.3390/ani14243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Isoflavones are composed of phytoestrogens (genistein and daidzein), which can be metabolized by cats. These compounds can promote the maintenance of lean body mass and control food intake. These effects are desirable in neutered animals, as they are predisposed to obesity. The objective of this study was to evaluate the effects of dietary supplementation of 1.0% isoflavone on the metabolizable energy intake, serum concentrations of satiety-related hormones and peptides, and body composition of neutered cats. Sixteen neutered adult cats were blocked by gender and divided into two groups (n = 8): the control group (CG) received a commercial diet, while the isoflavone group (IG) received the same diet supplemented by 1% of isoflavone for 99 days. Computed tomography was performed on the first and last experimental days to assess the animals' body composition. Satiety challenges were conducted on days 19 and 44. In the last day of the study, blood samples were collected to determine the concentration of insulin, ghrelin, leptin, peptide YY, and GLP-1. A statistical analysis was conducted using R software 3.5.2, considering both the interaction and individual effects of group and time (p < 0.05). The average intake of genistein in the IG was 0.75 ± 0.10 mg/kg body weight, and daidzein intake was 51.73 ± 7.05 mg/kg. No significant individual or interaction effects were observed for any of the analyzed variables. Therefore, the inclusion of 1.0% isoflavone in the diet did not affect the energy requirements, satiety responses, or body composition of neutered adult cats.
Collapse
Affiliation(s)
| | | | - Layne Carolina Pereira
- Department of Animal Science, State University of Maringá (UEM), Maringá 87020-900, Brazil
| | | | | | | | | | | | | | - Vanderly Janeiro
- Department of Statistics, State University of Maringá (UEM), Maringá 87020-900, Brazil
| | | | | |
Collapse
|
37
|
Chotoye SAB, Granados NP, Brosseau CL. Harnessing the resolution power of two-dimensional liquid chromatography (2D-LC) for the screening of bisphenol contaminants in canned food items. J Chromatogr A 2024; 1738:465502. [PMID: 39527881 DOI: 10.1016/j.chroma.2024.465502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Overlapping peaks can be difficult to avoid in 1D-LC, which make the identification and quantification of compounds ambiguous, especially if the only available detector is a UV/DAD. To overcome this, a two-dimensional liquid chromatography (2D-LC) method to monitor Bisphenols (BPs), and particularly the chosen analogues BPA, BPB, BPF, BPS, BPZ, and BPAF, in a complex matrix (canned food) was developed and validated. BPs are endocrine disruptors present in the lining of the can, which may leach into the content of canned food. It is essential to continuously identify and monitor bisphenols that are unintentionally ingested using newly available and highly efficient methods such as 2D-LC. The coefficient of variation (CV) of peak areas and retention times for all analytes in both dimensions ranged from 0.050 to 2.960 %. The recovery of the whole procedure was determined to be 67.4 ± 0.1 % in the first dimension, and 64.3 ± 0.1 % in the second dimension. The limit of detection (LOD) determined in the second dimension for the analytes ranged from 0.075 to 0.301 ppm. Finally, four canned food samples were prepared by solid-liquid extraction, and surveyed for BPA, BPB, BPF, BPS, BPZ, and BPAF. BPF (0.093 ppm) and BPAF (2.656 ppm) were accurately detected in two separate samples. This report highlights the first successful application of 2D-LC to bisphenol compounds, an important class of emerging contaminants.
Collapse
Affiliation(s)
- Sumayyah A B Chotoye
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - N Patricia Granados
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - Christa L Brosseau
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada.
| |
Collapse
|
38
|
Bardhi O, Dubey P, Palmer BF, Clegg DJ. Oestrogens, adipose tissues and environmental exposures influence obesity and diabetes across the lifecycle. Proc Nutr Soc 2024; 83:263-270. [PMID: 38305136 DOI: 10.1017/s0029665124000119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Endogenous oestrogens regulate essential functions to include menstrual cycles, energy balance, adipose tissue distribution, pancreatic β-cell function, insulin sensitivity and lipid homeostasis. Oestrogens are a family of hormones which include oestradiol (E2), oestrone (E1) and oestriol (E3). Oestrogens function by binding and activating oestrogen receptors (ERs). Phytoestrogens are plant-derived compounds which exhibit oestrogenic-like activity and can bind to ERs. Phytoestrogens exert potential oestrogenic-like benefits; however, their effects are context-dependent and require cautious consideration regarding generalised health benefits. Xenoestrogens are synthetic compounds which have been determined to disrupt endocrine function through binding to ERs. Xenoestrogens enter the body through various routes and given their chemical structure they can accumulate, posing long-term health risks. Xenoestrogens interfere with endogenous oestrogens and their functions contributing to conditions like cancer, infertility, and metabolic disorders. Understanding the interplay between endogenous and exogenous oestrogens is critical in order to determine their potential health consequences and requires further investigation. This manuscript provides a summary of the role endogenous oestrogens have in regulating metabolic functions. Additionally, we discuss the impact phytoestrogens and synthetic xenoestrogens have on biological systems across various life stages. We highlight their mechanisms of action, potential benefits, risks and discuss the need for further research to bridge gaps in understanding and mitigate exposure-related health risks.
Collapse
Affiliation(s)
- Olgert Bardhi
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L Foster School of Medicine, El Paso, TX, USA
| | - Biff Franklin Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical, Center, Dallas, TX, USA
| | - Deborah J Clegg
- Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
39
|
Duarte ND, Mulinari-Santos G, Batista FRDS, Gomes MB, Monteiro NG, da Silva ACE, Gruber R, Lisboa-Filho PN, Gomes-Ferreira PHS, Okamoto R. Sonification of Deproteinized Bovine Bone Functionalized with Genistein Enhances Bone Repair in Peri-Implant Bone Defects in Ovariectomized Rats. J Funct Biomater 2024; 15:328. [PMID: 39590532 PMCID: PMC11595652 DOI: 10.3390/jfb15110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Estrogen deficiency is one of several contributing factors to catabolic changes in bone surrounding dental implants, impairing bone repair in defects requiring bone regeneration. Functionalizing bone substitutes is an alternative approach among various strategies to address this challenge. In this study, the aim was to evaluate the effect of functionalizing deproteinized bovine bone (Bio-Oss®, BO) with genistein via sonication on peri-implant bone defects in ovariectomized rats. The animals were randomly distributed according to the treatment into the following four groups (n = 10): BO sonicated with genistein (BOS + GEN), BO sonicated alone (BOS), untreated BO (BO), and blood clot only (CLOT). After twenty-eight days, implant removal torque was determined, and the peri-implant bone parameters were calculated based on computed microtomography. Additionally, the gene expression of bone turnover markers was evaluated. As a main result, the functionalization with genistein increased implant removal torque and the peri-implant bone volume in the BOS + GEN group compared to both BOS and BO groups (both p < 0.05). These findings suggest that the sonification of deproteinized bovine bone functionalized with genistein improves bone repair in peri-implant bone defects in ovariectomized rats.
Collapse
Affiliation(s)
- Nathália Dantas Duarte
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16015-050, São Paulo, Brazil; (N.D.D.); (F.R.d.S.B.); (N.G.M.); (A.C.E.d.S.)
| | - Gabriel Mulinari-Santos
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16015-050, São Paulo, Brazil; (N.D.D.); (F.R.d.S.B.); (N.G.M.); (A.C.E.d.S.)
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16018-805, São Paulo, Brazil;
| | - Fábio Roberto de Souza Batista
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16015-050, São Paulo, Brazil; (N.D.D.); (F.R.d.S.B.); (N.G.M.); (A.C.E.d.S.)
| | - Marcelly Braga Gomes
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16018-805, São Paulo, Brazil;
| | - Naara Gabriela Monteiro
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16015-050, São Paulo, Brazil; (N.D.D.); (F.R.d.S.B.); (N.G.M.); (A.C.E.d.S.)
| | - Ana Cláudia Ervolino da Silva
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16015-050, São Paulo, Brazil; (N.D.D.); (F.R.d.S.B.); (N.G.M.); (A.C.E.d.S.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Wien, Austria;
| | - Paulo Noronha Lisboa-Filho
- Department of Physics, Bauru School of Sciences, São Paulo State University “Júlio de Mesquita Filho”, Bauru 17033-360, São Paulo, Brazil;
| | | | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, São Paulo State University “Júlio de Mesquita Filho”, Araçatuba 16018-805, São Paulo, Brazil;
| |
Collapse
|
40
|
Jovanovic N, Zach V, Crocini C, Bahr LS, Forslund-Startceva SK, Franz K. A gender perspective on diet, microbiome, and sex hormone interplay in cardiovascular disease. Acta Physiol (Oxf) 2024; 240:e14228. [PMID: 39263901 DOI: 10.1111/apha.14228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
A unique interplay between body and environment embeds and reflects host-microbiome interactions that contribute to sex-differential disease susceptibility, symptomatology, and treatment outcomes. These differences derive from individual biological factors, such as sex hormone action, sex-divergent immune processes, X-linked gene dosage effects, and epigenetics, as well as from their interaction across the lifespan. The gut microbiome is increasingly recognized as a moderator of several body systems that are thus impacted by its function and composition. In humans, biological sex components further interact with gender-specific exposures such as dietary preferences, stressors, and life experiences to form a complex whole, requiring innovative methodologies to disentangle. Here, we summarize current knowledge of the interactions among sex hormones, gut microbiota, immune system, and vascular health and their relevance for sex-differential epidemiology of cardiovascular diseases. We outline clinical implications, identify knowledge gaps, and place emphasis on required future studies to address these gaps. In addition, we provide an overview of the caveats associated with conducting cardiovascular research that require consideration of sex/gender differences. While previous work has inspected several of these components separately, here we call attention to further translational utility of a combined perspective from cardiovascular translational research, gender medicine, and microbiome systems biology.
Collapse
Affiliation(s)
- Nina Jovanovic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Veronika Zach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Claudia Crocini
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Samira Bahr
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia Kirke Forslund-Startceva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Kristina Franz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| |
Collapse
|
41
|
Burbank M, Kukic P, Ouedraogo G, Kenna JG, Hewitt NJ, Armstrong D, Otto-Bruc A, Ebmeyer J, Boettcher M, Willox I, Mahony C. In vitro pharmacologic profiling aids systemic toxicity assessment of chemicals. Toxicol Appl Pharmacol 2024; 492:117131. [PMID: 39437896 DOI: 10.1016/j.taap.2024.117131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
An adapted in vitro pharmacology profiling panel (APPP) was developed that included targets used in the pharmaceutical industry alongside additional targets whose cellular functions have been linked to systemic toxicities. This panel of 83 target assays was used to profile the activities of 129 cosmetic relevant chemicals with diverse chemical structures, physiochemical properties and cosmetic use types. Internal data consistency was proved robust, as evidenced by the reproducibility between single concentration and concentration-response data and showed good concordance with data reported in the ToxCast and drug excipient datasets. We discuss how the data can be analyzed and multiple potential contexts of use illustrated by case studies, alongside other new approach methodologies, to support cosmetic chemical risk assessments that do not require data from new animal studies.
Collapse
Affiliation(s)
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, MK 44 1LQ, UK
| | | | - J Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160 Brussels, Belgium
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160 Brussels, Belgium
| | | | | | | | | | - Ian Willox
- Eurofins Cerep, Celle-Lévescault, France
| | | |
Collapse
|
42
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
43
|
Alva-Gallegos R, Jirkovský E, Mladěnka P, Carazo A. Small phenolic compounds as potential endocrine disruptors interacting with estrogen receptor alpha. Front Endocrinol (Lausanne) 2024; 15:1440654. [PMID: 39512757 PMCID: PMC11540614 DOI: 10.3389/fendo.2024.1440654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
The human body is regularly exposed to simple catechols and small phenols originating from our diet or as a consequence of exposure to various industrial products. Several biological properties have been associated with these compounds such as antioxidant, anti-inflammatory, or antiplatelet activity. Less explored is their potential impact on the endocrine system, in particular through interaction with the alpha isoform of the estrogen receptor (ERα). In this study, human breast cancer cell line MCF-7/S0.5 was employed to investigate the effects on ERα of 22 closely chemically related compounds (15 catechols and 7 phenols and their methoxy derivatives), to which humans are widely exposed. ERα targets genes ESR1 (ERα) and TFF1, both on mRNA and protein level, were chosen to study the effect of the tested compounds on the mentioned receptor. A total of 7 compounds seemed to impact mRNA and protein expression similarly to estradiol (E2). The direct interaction of the most active compounds with the ERα ligand binding domain (LBD) was further tested in cell-free experiments using the recombinant form of the LBD, and 4-chloropyrocatechol was shown to behave like E2 with about 1/3 of the potency of E2. Our results provide evidence that some of these compounds can be considered potential endocrine disruptors interacting with ERα.
Collapse
Affiliation(s)
| | | | | | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| |
Collapse
|
44
|
Rammali S, Idir A, Aherkou M, Ciobică A, Kamal FZ, Aalaoui ME, Rahim A, Khattabi A, Abdelmajid Z, Aasfar A, Burlui V, Calin G, Mavroudis I, Bencharki B. In vitro and computational investigation of antioxidant and anticancer properties of Streptomyces coeruleofuscus SCJ extract on MDA-MB-468 triple-negative breast cancer cells. Sci Rep 2024; 14:25251. [PMID: 39448707 PMCID: PMC11502701 DOI: 10.1038/s41598-024-76200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to explore the antioxidant potential of the ethyl acetate extract of Streptomyces coeruleofuscus SCJ strain, along with its inhibitory effects on the triple-negative human breast carcinoma cell line (MDA-MB-468). The ethyl acetate extract's total phenolic and flavonoid contents were quantified, and its antioxidant activity was investigated using DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (Ferric Reducing Antioxidant Power) assays. Furthermore, the cytotoxic effect of the organic extract from Streptomyces coeruleofuscus SCJ on MDA-MB-468 cancer cells was assessed via the crystal violet assay. In tandem, a thorough computational investigation was conducted to explore the pharmacokinetic properties of the identified components of the extract, utilizing the SwissADME and pKCSM web servers. Additionally, the molecular interactions between these components and Estrogen Receptor Beta, identified as a potential target, were probed through molecular docking studies. The results revealed that ethyl acetate extract of SCJ strain exhibited remarkable antioxidant activity, with 39.899 ± 1.56% and 35.798 ± 0.082% scavenging activities against DPPH and ABTS, respectively, at 1 mg/mL. The extract also displayed significant ferric reducing power, with a concentration of 1.087 ± 0.026 mg ascorbic acid equivalents per mg of dry extract. Furthermore, a strong positive correlation (p < 0.0001) between the antioxidant activity, the polyphenol and the flavonoid contents. Regarding anticancer activity, the SCJ strain extract demonstrated significant anticancer activity against TNBC MDA-MB-468 cancer cells, with an inhibition percentage of 62.76 ± 0.62%, 62.67 ± 0.93%, and 58.07 ± 4.82% at 25, 50, and 100 µg/mL of the extract, respectively. The HPLC-UV/vis analysis revealed nine phenolic compounds: gallic acid, sinapic acid, p-coumaric acid, cinnamic acid, trans-fereulic acid, syringic acid, chloroqenic acid, ellagic acid, epicatechin. Streptomyces coeruleofuscus SCJ showed promise for drug discovery, exhibiting antioxidant and anticancer effects.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco.
| | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Marouane Aherkou
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI Centre for Research and Innovation (CM6RI), Casablanca, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, Iasi, 700506, Romania.
- Center of Biomedical Research, Iasi Branch, Romanian Academy, Teodor Codrescu 2, Iasi, 700481, Romania.
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania.
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, Settat, 26400, Morocco
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| | - Zyad Abdelmajid
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Vasile Burlui
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Gabriela Calin
- "Ioan Haulica Institute", Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | | | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, Settat, 26000, Morocco
| |
Collapse
|
45
|
Noda K, Hattori Y, Murata H, Kokubo Y, Higashiyama A, Ihara M. Equol Nonproducing Status as an Independent Risk Factor for Acute Cardioembolic Stroke and Poor Functional Outcome. Nutrients 2024; 16:3377. [PMID: 39408343 PMCID: PMC11479244 DOI: 10.3390/nu16193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Equol has protective effects against coronary artery disease and dementia by strongly binding to estrogen receptor beta, whereas the intake of soy isoflavone alone does not always confer such protective effects. Equol production is completely dependent on the existence of equol-producing gut microbiota. The effects of equol-producing status on the cerebrovascular diseases remain unclear. The current study was aimed to investigate the association of equol-producing status with the development of stroke and its neurological prognosis. Methods: Frequencies of equol producers were compared between healthy subjects (HS) registered in the Suita Study and patients with acute stroke admitted to our stroke center from September 2019 to October 2021 in a retrospective cohort study. Results: The proportion of HSs and patients with ischemic stroke who were equol producers did not significantly differ (50/103 [48.5%] vs. 60/140 [42.9%], p = 0.38). However, cardioembolic stroke was significantly associated with low a prevalence of equol producers (adjusted odds ratio [aOR] 0.46, 95% confidence interval [CI] 0.21-0.99, p = 0.05). A higher left atrial volume index was observed in equol nonproducers (46.3 ± 23.8 vs. 36.0 ± 11.6 mL/m2, p = 0.06). The equol nonproducers had a significantly higher prevalence of atrial fibrillation than the equol producers (27.5% vs. 13.3%, p = 0.04). Furthermore, the equol producers exhibited a significantly favorable functional outcome upon discharge (aOR 2.84, 95% CI 1.20-6.75, p = 0.02). Conclusions: Equol is a promising candidate for interventions aiming to reduce the risk of CES and atrial dysfunction, such as atrial fibrillation and improve neurological prognosis after ischemic stroke.
Collapse
Affiliation(s)
- Kotaro Noda
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yorito Hattori
- Department of Neurology, Department of Preemptive Medicine for Dementia, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Hiroaki Murata
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Aya Higashiyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| |
Collapse
|
46
|
Seo H, Seo H, Lee SH, Park Y. Receptor mediated biological activities of phytoestrogens. Int J Biol Macromol 2024; 278:134320. [PMID: 39084415 DOI: 10.1016/j.ijbiomac.2024.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Phytoestrogens are plant-derived compounds that have chemical structures and functions similar to estrogen. Phytoestrogens act as ligand-inducible transcription factors involved in cellular growth by binding to estrogen receptors (ERs), specifically ER alpha (ERα) and beta (ERβ). Through this mechanism, phytoestrogens have a physiological function similar to that of the female hormone 17β-estradiol (E2), which can be useful in treating osteoporosis, cardiovascular disease, and cancer. Furthermore, phytoestrogens have been found to elicit various cellular responses depending on their affinity for ERs; in particular, they show a greater affinity with for ERβ. This study aimed to comprehensively analyze the mode of action of eight phytoestrogens, namely kaempferol, coumestrol, glycitein, apigenin, daidzein, genistein, equol, and resveratrol, by evaluating their estrogenic activity as ER ligands. Based on the bioluminescence resonance energy transfer (BRET)-based ER dimerization and transactivation assay results, all the phytoestrogens tested were identified as estrogen agonists by mediating ERα and ERβ dimerization. The specific binding and functions of ERα and ERβ were distinguished by differentiating between their dimerization activity. In addition, this study contributes to advancing our understanding of the overall mechanism of action involving both ERs.
Collapse
Affiliation(s)
- Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Goyang 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea; Department of Food and Medical Products Regulatory Policy, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
47
|
Verhoog NJD, Spies LML. The anti-aromatase and anti-estrogenic activity of plant products in the treatment of estrogen receptor-positive breast cancer. J Steroid Biochem Mol Biol 2024; 243:106581. [PMID: 38997071 DOI: 10.1016/j.jsbmb.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.
Collapse
Affiliation(s)
| | - Lee-Maine Lorin Spies
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch, 7601, South Africa
| |
Collapse
|
48
|
Xuan C, Zhao C, Zhou TT, Guo JJ, Pan D, Wang ZB, He GW. Associations of urinary phytoestrogens with all-cause and cardiovascular mortality in adults: a population-based cohort study. Front Endocrinol (Lausanne) 2024; 15:1400182. [PMID: 39319255 PMCID: PMC11419972 DOI: 10.3389/fendo.2024.1400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The overall understanding of the correlations between mortality risk and phytoestrogens in general population remains limited. We examined the association between urinary phytoestrogen levels and all-cause and cardiovascular mortality based on the National Health and Nutrition Examination Survey (NHANES). METHODS Weighted Cox proportional hazard regression models were employed to calculate adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs). Nonlinear relationships were assessed using multivariable-adjusted restricted cubic splines (RCS). RESULTS In the fully adjusted model, the highest quartiles of urinary genistein levels were correlated with significantly elevated all-cause (HR = 1.36, 95%CI: 1.16-1.59) and cardiovascular (HR = 1.58, 95%CI: 1.20-2.09) mortality. Urinary enterolactone levels in the third quartile were associated with reduced all-cause (HR = 0.77, 95%CI: 0.65-0.90) and cardiovascular (HR = 0.74, 95%CI: 0.55-0.99) mortality. In the highest quartiles of urinary daidzein levels, the cardiovascular mortality was significantly increased (HR = 1.44, 95%CI: 1.09-1.90). RCS showed an non-linear relationship between urinary daidzein levels and all-cause mortality (P = 0.04). CONCLUSION In the context of a nationally representative sample, genistein exhibited associations with elevated all-cause and cardiovascular mortality, whereas enterolactone showed an association with reduced mortality. The dose-response relationship between urinary daidzein levels and all-cause mortality as well as sex-specific disparities in the impact of phytoestrogen levels should be considered.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting-Ting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Jie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zi-Bo Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
49
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|