1
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|
2
|
Kim J, You S. Restoration of miR-223-3p expression in aged mouse uteri with Samul-tang administration. Integr Med Res 2022; 11:100835. [PMID: 35141134 PMCID: PMC8814392 DOI: 10.1016/j.imr.2022.100835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
| | - Sooseong You
- Corresponding author at: Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea.
| |
Collapse
|
3
|
In utero perfluorooctane sulfonate exposure causes low body weights of fetal rats: A mechanism study. Placenta 2016; 39:125-33. [DOI: 10.1016/j.placenta.2016.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/01/2016] [Accepted: 01/10/2016] [Indexed: 11/17/2022]
|
4
|
Xiao S, Diao H, Zhao F, Li R, He N, Ye X. Differential gene expression profiling of mouse uterine luminal epithelium during periimplantation. Reprod Sci 2013; 21:351-62. [PMID: 23885106 DOI: 10.1177/1933719113497287] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uterine luminal epithelium (LE) is critical for establishing uterine receptivity. Microarray analysis of gestation day 3.5 (D3.5, preimplantation) and D4.5 (postimplantation) LE from natural pregnant mice identified 382 upregulated and 245 downregulated genes in the D4.5 LE. Gene Ontology annotation grouped 186 upregulated and 103 downregulated genes into 22 and 15 enriched subcategories, respectively, in regulating DNA-dependent transcription, metabolism, cell morphology, ion transport, immune response, apoptosis, signal transduction, and so on. Signaling pathway analysis revealed 99 genes in 21 significantly changed signaling pathways, with 14 of these pathways involved in metabolism. In situ hybridization confirmed the temporal expression of 12 previously uncharacterized genes, including Atp6v0a4, Atp6v0d2, F3, Ggh, Tmprss11d, Tmprss13, Anpep, Fxyd4, Naip5, Npl, Nudt19, and Tpm1 in the periimplantation uterus. This study provides a comprehensive picture of the differentially expressed genes in the periimplantation LE to help understand the molecular mechanism of LE transformation upon establishment of uterine receptivity.
Collapse
Affiliation(s)
- Shuo Xiao
- 1Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Sun X, Bartos A, Whitsett JA, Dey SK. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol 2013; 27:1492-501. [PMID: 23885093 DOI: 10.1210/me.2013-1086] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leukemia inhibitory factor (LIF), a downstream target of estrogen, is essential for implantation in mice. LIF function is thought to be mediated by its binding to LIF receptor (LIFR) and recruitment of coreceptor GP130 (glycoprotein 130), and this receptor complex then activates signal transducer and activator of transcription (STAT)1/3. However, the importance of LIFR and GP130 acting via STAT3 in implantation remains uncertain, because constitutive inactivation of Lifr, Gp130, or Stat3 shows embryonic lethality in mice. To address this issue, we generated mice with conditional deletion of uterine Gp130 or Stat3 and show that both GP130 and STAT3 are critical for uterine receptivity and implantation. Implantation failure in these deleted mice is associated with higher uterine estrogenic responses prior to the time of implantation. These heightened estrogenic responses are not due to changes in ovarian hormone levels or expression of their nuclear receptors. In the deleted mice, estrogen-responsive gene, Lactoferrin (Ltf), and Mucin 1 protein, were up-regulated in the uterus. In addition, progesterone-responsive genes, Hoxa10 and Indian hedgehog (Ihh), were markedly down-regulated in STAT3-inactivated uteri. These changes in uteri of deleted mice were reflected by the failure of differentiation of the luminal epithelium, which is essential for blastocyst attachment.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences,Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
6
|
Mondillo C. La histamina en el testículo: nuevas funciones a través de receptores clásicos H1 y H2. Rev Int Androl 2011. [DOI: 10.1016/s1698-031x(11)70014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Temporal expression pattern of progesterone receptor in the uterine luminal epithelium suggests its requirement during early events of implantation. Fertil Steril 2011; 95:2087-93. [PMID: 21371703 DOI: 10.1016/j.fertnstert.2011.01.160] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the precise timing of progesterone receptor (PR) disappearing from the uterine luminal epithelium (LE) to help understand the significance of the dynamic PR expression in the LE during embryo implantation. DESIGN Experimental rodent models. SETTING University research laboratories. ANIMAL(S) Mice and hamsters. INTERVENTION(S) Pseudopregnancy and artificial decidualization. MAIN OUTCOME MEASURE(S) Blue dye injection for detecting embryo attachment; immunohistochemistry, immunofluorescence, and in situ hybridization for detecting gene expression. RESULT(S) Progesterone receptor remained expressed in the LE up to 6 hours after the initial detection of blue dye reaction in mice (day 3, 22:00 hours), but disappeared first from LE cells at the implantation site and subsequently from the entire LE layer by day 4, 06:00 hours, when uterine stromal decidualization had become obvious. Progesterone receptor remained highly expressed in the LE of day 4 at 11:00 hours in pseudopregnant mice, but it disappeared from the entire LE layer by day 4 at 06:00 hours in artificially decidualized pseudopregnant mice. CONCLUSION(S) Progesterone receptor disappears from the LE after implantation has initiated and before the histologic decidualization manifests, suggesting an active role of continued PR expression in the LE for the initial implantation process. The disappearance of PR expression in the LE is regulated by uterine factor(s) produced upon embryo attachment.
Collapse
|
8
|
Yaba A, Kayisli UA, Johnson J, Demir R, Demir N. The Abelson tyrosine kinase (c-Abl) expression on the mouse uterus and placenta during gestational period. J Mol Histol 2011; 42:91-6. [PMID: 21249431 DOI: 10.1007/s10735-011-9310-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
c-Abl is a protein tyrosine kinase which has very important roles in signal transduction, control of the cell cycle, cell motility, proliferation, and inhibition of apoptosis. We hypothesized that c-Abl may play an important role on uterine remodeling during pre-receptive, receptive and non-receptive endometrium. Our aim is to investigate the expression of c-Abl protein tyrosine kinase in uterine remodeling and placental development in mouse gestational stage. We performed c-Abl immunohistochemistry on mouse uterine tissue sections on days 1-9, 11, 13, and 15 of pregnancy. c-Abl was highly upregulated in the uterine luminal epithelium and other endometrial structures including glands and blood vessels in pre-receptive and receptive endometrium. Therefore these results demonstrate a role for c-Abl in uterine remodeling during decidualization, implantation, and placentation throughout gestation.
Collapse
Affiliation(s)
- Aylin Yaba
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Campus, 07070, Antalya, Turkey
| | | | | | | | | |
Collapse
|
9
|
Liang XH, Zhao ZA, Deng WB, Tian Z, Lei W, Xu X, Zhang XH, Su RW, Yang ZM. Estrogen regulates amiloride-binding protein 1 through CCAAT/enhancer-binding protein-beta in mouse uterus during embryo implantation and decidualization. Endocrinology 2010; 151:5007-16. [PMID: 20668027 DOI: 10.1210/en.2010-0170] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryo implantation is an intricate interaction between receptive uterus and active blastocyst. The mechanism underlying embryo implantation is still unknown. Although histamine and putrescine are important for embryo implantation and decidualization, excess amount of histamine and putrescine is harmful. Amiloride binding protein 1 (Abp1) is a membrane-associated amine oxidase and mainly metabolizes histamine and putrescine. In this study, we first showed that Abp1 is strongly expressed in the decidua on d 5-8 of pregnancy. Abp1 expression is not detected during pseudopregnancy and under delayed implantation but is detected after estrogen activation. Because Abp1 is mainly localized in the decidua and also strongly expressed during in vitro decidualization, Abp1 might play a role during mouse decidualization. The regulation of estrogen on Abp1 is mediated by transcription factor CCAAT/enhancer-binding protein-β. Abp1 expression is also regulated by cAMP, bone morphogenetic protein 2, and ERK1/2. Abp1 may be essential for mouse embryo implantation and decidualization.
Collapse
Affiliation(s)
- Xiao-Huan Liang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Agrawal SS, Alvin Jose M. Roxatidine, an H2Receptor Blocker, is an Estrogenic Compound—Experimental Evidence. Syst Biol Reprod Med 2010; 56:286-91. [DOI: 10.3109/19396368.2010.496894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Kim TH, Lee DK, Franco HL, Lydon JP, Jeong JW. ERBB receptor feedback inhibitor 1 regulation of estrogen receptor activity is critical for uterine implantation in mice. Biol Reprod 2009; 82:706-13. [PMID: 20018910 DOI: 10.1095/biolreprod.109.081307] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Normal endometrial function requires a balance of progesterone (P4) and estrogen (E2) effects. E2 acts to stimulate the proliferation of uterine epithelial cells, while P4 action inhibits E2-mediated proliferation of the epithelium. P4 through its cognate receptor, the P4 receptor (Pgr), has important roles in the establishment and maintenance of pregnancy. In previous studies, we have identified ERBB receptor feedback inhibitor 1 (Errfi1) as a downstream target of Pgr action in the uterus. Herein, we show that Errfi1 mRNA expression was significantly increased in the uterus after Day 2.5 of gestation. Its expression is also induced in the uterus by acute E2 treatment, and this induction is synergistically induced by chronic E2 and P4 treatment. Although it is known that conditional ablation of Errfi1 in the Pgr-positive cells (Errfi1(d/d)) results in infertility, the function of Errfi1 in reproductive biology has remained elusive. Using Errfi1(d/d) mice, we have identified Errfi1 as an important mediator of uterine implantation. Epithelial ESR1 and target genes were significantly increased in the uteri of Errfi1(d/d) mice. Our results identify a new signaling paradigm of steroid hormone regulation in female reproductive biology that adds insight into the underlying dysregulation of hormonal signaling in human reproductive disorders such as endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
12
|
Agrawal SS, Alvin Jose M. Anti-implantation activity of H2receptor blockers and meloxicam, a COX-inhibitor, in albino Wistar rats. EUR J CONTRACEP REPR 2009; 14:444-50. [DOI: 10.3109/13625180903258695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Hansson SR, Bottalico B, Noskova V, Casslén B. Monoamine transporters in human endometrium and decidua. Hum Reprod Update 2008; 15:249-60. [PMID: 18987100 DOI: 10.1093/humupd/dmn048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Monoamines play important roles in decidualization, implantation, immune modulation and inflammation. Furthermore, monoamines are potent vasoactive mediators that regulate blood flow and capillary permeability. Regulation of the uterine blood flow is important both during menstruation and pregnancy. Adequate monoamine concentrations are essential for a proper implantation and physiological development of pregnancy. Unlike most transmitter substances, monoamines are recycled by monoamine transporters rather than enzymatically inactivated. Their intracellular fate is influenced by their lower affinity for inactivating enzymes than for vesicular transporters located in intracellular vesicles. Thus, cells are capable not only of recapturizing and degrading monoamines, but also of storing and releasing them in a controlled fashion. METHODS The general objective of the present review is to summarize the role of the monoamine transporters in the female human reproduction. Since the transporter proteins critically regulate extracellular monoamine concentrations, knowledge of their distribution and cyclic variation is of great importance for a deeper understanding of the contribution of monoaminergic mechanisms in the reproductive process. MEDLINE was searched for relevant publications from 1950 to 2007. RESULTS Two families of monoamine transporters, neuronal and extraneuronal monoamine transporters, are present in the human endometrium and deciduas. CONCLUSIONS New knowledge about monoamine metabolism in the endometrium during menstruation and pregnancy will increase understanding of infertility problems and may offer new pharmacological approaches to optimize assisted reproduction.
Collapse
Affiliation(s)
- Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University Hospital, Sweden.
| | | | | | | |
Collapse
|
14
|
Reese J, Wang H, Ding T, Paria BC. The hamster as a model for embryo implantation: insights into a multifaceted process. Semin Cell Dev Biol 2007; 19:194-203. [PMID: 18178492 DOI: 10.1016/j.semcdb.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
Abstract
Defects in preimplantation embryonic development, uterine receptivity, and implantation are the leading cause of infertility, pregnancy problems and birth defects. Significant progress has been made in our basic understanding of these processes using the mouse model, where implantation is ovarian estrogen-dependent in the presence of progesterone. However, an animal model where implantation is progesterone-dependent must also be studied to gain a full understanding of the embryo and uterine events that are required for implantation. In this regard, the hamster is a useful model and this review summarizes the information currently available regarding mechanisms involved in synchronous preimplantation embryo and uterine development for implantation in this species.
Collapse
Affiliation(s)
- Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-0656, USA
| | | | | | | |
Collapse
|
15
|
Khatua A, Wang X, Ding T, Zhang Q, Reese J, DeMayo FJ, Paria BC. Indian hedgehog, but not histidine decarboxylase or amphiregulin, is a progesterone-regulated uterine gene in hamsters. Endocrinology 2006; 147:4079-92. [PMID: 16794005 DOI: 10.1210/en.2006-0231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Implantation occurs only in the progesterone (P4)-primed uterus in the majority of species, but little effort has been given to identify P4-mediated molecules in these species. Using hamsters as a model for P4-dependent implantation and three well-known uterine receptivity-associated P4-regulated genes, Indian hedgehog (Ihh), histidine decarboxylase (Hdc), and amphiregulin (Areg), in mice that require ovarian estrogen for uterine receptivity and implantation, our strategy aimed to determine whether P4 regulates uterine expression of these genes in hamsters and whether the event- and cell-specific uterine expression patterns of these genes during the periimplantation period in hamsters follow similarly with their patterns in mice. We report here that P4-mediated Ihh signaling is important for uterine receptivity and implantation in hamsters because uterine epithelial Ihh expression was regulated by P4 and its expression patterns during the periimplantation period of hamsters closely follow its pattern in mice. In contrast, we noted no hormonal regulation of Hdc and Areg in the hamster uterus. However, this did not diminish their importance in hamsters because their expression patterns and functions are event and cell specific during the periimplantation period: whereas Hdc was expressed exclusively in d 4 uterine glands and regulated by the blastocyst, Areg was expressed on the decidual area adjacent to the embryo from d 5 onward and involved in stromal cell proliferation. We conclude that similarities and dissimilarities exist in uterine expression pattern of implantation-related genes, including hormonal regulation and their event-specific importance.
Collapse
Affiliation(s)
- Atanu Khatua
- Division of Reproductive and Developmental Biology, D4124 Medical Center North, 1161 21st Avenue South, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2678, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Yang Z, Wolf IM, Chen H, Periyasamy S, Chen Z, Weidong Y, Shi S, Zhao W, Xu J, Srivastava A, Sánchez ER, Shou W. FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 2006; 20:2682-94. [PMID: 16873445 PMCID: PMC2661205 DOI: 10.1210/me.2006-0024] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
FK506-binding protein 52 (FKBP52) is a tetratricopeptide repeat protein that associates with steroid receptors in complexes containing heat shock protein 90. To investigate the role of FKBP52 in steroid-regulated physiology, we generated FKBP52-deficient mice. FKBP52 (-/-) females are sterile due to a complete failure of implantation, a process that requires estrogen (ER) and progesterone receptors (PR). Because the uterus expresses two forms of PR, PR-A and PR-B, we investigated all three receptors as potential targets of FKBP52 action. FKBP52 (-/-) uteri showed a normal growth response to estradiol, and unaltered expression of genes controlled by ER and PR-B. In contrast, FKBP52 (-/-) uteri were neither able to express two PR-A-regulated genes, nor undergo decidualization in response to progesterone, suggesting that FKBP52 specifically regulates PR-A at this organ. Analysis of uterine PR heterocomplexes showed preferential association of FKBP52 with PR-A compared with PR-B. Loss of FKBP52 neither disrupted the PR-A/heat shock protein 90 interaction, nor impaired uterine PR-A hormone-binding function, demonstrating the essential role of FKBP52 in PR-A action to be downstream of the hormone-binding event. Transcription studies in +/+ and -/- mouse embryonic fibroblast cells showed a near-complete loss of PR-A activity at mouse mammary tumor virus and synthetic progesterone response element promoters, although partial reductions of ER and PR-B were also observed. Partial disruptions of ovulation and mammary development were also found in FKBP52 (-/-) females. Taken as a whole, our results show FKBP52 to be an essential regulator of PR-A action in the uterus, while being a nonessential but contributory regulator of steroid receptors in the mammary and ovary. These data may now provide the basis for selective targeting of steroid-regulated physiology through tetratricopeptide repeat proteins.
Collapse
Affiliation(s)
- Zuocheng Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Third Xiang-Ya Hospital, Central South University, Xiang-Ya School of Medicine, Changsha, P.R. China
| | - Irene M. Wolf
- Department of Pharmacology, Medical University of Ohio, Toledo, OH43614, USA
| | - Hanying Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sumudra Periyasamy
- Department of Pharmacology, Medical University of Ohio, Toledo, OH43614, USA
| | - Zhuang Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Weidong
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shu Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weihong Zhao
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
- The First Affiliated Hospital of Nanjing medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianming Xu
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Srivastava
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Edwin R. Sánchez
- Department of Pharmacology, Medical University of Ohio, Toledo, OH43614, USA
- To whom correspondence should be addressed: , (317) 274-8952, or . (419) 383-4182, FAX (419) 383-2871
| | - Weinian Shou
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- To whom correspondence should be addressed: , (317) 274-8952, or . (419) 383-4182, FAX (419) 383-2871
| |
Collapse
|
17
|
Niklaus AL, Pollard JW. Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology 2006; 147:3375-90. [PMID: 16627586 DOI: 10.1210/en.2005-1665] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epithelia coat most tissues where they sense and respond to the environment and participate in innate immune responses. In the adult mouse uterus, columnar epithelium lines the central lumen and the glands that penetrate the underlying stroma. A nidatory surge of estrogen causes differentiation of the luminal epithelium to the receptive state that permits blastocyst attachment and allows subsequent implantation. Here, using laser-capture microdissection to isolate the luminal and glandular epithelia separately, we have profiled gene expression 2 h before embryo attachment to determine whether there are unique roles for these two epithelial structures in this process. Although most genes were expressed in both compartments, there was greater expression of 153 and 118 genes in the lumen and glands, respectively. In the luminal epithelium, there is enrichment in lipid, metal-ion binding, and carbohydrate-metabolizing enzymes, whereas in the glands, immune response genes are emphasized. In situ hybridization to uterine sections obtained from mice during the preimplantation period validated these data and indicated an array of previously undocumented genes expressed with unique patterns in these epithelia. The data show that each epithelial compartment has a distinct molecular signature and that they act differentially and synergistically to permit blastocyst implantation.
Collapse
Affiliation(s)
- Andrea L Niklaus
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Makker A, Singh MM. Endometrial receptivity: Clinical assessment in relation to fertility, infertility, and antifertility. Med Res Rev 2006; 26:699-746. [PMID: 16710862 DOI: 10.1002/med.20061] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fertility in humans and other mammalian species depends absolutely on synchronous events that render the developing blastocyst and the receiving uterus competent for implantation. Endometrial receptivity is defined as the period during which the endometrial epithelium acquires functional, but transient, ovarian steroid-dependent status supportive to blastocyst acceptance and implantation. Once inside the uterus, the blastocyst is surrounded by an intact luminal epithelium, which is considered to act as barrier to its attachment, except for this short period of high endometrial receptivity to blastocyst signal(s). Its transport and permeability properties, in conjunction with cellular action of the endometrium and the embryo, have been suggested to influence creation and maintenance of informational and nutritional status of uterine luminal milieu. This period, also termed as the 'window of implantation,' is limited to days 20-24 of menstrual cycle in humans. However, establishment of endometrial receptivity is still a biological mystery that remains unsolved despite marked advances in our understanding of endometrial physiology following extensive research associated with its development and function. This review deals with various structural, biochemical, and molecular events in the endometrium coordinated within the implantation window that constitute essential elements in the repertoire that signifies endometrial receptivity and is aimed to achieve a better understanding of its relationship to fertility, infertility, and for the development of targeted antifertility agents for human use and welfare.
Collapse
Affiliation(s)
- Annu Makker
- Endocrinology Division, Central Drug Research Institute, Lucknow-226 001, India
| | | |
Collapse
|
19
|
Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, Wang H, Das SK, Smith DF, Dey SK. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A 2005; 102:14326-31. [PMID: 16176985 PMCID: PMC1242310 DOI: 10.1073/pnas.0505775102] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryo implantation in the uterus is a critical step in mammalian reproduction, requiring preparation of the uterus receptive to blastocyst implantation. Uterine receptivity, also known as the window of implantation, lasts for a limited period, and it is during this period blastocysts normally implant. Ovarian steroid hormones estrogen and progesterone (P(4)) are the primary regulators of this process. The immunophilin FKBP52 serves as a cochaperone for steroid hormone nuclear receptors to govern appropriate hormone action in target tissues. Here we show a critical role for FKBP52 in mouse implantation. This immunophilin has unique spatiotemporal expression in the uterus during implantation, and females missing the Fkbp52 gene have complete implantation failure due to lack of attainment of uterine receptivity. The overlapping uterine expression of FKBP52 with nuclear progesterone receptor (PR) in wild-type mice together with reduced P(4) binding to PR, attenuated PR transcriptional activity and down-regulation of several P(4)-regulated genes in uteri of Fkbp52(-/-) mice, establishes this cochaperone as a critical regulator of uterine P(4) function. Interestingly, ovulation, another P(4)-mediated event, remains normal. Collectively, the present investigation provides evidence for an in vivo role for this cochaperone in regulating tissue-specific hormone action and its critical role in uterine receptivity for implantation.
Collapse
Affiliation(s)
- Susanne Tranguch
- Departments of Pediatrics, Cell and Developmental Biology, Cancer Biology, and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu Z, Kilburn BA, Leach RE, Romero R, Paria BC, Armant DR. Histamine enhances cytotrophoblast invasion by inducing intracellular calcium transients through the histamine type-1 receptor. Mol Reprod Dev 2005; 68:345-53. [PMID: 15112328 DOI: 10.1002/mrd.20082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Blastocyst implantation and placentation require molecular and cellular interactions between the uterine endometrium and blastocyst trophectoderm. Previous studies showed that histamine produced in the mouse uterine luminal epithelium interacts with trophoblast histamine type-2 receptors (H2) to initiate blastocyst implantation. However, it is unknown whether similar histamine activity is operative in humans. Using a human cell line (HTR-8/SVneo) derived from first-trimester cytotrophoblasts that expresses both histamine type-1 receptor (H1) and H2, we found that histamine promotes cytotrophoblast invasiveness specifically through activation of H1. Stimulation of H1 in human cytotrophoblasts by histamine induced intracellular Ca2+ (Ca(2+)i) transients by activating phospholipase C and the inositol trisphosphate pathway. The enhanced invasion induced by histamine was blocked by pretreatment with H1 antagonist or by chelation of Ca(2+)i. These findings suggest possible differences between rodents and humans in histamine signaling to the trophoblast.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP, DeMayo FJ. Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 2005; 146:3490-505. [PMID: 15845616 DOI: 10.1210/en.2005-0016] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone (P4) acting through its cognate receptor, the progesterone receptor (PR), plays an important role in uterine physiology. The PR knockout (PRKO) mouse has demonstrated the importance of the P4-PR axis in the regulation of uterine function. To define the molecular pathways regulated by P4-PR in the mouse uterus, Affymetrix MG U74Av2 oligonucleotide arrays were used to identify alterations in gene expression after acute and chronic P4 treatments. PRKO and wild-type mice were ovariectomized and then treated with vehicle or 1 mg P4 every 12 h. Mice were killed either 4 h after the first injection (acute P4 treatment) or after the fourth injection of P4 (chronic P4 treatment). At the genomic level, the major change in gene expression after acute P4 treatment was an increase in the expression of 55 genes. Conversely, the major change in gene expression after chronic P4 treatment was an overall reduction in the expression of 102 genes. In the analysis, retinoic acid metabolic genes, cytochrome P 450 26a1 (Cyp26a1), alcohol dehydrogenase 5, and aldehyde dehydrogenase 1a1 (Aldh1a1); kallikrein genes, Klk5 and Klk6; and specific transcription factors, GATA-2 and Cited2 [cAMP-corticosterone-binding protein/p300-interacting transactivator with glutamic acid (E) and aspartic acid (D)-rich tail], were validated as regulated by the P4-PR axis. Identification and analysis of these responsive genes will help define the role of PR in regulating uterine biology.
Collapse
Affiliation(s)
- Jae-Wook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol 2005; 280:260-80. [PMID: 15882572 PMCID: PMC2715296 DOI: 10.1016/j.ydbio.2005.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/16/2005] [Accepted: 02/08/2005] [Indexed: 01/02/2023]
Abstract
The preimplantation embryo floats freely within the oviduct and is capable of developing into a blastocyst independently of the maternal reproductive tract. While establishment of the trophoblast lineage is dependent on expression of developmental regulatory genes, further differentiation leading to blastocyst implantation in the uterus requires external cues emanating from the microenvironment. Recent studies suggest that trophoblast differentiation requires intracellular signaling initiated by uterine-derived growth factors and integrin-binding components of the extracellular matrix. The progression of trophoblast development from the early blastocyst stage through the onset of implantation appears to be largely independent of new gene expression. Instead, extrinsic signals direct the sequential trafficking of cell surface receptors to orchestrate the developmental program that initiates blastocyst implantation. The dependence on external cues could coordinate embryonic activities with the developing uterine endometrium. Biochemical events that regulate trophoblast adhesion to fibronectin are presented to illustrate a developmental strategy employed by the peri-implantation blastocyst.
Collapse
Affiliation(s)
- D Randall Armant
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201-1415, USA.
| |
Collapse
|
23
|
Mondillo C, Patrignani Z, Reche C, Rivera E, Pignataro O. Dual role of histamine in modulation of Leydig cell steroidogenesis via HRH1 and HRH2 receptor subtypes. Biol Reprod 2005; 73:899-907. [PMID: 15917347 DOI: 10.1095/biolreprod.105.041285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although several reports indicate effects of histamine (HA) on female reproductive functions, scant literature exists to suggest a physiological role of HA in the male gonad. In the present study, we report a dual concentration-dependent effect of HA on steroidogenesis in MA-10 murine Leydig cells and purified rat Leydig cells. Although 1 nM HA can stimulate steroid production and significantly increase the response to LH/hCG in these cells, 10 microM HA exerts an inhibitory effect. We also provide confirming evidence for the existence of functional HRH1 and HRH2 receptors in both experimental models. The use of HRH1 and HRH2 selective agonists and antagonists led us to suggest that HRH2 activation would be largely responsible for stimulation of steroidogenesis, while HRH1 activation is required for inhibition of steroid synthesis. Our results regarding signal transduction pathways associated with these receptors indicate the coupling of HRH2 to the adenylate cyclase system through direct interaction with a Gs protein. Moreover, we show HRH1 activation mediates increases in inositol phosphate production, possibly due to coupling of this receptor to Gq protein and phospholipase C activation. The data compiled in this report clearly indicate that HA can modulate Leydig cell steroidogenesis in the testis and suggest a possible new physiological site of action for HA. Given that many drugs binding to HRH1, HRH2, or both, are widely prescribed for the treatment of diverse HA-related pathologies, it seems necessary to increase the knowledge regarding histaminergic regulation of testicular functions, to avoid possible unexpected side effects of such substances in the testis.
Collapse
Affiliation(s)
- Carolina Mondillo
- Lab of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine-CONICET, CP 1428, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
24
|
Abstract
Successful implantation is the result of reciprocal interactions between the implantation-competent blastocyst and receptive uterus. Although various cellular aspects and molecular pathways of this dialogue have been identified, a comprehensive understanding of the implantation process is still missing. The receptive state of the uterus, which lasts for a limited period, is defined as the time when the uterine environment is conducive to blastocyst acceptance and implantation. A better understanding of the molecular signals that regulate uterine receptivity and implantation competency of the blastocyst is of clinical relevance because unraveling the nature of these signals may lead to strategies to correct implantation failure and improve pregnancy rates. Gene expression studies and genetically engineered mouse models have provided valuable clues to the implantation process with respect to specific growth factors, cytokines, lipid mediators, adhesion molecules, and transcription factors. However, a staggering amount of information from microarray experiments is also being generated at a rapid pace. If properly annotated and explored, this information will expand our knowledge regarding yet-to-be-identified unique, complementary, and/or redundant molecular pathways in implantation. It is hoped that the forthcoming information will generate new ideas and concepts for a process that is essential for maintaining procreation and solving major reproductive health issues in women.
Collapse
Affiliation(s)
- S K Dey
- Department of Pediatrics, Vanderbilt University Medical Center, MCN D4100, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Cheon YP, Xu X, Bagchi MK, Bagchi IC. Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 2003; 144:5623-30. [PMID: 14500577 DOI: 10.1210/en.2003-0585] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroid hormone progesterone (P) is a critical regulator of uterine receptivity during blastocyst implantation. The hormone acts through nuclear P receptors (PRs) to modulate the expression of specific gene networks in various uterine cell types. To identify the P-regulated pathways underlying uterine receptivity, we previously used oligonucleotide microarrays to analyze uterine mRNA profiles at the time of implantation in response to RU486, a PR antagonist. We reported that the mRNA corresponding to the immune-responsive gene 1 (Irg1), a previously described lipopolysaccharide-inducible gene, is one of the several mRNAs that are markedly down-regulated by RU486 in the preimplantation uterus. In the present study, we performed in situ hybridization to show that P stimulates Irg1 mRNA synthesis in the luminal epithelial cells of uteri of ovariectomized wild-type but not PR knockout mice. We also report that Irg1 mRNA was induced in the luminal epithelium of pregnant uterus between d 3 and 5, overlapping the window of implantation. To investigate the function of Irg1 during implantation, we administered sense or antisense oligodeoxynucleotides into preimplantation mouse uteri. Treatment with antisense oligodeoxynucleotides led to suppression in Irg1 mRNA expression without affecting unrelated mRNAs in the pregnant uterus. This intervention was also accompanied by impairment in embryo implantation, indicating that the phenotype is linked to the suppression of Irg1 mRNA. Collectively, our studies identified Irg1 as a novel target of PR in the pregnant uterus and also revealed that it is a critical regulator of the early events leading to implantation.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
26
|
Chen B, Zhang D, Pollard JW. Progesterone regulation of the mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway. Mol Endocrinol 2003; 17:2340-54. [PMID: 12893884 DOI: 10.1210/me.2003-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Implantation requires coordination between development of the blastocyst and the sex steroid hormone-regulated differentiation of the uterus. Under the influence of these hormones, the uterine luminal epithelium becomes receptive to attachment of the hatched blastocyst. In this study we sought to identify genes regulated by progesterone (P4) in the uterine epithelium. This resulted in the identification of one novel P4-regulated gene that had been previously found in lipopolysaccharide-stimulated macrophages and called immune response gene-1 (Irg1) and which is the mammalian ortholog of the bacterial gene encoding methylcitrate dehydratase. In adult mice Irg1 expression was limited to the uterine luminal epithelium where it is expressed only during pregnancy with a peak coinciding with implantation. Irg1 mRNA expression is regulated synergistically by P4 and estradiol (E2) but not by E2 alone. In macrophages Irg1 is induced by lipopolysaccharide through a protein kinase C (PKC)-regulated pathway. Now we demonstrate that the PKC pathway is induced in the uterine epithelium at implantation by the synergistic action of P4 and E2 and is responsible for the hormone induction of Irg1. These results suggest that the PKC pathway plays an important role in modulating steroid hormone responsiveness in the uterine luminal epithelium during the implantation window and that Irg1 will be an important marker of this window and may play an important role in implantation.
Collapse
Affiliation(s)
- Bo Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461, USA.
| | | | | |
Collapse
|
27
|
Richard C, Gao J, Brown N, Reese J. Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 2003; 144:1533-41. [PMID: 12639938 DOI: 10.1210/en.2002-0033] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The periimplantation period is marked by edematous changes in the uterus. In the mouse, increased uterine vascular permeability occurs in response to estrogen and certain vasoactive mediators, but the mechanisms that regulate fluid transport during implantation are not fully understood. Aquaporins (AQPs) are a family of membrane channel proteins that facilitate bulk water transport. To assess their role in implantation, we examined the expression of AQPs 0-9 in the mouse uterus on d 1-8 of pregnancy. Our results show distinct uterine expression patterns for AQP1, AQP4, and AQP5. AQP1 is localized to the inner circular myometrium throughout the periimplantation period. AQP4 is highly expressed in the luminal epithelium on d 1 of pregnancy but barely detectable at the time of implantation. AQP5 is expressed at low levels in the glandular epithelium during early pregnancy but is markedly increased on d 5. By immunohistochemistry, AQP5 is localized in the basolateral region of the uterine glands. Treatment of adult ovariectomized mice with replacement steroids demonstrates an estrogen-induced shift in AQP1 signals from the myometrium to the uterine stromal vasculature, suggesting a role in uterine fluid imbibition. In contrast, AQP5 is induced only in estrogen-treated, progesterone-primed uteri. We also observed expression of AQP8 in the inner-cell mass and AQP9 in the mural trophectoderm of the implanting blastocyst. Collectively, these results suggest that members of the AQP family are involved in embryo and uterine fluid homeostasis during implantation.
Collapse
Affiliation(s)
- Charissa Richard
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
28
|
Yao MWM, Lim H, Schust DJ, Choe SE, Farago A, Ding Y, Michaud S, Church GM, Maas RL. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol 2003; 17:610-27. [PMID: 12554760 DOI: 10.1210/me.2002-0290] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infertility and recurrent pregnancy loss caused by implantation defects are poorly understood. Hoxa-10-deficient female mice have severe infertility and recurrent pregnancy loss due to defective uterine implantation. Gene expression profiling experiments reveal that Hoxa-10 is an important regulator of two critical events in implantation: stromal cell proliferation and local immunosuppression. At the time of implantation, Hoxa-10 mediates the progesterone-stimulated proliferation of uterine stromal cells. Hoxa-10 mutants express a stromal cell proliferation defect that is accompanied by quantitative or spatial alterations in the expression of two cyclin-dependent kinase inhibitor genes, p57 and p15. Hoxa-10 deficiency also leads to a severe local immunological disturbance, characterized by a polyclonal proliferation of T cells, that occurs in place of the normal progesterone-mediated immunosuppression in the periimplantation uterus.
Collapse
Affiliation(s)
- Mylene W M Yao
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Thorn Building, Room 1019, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 2002; 16:2853-71. [PMID: 12456805 DOI: 10.1210/me.2002-0270] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular actions of steroid hormone progesterone (P) are mediated via its nuclear receptors, which regulate the expression of specific target genes. The identity of gene networks that are regulated by the P receptors (PRs) in the uterus at various stages of the reproductive cycle and pregnancy, however, remain largely unknown. In this study, we have used oligonucleotide microarrays to identify mRNAs whose expression in the pregnant mouse uterus is modulated by RU486, a well-characterized PR antagonist, which is also an effective inhibitor of implantation. We found that, in response to RU486, expression of mRNAs corresponding to 78 known genes was down-regulated at least 2-fold in the preimplantation mouse uterus. The PR regulation of several of these genes was ascertained by administering P to ovariectomized wild-type and PR knockout (PRKO) mice. Detailed spatio-temporal analysis of these genes in the pregnant uterus indicated that their expression in the epithelium and stroma could be correlated with the expression of PR in those cell types. Furthermore, time-course studies suggested that many of these genes are likely primary targets of PR regulation. We also identified 70 known genes that were up-regulated at least 2-fold in the pregnant uterus in response to RU486. Interestingly, initial examination of a number of RU486-inducible genes reveals that their uterine expression is also regulated by estrogen. The identification of several novel PR-regulated gene pathways in the reproductive tract is an important step toward understanding how P regulates the physiological events leading to implantation.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
30
|
Conneely OM, Jericevic BM. Progesterone regulation of reproductive function through functionally distinct progesterone receptor isoforms. Rev Endocr Metab Disord 2002; 3:201-9. [PMID: 12215715 DOI: 10.1023/a:1020020308980] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | | |
Collapse
|
31
|
Benkusky NA, Korovkina VP, Brainard AM, England SK. Myometrial maxi-K channel beta1 subunit modulation during pregnancy and after 17beta-estradiol stimulation. FEBS Lett 2002; 524:97-102. [PMID: 12135748 DOI: 10.1016/s0014-5793(02)03011-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myometrial maxi-K channels are modulated by beta subunits. We aimed to determine whether beta subunits are modulated to affect uterine excitability during gestation. RNase protection analyses revealed that mouse beta1 subunit transcripts are regulated during gestation with peak expression at day 14 of pregnancy. Immunohistochemical analysis indicates an increase of this subunit during gestation. Upregulation of the beta1 transcript occurs with 4-day exposure to 17beta-estradiol but not progesterone, and acute estradiol exposure has no effect on beta1 transcript expression. These findings verify that beta1 subunit transcript is regulated in mouse myometrium during gestation and estrogens may contribute to this increase.
Collapse
Affiliation(s)
- Nancy A Benkusky
- Department of Physiology and Biophysics, 5-660 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
32
|
Matsumoto H, Zhao X, Das SK, Hogan BLM, Dey SK. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol 2002; 245:280-90. [PMID: 11977981 DOI: 10.1006/dbio.2002.0645] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes encoding components of the hedgehog signaling pathway are dynamically expressed in the mouse uterus preparing for implantation. Indian hedgehog (Ihh), patched (Ptc), and Gli3 are expressed at low levels in the endometrial epithelium on day 1 of pregnancy. Transcription of Ihh increases dramatically in the luminal epithelium and glands from day 3, reaching very high levels on day 4. Over the same period, Ptc, Gli1, Gli2, and noggin are strongly upregulated in the underlying mesenchymal stroma. Transcription of Ihh in ovariectomized mice is induced by progesterone but not by estrogen. Lower induction of Ihh, Ptc, and Hoxa10 is seen in response to progesterone in the uteri of Pgr(-/-) mutant mice lacking progesterone nuclear steroid receptor. This finding suggests that the hormone may regulate Ihh through both nuclear receptor-dependent and -independent pathways. We describe a method for culturing uterine explants in the absence of epithelium. Under these conditions, recombinant N-SHH protein promotes the proliferation of mesenchyme cells and the expression of noggin. We propose that IHH made by the epithelium normally functions as a paracrine growth factor for stromal cells during the early stages of pregnancy.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160-7336, USA
| | | | | | | | | |
Collapse
|
33
|
Fitzsimons C, Engel N, Policastro L, Durán H, Molinari B, Rivera E. Regulation of phospholipase C activation by the number of H(2) receptors during Ca(2+)-induced differentiation of mouse keratinocytes. Biochem Pharmacol 2002; 63:1785-96. [PMID: 12034363 DOI: 10.1016/s0006-2952(02)00975-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have reported previously that the histamine H(2) receptor (H(2)R) can stimulate the phospholipase C (PLC) signaling pathway in mouse keratinocytes. In the present work, we examined the physiological mechanisms involved in this activation by studying histamine metabolism and H(2)R expression and coupling during mouse keratinocyte differentiation. Ca(2+)-induced differentiation decreased histidine decarboxylase (HDC) mRNA, the enzyme responsible for histamine synthesis, by 68.9+/-5.0%. Concomitantly, intracellular histamine content and its release into the extracellular medium were reduced significantly by 68.2+/-2.0 and 74.1+/-1.7%, respectively. Binding of [3H]tiotidine to H(2)Rs present on the surface of whole cells was also decreased by cellular differentiation [(18.17+/-2.1)x10(4) vs. (6.27+/-0.87)x10(4) sites/cell, undifferentiated and differentiated cells, respectively], without affecting H(2)R affinity. Northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of the H(2)R mRNA showed that the expression was also down-regulated at the transcriptional level. Moreover, the inhibition of H(2)R expression strongly affected the ability of the receptor to induce PLC activation. Our findings suggest that H(2)R signaling through the PLC second messenger system is inhibited during keratinocyte differentiation by an autocrine loop involving down-regulation of H(2)R expression and inhibition of histamine metabolism.
Collapse
Affiliation(s)
- Carlos Fitzsimons
- Radioisotopes Laboratory, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (1113), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
34
|
Reese J, Das SK, Paria BC, Lim H, Song H, Matsumoto H, Knudtson KL, DuBois RN, Dey SK. Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J Biol Chem 2001; 276:44137-45. [PMID: 11551965 DOI: 10.1074/jbc.m107563200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infertility and spontaneous pregnancy losses are an enduring problem to women's health. The establishment of pregnancy depends on successful implantation, where a complex series of interactions occurs between the heterogeneous cell types of the uterus and blastocyst. Although a number of genes are implicated in embryo-uterine interactions during implantation, genetic evidence suggests that only a small number of them are critical to this process. To obtain a global view and identify novel pathways of implantation, we used a dual screening strategy to analyze the expression of nearly 10,000 mouse genes by microarray analysis. Comparison of implantation and interimplantation sites by a conservative statistical approach revealed 36 up-regulated genes and 27 down-regulated genes at the implantation site. We also compared the uterine gene expression profile of progesterone-treated, delayed implanting mice to that of mice in which delayed implantation was terminated by estrogen. The results show up-regulation of 128 genes and down-regulation of 101 genes after termination of the delayed implantation. A combined analysis of these experiments showed specific up-regulation of 27 genes both at the implantation site and during uterine activation, representing a broad diversity of molecular functions. In contrast, the majority of genes that were decreased in the combined analysis were related to host immunity or the immune response, suggesting the importance of these genes in regulating the uterine environment for the implanting blastocyst. Collectively, we identified genes with recognized roles in implantation, genes with potential roles in this process, and genes whose functions have yet to be defined in this event. The identification of unique genetic markers for the onset of implantation signifies that genome-wide analysis coupled with functional assays is a promising approach to resolve the molecular pathways required for successful implantation.
Collapse
Affiliation(s)
- J Reese
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000; 289:1751-4. [PMID: 10976068 DOI: 10.1126/science.289.5485.1751] [Citation(s) in RCA: 466] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Progesterone regulates reproductive function through two intracellular receptors, progesterone receptor-A (PR-A) and progesterone receptor-B (PR-B), that arise from a single gene and function as transcriptional regulators of progesterone-responsive genes. Although in vitro studies show that PR isoforms can display different transcriptional regulatory activities, their physiological significance is unknown. By selective ablation of PR-A in mice, we show that the PR-B isoform modulates a subset of reproductive functions of progesterone by regulation of a subset of progesterone-responsive target genes. Thus, PR-A and PR-B are functionally distinct mediators of progesterone action in vivo and should provide suitable targets for generation of tissue-selective progestins.
Collapse
Affiliation(s)
- B Mulac-Jericevic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Zhao X, Ma W, Das SK, Dey SK, Paria BC. Blastocyst H(2) receptor is the target for uterine histamine in implantation in the mouse. Development 2000; 127:2643-51. [PMID: 10821762 DOI: 10.1242/dev.127.12.2643] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of implantation is a ‘two-way’ interaction between the blastocyst and uterus. It has long been suspected that histamine is an important mediator in embryo-uterine interactions during implantation, but its source, targets and mechanism of actions remained undefined. We have recently demonstrated that uterine epithelial cells are the source of histamine, which peaks on day 4 of pregnancy (the day of implantation) in the mouse. In searching for its target and site of action, we discovered that preimplantation blastocysts, which express histamine type 2 receptor (H(2)), is the target for histamine action. Using multiple approaches, we demonstrate herein that uterine-derived histamine interacts with embryonic H(2) receptors in a paracrine fashion to initiate the process of implantation.
Collapse
Affiliation(s)
- X Zhao
- Departments of Molecular and Integrative Physiology, Obstetrics and Gynecology and Pediatrics, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160-7338, USA
| | | | | | | | | |
Collapse
|
37
|
Wood GW, Hausmann EH, Choudhuri R, Dileepan KN. Expression and regulation of histidine decarboxylase mRNA expression in the uterus during pregnancy in the mouse. Cytokine 2000; 12:622-9. [PMID: 10843737 DOI: 10.1006/cyto.2000.0667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that hormonally regulated histamine production plays a role in preparation of the uterus for implantation. Histidine decarboxylase (HDC) is the rate-limiting enzyme for histamine production. The current study was designed to determine intrauterine expression of HDC mRNA expression during pregnancy in the mouse. High levels of HDC mRNA expression were observed in the preimplantation mouse uterus with peak expression occurring on day 4. High levels of HDC mRNA expression were also detected in the post-implantation uterus. In an effort to determine whether HDC mRNA is regulated by pro-inflammatory cytokines, the HDC mRNA pattern was compared to intrauterine expression of mRNA's for interleukin-1alpha (IL-1alpha), IL-1beta, macrophage chemotactic protein-1 (MCP-1) and RANTES (regulated on activation, normal T expressed and secreted) during the peri-implantation period. IL-1beta, MCP-1 and RANTES mRNA levels were increased in the uterus on days 1-2 and on days 4-5. Increased expression of IL-1alpha mRNA was observed on days 1-2 and days 5-7. There was no clear relationship between HDC mRNA expression and cytokine/chemokine mRNA expression. Progesterone-stimulated intrauterine expression of HDC mRNA. Intrauterine cytokine/chemokine mRNA was also hormonally regulated. This data allowed the possibility that one or more of these pro-inflammatory cytokines could be involved in regulating intrauterine HDC mRNA production. Recombinant IL-1alpha, IL-1beta, MCP-1 and RANTES all failed to induce HDC mRNA expression in the preimplantation uterus in a mouse pseudopregnancy model. At the same time, IL-1beta induced the expression of mRNA for each of the four cytokines/chemokines. Despite the fact that these were also produced in the uterus during pregnancy and were hormonally regulated, none of these cytokines induced intrauterine HDC mRNA expression. The data suggest that progesterone is involved in the regulation of HDC mRNA expression in the preimplantation uterus, but IL-1alpha/beta, MCP-1 and RANTES, which have been reported to regulate histamine synthesis during inflammatory processes, do not appear to play a role.
Collapse
Affiliation(s)
- G W Wood
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | |
Collapse
|
38
|
Paria BC, Zhao X, Das SK, Dey SK, Yoshinaga K. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev Biol 1999; 208:488-501. [PMID: 10191061 DOI: 10.1006/dbio.1999.9206] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two-way interactions between the blastocyst trophectoderm and the uterine luminal epithelium are essential for implantation. The key events of this process are cell-cell contact of trophectoderm cells with uterine luminal epithelial cells, controlled invasion of trophoblast cells through the luminal epithelium and the basement membrane, transformation of uterine stromal cells surrounding the blastocyst into decidual cells, and protection of the "semiallogenic" embryo from the mother's immunological responses. Because cell-cell contact between the trophectoderm epithelium and the luminal epithelium is essential for implantation, we investigated the expression of zonula occludens-1 (ZO-1) and E-cadherin, two molecules associated with epithelial cell junctions, in the mouse uterus during the periimplantation period. Preimplantation uterine epithelial cells express both ZO-1 and E-cadherin. With the initiation and progression of implantation, ZO-1 and E-cadherin are expressed in stromal cells of the primary decidual zone (PDZ). As trophoblast invasion progresses, these two molecules are expressed in stroma in advance of the invading trophoblast cells. These results suggest that expression of these adherence and tight junctions molecules in the PDZ serves to function as a permeability barrier to regulate access of immunologically competent maternal cells and/or molecules to the embryo and provide homotypic guidance of trophoblast cells in the endometrium.
Collapse
Affiliation(s)
- B C Paria
- Department of Molecular and Integrative Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, Kansas, 66160-7338, USA
| | | | | | | | | |
Collapse
|