1
|
Pinson A, Sevrin E, Chatzi C, Le Gac B, Thiry M, Westbrook GL, Parent AS. Induction of Oxidative Stress and Alteration of Synaptic Gene Expression in Newborn Hippocampal Granule Cells after Developmental Exposure to Aroclor 1254. Neuroendocrinology 2022; 113:1248-1261. [PMID: 36257292 PMCID: PMC10110769 DOI: 10.1159/000527576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.
Collapse
Affiliation(s)
- Anneline Pinson
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Elena Sevrin
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin Le Gac
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and tissular biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Buser MC, Pohl HR, Abadin HG. Windows of sensitivity to toxic chemicals in the development of the endocrine system: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:437-454. [PMID: 32495642 PMCID: PMC7714698 DOI: 10.1080/09603123.2020.1772204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This review utilizes the robust database of literature contained in toxicological profiles developed by the Agency for Toxic Substances and Disease Registry. The aim was to use this database to identify developmental toxicity studies reporting alterations in hormone levels in the developing fetus and offspring and identify windows of sensitivity. We identified 74 oral exposure studies in rats that provided relevant information on 30 chemicals from 21 profiles. Most studies located provided information on thyroid hormones, with fewer studies on anterior pituitary, adrenal medulla, ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, or adrenal cortex were located. The results demonstrate that development of the endocrine system may be affected by exposure to environmental contaminants at many different points, including gestational and/or lactational exposure. Moreover, this review demonstrates the need for more developmental toxicity studies focused on the endocrine system and specifically alterations in hormone levels.
Collapse
Affiliation(s)
- M C Buser
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H R Pohl
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - H G Abadin
- US Department of Health and Human Services, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| |
Collapse
|
3
|
Silva JF, Moreira BP, Rato L, de Lourdes Pereira M, Oliveira PF, Alves MG. Is Technical-Grade Chlordane an Obesogen? Curr Med Chem 2021; 28:548-568. [PMID: 31965937 DOI: 10.2174/0929867327666200121122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity has tripled in recent decades and is now considered an alarming public health problem. In recent years, a group of endocrine disruptors, known as obesogens, have been directly linked to the obesity epidemic. Its etiology is generally associated with a sedentary lifestyle, a high-fat diet and genetic predisposition, but environmental factors, such as obesogens, have also been reported as contributors for this pathology. In brief, obesogens are exogenous chemical compounds that alter metabolic processes and/or energy balance and appetite, thus predisposing to weight gain. Although this theory is still recent, the number of compounds with suspected obesogenic activity has steadily increased over the years, though many of them remain a matter of debate. Technical-grade chlordane is an organochlorine pesticide widely present in the environment, albeit at low concentrations. Highly lipophilic compounds can be metabolized by humans and animals into more toxic and stable compounds that are stored in fat tissue and consequently pose a danger to the human body, including the physiology of adipose tissue, which plays an important role in weight regulation. In addition, technical-grade chlordane is classified as a persistent organic pollutant, a group of chemicals whose epidemiological studies are associated with metabolic disorders, including obesity. Herein, we discuss the emerging roles of obesogens as threats to public health. We particularly discuss the relevance of chlordane persistence in the environment and how its effects on human and animal health provide evidence for its role as an endocrine disruptor with possible obesogenic activity.
Collapse
Affiliation(s)
- Juliana F Silva
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Luís Rato
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Berlin M, Barchel D, Brik A, Kohn E, Livne A, Keidar R, Tovbin J, Betser M, Moskovich M, Mandel D, Lubetzky R, Ovental A, Factor-Litvak P, Britzi M, Ziv-Baran T, Koren R, Klieger C, Berkovitch M, Matok I, Marom R. Maternal and Newborn Thyroid Hormone, and the Association With Polychlorinated Biphenyls (PCBs) Burden: The EHF (Environmental Health Fund) Birth Cohort. Front Pediatr 2021; 9:705395. [PMID: 34589452 PMCID: PMC8473683 DOI: 10.3389/fped.2021.705395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants found in human tissues. PCBs can be transferred through the placenta and may disrupt the maternal thyroid homeostasis, and affect fetal thyroid hormone production. Several studies have shown that intrauterine exposure to PCBs might be associated with abnormal levels of thyroid hormones in mothers and their offspring. Objectives: To examine the associations between environmental exposure to PCBs and thyroid hormone levels in mothers and newborns. Methods: The EHF-Assaf-Harofeh-Ichilov cohort includes 263 mothers-newborns dyads. A total of 157 mother-newborn dyads had both PCBs and thyroid function measures. Regression models were used to estimate associations between maternal PCB exposure and maternal and newborn thyroid function, controlling for possible confounders. Results: Four PCBs congeners were analyzed: PCBs 118, 138, 153, and 180. ∑PCBs median (IQR) level was 14.65 (2.83-68.14) ng/g lipids. The median maternal thyroid-stimulating hormone (TSH) level was 2.66 (0.70-8.23) μIU/ml, the median maternal free thyroxine (FT4) level was 12.44 (11.27-13.53) μg/dL, the median maternal thyroid peroxidase antibodies (TPO Ab) level was 9.6 (7.36-12.51) IU/mL. Newborns' median total thyroxine (T4) level was 14.8 (7.6-24.9) μg/dL. No association was found between exposure to different congeners or to ∑PCBs and maternal TSH, FT4, thyroglobulin autoantibodies (Tg Ab), TPO Ab and newborn total T4 levels. In multivariable analysis a 1% change in ∑PCBs level was significantly associated with a 0.57% change in maternal TSH levels in women with body mass index (BMI) < 19. The same association was observed for each of the studied PCB congeners. Maternal TPO Ab levels statistically significantly increased by 0.53 and 0.46% for 1% increase in PCB 118 and 153 congeners, respectively. In women with BMI > 25, the association between the PCBs levels and maternal TSH levels was in the opposite direction. No association was found in women with normal BMI (19-24.9). Conclusions: Background exposure to environmentally relevant concentrations of some PCBs can alter thyroid hormone homeostasis in pregnant women and might be associated with abnormal TSH levels and TPO-Ab in women with low BMI. However, these findings require further investigation.
Collapse
Affiliation(s)
- Maya Berlin
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Barchel
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Josef Tovbin
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Miki Moskovich
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amit Ovental
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Malka Britzi
- Residues Lab, Kimron Veterinary Institute, Beit-Dagan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Koren
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chagit Klieger
- Feto-Maternal Unit, Lis Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilan Matok
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronella Marom
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
6
|
Hulin M, Sirot V, Vasseur P, Mahe A, Leblanc JC, Jean J, Marchand P, Venisseau A, Le Bizec B, Rivière G. Health risk assessment to dioxins, furans and PCBs in young children: The first French evaluation. Food Chem Toxicol 2020; 139:111292. [DOI: 10.1016/j.fct.2020.111292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023]
|
7
|
Walter KM, Dach K, Hayakawa K, Giersiefer S, Heuer H, Lein PJ, Fritsche E. Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison. PLoS One 2019; 14:e0221230. [PMID: 31513589 PMCID: PMC6742404 DOI: 10.1371/journal.pone.0221230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormone (TH) is essential for brain development. While disruption of TH signaling by environmental chemicals has been discussed as a mechanism of developmental neurotoxicity (DNT) for more than a decade, there remains a paucity of information linking specific TH disrupting chemicals to adverse neurodevelopmental outcomes. This data gap reflects, in part, the fact that the molecular machinery of TH signaling is complex and varies according to cell type and developmental time. Thus, establishing a baseline of the ontogenetic profile of expression of TH signaling molecules in relevant cell types is critical for developing in vitro and alternative systems-based models for screening TH disrupting chemicals for DNT. Here, we characterize the transcriptomic profile of molecules critical to TH signaling across three species-human, rat, and zebrafish-in vitro and in vivo across different stages of neurodevelopment. Our data indicate that while cultured human and rat neural progenitor cells, primary cultures of rat cortical cells, and larval zebrafish all express a fairly comprehensive transcriptome of TH signaling molecules, the spatiotemporal expression profiles as well as the responses to TH vary across species and developmental stages. The data presented here provides a roadmap for identifying appropriate in vitro and in simpler systems-based models for mechanistic studies and screening of chemicals that alter neurodevelopment via interference with TH action.
Collapse
Affiliation(s)
- Kyla M. Walter
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
| | - Katharina Dach
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Keri Hayakawa
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
| | - Susanne Giersiefer
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Heike Heuer
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
- Dept. Endocrinology, University Hospital Essen, Essen, Germany
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, United States of America
- * E-mail: (PJL); (EF)
| | - Ellen Fritsche
- IUF–Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
- * E-mail: (PJL); (EF)
| |
Collapse
|
8
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Bansal R, Zoeller RT. CLARITY-BPA: Bisphenol A or Propylthiouracil on Thyroid Function and Effects in the Developing Male and Female Rat Brain. Endocrinology 2019; 160:1771-1785. [PMID: 31135896 PMCID: PMC6937519 DOI: 10.1210/en.2019-00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
The CLARITY-BPA experiment, a large collaboration between the National Institute of Environmental Health Sciences, the National Toxicology Program, and the US Food and Drug Administration, is designed to test the effects of bisphenol A (BPA) on a variety of endocrine systems and end points. The specific aim of this subproject was to test the effect of BPA exposure on thyroid functions and thyroid hormone action in the developing brain. Timed-pregnant National Center for Toxicological Research Sprague-Dawley rats (strain code 23) were dosed by gavage with vehicle control (0.3% carboxymethylcellulose) or one of five doses of BPA [2.5, 25, 250, 2500, or 25,000 µg/kg body weight (bw) per day] or ethinyl estradiol (EE) at 0.05 or 0.50 µg/kg bw/d (n = 8 for each group) beginning on gestational day 6. Beginning on postnatal day (PND) 1 (day of birth is PND 0), the pups were directly gavaged with the same dose of vehicle, BPA, or EE. We also obtained a group of animals treated with 3 ppm propylthiouracil in the drinking water and an equal number of concordant controls. Neither BPA nor EE affected serum thyroid hormones or thyroid hormone‒sensitive end points in the developing brain at PND 15. In contrast, propylthiouracil (PTU) reduced serum T4 to the expected degree (80% reduction) and elevated serum TSH. Few effects of PTU were observed in the male brain and none in the female brain. As a result, it is difficult to interpret the negative effects of BPA on the thyroid in this rat strain because the thyroid system appears to respond differently from that of other rat strains.
Collapse
Affiliation(s)
- Ruby Bansal
- Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts
| | - R Thomas Zoeller
- Biology Department, University of Massachusetts Amherst, Amherst, Massachusetts
- Correspondence: R. Thomas Zoeller, PhD, Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| |
Collapse
|
10
|
Walter KM, Miller GW, Chen X, Harvey DJ, Puschner B, Lein PJ. Changes in thyroid hormone activity disrupt photomotor behavior of larval zebrafish. Neurotoxicology 2019; 74:47-57. [PMID: 31121238 DOI: 10.1016/j.neuro.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
High throughput in vitro, in silico, and computational approaches have identified numerous environmental chemicals that interfere with thyroid hormone (TH) activity, and it is posited that human exposures to such chemicals are a contributing factor to neurodevelopmental disorders. However, whether hits in screens of TH activity are predictive of developmental neurotoxicity (DNT) has yet to be systematically addressed. The zebrafish has been proposed as a second tier model for assessing the in vivo DNT potential of TH active chemicals. As an initial evaluation of the feasibility of this proposal, we determined whether an endpoint often used to assess DNT in larval zebrafish, specifically photomotor behavior, is altered by experimentally induced hyper- and hypothyroidism. Developmental hyperthyroidism was simulated by static waterborne exposure of zebrafish to varying concentrations (3-300 nM) of thyroxine (T4) or triiodothyronine (T3) beginning at 6 h post-fertilization (hpf) and continuing through 5 days post-fertilization (dpf). Teratogenic effects and lethality were observed at 4 and 5 dpf in fish exposed to T4 or T3 at concentrations >30 nM. However, as early as 3 dpf, T4 (> 3 nM) and T3 (> 10 nM) significantly increased swimming activity triggered by sudden changes from light to dark, particularly during the second dark period (Dark 2). Conversely, developmental hypothyroidism, which was induced by treatment with 6-propyl-2-thiouracil (PTU), morpholino knockdown of the TH transporter mct8, or ablation of thyroid follicles in adult females prior to spawning, generally decreased swimming activity during dark periods, although effects did vary across test days. All effects of developmental hypothyroidism on photomotor behavior occurred independent of teratogenic effects and were most robust during Dark 2. Treatment with the T4 analog, Tetrac, restored photomotor response in mct8 morphants to control levels. Collectively, these findings suggest that while the sensitivity of photomotor behavior in larval zebrafish to detect TH disruption is influenced by test parameters, this test can distinguish between TH promoting and TH blocking activity and may be useful for assessing the DNT potential of TH-active chemicals.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences University of California, Davis, School of Medicine, Davis, California 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| |
Collapse
|
11
|
Li AA, Makris SL, Marty MS, Strauss V, Gilbert ME, Blacker A, Zorrilla LM, Coder PS, Hannas B, Lordi S, Schneider S. Practical considerations for developmental thyroid toxicity assessments: What's working, what's not, and how can we do better? Regul Toxicol Pharmacol 2019; 106:111-136. [PMID: 31018155 DOI: 10.1016/j.yrtph.2019.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/26/2022]
Abstract
Thyroid hormones (THs; T3 and T4) play a role in development of cardiovascular, reproductive, immune and nervous systems. Thus, interpretation of TH changes from rodent studies (during pregnancy, in fetuses, neonates, and adults) is critical in hazard characterization and risk assessment. A roundtable session at the 2017 Society of Toxicology (SOT) meeting brought together academic, industry and government scientists to share knowledge and different perspectives on technical and data interpretation issues. Data from a limited group of laboratories were compiled for technical discussions on TH measurements, including good practices for reliable serum TH data. Inter-laboratory historical control data, derived from immunoassays or mass spectrometry methods, revealed: 1) assay sensitivities vary within and across methodologies; 2) TH variability is similar across animal ages; 3) laboratories generally achieve sufficiently sensitive TH quantitation levels, although issues remain for lower levels of serum TH and TSH in fetuses and postnatal day 4 pups; thus, assay sensitivity is critical at these life stages. Best practices require detailed validation of rat serum TH measurements across ages to establish assay sensitivity and precision, and identify potential matrix effects. Finally, issues related to data interpretation for biological understanding and risk assessment were discussed, but their resolution remains elusive.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Inc., 1010 14th Street, San Francisco, CA, 94114, USA.
| | - Susan L Makris
- US Environmental Protection Agency Office of Research and Development, 1200 Pennsylvania Ave NW 8623R, Washington, DC, 20460, USA.
| | - M Sue Marty
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Volker Strauss
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany.
| | - Mary E Gilbert
- US Environmental Protection Agency, National Health Environmental Effects Research Lab, 109 T.W. Alexander Drive, MD B105 05, Research Triangle Park, NC, 27711, USA.
| | - Ann Blacker
- Bayer CropScience, P.O. Box 12014, RTP, NC, 27709, USA.
| | | | - Pragati S Coder
- Charles River Laboratories, Developmental and Reproductive Toxicology, 1407 George Road, Ashland, OH, 44805, USA.
| | - Bethany Hannas
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Sheri Lordi
- Charles River Laboratories International, 251 Ballardvale Street, Wilmington, MA, 01887, USA.
| | - Steffen Schneider
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen, Germany.
| |
Collapse
|
12
|
Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ. Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 272:20-32. [PMID: 30448381 PMCID: PMC6331280 DOI: 10.1016/j.ygcen.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022]
Abstract
Thyroid hormones (THs) regulate neurodevelopment, thus TH disruption is widely posited as a mechanism of developmental neurotoxicity for diverse environmental chemicals. Zebrafish have been proposed as an alternative model for studying the role of TH in developmental neurotoxicity. To realize this goal, it is critical to characterize the normal ontogenetic expression profile of TH signaling molecules in the developing zebrafish and determine the sensitivity of these molecules to perturbations in TH levels. To address these gaps in the existing database, we characterized the transcriptional profiles of TH transporters, deiodinases (DIOs), receptors (TRs), nuclear coactivators (NCOAs), nuclear corepressors (NCORs), and retinoid X receptors (RXRs) in parallel with measurements of endogenous TH concentrations and tshβ mRNA expression throughout the first five days of zebrafish development. Transcripts encoding these TH signaling components were identified and observed to be upregulated around 48-72 h post fertilization (hpf) concurrent with the onset of larval production of T4. Exposure to exogenous T4 and T3 upregulated mct8, dio3-b, trα-a, trβ, and mbp-a levels, and downregulated expression of oatp1c1. Morpholino knockdown of TH transporter mct8 and treatment with 6-propyl-2-thiouracil (PTU) was used to reduce cellular uptake and production of TH, an effect that was associated with downregulation of dio3-b at 120 hpf. Collectively, these data confirm that larval zebrafish express orthologs of TH signaling molecules important in mammalian development and suggest that there may be species differences with respect to impacts of TH disruption on gene transcription.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
13
|
Sethi S, Keil KP, Lein PJ. 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 2018; 92:3337-3345. [PMID: 30225637 PMCID: PMC6196112 DOI: 10.1007/s00204-018-2307-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
PCB 11 (3,3'-dichlorobiphenyl), a contemporary congener produced as a byproduct of current pigment production processes, has recently emerged as a prevalent worldwide pollutant. We recently demonstrated that exposure to PCB 11 increases dendritic arborization in vitro, but the mechanism(s) mediating this effect remain unknown. To address this data gap, primary cortical neuron-glia co-cultures derived from neonatal Sprague-Dawley rats were exposed for 48 h to either vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM in the absence or presence of pharmacologic antagonists of established molecular targets of higher chlorinated PCBs. Reporter cell lines were used to test activity of PCB 11 at the aryl hydrocarbon receptor (AhR) and thyroid hormone receptor (THR). PCB 11 lacked activity at the AhR and THR, and antagonism of these receptors had no effect on the dendrite-promoting activity of PCB 11. Pharmacologic antagonism of various calcium channels or treatment with antioxidants also did not alter PCB 11-induced dendritic arborization. In contrast, pharmacologic blockade or shRNA knockdown of cAMP response element-binding protein (CREB) significantly decreased dendritic growth in PCB 11-exposed cultures, suggesting PCB 11 promotes dendritic growth via CREB-mediated mechanisms. Since CREB signaling is crucial for normal neurodevelopment, and perturbations of CREB signaling have been associated with neurodevelopmental disorders, our findings suggest that this contemporary pollutant poses a threat to the developing brain, particularly in individuals with heritable mutations that promote CREB signaling.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Kania-Korwel I, Lukasiewicz T, Barnhart CD, Stamou M, Chung H, Kelly KM, Bandiera S, Lein PJ, Lehmler HJ. Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity. Toxicol Sci 2018; 158:101-115. [PMID: 28431184 DOI: 10.1093/toxsci/kfx071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chiral polychlorinated biphenyl (PCB) congeners have been implicated by laboratory and epidemiological studies in PCB developmental neurotoxicity. These congeners are metabolized by cytochrome P450 (P450) enzymes to potentially neurotoxic hydroxylated metabolites (OH-PCBs). The present study explores the enantioselective disposition and toxicity of 2 environmentally relevant, neurotoxic PCB congeners and their OH-PCB metabolites in lactating mice and their offspring following dietary exposure of the dam. Female C57BL/6N mice (8-weeks old) were fed daily, beginning 2 weeks prior to conception and continuing throughout gestation and lactation, with 3.1 µmol/kg bw/d of racemic 2,2',3,5',6-pentachlorobiphenyl (PCB 95) or 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in peanut butter; controls received vehicle (peanut oil) in peanut butter. PCB 95 levels were higher than PCB 136 levels in both dams and pups, consistent with the more rapid metabolism of PCB 136 compared with PCB 95. In pups and dams, both congeners were enriched for the enantiomer eluting second on enantioselective gas chromatography columns. OH-PCB profiles in lactating mice and their offspring were complex and varied according to congener, tissue and age. Developmental exposure to PCB 95 versus PCB 136 differentially affected the expression of P450 enzymes as well as neural plasticity (arc and ppp1r9b) and thyroid hormone-responsive genes (nrgn and mbp). The results suggest that the enantioselective metabolism of PCBs to OH-PCBs may influence neurotoxic outcomes following developmental exposures, a hypothesis that warrants further investigation.
Collapse
Affiliation(s)
- Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Tracy Lukasiewicz
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Christopher D Barnhart
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Marianna Stamou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Haeun Chung
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kevin M Kelly
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa
| | - Stelvio Bandiera
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
16
|
Chai T, Cui F, Song Y, Ye L, Li T, Qiu J, Liu X. Enantioselective Toxicity in Adult Zebrafish ( Danio rerio) Induced by Chiral PCB91 through Multiple Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5448-5458. [PMID: 29641891 DOI: 10.1021/acs.est.8b00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to further investigate the toxic mechanism of chiral polychlorinated biphenyl (PCB) 91 in adult zebrafish ( Danio rerio) exposed to racemic (rac-), (+)-, or (-)-PCB91 for 63 days. The enantioselective mortalities of adult zebrafish exposed to rac-/(+)-/(-)-PCB91 were 95.86, 50.08, and 81.50%, respectively. Tubular necrosis and cellular hypertrophy occurred in the kidneys of (-)-PCB91-treated groups, whereas demyelination and immune cell infiltration occurred in brains of the rac-, (+)-, and (-)-PCB91-treated groups. Additionally, exposure to chiral PCB91 enantioselectively induced neurotoxicity, apoptosis, and inflammation in brain tissues owing to perturbations of gene expression, protein content and sphingolipid levels. The high mortality after rac-/(+)-PCB91 exposure might be due to toxic effects on brain tissue, while the high mortality after (-)-PCB91 exposure might be due to toxic effects on kidney as well as brain tissues. Thus, our findings offer an important reference for elucidating the enantioselective toxicological mechanism of chiral PCBs in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Feng Cui
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Yue Song
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Linlin Ye
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Tiantian Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Xingquan Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| |
Collapse
|
17
|
Anwer F, Chaurasia S, Khan AA. Hormonally active agents in the environment: a state-of-the-art review. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:415-433. [PMID: 27487487 DOI: 10.1515/reveh-2016-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.
Collapse
|
18
|
Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016; 160:148-59. [PMID: 26307491 PMCID: PMC4762757 DOI: 10.1016/j.jsbmb.2015.08.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. OBJECTIVE Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. METHODS The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. RESULTS The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. CONCLUSION The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty.
Collapse
Affiliation(s)
- Meghan E Rebuli
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
19
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
20
|
Shan Q, Huang F, Wang J, Du Y. Effects of co-exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on nonalcoholic fatty liver disease in mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1364-1374. [PMID: 24861470 DOI: 10.1002/tox.22006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent organic pollutants which coexist in environment, and human are co-exposed to these chemicals. Our present study was aimed to investigate the possible enhanced nonalcoholic fatty liver disease (NAFLD) in ApoE(-/-) mice co-exposed to TCDD and PCBs and to reveal the potential mechanisms involved in. Male ApoE(-/-) mice were exposed to TCDD (15 μg/kg) and Aroclor1254 (55 mg/kg, a representative mixture of PCBs) alone or in combination by intraperitoneal injection four times over a 6-week period. Those mice co-exposed to PCBs and TCDD developed serious liver steatosis, necrosis, and inflammatory stimuli. Interestingly, all treatment induced hepatic cytochrome P450 1A1 (CYP1A1) expression, but the maximal level of CYP1A1 was not observed in the co-exposure group. Furthermore, microarray analysis by ingenuity pathway analysis software showed that the nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response pathway was significantly activated following co-exposure to TCDD and PCBs. Our data demonstrated that co-exposure to TCDD and PCBs markedly worsen NAFLD in ApoE(-/-) mice.
Collapse
Affiliation(s)
- Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengchen Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1338] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
22
|
Schug TT, Blawas AM, Gray K, Heindel JJ, Lawler CP. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology 2015; 156:1941-51. [PMID: 25714811 PMCID: PMC5393340 DOI: 10.1210/en.2014-1734] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Thaddeus T Schug
- Division of Extramural Research and Training (T.T.S., K.G., J.J.H., C.P.L.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709; and Duke University (A.M.B.), Durham, North Carolina 27708
| | | | | | | | | |
Collapse
|
23
|
Association between Several Persistent Organic Pollutants and Thyroid Hormone Levels in Cord Blood Serum and Bloodspot of the Newborn Infants of Korea. PLoS One 2015; 10:e0125213. [PMID: 25965908 PMCID: PMC4429016 DOI: 10.1371/journal.pone.0125213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
Current knowledge on adverse endocrine disruption effects of persistent organic pollutants (POPs) among newborn infants is limited and often controversial. To investigate the associations between prenatal exposure to major POPs and thyroid hormone levels among newborn infants, both cord serum or maternal serum concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were compared with five thyroid hormones in cord serum of newborn infants as well as TSH in bloodspot collected at 2 day after birth (n=104). Since cord serum thyroid hormones could be affected by those of mothers, thyroid hormone concentrations of the matching mothers at delivery were adjusted. In cord serum, BDE-47, -99, and Σchlordane (CHD) showed significant positive associations with cord or bloodspot TSH. At the same time, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorbenzene (HCB) showed negative associations with total T3 and total T4 in cord serum, respectively. Maternal exposure to β-hexachlorhexane (β-HCH), ΣCHD, ΣDDT, or p,p'-DDE were also associated with neonatal thyroid hormones. Although the sample size is small and the thyroid hormone levels of the subjects were within the reference range, our observation supports thyroid disrupting potential of several POPs among newborn infants, at the levels occurring in the general population. Considering the importance of thyroid hormones during gestation and early life stages, health implication of thyroid hormone effects by low level POPs exposure deserves further follow up investigations.
Collapse
|
24
|
Ngwa EN, Kengne AP, Tiedeu-Atogho B, Mofo-Mato EP, Sobngwi E. Persistent organic pollutants as risk factors for type 2 diabetes. Diabetol Metab Syndr 2015; 7:41. [PMID: 25987904 PMCID: PMC4435855 DOI: 10.1186/s13098-015-0031-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/02/2015] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major and fast growing public health problem. Although obesity is considered to be the main driver of the pandemic of T2DM, a possible contribution of some environmental contaminants, of which persistent organic pollutants (POPs) form a particular class, has been suggested. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes which enable them to persist in the environment, to be capable of long-range transport, bio accumulate in human and animal tissue, bio accumulate in food chains, and to have potential significant impacts on human health and the environment. Several epidemiological studies have reported an association between persistent organic pollutants and diabetes risk. These findings have been replicated in experimental studies both in human (in-vitro) and animals (in-vivo and in-vitro), and patho-physiological derangements through which these pollutants exercise their harmful effect on diabetes risk postulated. This review summarizes available studies, emphasises on limitations so as to enable subsequent studies to be centralized on possible pathways and bring out clearly the role of POPs on diabetes risk.
Collapse
Affiliation(s)
- Elvis Ndonwi Ngwa
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Andre-Pascal Kengne
- />Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- />Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Barbara Tiedeu-Atogho
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Edith-Pascale Mofo-Mato
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Eugene Sobngwi
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
- />Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- />National Obesity Center, Yaoundé Central Hospital and Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, P.O. Box 7535, Yaoundé, Cameroon
| |
Collapse
|
25
|
Wadzinski TL, Geromini K, McKinley Brewer J, Bansal R, Abdelouahab N, Langlois MF, Takser L, Zoeller RT. Endocrine disruption in human placenta: expression of the dioxin-inducible enzyme, CYP1A1, is correlated with that of thyroid hormone-regulated genes. J Clin Endocrinol Metab 2014; 99:E2735-43. [PMID: 25299844 PMCID: PMC4255108 DOI: 10.1210/jc.2014-2629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid hormone (TH) is essential for normal development; therefore, disruption of TH action by a number of industrial chemicals is critical to identify. Several chemicals including polychlorinated biphenyls are metabolized by the dioxin-inducible enzyme CYP1A1; some of their metabolites can interact with the TH receptor. In animals, this mechanism is reflected by a strong correlation between the expression of CYP1A1 mRNA and TH-regulated mRNAs. If this mechanism occurs in humans, we expect that CYP1A1 expression will be positively correlated with the expression of genes regulated by TH. OBJECTIVE The objective of the study was to test the hypothesis that CYP1A1 mRNA expression is correlated with TH-regulated mRNAs in human placenta. METHODS One hundred sixty-four placental samples from pregnancies with no thyroid disease were obtained from the GESTE study (Sherbrooke, Québec, Canada). Maternal and cord blood TH levels were measured at birth. The mRNA levels of CYP1A1 and placental TH receptor targets [placental lactogen (PL) and GH-V] were quantitated by quantitative PCR. RESULTS CYP1A1 mRNA abundance varied 5-fold across 132 placental samples that had detectable CYP1A1 mRNA. CYP1A1 mRNA was positively correlated with PL (r = 0.64; P < .0001) and GH-V (P < .0001, r = 0.62) mRNA. PL and GH-V mRNA were correlated with each other (r = 0.95; P < .0001), suggesting a common activator. The mRNAs not regulated by TH were not correlated with CYP1A1 expression. CONCLUSIONS CYP1A1 mRNA expression is strongly associated with the expression of TH-regulated target gene mRNAs in human placenta, consistent with the endocrine-disrupting action of metabolites produced by CYP1A1.
Collapse
Affiliation(s)
- Thomas L Wadzinski
- Department of Biology (T.L.W., K.G., J.M.B., R.B., R.T.Z.), University of Massachusetts Amherst, Amherst, Massachusetts 01003; Department of Pediatrics (T.L.W.), Baystate Medical Center, Springfield, Massachusetts 01199; and Department of Pediatrics (N.A., L.T.), Faculty of Medicine, and Department of Medicine (M.-F.L.), Endocrinology Service, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Qéubec, Canada J1H SN4
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ibhazehiebo K, Koibuchi N. Impact of endocrine-disrupting chemicals on thyroid function and brain development. Expert Rev Endocrinol Metab 2014; 9:579-591. [PMID: 30736196 DOI: 10.1586/17446651.2014.950227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are synthetic or natural substances in the environment. EDCs have been shown to disrupt reproductive, developmental and other homeostatic systems by interfering with the synthesis, secretion, transport, metabolism and action of endogenous hormones including the thyroid hormone (TH) system. Since TH plays a critical role in brain development, the exposure to TH-system disrupting EDCs during development may have serious consequences. In this article, representative previous studies showing the effect of representative EDCs on the TH system are summarized. Then, the molecular mechanisms of action of polychlorinated biphenyls and polybrominated diphenyl ethers on the TH system are discussed further. Particularly, the effect of polychlorinated biphenyls and polybrominated diphenyl ethers on TH-mediated brain development is discussed. Our recent studies may provide a novel idea regarding the effect of EDCs on the TH system.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- a Department of Medical Genetics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Noriyuki Koibuchi
- b Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
27
|
Lamb JC, Boffetta P, Foster WG, Goodman JE, Hentz KL, Rhomberg LR, Staveley J, Swaen G, Van Der Kraak G, Williams AL. Critical comments on the WHO-UNEP State of the Science of Endocrine Disrupting Chemicals – 2012. Regul Toxicol Pharmacol 2014; 69:22-40. [DOI: 10.1016/j.yrtph.2014.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
|
28
|
Naveau E, Pinson A, Gérard A, Nguyen L, Charlier C, Thomé JP, Zoeller RT, Bourguignon JP, Parent AS. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls. PLoS One 2014; 9:e91903. [PMID: 24642964 PMCID: PMC3958407 DOI: 10.1371/journal.pone.0091903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 01/23/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.
Collapse
Affiliation(s)
- Elise Naveau
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Anneline Pinson
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Laurent Nguyen
- Developmental Neurobiology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liège, CHU, Liège, Belgium
| | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology (LEAE, CART), University of Liège, Liège, Belgium
| | - R Thomas Zoeller
- Biology Department, University of Massachusetts, Morrill Science Center, Amherst, Massachusetts, United States of America
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| | - Anne-Simone Parent
- Developmental Neuroendocrinology unit, GIGA Neurosciences, University of Liège, CHU, Liège, Belgium
| |
Collapse
|
29
|
Newman J, Behforooz B, Khuzwayo AG, Gallo MV, Schell LM. PCBs and ADHD in Mohawk adolescents. Neurotoxicol Teratol 2014; 42:25-34. [PMID: 24462617 DOI: 10.1016/j.ntt.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
The present study examines the relationship between the levels of persistent polychlorinated biphenyls (PCBs) in adolescents' blood serum and concurrent measures of their ADHD-like behavior derived from ratings provided by parents and teachers. Two measures with demonstrated diagnostic validity, the Conners and ADDES scales, are used. The study was conducted in partnership with the Mohawk Nation at Akwesasne where the St. Lawrence River and surrounding waterways have been contaminated with PCBs that have entered the food chain. This study examines a subset of the data derived from the Mohawk Adolescent Well-Being Study (MAWBS), which was designed to investigate psychosocial and health related outcomes of 271 adolescents aged 10 years to 17 years and whose mothers were likely to have consumed PCB-contaminated fish and wild game before and during their pregnancy. No evidence of negative effects of adolescent blood PCB levels on ADHD-like behavior was found, and indeed occasional findings were in the unexpected direction. The possibility of negative confounding by SES and breastfeeding history was examined but dismissed.
Collapse
Affiliation(s)
- Joan Newman
- Educational Psychology and Methodology, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Bita Behforooz
- Educational Psychology and Methodology, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA
| | - Amy G Khuzwayo
- School Psychology, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA
| | - Mia V Gallo
- Department of Anthropology, 1400 Washington Ave., Albany, NY 12222, USA; Center for the Elimination of Minority Health Disparities, 1400 Washington Ave., NY 12222, USA
| | - Lawrence M Schell
- Department of Anthropology, 1400 Washington Ave., Albany, NY 12222, USA; Center for the Elimination of Minority Health Disparities, 1400 Washington Ave., NY 12222, USA; Department of Epidemiology and Biostatistics, School of Public Health, One University Place, Rensselaer, NY, USA
| | | |
Collapse
|
30
|
Paul KB, Hedge JM, Rotroff DM, Hornung MW, Crofton KM, Simmons SO. Development of a Thyroperoxidase Inhibition Assay for High-Throughput Screening. Chem Res Toxicol 2014; 27:387-99. [DOI: 10.1021/tx400310w] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Katie B. Paul
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Joan M. Hedge
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Daniel M. Rotroff
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael W. Hornung
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Kevin M. Crofton
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Steven O. Simmons
- Oak Ridge Institute for Science
Education Postdoctoral Fellow, ‡Integrated Systems
Toxicology Division, §Mid-Continent Ecology Division, National Health and Environmental
Effects Research Laboratory, and ∥National Center for Computational Toxicology,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
31
|
Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012; 355:240-8. [PMID: 21939731 DOI: 10.1016/j.mce.2011.09.005] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/29/2011] [Accepted: 09/02/2011] [Indexed: 11/17/2022]
Abstract
In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert thyroid effects through a variety of mechanisms of action, and some animal experiments and in vitro studies have focused on elucidating the mode of action of specific chemical compounds. Long-term human studies on effects of environmental chemicals on thyroid related outcomes such as growth and development are still lacking. The human exposure scenario with life long exposure to a vast mixture of chemicals in low doses and the large physiological variation in thyroid hormone levels between individuals render human studies very difficult. However, there is now reasonably firm evidence that PCBs have thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties.
Collapse
Affiliation(s)
- Malene Boas
- Department of Growth and Reproduction GR, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Koibuchi N. Cytochrome P450 1A1: is it involved in disruption of thyroid hormone action by polychlorinated biphenyl? Expert Rev Endocrinol Metab 2011; 6:657-659. [PMID: 30780885 DOI: 10.1586/eem.11.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Giera S, Bansal R, Ortiz-Toro TM, Taub DG, Zoeller RT. Individual polychlorinated biphenyl (PCB) congeners produce tissue- and gene-specific effects on thyroid hormone signaling during development. Endocrinology 152(7), 2909-2919 (2011). Previous studies have shown that the adverse effects of polychlorinated biphenyl (PCB) exposure may be partly induced by disrupting the thyroid hormone system. In the recent article by Giera et al., the effect of specific PCB congeners on the expression of several thyroid hormone-sensitive genes in various organs was studied using developing rats. The addition of PCB126 significantly augmented cytochrome P450 (CYP)1A1 expression induced by other PCBs. The expression of several genes was also augmented by PCB126, particularly in the liver. These results indicate the involvement of CYP1A1 in PCB-mediated hepatotoxicity. However, this study may not prove directly whether such an effect is exerted though the thyroid hormone system. Further study may be required for clarification.
Collapse
Affiliation(s)
- Noriyuki Koibuchi
- a Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
33
|
Giera S, Bansal R, Ortiz-Toro TM, Taub DG, Zoeller RT. Individual polychlorinated biphenyl (PCB) congeners produce tissue- and gene-specific effects on thyroid hormone signaling during development. Endocrinology 2011; 152:2909-19. [PMID: 21540284 PMCID: PMC3115602 DOI: 10.1210/en.2010-1490] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polychlorinated biphenyls (PCB) are industrial chemicals linked to developmental deficits that may be caused in part by disrupting thyroid hormone (TH) action by either reducing serum TH or interacting directly with the TH receptor (TR). Individual PCB congeners can activate the TR in vitro when the metabolic enzyme cytochrome P4501A1 (CYP1A1) is induced, suggesting that specific PCB metabolites act as TR agonists. To test this hypothesis in vivo, we compared two combinations of PCB congeners that either activate the TR (PCB 105 and 118) or not (PCB 138 and 153) in the presence or absence of a PCB congener (PCB 126) that induces CYP1A1 in vitro. Aroclor 1254 was used as a positive control, and a group treated with propylthiouracil was included to characterize the effects of low serum TH. We monitored the effects on TH signaling in several peripheral tissues by measuring the mRNA expression of well-known TH-response genes in these tissues. Aroclor 1254 and its component PCB 105/118/126 reduced total T(4) to the same extent as that of propylthiouracil but increased the expression of some TH target genes in liver. This effect was strongly correlated with CYP1A1 expression supporting the hypothesis that metabolism is necessary. Effects were gene and tissue specific, indicating that tissue-specific metabolism is an important component of PCB disruption of TH action and that PCB metabolites interact in complex ways with the TR. These are essential mechanisms to consider when evaluating the health risks of contaminant exposures, for both PCB and other polycyclic compounds known to interact with nuclear hormone receptors.
Collapse
Affiliation(s)
- Stefanie Giera
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Paul KB, Hedge JM, Devito MJ, Crofton KM. Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2840-4. [PMID: 20954233 DOI: 10.1002/etc.339] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 05/24/2023]
Abstract
Disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. The present study tested the hypothesis that perinatal triclosan exposure of dams decreases thyroxine in dams and offspring prior to weaning. Pregnant Long-Evans rats received triclosan by oral gavage (0-300 mg/kg/d) in corn oil from gestational day (GD)6 through postnatal day (PND)21. Serum was obtained from pups on PND4, 14, and 21, and from dams on PND22. Serum thyroxine (T4) was reduced 31% in dams on PND22. In pups, a unique pattern of hypothyroxinemia was observed; serum T4 decreased 27% in PND4 pups with no significant reduction observed on PND14 or PND21. Comparable reductions of approximately 30% in serum T4 at 300 mg/kg/d for dams and PND4 neonates and a lack of effect at PND14 and PND21 suggest that toxicokinetic or toxicodynamic factors may have contributed to a reduced exposure or a reduced toxicological response during the lactation period.
Collapse
Affiliation(s)
- Katie B Paul
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
36
|
Fernández M, Paradisi M, D’Intino G, Del Vecchio G, Sivilia S, Giardino L, Calzà L. A single prenatal exposure to the endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin alters developmental myelination and remyelination potential in the rat brain. J Neurochem 2010; 115:897-909. [DOI: 10.1111/j.1471-4159.2010.06974.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Schreiber T, Gassmann K, Götz C, Hübenthal U, Moors M, Krause G, Merk HF, Nguyen NH, Scanlan TS, Abel J, Rose CR, Fritsche E. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:572-8. [PMID: 20368126 PMCID: PMC2854737 DOI: 10.1289/ehp.0901435] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are persistent and bioaccumulative flame retardants, which are found in rising concentrations in human tissues. They are of concern for human health because animal studies have shown that they possess the potential to be developmentally neurotoxic. OBJECTIVE Because there is little knowledge of the effects of PBDEs on human brain cells, we investigated their toxic potential for human neural development in vitro. Moreover, we studied the involvement of thyroid hormone (TH) disruption in the effects caused by PBDEs. METHODS We used the two PBDE congeners BDE-47 and BDE-99 (0.1-10 microM), which are most prominent in human tissues. As a model of neural development, we employed primary fetal human neural progenitor cells (hNPCs), which are cultured as neurospheres and mimic basic processes of brain development in vitro: proliferation, migration, and differentiation. RESULTS PBDEs do not disturb hNPC proliferation but decrease migration distance of hNPCs. Moreover, they cause a reduction of differentiation into neurons and oligodendrocytes. Simultaneous exposure with the TH receptor (THR) agonist triiodothyronine rescues these effects on migration and differentiation, whereas the THR antagonist NH-3 does not exert an additive effect. CONCLUSION PBDEs disturb development of hNPCs in vitro via endocrine disruption of cellular TH signaling at concentrations that might be of relevance for human exposure.
Collapse
Affiliation(s)
- Timm Schreiber
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Kathrin Gassmann
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Christine Götz
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Ulrike Hübenthal
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Michaela Moors
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Guido Krause
- Institute for Neurobiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans F. Merk
- Department of Dermatology and Allergology, University clinic, RWTH Aachen University, Aachen, Germany
| | - Ngoc-Ha Nguyen
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California–San Francisco, San Francisco, California, USA
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Josef Abel
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Christine R. Rose
- Institute for Neurobiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ellen Fritsche
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
- Department of Dermatology and Allergology, University clinic, RWTH Aachen University, Aachen, Germany
- Address correspondence to E. Fritsche, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Toxicology, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany. Telephone: 00492113389217. Fax: 00492113190910. E-mail:
| |
Collapse
|
38
|
Sharlin DS, Gilbert ME, Taylor MA, Ferguson DC, Zoeller RT. The nature of the compensatory response to low thyroid hormone in the developing brain. J Neuroendocrinol 2010; 22:153-65. [PMID: 20041985 DOI: 10.1111/j.1365-2826.2009.01947.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid hormone is essential for normal brain development, although the degree to which the developing brain is sensitive to small perturbations in serum thyroxin is not clear. An important concept related to this is that the developing brain possesses potent mechanisms to compensate for low serum thyroid hormone, and this concept is routinely employed in discussions concerning clinical treatments or public health. However, experimental studies have not directly tested whether (or the degree to which) putative compensatory mechanisms can ameliorate the consequences of small reductions in serum thyroxin (T(4)). To formally test this concept, we employed a model of graded T(4) reductions using doses of propylthiouracil (PTU) that were 200- to 67-fold lower than the dose traditionally used to produce hypothyroidism in rats. PTU produced a stepwise decrease in serum total T(4), and a stepwise increase in serum thyroid-stimulating hormone (TSH), in type 2 deiodinase mRNA expression and enzyme activity in the brain, and in the expression of the mRNA encoding the tri-iodothyronine (T(3)) transporter MCT8 in the postnatal day (P) 15 cortex. However, the mRNA encoding RC3/neurogranin, a direct target of T(3) action, exhibited a strong negative linear correlation with serum total T(4) despite these adaptive responses. In addition, single-cell analysis of RC3 mRNA levels in cortical neurones demonstrated that the co-expression of MCT8 did not alter the relationship between RC3 mRNA and serum T(4). These findings do not support the currently envisioned concept of the developing brain being capable of compensating for low T(4).
Collapse
Affiliation(s)
- D S Sharlin
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
39
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
40
|
Lu CF, Wang YM, Peng SQ, Zou LB, Tan DH, Liu G, Fu Z, Wang QX, Zhao J. Combined effects of repeated administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls on kidneys of male rats. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:767-776. [PMID: 19373505 DOI: 10.1007/s00244-009-9323-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/30/2009] [Indexed: 05/26/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent environmental contaminants that exist as complex mixtures in the environment, but the possible interactions of TCDD and PCBs have not been systematically investigated. The main objective of this study was to investigate the combined nephrotoxic effects of TCDD and PCBs on rats and to reveal the potential interactions between TCDD and PCBs. Male Sprague-Dawley rats were intragastrically administered TCDD (10 microg/kg), PCBs (Aroclor 1254, 10 mg/kg), or the combination (10 microg/kg TCDD + 10 mg/kg Aroclor 1254). After 12 consecutive days of exposure, all treatments induced nephrotoxicity, as evidenced by significant increases in the levels of serum creatinine and blood urea nitrogen, changes of kidney histopathology, and significant renal oxidative stress. Most of these effects were more remarkable in the combined-exposure group. Furthermore, all treatments induced renal cytochrome P450 1A1 (CYP1A1) protein expression, and the induction was more conspicuous in the combined-exposure group. These findings suggested that the nephrotoxicity induced by TCDD and PCBs in the present study might be attributable to the high expression of CYP1A1. In addition, the result of the two-way analysis of variance revealed that the combined effects of TCDD and PCBs were complicated, being additive, synergistic, or antagonistic depending on the selection of toxicity end points under the present experimental condition. This study demonstrates that combined exposure to TCDD and PCBs induced significant nephrotoxicity in rats, and there were complicated interactions between the two pollutants on the nephrotoxicity.
Collapse
Affiliation(s)
- Chun-Feng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing, 100071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhong L, Cherry T, Bies CE, Florence MA, Gerges NZ. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J 2009; 28:3027-39. [PMID: 19713936 PMCID: PMC2736013 DOI: 10.1038/emboj.2009.236] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/23/2009] [Indexed: 11/09/2022] Open
Abstract
Learning-correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron-specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity- and NMDAR-dependent manner. In addition, Ng-mediated potentiation of synaptic transmission mimics and occludes long-term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng-CaM binding is necessary for Ng-mediated potentiation. Moreover, knocking-down Ng blocked LTP induction. Thus, Ng-CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tiffani Cherry
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine E Bies
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew A Florence
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nashaat Z Gerges
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
42
|
Chen Y, McNabb FMA, Sible JC. Perchlorate exposure induces hypothyroidism and affects thyroid-responsive genes in liver but not brain of quail chicks. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:598-607. [PMID: 19308637 DOI: 10.1007/s00244-009-9304-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
Ground-dwelling birds in perchlorate-contaminated areas are exposed to perchlorate ion, a known thyroid disruptor, and might be vulnerable to the developmental effects of perchlorate-induced hypothyroidism. We hypothesized that perchlorate-induced hypothyroidism would alter the expression of thyroid-responsive genes involved in thyroid hormone (TH) regulation and in the development of target organ function. Japanese quail chicks were exposed to 2000 mg/L ammonium perchlorate in drinking water for 7.5 weeks beginning on day 5 posthatch. Hypothyroidism was evident after 2 weeks of exposure as lower plasma THs and lower TH content in exposed chicks than in controls. The degree of hypothyroidism was increased at 7.5 weeks, as indicated by significant thyroid gland hypertrophy and sustained changes in thyroid function. After 2 weeks of exposure, hypothyroidism increased type 2 5'-deiodinase (D2) mRNA level and decreased Spot 14 (SP14) mRNA level in the liver, whereas D2 mRNA and RC3 mRNA levels in brain were not affected. After 7.5 weeks of exposure, mRNA levels in the exposed group did not differ from those in controls in either the liver or brain, suggesting the responsiveness of these genes to THs decreased during development. These results suggest that the brain, but not the liver, was protected from the effects of hypothyroidism, probably by changes in D2 activity at the protein level and/or regulation of TH entry and exit from the brain. We concluded that perchlorate exposure caused hypothyroidism in young Japanese quail and affected the expression of thyroid-responsive genes during early posthatch development.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | | | |
Collapse
|
43
|
Schell LM, Gallo MV. Relationships of putative endocrine disruptors to human sexual maturation and thyroid activity in youth. Physiol Behav 2009; 99:246-53. [PMID: 19800354 DOI: 10.1016/j.physbeh.2009.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/26/2022]
Abstract
Endocrine disruption has become a significant human health concern, but is difficult to study outside of the laboratory for several reasons including the multiplicity of exposures, the difficulty in assessing each exposure, and the variety of possible outcomes among human populations. This review summarizes our studies of the relationships of measured persistent organic pollutants (PCBs, p,p'-DDE, HCB and mirex), and heavy metals (lead and mercury), to outcomes directly related to thyroid function and sexual maturation. These studies were conducted in a sample of Native American youth from the Akwesasne Mohawk community. The participants were first studied during puberty (10-16.9 years of age) and then at approximately 18 years of age. Results from these studies show that PCB levels are positively related to TSH and negatively to free T4. Further, these effects are conditioned by breastfeeding history. Anti-thyroid peroxidase antibody levels also are related to PCB levels suggesting elevated risk of autoimmune disease among the exposed. Earlier age at menarche is associated with higher PCB levels while risk of delay is associated with higher lead levels. Some evidence that the timing of exposure produces different effects is presented, and the level of exposure in the participants suggests that effects observed may be relevant to a considerable proportion of the US population. Further investigations are warranted to determine effect thresholds and mechanisms.
Collapse
Affiliation(s)
- Lawrence M Schell
- University at Albany, Department of Anthropology, Albany, NY 12222, USA.
| | | |
Collapse
|
44
|
Carreón-Rodríguez A, Charli JL, Pérez-Martínez L. T3 differentially regulates TRH expression in developing hypothalamic neurons in vitro. Brain Res 2009; 1305:20-30. [PMID: 19766610 DOI: 10.1016/j.brainres.2009.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/08/2023]
Abstract
Triiodothyronine (T3) plays an important role during development of the central nervous system. T3 effects on gene expression are determined in part by the type of thyroid hormone receptors (TRs) expressed in a given cell type. Previous studies have demonstrated that thyrotropin releasing hormone (TRH) transcription in the adult hypothalamus is subjected to negative regulation by thyroid hormones. However, the role of T3 on the development of TRH expression is unknown. In this study we used primary cultures derived from 17-day-old fetal rat hypothalamus to analyze the effects of T3 on TRH gene expression during development. T3 increased TRH mRNA expression in immature cultures, but decreased it in mature cultures. In addition, T3 up-regulated TRalpha1 and TRbeta2 mRNA expression. TRalpha1 expression coincided chronologically with that of TRH in the rat hypothalamus in vivo. Maturation of TRH expression in the hypothalamus may involve T3 acting through TRalpha1.
Collapse
Affiliation(s)
- Alfonso Carreón-Rodríguez
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, UNAM, A.P. 510-3, Cuernavaca, Morelos 62271, Mexico
| | | | | |
Collapse
|
45
|
Schell LM, Gallo MV, Ravenscroft J. Environmental influences on human growth and development: historical review and case study of contemporary influences. Ann Hum Biol 2009; 36:459-77. [PMID: 19626483 DOI: 10.1080/03014460903067159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past 100 years, the study of environmental influences on human physical growth and development has focused on the influences of social and economic factors; family and household characteristics; urbanization/modernization; nutrition; and features of the physical environment such as altitude, temperature and climate. Continuing in this tradition are current investigations into the roles of pollutants and other aspects of the human-made environment in affecting patterns of human growth and development, specifically the timing of sexual maturation and the development of obesity. Some of the methodological problems in conducting such studies are presented, as are results from an ongoing investigation among one Native American community that show relationships of pollutants to sexual maturation, overweight/obesity and thyroid system function which can impact growth and maturation.
Collapse
Affiliation(s)
- Lawrence M Schell
- Department of Anthropology, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | | |
Collapse
|
46
|
Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. THE CEREBELLUM 2009; 7:26-37. [PMID: 18418666 DOI: 10.1007/s12311-008-0004-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Persistent polyhalogenated organic pollutants are present worldwide and accumulate along the food chain. They interfere with human and animal health and are particularly harmful for pre- and perinatal neurodevelopment. The mechanisms behind the observed effects vary depending on the specific compound investigated. Co-planar polychlorinated biphenyls (PCBs) can act via the arylhydrocarbon receptor while many ortho-substituted PCBs disrupt intracellular Ca(2+) homeostasis. A common mechanism for a wide variety of PCBs is interference with thyroid hormone (TH) signalling in developing brain, by changing intracellular TH availability or by interacting directly at the level of the TH receptors. Studies on gene expression in cortex and cerebellum revealed both hypothyroid- and hyperthyroid-like effects. However, since THdependent gene expression plays a crucial role in the coordination of neuronal proliferation, migration, synaptogenesis, myelination, etc., both reduced/delayed and increased/premature expression may result in permanent structural changes in neuronal communication networks, leading to lifelong deficits in cognitive performance, motor functions, and psychobehavior. In a similar way, PCBs are able to interfere with estrogen- and androgen-dependent brain development and in some studies neurobehavioral outcome was shown to be gender-specific. Other persistent organohalogens like polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs) also act as endocrine disrupters in the developing brain. Several of the mechanisms involved are similar to those of PCBs, but each group also works via own specific pathways. The fact that persistent organohalogens can amplify the neurotoxic effects of other environmental pollutants, such as heavy metals, further increases their risk for human and animal neurodevelopment.
Collapse
|
47
|
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30:293-342. [PMID: 19502515 PMCID: PMC2726844 DOI: 10.1210/er.2009-0002] [Citation(s) in RCA: 2794] [Impact Index Per Article: 186.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/17/2009] [Indexed: 12/11/2022]
Abstract
There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
Collapse
Affiliation(s)
- Evanthia Diamanti-Kandarakis
- Endocrine Section of First Department of Medicine, Laiko Hospital, Medical School University of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang D, Kim KH, Phimister A, Bachstetter AD, Ward TR, Stackman RW, Mervis RF, Wisniewski AB, Klein SL, Kodavanti PRS, Anderson KA, Wayman G, Pessah IN, Lein PJ. Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:426-35. [PMID: 19337518 PMCID: PMC2661913 DOI: 10.1289/ehp.11771] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 09/11/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Neurodevelopmental disorders are associated with altered patterns of neuronal connectivity. A critical determinant of neuronal connectivity is the dendritic morphology of individual neurons, which is shaped by experience. The identification of environmental exposures that interfere with dendritic growth and plasticity may, therefore, provide insight into environmental risk factors for neurodevelopmental disorders. OBJECTIVE We tested the hypothesis that polychlorinated biphenyls (PCBs) alter dendritic growth and/or plasticity by promoting the activity of ryanodine receptors (RyRs). METHODS AND RESULTS The Morris water maze was used to induce experience-dependent neural plasticity in weanling rats exposed to either vehicle or Aroclor 1254 (A1254) in the maternal diet throughout gestation and lactation. Developmental A1254 exposure promoted dendritic growth in cerebellar Purkinje cells and neocortical pyramidal neurons among untrained animals but attenuated or reversed experience-dependent dendritic growth among maze-trained littermates. These structural changes coincided with subtle deficits in spatial learning and memory, increased [3H]-ryanodine binding sites and RyR expression in the cerebellum of untrained animals, and inhibition of training-induced RyR upregulation. A congener with potent RyR activity, PCB95, but not a congener with negligible RyR activity, PCB66, promoted dendritic growth in primary cortical neuron cultures and this effect was blocked by pharmacologic antagonism of RyR activity. CONCLUSIONS Developmental exposure to PCBs interferes with normal patterns of dendritic growth and plasticity, and these effects may be linked to changes in RyR expression and function. These findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling.
Collapse
Affiliation(s)
- Dongren Yang
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kyung Ho Kim
- Veterinary Molecular Biosciences and Center for Children’s Environmental Health, University of California, Davis, California, USA
| | - Andrew Phimister
- Veterinary Molecular Biosciences and Center for Children’s Environmental Health, University of California, Davis, California, USA
| | - Adam D. Bachstetter
- Neurostructural Research Labs and Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Thomas R. Ward
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Robert W. Stackman
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Ronald F. Mervis
- Neurostructural Research Labs and Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Amy B. Wisniewski
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sabra L. Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Prasada Rao S. Kodavanti
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Kim A. Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon; USA
| | - Gary Wayman
- Department of Veterinary and Comparative Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Isaac N. Pessah
- Veterinary Molecular Biosciences and Center for Children’s Environmental Health, University of California, Davis, California, USA
| | - Pamela J. Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon, USA
- Veterinary Molecular Biosciences and Center for Children’s Environmental Health, University of California, Davis, California, USA
- Department of Environmental Health Science, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Address correspondence to P.J. Lein, University of California Davis, Department of Molecular Biosciences, 1120 Haring Hall, One Shields Ave., Davis, CA 95616 USA. Telephone: (530) 752-1970. Fax: (530) 752-4698. E-mail:
| |
Collapse
|
49
|
Kobayashi K, Miyagawa M, Wang RS, Suda M, Sekiguchi S, Honma T. Effects of in utero exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) on somatic growth and endocrine status in rat offspring. Congenit Anom (Kyoto) 2008; 48:151-7. [PMID: 18983581 DOI: 10.1111/j.1741-4520.2008.00199.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure to polychlorobiphenyl (PCB) mixtures at an early stage of development has been reported to affect endocrine glands; however, little is known about the precise toxicological properties of individual PCB. The present study was undertaken to determine whether prenatal exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), a di-ortho-substituted non-coplanar congener, affects postnatal development in rat offspring. Pregnant Sprague-Dawley rats (Crj: CD (SD) IGS) were given PCB 153 (0, 16, or 64 mg/kg/day) orally from gestational day (GD) 10 through GD 16, and developmental parameters in the male and female offspring were examined. We found no dose-dependent changes in body weight, body length (nose-anus length), tail length, or the weights of kidneys, testes, ovaries and uterus in offspring at 1 or 3 weeks of age. Liver weights were increased in the PCB 153-treated groups, although we observed a significant difference only in males. Anogenital distance was unaffected in the PCB 153-treated groups. We observed a significant dose-dependent decrease in the plasma concentrations of thyroxine and tri-iodothyronine, whereas those of thyroid-stimulating hormone were not significantly changed. In addition, there were no dose-dependent changes in plasma concentrations of growth hormone and insulin-like growth factor-I in any dose group. These findings suggest that prenatal exposure to PCB 153 (GD 10-16, 16-64 mg/kg/day) may alter the thyroid status in rat offspring to some extent without affecting somatic growth or its related hormonal parameters.
Collapse
Affiliation(s)
- Kenichi Kobayashi
- National Institute of Occupational Safety and Health, Kawasaki, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Many aspects of thyroid endocrinology are very well conserved across vertebrate taxa. These aspects include thyroid hormone chemistry, the mechanism of its synthesis, and the proteins involved in these processes. In addition, the system by which the hormone is delived from the thyroid gland to target cells, including transport and regulation within the hypothalamic-pituitary-thyroid (HPT) axis, and the proteins that regulate the different components of this delivery system appear to be highly conserved across the vertebrates. Finally, the receptors that mediate thyroid hormone action and the roles thyroid hormone plays are very similar among the vertebrates. Thus, the goal of this chapter is to provide a brief synopsis of the literature supporting existing screening and testing strategies in different vertebrate taxa, and to provide insight into the strengths, weaknesses, and likely changes over time. It was determined during this review that, because of the complexity of the thyroid system, it is unlikely that current in vitro assays for thyroid toxicity will be able to sufficiently replace in vivo assays for thyroid toxicants. However, the in vitro assays serve an important purpose in providing mode of action information and could provide potential screening tools, and should continue to be developed for use. Moreover, because in vivo assays are added on to preexisting reproductive or developmental screens and tests, there are no additional animals required for the in vivo assays. Specific in vitro assays were identified for development, including the thyroid receptor binding and activation assays, and in vitro assays to evaluate thyroid hormone action. Some in vivo endpoints suggested for further research included neuronal differentiation and migration, measures of histogenesis, and measures for thyroid gland thyroid hormone content, which may be more sensitive indicators of TSH stimulation. The most commonly used endpoints currently used to monitor thyroid function are thyroid hormone levels (T3 and T4), TSH, thyroid gland weight, and thyroid histology. Thyroid endocrinology is rapidly advancing and new discoveries will certainly warrant incorporation into future assays. The development of additional endpoints that measure thyroid hormone's actions peripheral to the HPT axis and the development of new reagents for nonmammalian vertebrate species will significantly improve the ability of today's assays to detect chemicals that disrupt the thyroid system in multiple vertebrate species. It is our hope that this series of thyroid articles will provide regulators and research scientists the information needed for each individual to identify the assays and endpoints most suited for their specific purposes.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|