1
|
Di Ludovico A, La Bella S, Ciarelli F, Chiarelli F, Breda L, Mohn A. Skeletal muscle as a pro- and anti-inflammatory tissue: insights from children to adults and ultrasound findings. J Ultrasound 2024; 27:769-779. [PMID: 38907089 PMCID: PMC11496437 DOI: 10.1007/s40477-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024] Open
Abstract
Previously regarded as a movement and posture control agent, the skeletal muscle is now recognized as an endocrine organ that may affect systemic inflammation and metabolic health. The discovery of myokines such as IL-6, released from skeletal muscle in response to physical exercise, is now one of the most recent insights. Myokines are the mediators of the balance between the pro-inflammatory and anti-inflammatory responses. This underscores the muscle function as a determinant of good health and prevention of diseases. Advances in ultrasound technology improved evaluation of muscle thickness, composition, and determining fat distribution. Combining imaging with molecular biology, researchers discovered the complicated interplay between muscle function, cytokine production and general health effects.The production of myokines with exercise showcasing the adaptability of muscles to high-stress conditions and contributing to metabolism and inflammation regulation. These findings have significant implications in order to provide improvement in metabolic and inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy
| |
Collapse
|
2
|
Mohanto NC, Ito Y, Kato S, Kaneko K, Sugiura-Ogasawara M, Saitoh S, Kamijima M. Associations of 1.5- and 3-year phthalate exposure levels with early adiposity rebound and overweight/obesity in Japanese children: An adjunct study of the Japan Environment and Children's Study. ENVIRONMENTAL RESEARCH 2024; 263:120165. [PMID: 39419254 DOI: 10.1016/j.envres.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The relationship between early childhood phthalate exposure and early adiposity rebound (EAR) is unclear. This study aimed to investigate the association between 1.5- and 3-year phthalate exposure and EAR and overweight/obesity in 7.5-year-old Japanese children. A total of 452 mother-child pairs were enrolled from the Aichi Regional Cohort of the Japan Environment and Children's Study. The children were followed up at birth and at 1.5, 2, 3, 4, 5, 6, and 7.5 years of age for physical examination. Human biomonitoring of 16 urinary metabolites of eight phthalates was performed at 1.5 and 3 years of age. Latent class mixed models, binary logistic regression, and quantile g-computation were performed to identify body mass index (BMI) trajectories and investigate the relationships of single or mixed phthalate exposure with EAR and overweight/obesity. A one-unit increase in log10-transformed 3-year-old Σdi(2-ethylhexyl) phthalate (ΣDEHP) exposure levels was significantly associated with 6-year-old BMI in girls. The 1.5-year mono-iso-butyl phthalate and 3-year Σdi-isodecyl phthalate exposure levels were significantly associated with the repeated measures of longitudinal BMIs in girls. Single phthalate exposure showed null associations with EAR or overweight/obesity in the 7.5-year-old children. Σdi-isononyl phthalate, ΣDEHP, and mono-n-butyl phthalate exhibited the highest proportion of partial positive weights of being in the EAR trajectory after confounder adjustment. Phthalate mixture exposure in 1.5- and 3-year-old children was not significantly associated with EAR. Early childhood phthalate exposure was not related to EAR or overweight/obesity in 7.5-year-old Japanese children. However, few phthalates were positively associated with longitudinal BMIs in girls.
Collapse
Affiliation(s)
- Nayan Chandra Mohanto
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kayo Kaneko
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
3
|
Buz Yaşar A, Ayhan ZY. Radiologic correlation with fatty liver and adrenal adenoma using dual echo chemical shift magnetic resonance imaging. Abdom Radiol (NY) 2024:10.1007/s00261-024-04622-z. [PMID: 39395042 DOI: 10.1007/s00261-024-04622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
|
4
|
Freire-Moreira I, Sanchez-Conde MP, Sousa GBD, Garrido-Gallego MI, Rodríguez-López JM, Juárez-Vela R, Bragado JA, Carretero-Hernández M, Vargas-Chiarella CR, Calderón-Moreno J, Lorenzo-Gómez MF, Vaquero-Roncero LM. Systematic preoperative approach for bariatric surgery, perioperative results, and economic impact. Front Public Health 2024; 12:1439948. [PMID: 39444955 PMCID: PMC11496121 DOI: 10.3389/fpubh.2024.1439948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Obesity is a complex systemic condition, involving numerous anatomical and metabolic changes. Therefore, a comprehensive preoperative assessment is essential for each patient contemplating bariatric surgery. Objetive This study presents the findings of a proposed protocol designed to streamline the pre-anesthesia consultation process. Our aim was to compare the efficiency and costs of consultations guided by the protocol with those conducted without a specific strategy. The secondary outcomes assessed included postoperative (PO) length of hospital stay and surgical duration. Matherial and methods We conducted a retrospective cross-sectional analysis involving 206 clinical cases. Statistical analyses, including the chi-squared test, Student's t-test, and Mann-Whitney U test, were utilized based on the type of variables. Results The results showed a significant reduction in the costs, pre-anesthesia consultation duration, time spent in the recovery unit, and the need for referrals. However, no statistically significant differences were observed in the delay before surgery and length of hospital stays, measured in days. Conclusion This algorithm offers a promising approach for optimizing perioperative management in bariatric surgery, demonstrating its effectiveness in cutting costs and reducing the need for referrals.
Collapse
Affiliation(s)
- Iolanda Freire-Moreira
- Department of Anesthesia & Intensive Care, Salamanca University Complex, Salamanca, Spain
| | - Maria Pilar Sanchez-Conde
- Department of Anesthesia & Intensive Care, Salamanca University Complex, Salamanca, Spain
- Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | | | | | | | - Raúl Juárez-Vela
- Faculty of Health Sciences, University of La Rioja, Logroño, Spain
| | | | | | | | - Jesús Calderón-Moreno
- Department of Business Economics, Applied Economics, and Fundamentals of Economic Analysis, Rey Juan Carlos University, Madrid, Spain
| | - María Fernanda Lorenzo-Gómez
- Faculty of Medicine, University of Salamanca, Salamanca, Spain
- Department of Urology, Salamanca University Complex, Salamanca, Spain
| | | |
Collapse
|
5
|
Dutton WP, Paddu N, Braddock A, Sweeney B. Clinician's Guide for Pediatric Anti-obesity Medications. Pediatr Clin North Am 2024; 71:957-980. [PMID: 39343504 DOI: 10.1016/j.pcl.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The recent advent of highly effective anti-obesity medications (AOM) provides pediatric clinicians a powerful tool to augment the treatment of obesity and improve outcomes. The 2023 American Academy of Pediatrics guidelines state clinicians "should offer adolescents 12 years and older with obesity weight loss pharmacotherapy, according to medication indications, risks, and benefits, as an adjunct to health behavior and lifestyle treatment". This article will provide an update on the integration of AOM into practice, emphasizing clinical pearls and practical tips.
Collapse
Affiliation(s)
- Wesley P Dutton
- Harvard Medical School, Massachusetts General Hospital, Weight Center at Massachusetts General Hospital, Boston, MA, USA
| | - Nina Paddu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy Braddock
- Family and Community Medicine, University of Missouri, Columbia, MO, USA
| | - Brooke Sweeney
- University of Missouri Kansas City, Children's Mercy Kansas City, Center for Children's Healthy Lifestyles & Nutrition, Kansas City, MO, USA.
| |
Collapse
|
6
|
Yaikwawong M, Jansarikit L, Jirawatnotai S, Chuengsamarn S. Curcumin extract improves beta cell functions in obese patients with type 2 diabetes: a randomized controlled trial. Nutr J 2024; 23:119. [PMID: 39354480 PMCID: PMC11445938 DOI: 10.1186/s12937-024-01022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic condition characterized by insulin resistance and impaired insulin production, leading to elevated blood glucose levels. Curcumin, a polyphenolic compound from Curcuma longa, has shown potential in improving insulin sensitivity and reducing blood glucose levels, which may help mitigate type 2 diabetes progression. OBJECTIVE To assess the efficacy of improving type 2 diabetes (T2DM). STUDY DESIGN This randomized, double-blind, placebo-controlled trial included subjects (n = 272) with criteria for type 2 diabetes. METHODS All subjects were randomly assigned to receive curcumin (1500 mg/day) or placebo with blind labels for 12 months. To assess the improvement of T2DM after curcumin treatments body weight and body mass index, fasting plasma glucose, glycosylated hemoglobin A1c, β-cell function (homeostasis model assessment [HOMA-β]), insulin resistance (HOMA-IR), insulin, adiponectin, and leptin were monitored at the baseline and at 3-, 6-, 9-, and 12-month visits during the course of intervention. RESULTS After 12 months of treatment, the curcumin-treated group showed a significant decrease in fasting blood glucose (115.49 vs.130.71; P < 0.05), HbA1c (6.12 vs. 6.47; P < 0.05). In addition, the curcumin-treated group showed a better overall function of β-cells, with higher HOMA-β (136.20 vs. 105.19; P < 0.01) The curcumin-treated group showed a lower level of HOMA-IR (4.86 vs. 6.04; P < 0.001) and higher adiponectin (14.51 vs. 10.36; P < 0.001) when compared to the placebo group. The curcumin-treated group also showed a lower level of leptin (9.42 vs. 20.66; P < 0.001). Additionally, body mass index was lowered (25.9 4 vs.29.34), with a P value of 0.001. CONCLUSIONS A 12-month curcumin intervention in type 2 diabetes patients shows a significant glucose-lowering effect. Curcumin treatment appeared to improve the overall function of β-cells and reduce both insulin resistance and body weight, with very minor adverse effects. Curcumin intervention in obese patients with type 2 diabetes may be beneficial. TRIAL REGISTRATION Thai clinical trials regentrify no.20140303003.
Collapse
Affiliation(s)
- Metha Yaikwawong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Laddawan Jansarikit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems, Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Pharmacy, Silpakorn University, Mueang District, Nakhon Prathom, Thailand
| | - Somlak Chuengsamarn
- Division of Endocrinology and Metabolism, Faculty of Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Nakhon Nayok, Thailand.
| |
Collapse
|
7
|
Strumila R, Lengvenyte A, Guillaume S, Nobile B, Olie E, Courtet P. GLP-1 agonists and risk of suicidal thoughts and behaviours: Confound by indication once again? A narrative review. Eur Neuropsychopharmacol 2024; 87:29-34. [PMID: 39068741 DOI: 10.1016/j.euroneuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists have been successfully used in clinical practice for the treatment of diabetes and obesity, offering significant clinical benefits. However, concerns regarding their potential link to psychiatric side effects, like suicidal thoughts and behaviours (STB) have emerged. This narrative review investigates the complex interplay between GLP-1 agonists and STB, focusing on the biological stress induced by rapid weight loss, psychological and social consequences, similar mechanism with addiction, and the evaluative lens of the Bradford Hill criteria on causality. While GLP-1 agonists can contribute to substantial health improvements, they also introduce biological and psychological stressors. Disruptions in homeostasis from quick weight reduction can elevate cortisol and norepinephrine levels, heightening the risk for, or exacerbation of STB. Psychological factors, including unfulfilled expectations and identity changes after significant weight loss, compound these risks. Utilizing the Bradford Hill criteria reveals insufficient evidence for a direct causal link between GLP-1 agonists and STB. Yet, the indirect effects related to the metabolic and psychological disturbances associated with rapid weight loss call for a cautious approach. Used carefully in targeted populations GLP-1 agonists may even emerge as protective agents against STB. Therefore, it is crucial to monitor patients during the treatment and screen for preexisting mental health conditions. If detected, appropriate clinical management should be applied. Future studies should aim at optimizing dosing schedules to mitigate the adverse effects of rapid weight loss and further investigate GLP-1 agonists in possible STB prevention.
Collapse
Affiliation(s)
- Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sebastien Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Benedicte Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Olie
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
8
|
Gitsi E, Kokkinos A, Konstantinidou SK, Livadas S, Argyrakopoulou G. The Relationship between Resting Metabolic Rate and Body Composition in People Living with Overweight and Obesity. J Clin Med 2024; 13:5862. [PMID: 39407922 PMCID: PMC11477793 DOI: 10.3390/jcm13195862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Resting metabolic rate (RMR) is an important contributor of energy balance and displays a well-documented relationship with sex, age, race and fat-free mass (FFM) in the existing scientific literature. However, the impact of other body composition components such as fat and liver fat on RMR remains unclear. This study aims to investigate the correlation of RMR with body composition parameters in a sample of patients with overweight and obesity. Methods: Retrospective data of patients with overweight or obesity referred for magnetic resonance imaging of liver fat during the period 2018-2023 were utilized for this study. Demographic and anthropometric data were collected, including body composition parameters (body fat, muscle mass) and RMR measured by bioelectrical impedance and indirect calorimetry, respectively. Results: The final sample included 53 patients (66% male), with a mean age of 48 years (±11.2) and a mean body mass index (ΒΜΙ) of 38.5 kg/m2 (32.7, 44.7). Simple correlation models revealed that RMR was separately correlated with gender, age, BMI, muscle mass, and liver fat (all p < 0.05) but not with fat mass. When multiple regression models were employed, only muscle mass retained its statistically significant influence on RMR, while total and hepatic fat did not significantly affect RMR after controlling for other parameters (gender, age, muscle mass). Conclusions: These findings confirm the known correlation between muscle mass and RMR while highlighting the lack of association between total and hepatic fat and RMR in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125 Athens, Greece; (S.K.K.); (G.A.)
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | | | | | - Georgia Argyrakopoulou
- Diabetes and Obesity Unit, Athens Medical Center, 15125 Athens, Greece; (S.K.K.); (G.A.)
| |
Collapse
|
9
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
10
|
You W. Ambient ultraviolet radiation as a cardioprotective factor: A global and regional analysis. Health Sci Rep 2024; 7:e70065. [PMID: 39286740 PMCID: PMC11403301 DOI: 10.1002/hsr2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ambient ultraviolet radiation (UVR) has been found to have a greater cardioprotective effect than previously believed. This study aimed to quantitatively measure the role of UVR in protecting against the progression of cardiovascular disease (CVD) in general on a global and regional scale. Methods Population-level data on UVR, CVD incidence, aging, economic affluence, CVD genetic background (indexed with the Biological State Index, Ibs), obesity prevalence, and urbanization were collected and analysed. The correlation between UVR and CVD was examined using bivariate correlations, partial correlation, and stepwise multiple linear regression. Countries were grouped to investigate regional correlations between UVR and CVD, and Fisher's r-to-z transformation was used to compare correlation coefficients. Results UVR showed a significant inverse correlation with CVD incidence rates in bivariate correlation analyses globally (r = - 0.775 and r = - 0.760, p < 0.001), as well as within high-income (r = -0.704, p < 0.001) and low- and middle-income countries (LMIC) (r = -0.851, p < 0.001). These correlations remained significant even after controlling for confounding variables (r = -0.689 to -0.812, p < 0.001). In stepwise regression models, UVR was found to be the most significant predictor of CVD incidence. The inverse correlation between UVR and CVD was stronger in LMICs compared to high-income countries (z = -1.96, p < 0.050). Conclusions Low ambient UVR may be a significant risk factor for the progression of CVD worldwide. The protective effect of UVR appears to be stronger in LMICs than in high-income countries, suggesting a greater impact of UVR on CVD prevention in these regions. These findings emphasize the need for further research into the mechanisms underlying the cardioprotective effects of UVR and the development of public health strategies to mitigate CVD risk associated with low UVR exposure.
Collapse
Affiliation(s)
- Wenpeng You
- Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
- Heart and Lung, Royal Adelaide Hospital Adelaide South Australia Australia
- Adelaide Nursing School The University of Adelaide Adelaide South Australia Australia
- School of Nursing and Midwifery Western Sydney University Sydney New South Wales Australia
| |
Collapse
|
11
|
Fitch AK, Malhotra S, Conroy R. Differentiating monogenic and syndromic obesities from polygenic obesity: Assessment, diagnosis, and management. OBESITY PILLARS 2024; 11:100110. [PMID: 38766314 PMCID: PMC11101890 DOI: 10.1016/j.obpill.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Background Obesity is a multifactorial neurohormonal disease that results from dysfunction within energy regulation pathways and is associated with increased morbidity, mortality, and reduced quality of life. The most common form is polygenic obesity, which results from interactions between multiple gene variants and environmental factors. Highly penetrant monogenic and syndromic obesities result from rare genetic variants with minimal environmental influence and can be differentiated from polygenic obesity depending on key symptoms, including hyperphagia; early-onset, severe obesity; and suboptimal responses to nontargeted therapies. Timely diagnosis of monogenic or syndromic obesity is critical to inform management strategies and reduce disease burden. We outline the physiology of weight regulation, role of genetics in obesity, and differentiating characteristics between polygenic and rare genetic obesity to facilitate diagnosis and transition toward targeted therapies. Methods In this narrative review, we focused on case reports, case studies, and natural history studies of patients with monogenic and syndromic obesities and clinical trials examining the efficacy, safety, and quality of life impact of nontargeted and targeted therapies in these populations. We also provide comprehensive algorithms for diagnosis of patients with suspected rare genetic causes of obesity. Results Patients with monogenic and syndromic obesities commonly present with hyperphagia (ie, pathologic, insatiable hunger) and early-onset, severe obesity, and the presence of hallmark characteristics can inform genetic testing and diagnostic approach. Following diagnosis, specialized care teams can address complex symptoms, and hyperphagia is managed behaviorally. Various pharmacotherapies show promise in these patient populations, including setmelanotide and glucagon-like peptide-1 receptor agonists. Conclusion Understanding the pathophysiology and differentiating characteristics of monogenic and syndromic obesities can facilitate diagnosis and management and has led to development of targeted pharmacotherapies with demonstrated efficacy for reducing body weight and hunger in the affected populations.
Collapse
Affiliation(s)
| | - Sonali Malhotra
- Harvard Medical School, Boston, MA, USA
- Rhythm Pharmaceuticals, Inc., Boston, MA, USA
- Massachussetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
12
|
El-Mezayen NS, Abelrazik YR, Khalifa DM, Dorbouk NM, Moaaz MA, Ali MM, Evy AG, Mohamed EG, Abdelhadi AM, Adly I, Shams NA. Cross-relationship between COVID-19 infection and anti-obesity products efficacy and incidence of side effects: A cross-sectional study. PLoS One 2024; 19:e0309323. [PMID: 39173063 PMCID: PMC11341056 DOI: 10.1371/journal.pone.0309323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Obesity and COVID-19 are at the top of nowadays health concerns with significant crosstalk between each other. The COVID-19 pandemic negatively affected healthy lifestyles and increased obesity prevalence. Thus, there was a surge in anti-obesity products (AOPs) intake. Herein, we evaluated how the pandemic has affected slimming products' efficacy and safety in patients seeking weight reduction at an urban, weight management centre in Alexandria, Egypt. In addition, the effect of AOPs on COVID-19 infection severity was also appraised to detect whether AOPs can alter COVID-19 host cell entry and infective mechanisms, and thus, affect infection severity. METHODS Patients were invited to complete an anonymous survey. The survey assessed self-reported changes in weight, the use of AOPs during the COVID-19 pandemic, COVID-19 infection severity, AOPs efficacy, and incidence of side effects. Inclusion criteria were obese patients above 18 years old who got infected by COVID-19 while receiving a single-ingredient AOP. RESULTS A total of 462 participants completed our anonymous validated questionnaire. Most of the participants were females (450; 98.4%) with BMI ranging from 24.98-58.46. Eligible participants were only 234 and the top-administered products were orlistat, liraglutide, metformin, green tea, cinnamon, Garcinia cambogia, and Gymnema Sylvestre. In most cases, AOPs intake was beneficial for COVID-19 infection, and most patients experienced mild-to-moderate COVID-19 symptoms. On the other hand, SARS-CoV-2 significantly interferes with AOPs' mechanisms of action which positively or negatively influences their efficacy and side effects incidence due to predictable pharmacological link. CONCLUSION Concurrent AOPs intake with COVID-19 infection is a two-sided weapon; AOPs attenuate COVID-19 infection, while SARS-CoV-2 interferes with efficacy and side effects incidence of AOPs.
Collapse
Affiliation(s)
- Nesrine S. El-Mezayen
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Pharos University in Alexandria, Alexandria, Egypt
| | - Yasser R. Abelrazik
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Dina M. Khalifa
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Nada M. Dorbouk
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Mai A. Moaaz
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Merna M. Ali
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Alaa G. Evy
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | | | - Ahmed M. Abdelhadi
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | - Irinie Adly
- Faculty of Pharmacy, Phftablearos University in Alexandria, Alexandria, Egypt
| | | |
Collapse
|
13
|
Yu L, Wang J, Hu Z, Xu T, Zhou W. A novel nomogram for predicting optimal weight loss response following diet and exercise intervention in patients with obesity. Sci Rep 2024; 14:18168. [PMID: 39107586 PMCID: PMC11303791 DOI: 10.1038/s41598-024-69295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to identify factors associated with optimal weight loss response by analyzing pre-weight loss data from a cohort of 2577 patients with obesity who visited weight management clinics between 2013 and 2022. Out of these, 1276 patients had follow-up data available. Following dietary and exercise interventions, 580 participants achieved optimal weight loss outcomes. Participants were subsequently divided into two groups based on their weight loss outcomes: those who achieved optimal weight loss response and those who did not. Statistical analysis, conducted using RStudio, identified thirteen predictor variables through LASSO and logistic regression, with age emerging as the most influential predictor. A nomogram was developed to predict optimal weight loss response, showing good predictive performance (AUC = 0.807) and clinical applicability, validated by internal validation methods. Decision curve analysis (DCA) further illustrated the nomogram's clinical utility. The developed nomogram prediction model for optimal weight loss response is user-friendly, highly accurate, and demonstrates excellent discriminative and calibration capabilities.
Collapse
Affiliation(s)
- Lei Yu
- Department of Health Management Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Jing Wang
- Department of Health Management Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Zhendong Hu
- Department of Esophageal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China
| | - Tiancheng Xu
- Department of Esophageal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China.
| | - Weihong Zhou
- Department of Health Management Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
14
|
Fernández-Verdejo R, Sanchez-Delgado G, Ravussin E. Energy Expenditure in Humans: Principles, Methods, and Changes Throughout the Life Course. Annu Rev Nutr 2024; 44:51-76. [PMID: 38759093 DOI: 10.1146/annurev-nutr-062122-031443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Humans require energy to sustain their daily activities throughout their lives. This narrative review aims to (a) summarize principles and methods for studying human energy expenditure, (b) discuss the main determinants of energy expenditure, and (c) discuss the changes in energy expenditure throughout the human life course. Total daily energy expenditure is mainly composed of resting energy expenditure, physical activity energy expenditure, and the thermic effect of food. Total daily energy expenditure and its components are estimated using variations of the indirect calorimetry method. The relative contributions of organs and tissues determine the energy expenditure under different physiological conditions. Evidence shows that energy expenditure varies along the human life course, at least in part due to changes in body composition, the mass and specific metabolic rates of organs and tissues, and levels of physical activity. This information is crucial to estimate human energy requirements for maintaining health throughout the life course.
Collapse
Affiliation(s)
- Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
| | - Guillermo Sanchez-Delgado
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Sport and Health University Research Institute and "José Mataix Verdú" Institute of Nutrition and Food Technology, University of Granada, Granada, Spain
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA;
| |
Collapse
|
15
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Hahn H, Friedel M, Niessner C, Zipfel S, Mack I. Impact of physical activity on caloric and macronutrient intake in children and adolescents: a systematic review and meta-analysis of randomized controlled trials. Int J Behav Nutr Phys Act 2024; 21:76. [PMID: 39010114 PMCID: PMC11247817 DOI: 10.1186/s12966-024-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Physical activity is widely promoted to maintain and improve health across all ages. Investigating how physical activity affects subsequent food intake provides insight into the factors that contribute to maintaining energy balance and effective weight management. OBJECTIVE This systematic review and meta-analysis summarizes the evidence on the effect of acute physical activity on subsequent food intake in children and adolescents. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) were applied. Randomized controlled trials (RCTs) objectively measuring post-exercise energy intake in children and adolescents aged 5 to 18 years were included. Studies with self-reported food intake were excluded. The databases PubMed, Web of Science and Cochrane Library were searched for RCTs, and the data were summarized at a qualitative and quantitative level. Version 2 of the Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Changes in energy intake were examined with random effects meta-analysis. (PROSPERO: CRD42022324259). RESULTS Out of 9582 studies, 22 RCTs with cross-over design remained eligible for meta-analysis. The primary outcome was post-intervention energy intake up to the next 24 h. Heterogeneity of studies was moderate, with an I2 of 57%. The median (interquartile range, IQR) energy expended while exercising was 240 (158) kcal. Meta-analysis of 41 study arms (exercise n = 780 and control n = 478) showed no differences in total energy intake between the exercise and control group with a mean difference MD = 23.31 [-27.54, 74.15] kcal. No subgroup differences were found. Macronutrient intake and appetite sensations where not substantially affected. CONCLUSION Engaging in exercise is a suitable means of raising activity-induced energy expenditure, without causing any noticeable changes in food intake or hunger within a single day.
Collapse
Affiliation(s)
- Heiko Hahn
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Osianderstr. 5, Tübingen, 72076, Germany
| | - Manuel Friedel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Osianderstr. 5, Tübingen, 72076, Germany
| | - Claudia Niessner
- Institute of Sports and Sport Science, Karlsruhe Institute of Technology, Engler-Bunte-Ring 15, Karlsruhe, 76131, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Osianderstr. 5, Tübingen, 72076, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Osianderstr. 5, Tübingen, 72076, Germany.
| |
Collapse
|
17
|
Lința AV, Lolescu BM, Ilie CA, Vlad M, Blidișel A, Sturza A, Borza C, Muntean DM, Crețu OM. Liver and Pancreatic Toxicity of Endocrine-Disruptive Chemicals: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2024; 25:7420. [PMID: 39000526 PMCID: PMC11242905 DOI: 10.3390/ijms25137420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, the worldwide epidemic of metabolic diseases, namely obesity, metabolic syndrome, diabetes and metabolic-associated fatty liver disease (MAFLD) has been strongly associated with constant exposure to endocrine-disruptive chemicals (EDCs), in particular, the ones able to disrupt various metabolic pathways. EDCs have a negative impact on several human tissues/systems, including metabolically active organs, such as the liver and pancreas. Among their deleterious effects, EDCs induce mitochondrial dysfunction and oxidative stress, which are also the major pathophysiological mechanisms underlying metabolic diseases. In this narrative review, we delve into the current literature on EDC toxicity effects on the liver and pancreatic tissues in terms of impaired mitochondrial function and redox homeostasis.
Collapse
Affiliation(s)
- Adina V. Lința
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania
| | - Cosmin A. Ilie
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
- Department of Functional Sciences—Chair of Public Health & Sanitary Management, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Vlad
- Department of Internal Medicine II—Chair of Endocrinology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania;
| | - Alexandru Blidișel
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| | - Adrian Sturza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Claudia Borza
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Danina M. Muntean
- Department of Functional Sciences—Chair of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.S.); (C.B.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (B.M.L.); (C.A.I.)
| | - Octavian M. Crețu
- Department of Surgery I—Chair of Surgical Semiotics & Thoracic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania; (A.B.); (O.M.C.)
- Centre for Hepato-Biliary and Pancreatic Surgery, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timişoara, Romania
| |
Collapse
|
18
|
Fathi PA, Bales MB, Ayala JE. Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets. Obesity (Silver Spring) 2024; 32:1373-1388. [PMID: 38932722 DOI: 10.1002/oby.24052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Obesity is characterized by dysregulated homeostatic mechanisms resulting in positive energy balance; however, when this dysregulation occurs is unknown. We assessed the time course of alterations to behaviors promoting weight gain in male and female mice switched to an obesogenic high-fat diet (HFD). METHODS Male and female C57BL/6J mice were housed in metabolic chambers and were switched from chow to a 60% or 45% HFD for 4 and 3 weeks, respectively. Food intake, meal patterns, energy expenditure (EE), and body weight were continuously measured. A separate cohort of male mice was switched from chow to a 60% HFD and was given access to locked or unlocked running wheels. RESULTS Switching mice to obesogenic diets promotes transient bouts of hyperphagia during the first 2 weeks followed by persistent caloric hyperphagia. EE increases but not sufficiently enough to offset increased caloric intake, resulting in a sustained net positive energy balance. Hyperphagia is associated with consumption of calorically larger meals (impaired satiation) more frequently (impaired satiety), particularly during the light cycle. Running wheel exercise delays weight gain in male mice fed a 60% HFD by enhancing satiation and increasing EE. However, exercise effects on satiation are no longer apparent after 2 weeks, coinciding with weight gain. CONCLUSIONS Exposure to obesogenic diets engages homeostatic regulatory mechanisms for ~2 weeks that ultimately fail, and consequent weight gain is characterized by impaired satiation and satiety. Insights into the etiology of obesity can be obtained by investigating changes to satiation and satiety mechanisms during the initial ~2 weeks of HFD exposure.
Collapse
Affiliation(s)
- Payam A Fathi
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle B Bales
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Julio E Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
- Vanderbilt Center for Addiction Research, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Delgadillo-Velázquez J, Alday E, Aguirre-García MM, Canett-Romero R, Astiazaran-Garcia H. The association between the size of adipocyte-derived extracellular vesicles and fasting serum triglyceride-glucose index as proxy measures of adipose tissue insulin resistance in a rat model of early-stage obesity. Front Nutr 2024; 11:1387521. [PMID: 39010858 PMCID: PMC11247012 DOI: 10.3389/fnut.2024.1387521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Obesity is a complex disease that predisposes individuals to cardiometabolic alterations. It leads to adipose tissue (AT) dysfunction, which triggers insulin resistance (IR). This suggests that people with obesity develop local IR first and systemic IR later. AT secretes extracellular vesicles, which may be physiopathologically associated with the development of IR. Our aim was to evaluate the effect of a high-fat diet on different parameters of adiposity in a rat model of early-stage obesity and to determine if these parameters are associated with markers of systemic IR. In addition, we sought to explore the relationship between fasting blood measures of IR (Triglycerides/High Density Lipoprotein-cholesterol [TAG/HDL-c] and Triglycerides-Glucose Index [TyG Index]) with the size of adipocyte-derived extracellular vesicles (adEV). Methods We used a model of diet-induced obesity for ten weeks in Wistar rats exposed to a high-fat diet. Final weight gain was analyzed by Dual X-ray absorptiometry. Visceral obesity was measured as epididymal AT weight. IR was evaluated with fasting TyG Index & TAG/HDL-c, and adEV were isolated from mature adipocytes on ceiling culture. Results In the high-fat diet group, glucose and triglyceride blood concentrations were higher in comparison to the control group (Log2FC, 0.5 and 1.5 times higher, respectively). The values for TyG Index and adEV size were different between the control animals and the high-fat diet group. Multiple linear regression analyses showed that adEV size can be significantly associated with the TyG Index value, when controlling for epididymal AT weight. Conclusion Our results show that lipid and glucose metabolism, as well as the size and zeta potential of adEV are already altered in early-stage obesity and that adEV size can be significantly associated with liver and systemic IR, estimated by TyG Index.
Collapse
Affiliation(s)
| | - Efrain Alday
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - María Magdalena Aguirre-García
- Laboratorio de Inmunología Molecular y Cardiopatías, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Canett-Romero
- Departamento de Investigación y Posgrado en Alimentos, Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | - Humberto Astiazaran-Garcia
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
- Departmento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
20
|
Lee MS. The prevalence and prevention strategies of pediatric obesity: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:141-149. [PMID: 38965682 PMCID: PMC11294797 DOI: 10.12701/jyms.2024.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
Pediatric obesity has rapidly increased globally over the past few decades, including in Korea. We aimed to discuss trends in the prevalence of pediatric obesity and effective prevention strategies. Its prevalence has markedly increased in most high-income nations. According to recent reports, this increase has slowed in developed countries, but the levels remain alarmingly high. In Korea, the rate of pediatric obesity has surged notably since the 1990s; however, since the 2000s, this increase has become more gradual. According to recently published 2017 growth charts, the prevalence of pediatric obesity in Korea varies slightly depending on the data source. The National School Health Examination data showed that pediatric obesity gradually increase from 11.5% in 2014 to 15.1% in 2019, and after the coronavirus disease 2019 pandemic, it sharply increased to 19% in 2021. Based on data from the Korea National Health and Nutrition Examination Survey, the prevalence of pediatric obesity gradually increased from 10.8% in 2017 to 13.6% in 2019. This trend, which accelerated sharply to 15.9% in 2020 and 19.3% in 2021, was especially severe in boys and older children. Pediatric obesity not only affects health during childhood but also increases the risk of developing obesity and associated health conditions in adulthood. Despite ongoing research on treatment options, obesity prevention and control remain challenging. Hence, prioritizing early intervention and prevention of pediatric obesity through healthy eating habits and lifestyles is crucial. This requires intervention at the individual, family, school, and community levels.
Collapse
Affiliation(s)
- Mi Seon Lee
- Department of Pediatrics, Soonchunhyang University Gumi Hospital, Soonchunhyang University College of Medicine, Korea
| |
Collapse
|
21
|
Won YS, Bak SG, Chandimali N, Park EH, Lim HJ, Kwon HS, Park SI, Lee SJ. 7-MEGA™ inhibits adipogenesis in 3T3-L1 adipocytes and suppresses obesity in high-fat-diet-induced obese C57BL/6 mice. Lipids Health Dis 2024; 23:192. [PMID: 38909257 PMCID: PMC11193219 DOI: 10.1186/s12944-024-02175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.
Collapse
Affiliation(s)
- Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, 58762, Republic of Korea
| | - Seon-Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup, 56212, Republic of Korea
| | - Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup, 56212, Republic of Korea
- Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup, 56212, Republic of Korea
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
| | - Hyuck Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech, Jeonju, 55365, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup, 56212, Republic of Korea.
- Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
22
|
Sewaybricker LE, Melhorn SJ, Entringer S, Buss C, Wadhwa PD, Schur EA, Rasmussen JM. Associations of radiologic characteristics of the neonatal hypothalamus with early life adiposity gain. Pediatr Obes 2024; 19:e13114. [PMID: 38477234 PMCID: PMC11081834 DOI: 10.1111/ijpo.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The mediobasal hypothalamus (MBH) is a key brain area for regulation of energy balance. Previous neuroimaging studies suggest that T2-based signal properties indicative of cellular inflammatory response (gliosis) are present in adults and children with obesity, and predicts greater adiposity gain in children at risk of obesity. OBJECTIVES/METHODS The current study aimed to extend this concept to the early life period by considering if, in full-term healthy neonates (up to n = 35), MRI evidence of MBH gliosis is associated with changes in early life (neonatal to six months) body fat percentage measured by DXA. RESULTS In this initial study, neonatal T2 signal in the MBH was positively associated with six-month changes in body fat percentage. CONCLUSION This finding supports the notion that underlying processes in the MBH may play a role in early life growth and, by extension, childhood obesity risk.
Collapse
Affiliation(s)
| | - Susan J. Melhorn
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Medical Psychology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
- Department of Obstetrics & Gynecology, University of California, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, 92697, USA
- Department of Epidemiology, University of California, Irvine, CA, 92697, USA
| | - Ellen A. Schur
- Dept. of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jerod M. Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA, 92697, USA
- Dept. of Pediatrics, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
23
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
24
|
Zhao C, Li J, Hu Y, Li L, Yu M, Huang Y, Zhang T, Shang H, Zou Z. (+)/(-)-Gerbeloid A, a pair of unprecedented coumarin-based polycyclic meroterpenoid enantiomers from Gerbera piloselloides: Structural elucidation, semi-synthesis, and lipid-lowering activity. Acta Pharm Sin B 2024; 14:2657-2668. [PMID: 38828137 PMCID: PMC11143508 DOI: 10.1016/j.apsb.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024] Open
Abstract
A pair of coumarin-based polycyclic meroterpenoid enantiomers (+)/(-)-gerbeloid A [(+)-1a and (-)-1b] were isolated from the medicinal plant Gerbera piloselloides, which have a unique caged oxatricyclo [4.2.2.03,8] decene scaffold. Their planar and three-dimensional structures were exhaustively characterized by comprehensive spectroscopic data and X-ray diffraction analysis. Guided by the hypothetical biosynthetic pathway, the biomimetic synthesis of racemic 1 was achieved using 4-hydroxy-5-methylcoumarin and citral as the starting material via oxa-6π electrocyclization and intramolecular [2 + 2] photocycloaddition. Subsequently, the results of the biological activity assay demonstrated that both (+)-1a and (-)-1b exhibited potent lipid-lowering effects in 3T3-L1 adipocytes and the high-fat diet zebrafish model. Notably, the lipid-lowering activity of (+)-1a is better than that of (-)-1b at the same concentration, and molecular mechanism study has shown that (+)-1a and (-)-1b impairs adipocyte differentiation and stimulate lipolysis by regulating C/EBPα/PPARγ signaling and Perilipin signaling in vitro and in vivo. Our findings provide a promising drug model molecule for the treatment of obesity.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingrong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yue Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunfeng Huang
- Institute of Chinese Medicine Resources, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530000, China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhongmei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
25
|
Liu M, Zhu Y, Wang F. Does chili pepper consumption affect BMI and obesity risk? A cross-sectional analysis. Front Nutr 2024; 11:1410256. [PMID: 38887506 PMCID: PMC11182340 DOI: 10.3389/fnut.2024.1410256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Background The effects of chili intake on overweight and obesity have attracted significant interest in recent years. This study aimed to investigate the correlation between chili consumption frequency, body mass index (BMI), and obesity prevalence in the American population. Methods Data from participants in National Health and Nutrition Examination Survey (NHANES) 2003-2006 were collected. We enrolled 6,138 participants with complete information on chili intake and BMI in this cross-sectional study. Multivariate logistic regression and sensitivity analyses were conducted to explore the relationship between chili intake frequency and BMI and obesity. Subgroup analyses and interaction tests were employed to assess the stability of the observed correlation. Results Increased chili consumption frequency was linked to higher BMI values and a greater prevalence of obesity. Compared to the non-consumption group, the highest frequency group had a multivariate-adjusted β of 0.71 (95% CI: 0.05, 1.38) for BMI and an OR of 1.55 (95% CI: 1.22, 1.97) for obesity in the fully adjusted model. This positive association between chili intake frequency and obesity was more pronounced in females and older adults (≥ 60 years old). Conclusion Our findings suggest a positive association between chili intake frequency and BMI and obesity in United States adults, suggesting that controlling chili intake frequency could potentially contribute to improved weight management in the general population.
Collapse
Affiliation(s)
- Mengxue Liu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihao Zhu
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Wang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Aune SK, Helseth R, Kalstad AA, Laake K, Åkra S, Arnesen H, Solheim S, Seljeflot I. Links Between Adipose Tissue Gene Expression of Gut Leakage Markers, Circulating Levels, Anthropometrics, and Diet in Patients with Coronary Artery Disease. Diabetes Metab Syndr Obes 2024; 17:2177-2190. [PMID: 38827167 PMCID: PMC11144434 DOI: 10.2147/dmso.s438818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Recent studies suggest gut-derived lipopolysaccharide (LPS)-translocation to play a role in both systemic inflammation and in inflammatory adipose tissue. We aimed to investigate whether circulating LPS-related inflammatory markers and corresponding genetic expression in adipose tissue were associated with obesity, cardiometabolic risk factors, and dietary habits in patients with coronary artery disease. Methods Patients (n=382) suffering a myocardial infarction 2-8 weeks prior to inclusion were enrolled in this cross-sectional study. Subcutaneous adipose tissue (SAT), taken from the gluteal region, and fasting blood samples were collected at inclusion for determination of genetic expression of LPS-binding protein (LBP), CD14, toll-like receptor 2 (TLR2), and TLR4 in SAT, and LPS, LBP, and soluble cluster of differentiation 14 (sCD14) in the circulation. All patients filled out a dietary registration form. Results Patients (median age 74 years, 25% women), had a median body mass index (BMI) of 25.9 kg/m2. Circulating levels of LBP correlated to BMI (p=0.02), were significantly higher in overweight or obese (BMI≥25 kg/m2) compared to normal- or underweight patients (BMI<25 kg/m2), and were significantly elevated in patients with T2DM, hypertension, and MetS, compared to patients without (p≤0.04, all). In SAT, gene expression of CD14 and LBP correlated significantly to BMI (p≤0.001, both), and CD14 and TLR2 expressions were significantly higher in patients with T2DM and MetS compared to patients without (p≤0.001, both). Circulating and genetically expressed CD14 associated with use of n-3 PUFAs (p=0.008 and p=0.003, respectively). No other significant associations were found between the measured markers and dietary habits. Conclusion In patients with established CAD, circulating levels of LBP and gene expression of CD14 and TLR2 in SAT were related to obesity, MetS, T2DM, and hypertension. This suggests that the LPS-LBP-CD14 inflammatory axis is activated in the chronic low-grade inflammation associated with cardiometabolic abnormalities, whereas no significant associations with dietary habits were observed.
Collapse
Affiliation(s)
- Susanne Kristine Aune
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild Helseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kristian Laake
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
27
|
Klotsman M, Anderson WH, Gilor C. Drug release profile of a novel exenatide long-term drug delivery system (OKV-119) administered to cats. BMC Vet Res 2024; 20:211. [PMID: 38762728 PMCID: PMC11102179 DOI: 10.1186/s12917-024-04051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.
Collapse
Affiliation(s)
| | - Wayne H Anderson
- Okava Pharmaceuticals, San Francisco, CA, USA
- Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Oya M, Miyasaka Y, Nakamura Y, Tanaka M, Suganami T, Mashimo T, Nakamura K. Age-related ciliopathy: Obesogenic shortening of melanocortin-4 receptor-bearing neuronal primary cilia. Cell Metab 2024; 36:1044-1058.e10. [PMID: 38452767 DOI: 10.1016/j.cmet.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Obesity is often associated with aging. However, the mechanism of age-related obesity is unknown. The melanocortin-4 receptor (MC4R) mediates leptin-melanocortin anti-obesity signaling in the hypothalamus. Here, we discovered that MC4R-bearing primary cilia of hypothalamic neurons progressively shorten with age in rats, correlating with age-dependent metabolic decline and increased adiposity. This "age-related ciliopathy" is promoted by overnutrition-induced upregulation of leptin-melanocortin signaling and inhibited or reversed by dietary restriction or the knockdown of ciliogenesis-associated kinase 1 (CILK1). Forced shortening of MC4R-bearing cilia in hypothalamic neurons by genetic approaches impaired neuronal sensitivity to melanocortin and resulted in decreased brown fat thermogenesis and energy expenditure and increased appetite, finally developing obesity and leptin resistance. Therefore, despite its acute anti-obesity effect, chronic leptin-melanocortin signaling increases susceptibility to obesity by promoting the age-related shortening of MC4R-bearing cilia. This study provides a crucial mechanism for age-related obesity, which increases the risk of metabolic syndrome.
Collapse
Affiliation(s)
- Manami Oya
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan; Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
29
|
Webber SC, Thille P, Liu K, Wittmeier K, Cain P. Determining Associations Among Health Orientation, Fitness Orientation, and Attitudes Toward Fatness in Physiotherapists and Physiotherapy Students Using Structural Equation Modeling. Physiother Can 2024; 76:220-229. [PMID: 38725602 PMCID: PMC11078247 DOI: 10.3138/ptc-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 05/12/2024]
Abstract
Purpose Research suggests physiotherapists hold negative attitudes and beliefs toward fatness and fat people. Physiotherapists are also health-conscious, and invested in healthy lifestyle behaviours including physical activity. Our purpose was to describe relationships between health orientation, fitness orientation, and fat attitudes. Methods Physiotherapists (n = 187) and physiotherapy students (n = 34) completed an online survey (Health Orientation Scale, Multidimensional Body-Self Relations Questionnaire, Fat Attitudes Assessment Toolkit). Structural equation modeling estimated associations between fat attitudes (dependent variable) and health and fitness orientation (independent variables). Results Participants scored high in orientation toward fitness and health. We found strong positive associations between fitness orientation and health orientation (p < 0.001). Health orientation was not significantly associated with fat attitudes (p = 0.075), whereas increased age was associated with more positive fat attitudes (p < 0.01). Although most participants acknowledged that factors outside an individual's control contribute to body weight, many also agreed with normative negative perspectives. Conclusions Physiotherapists are highly oriented toward fitness and health. This may underlie beliefs in the controllability of body weight and contribute to negative attitudes toward fatness and fat people. Further research, with greater sample sizes is necessary to further investigate associations between health orientation and fat attitudes.
Collapse
Affiliation(s)
- Sandra C. Webber
- From the:
Department of Physiotherapy, College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia Thille
- From the:
Department of Physiotherapy, College of Rehabilitation Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kun Liu
- Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kristy Wittmeier
- Department of Pediatrics and Child Health, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia Cain
- School of Nursing and Midwifery, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
30
|
Bozdag D, van Voorthuizen J, Korpel N, Lentz S, Gurer-Orhan H, Kamstra JH. Dysregulation of adipogenesis and disrupted lipid metabolism by the antidepressants citalopram and sertraline. Toxicol Appl Pharmacol 2024; 486:116937. [PMID: 38643950 DOI: 10.1016/j.taap.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 μM for SER and 0.12-0.92 μM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.
Collapse
Affiliation(s)
- Deniz Bozdag
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands; Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey.
| | - Jeroen van Voorthuizen
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nikita Korpel
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Sander Lentz
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Hande Gurer-Orhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
31
|
Stoppe C, Elke G, Silvstre SCDM, Kappus M. Highlights in the clinical nutrition literature: A critical appraisal of current research. JPEN J Parenter Enteral Nutr 2024; 48:377-388. [PMID: 38310478 DOI: 10.1002/jpen.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/05/2024]
Abstract
Within the American Society for Parenteral and Enteral Nutrition (ASPEN), the Physician Engagement Committee (PEC) was created in 2017 by the ASPEN Board of Directors with the goal of growing the physician community both nationally and internationally. The PEC meets each month throughout the year to develop educational and research initiatives. In 2022, the PEC began an initiative to systematically review and evaluate practice-changing literature annually with the overall aim to highlight these studies at the annual ASPEN conferences and to critically discuss the potential clinical implications. The objective of the held meeting session was to present identified key papers in the fields of critical care medicine, gastroenterology and hepatology, and adult internal medicine that were published in 2022, which would complement the knowledge of the pathogenesis, diagnosis, and management of nutrition topics as well as to identify areas of future research. Overall, several large-scale randomized controlled studies were identified in each of these sections, with practice-changing major results. This manuscript summarizes the information that was presented and the discussions that followed.
Collapse
Affiliation(s)
- Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiac Anesthesiology & Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Gunnar Elke
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Matthew Kappus
- Division of Gastroenterology and Hepatology, Duke University Health, Durham, North Carolina, USA
| |
Collapse
|
32
|
Khokhar S, Holden J, Toomer C, Del Parigi A. Weight Loss with an AI-Powered Digital Platform for Lifestyle Intervention. Obes Surg 2024; 34:1810-1818. [PMID: 38573389 DOI: 10.1007/s11695-024-07209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Lifestyle intervention remains the cornerstone of weight loss programs in addition to pharmacological or surgical therapies. Artificial intelligence (AI) and other digital technologies can offer individualized approaches to lifestyle intervention to enable people with obesity to reach successful weight loss. METHODS SureMediks, a digital lifestyle intervention platform using AI, was tested by 391 participants (58% women) with a broad range of BMI (20-78 kg/m2), with the aim of losing weight over 24 weeks in a multinational field trial. SureMediks consists of a mobile app, an Internet-connected scale, and a discipline of artificial intelligence called Expert system to provide individualized guidance and weight-loss management. RESULTS All participants lost body weight (average 14%, range 4-22%). Almost all (98.7%) participants lost at least 5% of body weight, 75% lost at least 10%, 43% at least 15%, and 9% at least 20%, suggesting that this AI-powered lifestyle intervention was also effective in reducing the burden of obesity co-morbidities. Weight loss was partially positively correlated with female sex, accountability circle size, and participation in challenges, while it was negatively correlated with sub-goal reassignment. The latter three variables are specific features of the SureMediks weight loss program. CONCLUSION An AI-assisted lifestyle intervention allowed people with different body sizes to lose 14% body weight on average, with 99% of them losing more than 5%, over 24 weeks. These results show that digital technologies and AI might provide a successful means to lose weight, before, during, and after pharmacological or surgical therapies.
Collapse
Affiliation(s)
| | - John Holden
- Rockford-College of Medicine, University of Illinois, Rockford, IL, 6110, USA
| | | | | |
Collapse
|
33
|
Tzoulis P, Batavanis M, Baldeweg S. A Real-World Study of the Effectiveness and Safety of Semaglutide for Weight Loss. Cureus 2024; 16:e59558. [PMID: 38826889 PMCID: PMC11144277 DOI: 10.7759/cureus.59558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Recent randomized controlled trials (RCTs) have shown the great efficacy of semaglutide in achieving significant weight loss in overweight and obese adults. However, real-world data about its effectiveness are still limited. This study evaluated the effectiveness and adverse events of semaglutide for weight management in a real-life setting, excluding patients with diabetes mellitus (DM). Methods This is a retrospective chart review of 40 overweight or obese individuals with a median age of 47 years, weight of 111.7 kg, and body mass index (BMI) of 39.7 kg/m2 who were prescribed semaglutide for weight management. Results After three months of semaglutide administration, the median weight reduction was 7.4 kg (6.6% of the baseline weight), with 28 (70%) and eight patients (20%) achieving greater than 5% (5.6 kg) and 10% (11.2 kg) weight loss, respectively. Among 25 patients with six-month data, 22 (88%), 17 (68%), and eight (32%) patients exceeded 5% (5.6 kg), 10% (11.2 kg), and 15% (16.8 kg) weight loss, respectively. The maintenance semaglutide dose was 1 mg in 16 cases and 2 mg in nine cases, leading to a similar weight loss of 13.6% (14.9 kg) and 12.8% (14 kg), respectively. Relatively low response rates were observed in males, with seven responders out of 12 (58.4%) compared to 24 out of 28 (85.8%) in females (P value = 0.057), and in five out of nine (55.6%) among those with a history of psychiatric disease. The rate of adverse events was 26 out of 40 patients (65%), mostly mild to moderate and of short duration, leading to discontinuation in only a single case (2.5%). Conclusion This retrospective study demonstrated the significant effectiveness of semaglutide for weight loss, even at lower than approved maintenance doses, combined with a good safety profile. Therefore, semaglutide may dramatically change the landscape of obesity treatment.
Collapse
Affiliation(s)
- Ploutarchos Tzoulis
- Department of Metabolism and Experimental Therapeutics, University College London, London, GBR
| | - Michael Batavanis
- School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| | - Stephanie Baldeweg
- Center for Obesity and Metabolism, Department of Experimental and Translational Medicine, University College London, London, GBR
| |
Collapse
|
34
|
Purnell JQ, le Roux CW. Hypothalamic control of body fat mass by food intake: The key to understanding why obesity should be treated as a disease. Diabetes Obes Metab 2024; 26 Suppl 2:3-12. [PMID: 38351898 DOI: 10.1111/dom.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Hypothalamic centres have been recognized to play a central role in body weight regulation for nearly 70 years. AIMS In this review, we will explore the current undersanding of the role the hypothalamus plays in controlling food intake behaviours. MATERIALS AND METHODS Review of relevant literature from PubMed searches and review article citations. RESULTS Beginning with autopsy studies showing destructive hypothalamic lesions in patients manifesting hyperphagia and rapid weight gain, followed by animal lesioning studies pinpointing adjacent hypothalamic sites as the 'satiety' centre and the 'feeding' centre of the brain, the neurocircuitry that governs our body weight is now understood to consist of a complex, interconnected network, including the hypothalamus and extending to cortical sites, reward centres and brainstem. Neurons in these sites receive afferent signals from the gastrointestinal tract and adipose tissue indicating food availability, calorie content, as well as body fat mass. DISCUSSION Integration of these complex signals leads to modulation of the two prime effector systems that defend a body fat mass set point: food intake and energy expenditure. CONCLUSION Understanding the hypothalamic control of food intake forms the foundation for understanding and managing obesity as a chronic disease.
Collapse
Affiliation(s)
- Jonathan Q Purnell
- Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Carel W le Roux
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Steenackers N, Eksteen G, Wauters L, Augustijns P, Van der Schueren B, Vanuytsel T, Matthys C. Understanding the gastrointestinal tract in obesity: From gut motility patterns to enzyme secretion. Neurogastroenterol Motil 2024; 36:e14758. [PMID: 38342973 DOI: 10.1111/nmo.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND AND PURPOSE The pathophysiology of obesity has been the product of extensive research, revealing multiple interconnected mechanisms contributing to body weight regulation. The regulation of energy balance involves an intricate network, including the gut-neuroendocrine interplay. As a consequence, research on the gut-brain-microbiota axis in obesity has grown extensively. The physiology of the gastrointestinal tract, far from being underexplored, has significant implications for the development of specific complications in people living with obesity across the fields of gastroenterology, nutrition, and pharmacology. Clinical research indicates higher fasting bile acids serum levels, and blunted postprandial increases in bilious secretions in people living with obesity. Findings are less straightforward for the impact of obesity on gastric emptying with various studies reporting accelerated, normal, or delayed gastric emptying rates. Conversely, the effect of obesity on gastrointestinal pH, gastrointestinal transit, and gastric and pancreatic enzyme secretion is largely unknown. In this review, we explore the current evidence on the gastrointestinal physiology of obesity.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Gabriel Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Heindel JJ, Lustig RH, Howard S, Corkey BE. Obesogens: a unifying theory for the global rise in obesity. Int J Obes (Lond) 2024; 48:449-460. [PMID: 38212644 PMCID: PMC10978495 DOI: 10.1038/s41366-024-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Despite varied treatment, mitigation, and prevention efforts, the global prevalence and severity of obesity continue to worsen. Here we propose a combined model of obesity, a unifying paradigm that links four general models: the energy balance model (EBM), based on calories as the driver of weight gain; the carbohydrate-insulin model (CIM), based on insulin as a driver of energy storage; the oxidation-reduction model (REDOX), based on reactive oxygen species (ROS) as a driver of altered metabolic signaling; and the obesogens model (OBS), which proposes that environmental chemicals interfere with hormonal signaling leading to adiposity. We propose a combined OBS/REDOX model in which environmental chemicals (in air, food, food packaging, and household products) generate false autocrine and endocrine metabolic signals, including ROS, that subvert standard regulatory energy mechanisms, increase basal and stimulated insulin secretion, disrupt energy efficiency, and influence appetite and energy expenditure leading to weight gain. This combined model incorporates the data supporting the EBM and CIM models, thus creating one integrated model that covers significant aspects of all the mechanisms potentially contributing to the obesity pandemic. Importantly, the OBS/REDOX model provides a rationale and approach for future preventative efforts based on environmental chemical exposure reduction.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA.
| | - Robert H Lustig
- Department of Pediatrics and Institute for Health Policy Studies, University of California, San Francisco, CA, 94143, USA
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies (HEEDS), Bozeman, MT, 59715, USA
| | - Barbara E Corkey
- Department of Medicine, Boston University, Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
37
|
Livzan MA, Lyalyukova EA, Druk IV, Safronova SS, Khalashte AA, Martirosian KA, Petrosian VY, Galakhov YS. Obesity: current state of the problem, multidisciplinary approach. (based on the consensus of the World Gastroenterological Organization “Obesity 2023” and the European guideline on obesity care in patients with gastrointestinal and liver diseases, 2022). EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:5-47. [DOI: 10.31146/1682-8658-ecg-218-10-5-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Obesity is the largest pandemic in the world, and its prevalence continues to increase. The purpose of the presented publication is to raise awareness of doctors about modern methods of diagnosing obesity and approaches to therapy, using an interdisciplinary team approach similar to that used in other chronic diseases, such as diabetes, heart disease and cancer. The article presents data from the World Gastroenterological Organization (2023) and the European Guidelines for the Treatment of Obesity in patients with diseases of the gastrointestinal tract and liver (2022). According to modern approaches, obesity should be considered as a chronic recurrent progressive disease, the treatment of which requires a comprehensive interdisciplinary approach involving psychologists and psychiatrists, nutritionists/nutritionists, therapists, endoscopists and surgeons, including lifestyle changes, a well-defined diet and exercise regimen, drug therapy, endoscopic or surgical methods of treatment. Conclusions. In order to stop the growing wave of obesity and its many complications and costs, doctors, insurance companies and health authorities should make systematic efforts to raise public awareness of both the adverse health risks associated with obesity and the potential reduction of risks through a comprehensive approach to therapy.
Collapse
|
38
|
Chopra AK. Dietary management of dyslipidemia. Indian Heart J 2024; 76 Suppl 1:S65-S72. [PMID: 38122980 PMCID: PMC11019336 DOI: 10.1016/j.ihj.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The rising burden of cardiovascular disease (CVD) has made the achievement of optimal lipoprotein levels a major public health priority. As nearly a fifth of global mortality is associated with dietary factors, and recommendations have been mired in controversy, a fresh look on the available data is attempted. Well established concepts regarding nutrition and cardiometabolic health, role of macronutrients, calories, and controversial foods are discussed followed by recommendations in the Indian context. A healthy dietary pattern rather than individual foods or nutrients is emphasized, and this is generally plant based with optional consumption of dairy, eggs, and meats within the suggested limits. Suggestions/recommendations are given for consumption of individual foods, remembering that choosing appropriate replacement foods is as important as restricting unhealthy foods.
Collapse
|
39
|
Al lami Z, Kurtca M, Atique MU, Opekun AR, Siam MS, Jalal PK, Najafi B, Devaraj S, Mindikoglu AL. Dawn-to-dusk dry fasting decreases circulating inflammatory cytokines in subjects with increased body mass index. Metabol Open 2024; 21:100274. [PMID: 38455231 PMCID: PMC10918425 DOI: 10.1016/j.metop.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Background The circadian rhythm involves numerous metabolic processes, including sleep/awakening, body temperature regulation, hormone secretion, hepatic function, cellular plasticity, and cytokine release (inflammation), that appear to have a dynamic relationship with all the processes above. Studies have linked various cytokines to the chronic state of low-grade inflammation and oxidative stress in obesity. Dawn-to-dusk dry fasting (DDDF) could alleviate the adverse effects of obesity by decreasing inflammation. This study examined the effects of DDDF on circulating inflammatory cytokines in subjects with increased body mass index (BMI). Methods The current observational prospective study included adult subjects with a BMI equal to or greater than 25 kg/m2 who practiced the annual religious 30-day DDDF. Individuals with significant underlying medical conditions were excluded to limit confounding factors. All subjects were evaluated within two weeks before 30-day DDDF, within the fourth week of 30-day DDDF, and within two weeks after 30-day DDDF. Multiple cytokines and clinical health indicators were measured at each evaluation. Results Thirteen subjects (10 men and three women) with a mean age of 32.9 years (SD = 9.7 years) and a mean BMI of 32 kg/m2 (SD = 4.6 kg/m2) were included. An overall associated decrease in the levels of multiple cytokines with DDDF was observed. A significant decrease in the mean interleukin 1 beta level was observed within the fourth week of 30-day DDDF (P = 0.045), which persisted even after the fasting period (P = 0.024). There was also a significant decrease in the mean levels of interleukin 15 (IL-15) (P = 0.014), interleukin 1 receptor antagonist (P = 0.041), macrophage-derived chemokine (MDC) (P = 0.013), and monokine induced by interferon gamma/chemokine (C-X-C motif) ligand 9 (P = 0.027) within the fourth week of 30-day DDDF and in the mean levels of fibroblast growth factor 2 (P = 0.010), interleukin 12 p40 subunit (P = 0.038), interleukin 22 (P = 0.025) and tumor necrosis factor alpha (P = 0.046) within two weeks after 30-DDDF. In terms of anthropometric parameters, there was a decrease in mean body weight (P = 0.032), BMI (P = 0.028), and hip circumference (P = 0.007) within the fourth week of 30-day DDDF and a decrease in mean weight (P = 0.026), BMI (P = 0.033) and hip circumference (P = 0.016) within two weeks after 30-day DDDF compared with the levels measured within two weeks before 30-day DDDF. Although there was no significant correlation between changes in weight and changes in circulating inflammatory cytokines, there was a significant positive correlation between changes in waist circumference and changes in specific inflammatory cytokines (e.g., IL-15, MDC, platelet-derived growth factor, soluble CD40L, vascular endothelial growth factor A) within the fourth week of 30-day DDDF and/or two weeks after 30-day DDDF. A significant decrease in mean average resting heart rate within the fourth week of 30-day DDDF was also observed (P = 0.023), and changes between average resting heart rate and changes in interleukin-8 levels within the fourth week of 30-day DDDF compared with baseline levels were positively correlated (r = 0.57, P = 0.042). Conclusion DDDF appears to be a unique and potent treatment to reduce low-grade chronic inflammation caused by obesity and visceral adiposity. Further studies with more extended follow-up periods are warranted to investigate the long-term anti-inflammatory benefits of DDDF in individuals with increased BMI.
Collapse
Affiliation(s)
- Zahraa Al lami
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Miray Kurtca
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Moin Uddin Atique
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Antone R. Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Mohamad S. Siam
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
| | - Prasun K. Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L. Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Kim HN, Lee YA, Song SW. Sunflower seed extract supplementation reduces body fat in adults with obesity: A double-blind, randomized, placebo-controlled trial. Nutr Res 2024; 122:113-122. [PMID: 38217909 DOI: 10.1016/j.nutres.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Obesity is an important public health problem and socioeconomic burden. We hypothesized that an intake of sunflower seed extract (SUN-CA) would decrease body fat and then investigated the effects and safety of SUN-CA intake on body fat in adults with obesity as an option for obesity treatment. In this double-blind, randomized, placebo-controlled study, 100 adults with body mass indices of 25 to 31.9 kg/m2 were assigned to groups that received SUN-CA (n = 50) or a placebo (n = 50) and received 1 tablet/day containing 500 mg of SUN-CA or the placebo over a 12-week period. The primary endpoint was the change in mass and percentage of body fat. The group that received SUN-CA daily showed decreases in body fat mass greater than those in the placebo group (-0.9 ± 1.8 kg vs. -0.1 ± 1.4 kg, P = .043). In addition, body weight, body mass index, and hip circumference improved after the intake of SUN-CA relative to the changes in the placebo group. There was no intergroup differences in the prevalence of adverse events. The accumulation of excess body fat improved through the intake of 500 mg/day of SUN-CA containing 100 mg of chlorogenic acids for 12 weeks in adults with obesity without causing serious adverse side effects. SUN-CA could be an effective and safe management option for obesity. The trial was registered at Clinical Research Information Service (CRIS: https://cris.nih.go.kr/cris/index/index.do) as KCT0005733.
Collapse
Affiliation(s)
- Ha-Na Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun-Ah Lee
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Wook Song
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Coutinho W, Halpern B. Pharmacotherapy for obesity: moving towards efficacy improvement. Diabetol Metab Syndr 2024; 16:6. [PMID: 38172940 PMCID: PMC10763391 DOI: 10.1186/s13098-023-01233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a chronic, recurring, progressive disease and a major public health problem associated with several other diseases that lead to disability, morbidity, and mortality. The prevalence of obesity has increased at pandemic levels, along with increasing weight-related comorbidities and deaths worldwide. Lifestyle interventions alone provide clinically significant long-term weight loss in only a small proportion of individuals, and bariatric surgery is not suitable or desirable for all patients. Historically, anti-obesity medications achieved a mean efficacy with weight loss between 5 and 10%, which significantly impacted several comorbidities and risk factors, but the average efficacy of these medications remained lower than that expected by both patients and health care professionals and eventually curbed long-term use. Moreover, there is no direct evidence on the impact of anti-obesity medications on cardiovascular outcomes. Semaglutide is a newer anti-obesity medication that changes the overall landscape, as phase 3 studies show a mean weight loss near the 15% threshold and significant proportions of patients with a weight loss of greater than 20%. In this review, we focus on the currently available anti-obesity medications, discuss the results of semaglutide, and present perspectives on the future of obesity treatment after semaglutide.
Collapse
Affiliation(s)
- Walmir Coutinho
- State Institute of Diabetes and Endocrinology, Rua Moncorvo Filho, 90, Rio de Janeiro, RJ, 20211-340, Brazil.
- Department of Medicine, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ, 22541-041, Brazil.
| | - Bruno Halpern
- Department of Endocrinology, Obesity Unit, Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo. Av. Dr. Enéas de Carvalho Aguiar, 255, 7Th Floor, Room 7037, São Paulo, SP, 05403-000, Brazil
| |
Collapse
|
42
|
Retnakaran R, Pu J, Hanley AJ, Connelly PW, Sermer M, Zinman B. Future cardiometabolic implications of insulin hypersecretion in response to oral glucose: a prospective cohort study. EClinicalMedicine 2024; 67:102363. [PMID: 38314059 PMCID: PMC10837529 DOI: 10.1016/j.eclinm.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024] Open
Abstract
Background The cardiometabolic implications of postprandial hyperinsulinemia are unclear with recent studies suggesting both adverse and beneficial associations. We aimed to evaluate the longitudinal cardiometabolic implications of the post-challenge insulin secretory response over 4-years follow-up. Methods In this prospective cohort study, conducted in Toronto (Ontario, Canada), women comprising the full range of antepartum glucose tolerance were recruited in pregnancy (at the time of glucose tolerance screening, late in the second trimester) to undergo cardiometabolic testing in the years thereafter. Participants underwent oral glucose tolerance tests (OGTT) at 1-year, 3-years, and 5-years postpartum, enabling serial assessment of cardiovascular risk factors, glucose tolerance, insulin sensitivity or resistance (Matsuda index, HOMA-IR), and beta-cell function-via Insulin Secretion-Sensitivity Index-2 (ISSI-2) and insulinogenic index/HOMA-IR (IGI/HOMA-IR). Baseline post-challenge insulinemia was assessed with the corrected insulin response (CIR) at 1-year. Cardiometabolic factors were compared between baseline CIR tertiles. Findings Between Oct 23, 2003 and March 31, 2014, 306 women were enrolled. In this study population, there was progressive worsening of waist circumference (p = 0.016), HDL (p = 0.018), CRP (p = 0.006), and insulin sensitivity (p < 0.001) from the lowest to middle to highest tertile of CIR at 1-year. However, these adverse features were accompanied by progressively better beta-cell function (both p < 0.001), coupled with lower fasting and 2-h glucose on the OGTT (both p < 0.001). On adjusted longitudinal analyses, higher CIR tertile at 1-year was independently associated with (i) higher ISSI-2 and IGI/HOMA-IR and (ii) lower fasting and 2-h glucose at both 3-years and 5-years (all p < 0.001), but was not associated with BMI, waist, lipids, CRP or insulin sensitivity/resistance. The highest CIR tertile at 1-year predicted lower risk of pre-diabetes or diabetes at both 3-years (adjusted OR = 0.19; 95% CI 0.08-0.45) and 5-years (aOR = 0.18; 0.08-0.39), relative to the lowest tertile. Interpretation A robust post-challenge insulin secretory response does not indicate adverse cardiometabolic health but, rather, portends favourable metabolic function in the years to come. Future long-term study of the implications of the post-challenge insulinemic response is warranted. Funding Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jiajie Pu
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Anthony J. Hanley
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Philip W. Connelly
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Mathew Sermer
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Canada
| | - Bernard Zinman
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
- Division of Endocrinology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
43
|
Woodie LN, Melink LC, Alberto AJ, Burrows M, Fortin SM, Chan CC, Hayes MR, Lazar MA. Hindbrain REV-ERB nuclear receptors regulate sensitivity to diet-induced obesity and brown adipose tissue pathophysiology. Mol Metab 2024; 79:101861. [PMID: 38142970 PMCID: PMC10792761 DOI: 10.1016/j.molmet.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
OBJECTIVE The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS Male REV-ERBα/β floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/β double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.
Collapse
Affiliation(s)
- Lauren N Woodie
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C Melink
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahren J Alberto
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Burrows
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin C Chan
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
You W, Henneberg M. Modern medical services, a double-edged sword manages symptoms, but accumulates genetic background of cardiovascular diseases: A cross populational analysis of 217 countries. Health Sci Rep 2024; 7:e1828. [PMID: 38260183 PMCID: PMC10802089 DOI: 10.1002/hsr2.1828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Background and Aims Through reduced natural selection, measured with Biological State Index (I bs), modern medicine enables most people to survive well beyond the reproductive lifespan leading to deleterious gene accumulation in population. This study explored the role of reduced natural selection in increasing cardiovascular disease (CVD) incidence worldwide. Methods Country-specific estimates of CVD incidence and the index of reduced natural selection were captured for analysis of their correlation. Aging, affluence, obesity prevalence, and urbanization were considered as the potential confounders in the analyses. Results Worldwide, I bs was significantly correlated with CVD incidence in the bivariate correlation analyses. This relationship remains when the contributing effects from aging, affluence, obesity prevalence, and urbanization are removed in partial correlation model. Multiple linear regression (enter) shows that I bs is a significant predictor of CVD incidence. Stepwise multiple linear regression selects I bs as the variable having the second greatest influence on CVD incidence after ageing. I bs showed a significantly greater correlation with CVD incidence in low- and middle-income countries (LMICs) than in high-income countries. Conclusion Worldwide, through reducing natural selection, the side effects of healthcare services may have been partially contributing to the increase of CVD incidence worldwide with special regard to LMICs.
Collapse
Affiliation(s)
- Wenpeng You
- Heart and LungRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
- CardiologyBox Hill HospitalMelbourneAustralia
| | - Maciej Henneberg
- Institute of Evolutionary MedicineUniversity of ZurichZurichSwitzerland
| |
Collapse
|
45
|
Bray GA. Commentary on: The fructose survival hypothesis as a mechanism for unifying the various obesity hypotheses. Obesity (Silver Spring) 2024; 32:7-11. [PMID: 37881863 DOI: 10.1002/oby.23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/27/2023]
Affiliation(s)
- George A Bray
- Pennington Biomedical Research Center/LSU, Baton Rouge, Louisiana, USA
| |
Collapse
|
46
|
Bagherzadeh-Rahmani B, Marzetti E, Karami E, Campbell BI, Fakourian A, Haghighi AH, Mousavi SH, Heinrich KM, Brazzi L, Jung F, Baker JS, Patel DI. Tirzepatide and exercise training in obesity. Clin Hemorheol Microcirc 2024; 87:465-480. [PMID: 38640145 DOI: 10.3233/ch-242134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
OBJECTIVES The purpose of this study was to investigate the effects of 6 weeks of resistance training (RT) combined with aerobic training (AT) and Tirzepatide supplementation on lipid profiles, insulin resistance, anthropometric characteristics and physical fitness in prediabetic obese soldiers. METHODS 61 obese men were randomly divided into six groups: Placebo; Tirzepatide 5 mg (T5); Tirzepatide 2.5 mg (T2.5); Hypertrophy, Strength, Power-Circuit Training+Placebo (Ex+P); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 5 mg (Ex+T5); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 2.5 mg (Ex+T2.5). All training groups performed aerobic training (AT) after resistance training. Subjects trained for six weeks, three sessions per week. Before and after the intervention period, the participants were evaluated for anthropometric measures, body composition [body weight, body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and fat mass (FM)], cardiorespiratory fitness (VO2max), and muscle strength (chest press 1RM and leg press 1RM). Blood biochemistry evaluations included triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), insulin level and insulin resistance (HOMA-IR). To evaluate the differences between the groups, ANCOVA statistical method was used along with Bonferroni's post hoc test, and the significance level was P < 0.05. RESULTS Body weight, BMI, WC, FM, FBG, LDL-C, TC, TG and HOMA-IR were significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. WHR significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo group. HDL-C, chest press and leg press significantly increased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. VO2max significantly increased and insulin significantly decreased in Ex+P group compared to Placebo, T5 and T2.5 groups. FM, FBG and TG were significantly decreased in both the T2.5 and T5 groups compared to Placebo group. HOMA-IR, LDL-C and TC significantly decreased in the T5 group compared to Placebo group. Also, leg press significantly increased in Ex+P group compared to all other groups. CONCLUSIONS Performing six weeks of combined resistance and aerobic training in the form of RT+AT alone is more effective than the simultaneous use of Tirzepatide on cardiorespiratory fitness, strength, and modulating insulin levels. Taking Tirzepatide in doses of 5 mg and 2.5 mg in combination with exercise training did not have a significant advantage over exercise training alone. Finally, taking Tirzepatide in doses of 5 mg or 2.5 mg in combination with exercise training is not significantly superior to each other.
Collapse
Affiliation(s)
- Behnam Bagherzadeh-Rahmani
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Emanuele Marzetti
- Department of Geriatrics and Orthopedics, UniversitÀ Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Esmail Karami
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Ali Fakourian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Katie M Heinrich
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Julien S Baker
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Darpan I Patel
- School of Nursing, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
47
|
Zhou J, Wu X, Xiang T, Liu F, Gao H, Tong L, Yan B, Li Z, Zhang C, Wang L, Ou L, Li Z, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Lan C, Wang Q, Li H, Wang L, Wang X, Li Y, Zeng Q. Dynamical alterations of brain function and gut microbiome in weight loss. Front Cell Infect Microbiol 2023; 13:1269548. [PMID: 38173792 PMCID: PMC10761423 DOI: 10.3389/fcimb.2023.1269548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Intermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis. Methods In this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples. Results Our results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes. Conclusions There was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.
Collapse
Affiliation(s)
- Jing Zhou
- Henan Provincial Research Center of Clinical Medicine of Nephropathy, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Tianyuan Xiang
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Lei Ou
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd, Guangzhou, Guangdong, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Huimin Ma
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Na Mi
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Canhui Lan
- Beijing Rexinchang Biotechnology Research Institute Co. Ltd, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Li
- Department of Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Wang
- The Institute of Geriatrics, The State Clinic Center for Geriatrics & The State Key Laboratory of Kidney, The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
48
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
49
|
Snieckute G, Ryder L, Vind AC, Wu Z, Arendrup FS, Stoneley M, Chamois S, Martinez-Val A, Leleu M, Dreos R, Russell A, Gay DM, Genzor AV, Choi BSY, Basse AL, Sass F, Dall M, Dollet LCM, Blasius M, Willis AE, Lund AH, Treebak JT, Olsen JV, Poulsen SS, Pownall ME, Jensen BAH, Clemmensen C, Gerhart-Hines Z, Gatfield D, Bekker-Jensen S. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science 2023; 382:eadf3208. [PMID: 38060659 DOI: 10.1126/science.adf3208] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zhenzhen Wu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ana Martinez-Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - David Michael Gay
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Beatrice So-Yun Choi
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lucile Chantal Marie Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper Velgaard Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
50
|
Flores P, Coelho E, Mourão-Carvalhal I, Forte P. Relationships between Math Skills, Motor Skills, Physical Activity, and Obesity in Typically Developing Preschool Children. Behav Sci (Basel) 2023; 13:1000. [PMID: 38131856 PMCID: PMC10740894 DOI: 10.3390/bs13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
There is evidence of a relationship between motor and cognitive development. The literature has shown that of all the motor skills, fine motor skills are those that contribute most to mathematical performance in preschool children. As this is a sensitive period in the development of motor skills, low levels of physical activity in this period can compromise their development and contribute to weight gain and obesity. The aim of this study was therefore to analyze the relationship between mathematical and motor skills, physical activity levels, and obesity. The sample consisted of 62 preschool children (32 males) with an average age of 4.63 ± 0.81. The Weschler preschool and primary scale of intelligence-revised arithmetic test was used to assess mathematical skills. The tests to assess fine motor skills were the "Adapted Threading Beads Test" and the "Adapted Visuomotor Integration Test". The movement assessment battery for children-2, band 1, "Aiming & Catching", and "Balance" tests were used to assess gross motor skills. Levels of physical activity were assessed using the "Preschool-age physical activity questionnaire" and obesity using the body mass index. The results indicated that only the fine motor skills of visuomotor integration were included in the multiple linear regression model (F < 0.001; r = 0.464; R2 = 0.215; p < 0.001), with the exclusion of gross motor skills, physical activity levels, and obesity levels. Thus, it was concluded that mathematical skills were only directly and significantly influenced by visuomotor integration. However, visuomotor integration was positively and significantly associated with gross motor skills (r = 0.269; p < 0.05) and not with levels of physical activity and obesity. Thus, gross motor skills could contribute to improving visuomotor integration directly and consequently mathematical skills indirectly. The results of this study suggest that the implementation of structured physical activity programs can contribute to mathematical performance.
Collapse
Affiliation(s)
- Pedro Flores
- CI-ISCE, Higher Institute of Education and Sciences of the Douro, 4560-708 Penafiel, Portugal;
| | - Eduarda Coelho
- Department of Sports, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Research Center in Sports, Health and Human Development, 6201-001 Covilhã, Portugal
| | - Isabel Mourão-Carvalhal
- Department of Sports, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Research Center in Sports, Health and Human Development, 6201-001 Covilhã, Portugal
| | - Pedro Forte
- CI-ISCE, Higher Institute of Education and Sciences of the Douro, 4560-708 Penafiel, Portugal;
- Research Center in Sports, Health and Human Development, 6201-001 Covilhã, Portugal
- Department of Sports, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| |
Collapse
|