1
|
Negroiu CE, Riza AL, Streață I, Tudorașcu I, Beznă CM, Ungureanu AI, Dănoiu S. Connecting the Dots: FGF21 as a Potential Link between Obesity and Cardiovascular Health in Acute Coronary Syndrome Patients. Curr Issues Mol Biol 2024; 46:8512-8525. [PMID: 39194718 DOI: 10.3390/cimb46080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone involved in regulating the metabolism, energy balance, and glucose homeostasis, with new studies demonstrating its beneficial effects on the heart. This study investigated the relationship between FGF21 levels and clinical, biochemical, and echocardiographic parameters in patients with acute coronary syndromes (ACSs). This study included 80 patients diagnosed with ACS between May and July 2023, categorized into four groups based on body mass index (BMI): Group 1 (BMI 18.5-24.9 kg/m2), Group 2 (BMI 25-29.9 kg/m2), Group 3 (BMI 30-34.9 kg/m2), and Group 4 (BMI ≥ 35 kg/m2). Serum FGF21 levels were measured by ELISA (Abclonal Catalog NO.: RK00084). Serum FGF21 levels were quantifiable in 55 samples (mean ± SD: 342.42 ± 430.17 pg/mL). Group-specific mean FGF21 levels were 238.98 pg/mL ± SD in Group 1 (n = 14), 296.78 pg/mL ± SD in Group 2 (n = 13), 373.77 pg/mL ± SD in Group 3 (n = 12), and 449.94 pg/mL ± SD in Group 4 (n = 16), with no statistically significant differences between groups (p = 0.47). Based on ACS diagnoses, mean FGF21 levels were 245.72 pg/mL for STEMI (n = 21), 257.89 pg/mL for NSTEMI (n = 9), and 456.28 pg/mL for unstable angina (n = 25), with no significant differences observed between these diagnostic categories. Significant correlations were identified between FGF21 levels and BMI, diastolic blood pressure, and serum chloride. Regression analyses revealed correlations with uric acid, chloride, and creatinine kinase MB. This study highlights the complex interplay between FGF21, BMI, and acute coronary syndromes. While no significant differences were found in FGF21 levels between the different BMI and ACS diagnostic groups, correlations with clinical and biochemical parameters suggest a multifaceted role of FGF21 in cardiovascular health. Further research with a larger sample size is warranted to elucidate these relationships.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| | - Cristina Maria Beznă
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adrian Ionuț Ungureanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| |
Collapse
|
2
|
Kataoka H, Nirengi S, Matsui Y, Taniguchi H. Fructose-induced FGF21 secretion does not activate brown adipose tissue in Japanese young men: randomized cross-over and randomized controlled trials. J Physiol Anthropol 2024; 43:5. [PMID: 38178259 PMCID: PMC10765626 DOI: 10.1186/s40101-023-00353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Human brown adipose tissue (BAT) activity is associated with lower body fatness and favorable glucose metabolism. Previous studies reported that oral fructose loading induces postprandial fibroblast growth factor 21 (FGF21) secretion. FGF21 is a known inducer of adipose tissue thermogenesis; however, the effects of diet-induced FGF21 secretion on BAT thermogenesis remain to be elucidated. METHODS The effects of both single load and daily consumption of fructose on BAT activity were examined using a randomized cross-over trial and a 2-week randomized controlled trial (RCT), respectively. In the cross-over trial, 15 young men consumed a single dose of fructose solution or water and then consumed the other on a subsequent day. The RCT enrolled 22 young men, and the participants were allocated to a group that consumed fructose and a group that consumed water daily for 2 weeks. BAT activity was analyzed using thermography with cold exposure. Plasma FGF21 level was determined by enzyme-linked immunosorbent assay. RESULTS In the cross-over single-load trial, plasma FGF21 levels were significantly increased at 2 h after oral fructose load (p < 0.01); however, there was no significant difference in BAT activity between the fructose load and drinking water. The 2-week RCT revealed that both plasma FGF21 levels and BAT activity were not significantly increased by daily fructose consumption compared to water. Correlation analyses revealed that BAT activity at the baseline and the final measurements were strongly and positively associated with the RCT (r = 0.869, p < 0.001). Changes in BAT activity were significantly and negatively correlated with changes in plasma glucose levels during the 2-week intervention (r = - 0.497, p = 0.022). CONCLUSIONS Oral fructose load induces a temporary increase in circulating FGF21 levels; however, this does not activate BAT thermogenesis in healthy young men. Further studies are needed to elucidate the effect of endogenous FGF21 on physiological function. TRIAL REGISTRATION This study is registered with the University Hospital Medical Information Network in Japan (number 000051761, registered 1 August 2023, retrospectively registered, https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000052680 ).
Collapse
Affiliation(s)
- Haruki Kataoka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shinsuke Nirengi
- Clinical Research Institute, Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuka Matsui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| |
Collapse
|
3
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sawangpanyangkura T, Bandhaya P, Montreekachon P, Leewananthawet A, Phrommintikul A, Chattipakorn N, Chattipakorn SC. The elevation of fibroblast growth factor 21 is associated with generalized periodontitis in patients with treated metabolic syndrome. BMC Oral Health 2022; 22:570. [PMID: 36474191 PMCID: PMC9724428 DOI: 10.1186/s12903-022-02533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is closely associated with metabolic syndrome (MetS). An alteration of FGF21 is possibly affected by periodontitis. The present study aimed to investigate the levels of serum FGF21 in MetS patients with generalized periodontitis and its association with periodontal and metabolic parameters. METHODS One hundred forty-six MetS patients were recruited from the CORE (Cohort Of patients at a high Risk for Cardiovascular Events) Thailand registry. All participants received general data interviewing, periodontal examination and blood collection for measurement of FGF21 levels and biochemistry parameters. Periodontitis was defined according to the new classification and divided into two groups of localized periodontitis and generalized periodontitis. RESULTS FGF21 was significantly higher in generalized periodontitis group when compared with localized periodontitis group (p < 0.05). The significant correlation was observed between FGF21 and variables including number of remaining teeth, mean clinical attachment loss, hypertriglyceridemia and low high-density lipoprotein cholesterol. The elevation of serum FGF21 was associated with presence of generalized periodontitis after adjusting of covariate factors (OR = 27.12, p = 0.012). CONCLUSIONS The elevation of serum FGF21 might be a potential biomarker for MetS patients who have risk of generalized periodontitis.
Collapse
Affiliation(s)
- Teerat Sawangpanyangkura
- grid.7132.70000 0000 9039 7662Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Panwadee Bandhaya
- grid.7132.70000 0000 9039 7662Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Pattanin Montreekachon
- grid.7132.70000 0000 9039 7662Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Anongwee Leewananthawet
- grid.7132.70000 0000 9039 7662Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Arintaya Phrommintikul
- grid.7132.70000 0000 9039 7662Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C. Chattipakorn
- grid.7132.70000 0000 9039 7662Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Maternal Blood-Based Protein Biomarkers in Relation to Abdominal Fat Distribution Measured by Ultrasound in Early Mid-Pregnancy. Reprod Sci 2022; 29:2333-2341. [PMID: 35147910 PMCID: PMC9352629 DOI: 10.1007/s43032-022-00876-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
The objective of this study was to examine the associations of early mid-pregnancy ultrasound measured visceral and subcutaneous fat depths with blood-based protein biomarkers. This was a cross-sectional study including 201 pregnant women at Uppsala University Hospital, Sweden. The mean age of the women was 31.0 years, and 57.7% were nulliparous. Maternal visceral and subcutaneous fat depths were measured by ultrasound at the early second-trimester anomaly scan. A non-fasting blood sample was collected in conjunction with the second-trimester anomaly scan, and the Olink cardiovascular II panel was used to measure 92 blood-based protein biomarkers in the sample. Cross-sectional associations of visceral and subcutaneous fat depths with blood-based protein biomarkers were examined using Mann-Whitney U tests with false discovery rate adjustments. In addition, linear regression analyses adjusting for maternal age, parity, and early pregnancy body mass index were performed. The results showed differences in one biomarker between women with elevated (≥ 52 mm) versus normal (< 52 mm) visceral fat depth, and in three biomarkers between women with elevated (≥ 22 mm) versus normal (< 22 mm) subcutaneous fat depth. Hence, levels of blood-based protein biomarkers differ between pregnant women with dissimilar body fat distributions, which might reflect disparities in biological pathways.
Collapse
|
6
|
Bayoumi A, Elsayed A, Han S, Petta S, Adams LA, Aller R, Khan A, García‐Monzón C, Arias‐Loste MT, Miele L, Latchoumanin O, Alenizi S, Gallego‐Durán R, Fischer J, Berg T, Craxì A, Metwally M, Qiao L, Liddle C, Yki‐Järvinen H, Bugianesi E, Romero‐Gomez M, George J, Eslam M. Mistranslation Drives Alterations in Protein Levels and the Effects of a Synonymous Variant at the Fibroblast Growth Factor 21 Locus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004168. [PMID: 34141520 PMCID: PMC8188187 DOI: 10.1002/advs.202004168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic beneficial effects on metabolism. Paradoxically, FGF21 levels are elevated in metabolic diseases. Interventions that restore metabolic homeostasis reduce FGF21. Whether abnormalities in FGF21 secretion or resistance in peripheral tissues is the initiating factor in altering FGF21 levels and function in humans is unknown. A genetic approach is used to help resolve this paradox. The authors demonstrate that the primary event in dysmetabolic phenotypes is the elevation of FGF21 secretion. The latter is regulated by translational reprogramming in a genotype- and context-dependent manner. To relate the findings to tissues outcomes, the minor (A) allele of rs838133 is shown to be associated with increased hepatic inflammation in patients with metabolic associated fatty liver disease. The results here highlight a dominant role for translation of the FGF21 protein to explain variations in blood levels that is at least partially inherited. These results provide a framework for translational reprogramming of FGF21 to treat metabolic diseases.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Asmaa Elsayed
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shuanglin Han
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Salvatore Petta
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Leon A. Adams
- Medical SchoolSir Charles Gairdner Hospital UnitUniversity of Western AustraliaNedlandsWA6009Australia
| | - Rocio Aller
- GastroenterologyHospital Clinico Universitario de ValladolidSchool of MedicineValladolid UniversityValladolid47002Spain
| | - Anis Khan
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Carmelo García‐Monzón
- Liver Research UnitInstituto de Investigacion Sanitaria PrincesaUniversity Hospital Santa CristinaCIBERehdMadrid28009Spain
| | - María Teresa Arias‐Loste
- Gastroenterology and Hepatology DepartmentMarqués de Valdecilla University HospitalSantander39008Spain
| | - Luca Miele
- Department of Internal MedicineCatholic University of the Sacred HeartRome20123Italy
| | - Olivier Latchoumanin
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shafi Alenizi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Rocio Gallego‐Durán
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Janett Fischer
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Thomas Berg
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Antonio Craxì
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Mayada Metwally
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Liang Qiao
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Christopher Liddle
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Hannele Yki‐Järvinen
- Department of MedicineUniversity of Helsinki and Helsinki University Hospital and Minerva Foundation Institute for Medical ResearchHelsinki00290Finland
| | - Elisabetta Bugianesi
- Division of GastroenterologyDepartment of Medical ScienceUniversity of TurinTurin10124Italy
| | - Manuel Romero‐Gomez
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Jacob George
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Mohammed Eslam
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| |
Collapse
|
7
|
Xie T, Yin L, Guo D, Zhang Z, Chen Y, Liu B, Wang W, Zheng Y. The potential role of plasma fibroblast growth factor 21 as a diagnostic biomarker for abdominal aortic aneurysm presence and development. Life Sci 2021; 274:119346. [PMID: 33713667 DOI: 10.1016/j.lfs.2021.119346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
AIMS Fibroblast growth factor 21 (FGF21) has been identified as the master hormonal regulator of energy balance, its elevation is observed in a series of metabolic and cardiovascular diseases. Studies have implicated the role of FGF21 signaling in the pathogenesis of abdominal aortic aneurysm (AAA). We will investigate the association of FGF21 and AAA development. MATERIALS AND METHODS In this study, we assayed plasma levels of FGF21 in 82 patients with AAA and 44 control subjects, then analyzed their relationship with clinical, biochemical and histological phenotypes. The expression of β-klotho, an essential co-receptor of FGF21, was assessed with IHC staining and RT-qPCR. Machine learning models incorporate a combination of FGF21 and clinical data were utilized in the prediction of AAA occurrence. KEY FINDINGS FGF21 was statistically higher in patients with AAA (781 pg/ml [533, 1213]) than in control subjects (567 pg/ml [324, 939]). After adjustment for age and BMI, we found a positive association of FGF21 levels with AAA diameters, hypertension rate and hsCRP, and a negative correlation between FGF21 levels and HDL-c. Furthermore, the protein levels of β-klotho in abdominal aorta of AAA were found significantly lower than in control group indicating the presence of FGF21 resistance. Combining FGF21 levels with four clinical characteristics significantly improved the stratification of AAA and control groups with an AUC of 0.778. SIGNIFICANCE Combining detection of plasma FGF21 and clinical characteristics may be reliable for identifying the presence of AAA. The role of FGF21 as a therapeutic target of AAA warrants further investigation.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liangying Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Dan Guo
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixin Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
8
|
Kibble M, Khan SA, Ammad-ud-din M, Bollepalli S, Palviainen T, Kaprio J, Pietiläinen KH, Ollikainen M. An integrative machine learning approach to discovering multi-level molecular mechanisms of obesity using data from monozygotic twin pairs. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200872. [PMID: 33204460 PMCID: PMC7657920 DOI: 10.1098/rsos.200872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 05/19/2023]
Abstract
We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult monozygotic twin pairs (aged 22-36 years, 53% female), where 25 of the twin pairs were substantially weight discordant (delta body mass index > 3 kg m-2). These measurements were originally taken as part of the TwinFat study, a substudy of The Finnish Twin Cohort study. These five large multivariate datasets (comprising 42, 71, 1587, 1605 and 63 variables, respectively) were jointly analysed using an integrative machine learning method called group factor analysis (GFA) to offer new hypotheses into the multi-molecular-level interactions associated with the development of obesity. New potential links between cytokines and weight gain are identified, as well as associations between dietary, inflammatory and epigenetic factors. This encouraging case study aims to enthuse the research community to boldly attempt new machine learning approaches which have the potential to yield novel and unintuitive hypotheses. The source code of the GFA method is publically available as the R package GFA.
Collapse
Affiliation(s)
- Milla Kibble
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
- Author for correspondence: Milla Kibble e-mail:
| | - Suleiman A. Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Muhammad Ammad-ud-din
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Taniguchi H, Akiyama N, Ishihara K. Hepatic Fat Content Is Associated with Fasting-Induced Fibroblast Growth Factor 21 Secretion in Mice Fed Soy Proteins. J Nutr Sci Vitaminol (Tokyo) 2020; 65:515-525. [PMID: 31902865 DOI: 10.3177/jnsv.65.515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies suggest that circulating fibroblast growth factor 21 (FGF21) levels are elevated in patients with fatty liver, while fasting-induced secretion of FGF21 is lower in obese patients. It has been reported that soy protein prevents hepatic fat accumulation and induces FGF21 secretion. The present study was designed to evaluate the response of circulating FGF21 levels to feeding and fasting in mice fed soy protein-rich diets. For this, C57BL/6J mice were distributed into control, high-fat high-sucrose (HFHS)-casein protein, HFHS-soy protein, and HFHS-β-conglycinin diet groups. Plasma samples were collected after 10 and 11 wk either in dark periods with feeding conditions or light periods under fasting conditions using a crossover design. After a 12-wk period of feeding, HFHS-induced hepatic fat accumulation was significantly reduced in the groups fed HFHS-soy protein and HFHS-β-conglycinin as compared to that in the HFHS-casein-fed group (p<0.05). Plasma FGF21 concentration was significantly higher in the dark/feeding periods in the HFHS-casein group (p<0.05), while in the HFHS-β-conglycinin group it was higher in the light/fasting periods (p<0.05). The amount of mesenteric fat was significantly lower in the HFHS-β-conglycinin group than in the HFHS-casein and HFHS-soy protein groups (p<0.01). The fasting-induced FGF21 secretion was significantly and negatively correlated with hepatic fat content (p<0.05). The present study revealed that hepatic fat accumulation was associated with lower fasting-induced FGF21 secretion, which was regulated better by dietary intake of soy protein. These results support the preventive effects of soy protein on central obesity.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University.,Faculty of Agriculture, Ryukoku University
| | | | | |
Collapse
|
10
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
11
|
Gao RY, Hsu BG, Wu DA, Hou JS, Chen MC. Serum Fibroblast Growth Factor 21 Levels Are Positively Associated with Metabolic Syndrome in Patients with Type 2 Diabetes. Int J Endocrinol 2019; 2019:5163245. [PMID: 31582974 PMCID: PMC6754922 DOI: 10.1155/2019/5163245] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) acts as a potent metabolic regulator. Serum FGF21 levels were significantly higher in obesity and type 2 diabetes mellitus (T2DM) populations. The aim of this study was to evaluate the relationship between serum FGF21 levels and metabolic syndrome (MetS) in T2DM patients. METHODS Fasting blood samples were obtained from 126 T2DM patients. MetS and its components were defined according to the diagnostic criteria from the International Diabetes Federation. Serum FGF21 concentrations were measured using a commercially available enzyme-linked immunosorbent assay. RESULTS Among these patients, 84 (66.7%) had MetS. Female gender, hypertension, systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference (WC), body weight (BW), body mass index (BMI), body fat mass, fasting glucose, glycated hemoglobin level (HbA1c), triglyceride level (TG), urine albumin-to-creatinine ratio (UACR), insulin level, homeostasis model assessment of insulin resistance (HOMA-IR), and FGF21 levels were higher, whereas high-density lipoprotein cholesterol level (HDL-C) and estimated glomerular filtration rate (eGFR) were lower in DM patients with MetS. Univariate linear analysis revealed that hypertension, BMI, WC, body fat mass, SBP, DBP, logarithmically transformed TG (log-TG), low-density lipoprotein cholesterol (LDL-C) level, log-glucose, log-creatinine, log-UACR, log-insulin, and log-HOMA-IR positively correlated, whereas HDL-C and eGFR negatively correlated with serum FGF21 levels in T2DM patients. Multivariate forward stepwise linear regression analysis revealed that body fat mass (adjusted R 2 change = 0.218; P=0.008) and log-TG (adjusted R 2 change = 0.036; P < 0.001) positively correlated, whereas eGFR (adjusted R 2 change = 0.033; P=0.013) negatively correlated with serum FGF21 levels in T2DM patients. CONCLUSIONS This study showed that higher serum FGF21 levels were positively associated with MetS in T2DM patients and significantly positively related to body fat mass and TG but negatively related to eGFR in these subjects.
Collapse
Affiliation(s)
- Ruo-Yao Gao
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Du-An Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Metabolism and Endocrinology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jia-Sian Hou
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ming-Chun Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
12
|
Keuper M, Häring HU, Staiger H. Circulating FGF21 Levels in Human Health and Metabolic Disease. Exp Clin Endocrinol Diabetes 2019; 128:752-770. [PMID: 31108554 DOI: 10.1055/a-0879-2968] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human fibroblast growth factor 21 (FGF21) is primarily produced and secreted by the liver as a hepatokine. This hormone circulates to its target tissues (e. g., brain, adipose tissue), which requires two components, one of the preferred FGF receptor isoforms (FGFR1c and FGFR3c) and the co-factor beta-Klotho (KLB) to trigger downstream signaling pathways. Although targeting FGF21 signaling in humans by analogues and receptor agonists results in beneficial effects, e. g., improvements in plasma lipids and decreased body weight, it failed to recapitulate the improvements in glucose handling shown for many mouse models. FGF21's role and metabolic effects in mice and its therapeutic potential have extensively been reviewed elsewhere. In this review we focus on circulating FGF21 levels in humans and their associations with disease and clinical parameters, focusing primarily on obesity and obesity-associated diseases such as type-2 diabetes. We provide a comprehensive overview on human circulating FGF21 levels under normal physiology and metabolic disease. We discuss the emerging field of inactivating FGF21 in human blood by fibroblast activation protein (FAP) and its potential clinical implications.
Collapse
Affiliation(s)
- Michaela Keuper
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Akyol M, Alacacioglu A, Demir L, Kucukzeybek Y, Yildiz Y, Gumus Z, Kara M, Salman T, Varol U, Taskaynatan H, Oflazoglu U, Bayoglu V, Tarhan MO. The alterations of serum FGF-21 levels, metabolic and body composition in early breast cancer patients receiving adjuvant endocrine therapy. Cancer Biomark 2018; 18:441-449. [PMID: 28106545 DOI: 10.3233/cbm-161507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND In early breast cancer patients, the effects of hormonal therapy (tamoxifen and aromatase inhibitors) on plasma fibroblast growth factor 21 (FGF-21), lipid levels and body composition have not yet been investigated. Therefore, we aimed to analyze the relationship between FGF-21 and body composition as well as the effects of tamoxifen and aromatase inhibitors on plasma lipid levels, FGF-21, and body composition. METHODS A total of 72 patients were treated with either tamoxifen or aromatase inhibitors due to their menopausal status after adjuvant radiotherapy. Each patient was followed-up over a period of 1 year. Changes in body composition and serum lipid profile, glucose and FGF-21 levels were evaluated. We recorded the type of hormonal therapy, body mass index, waist-to-hip ratio, lipid profile, and FGF-21 levels both at the beginning and after 12 months. RESULTS There was a statistically significant decrease in serum FGF-21 levels after 12 months of adjuvant endocrine therapy (46 ± 19.21 pg/ml vs. 30.99 ± 13.81 pg/ml, p< 0.001). Total body water (p< 0.001), serum glucose (p= 0.036) and triglyceride levels (p< 0.001) also exhibited a significant decrease. The decreases in total cholesterol and low-density lipoprotein were not statistically significant. Likewise, high-density lipoprotein increased after adjuvant endocrine therapy, although it did not reach statistical significance. The changes in body composition, glucose, lipid profile and FGF-21 were similar in tamoxifen and aromatase inhibitor groups. A positive correlation was found between basal weight, fat mass, fat-free mass and serum FGF-21 levels; however, the correlation was maintained only for the fat-free mass at the 12th month. CONCLUSION As part of the present study, we suggest that both tamoxifen and aromatase inhibitors can reduce FGF-21 levels independently of body compositions, and these drugs can provide antihyperlipidemic, antidiabetic and cardio-protective effects. We also recommend that serum FGF-21 level can be utilized as a tumor biomarker in early-stage breast cancer and for monitoring purposes. FGF-21 levels may help physicians estimate prognosis, too. Further studies with larger populations may shed light on the role of FGF-21 in breast cancer.
Collapse
Affiliation(s)
- Murat Akyol
- Department of Medical Oncology, Manisa State Hospital, Manisa, Turkey
| | - Ahmet Alacacioglu
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Leyla Demir
- Department of Biochemistry, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Yuksel Kucukzeybek
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Yasar Yildiz
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Zehra Gumus
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Mete Kara
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Tarik Salman
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Umut Varol
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Halil Taskaynatan
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Utku Oflazoglu
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Vedat Bayoglu
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | | |
Collapse
|
14
|
Mashili FL, Ramaiya K, Lutale J, Njelekela M, Francis F, Zierath J, Krook A. Adiposity Is a Key Correlate of Circulating Fibroblast Growth Factor-21 Levels in African Males with or without Type 2 Diabetes Mellitus. J Obes 2018; 2018:7461903. [PMID: 30298107 PMCID: PMC6157203 DOI: 10.1155/2018/7461903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fibroblast growth factor-21 is an endocrine regulator with therapeutic and diagnostic potential. The levels and pattern of circulating FGF-21 have been described mainly in European and Asian populations. Given its strong association with adiposity, and the reported ethnic variabilities in body composition, examining FGF-21 in an African population is crucial. METHODS We measured levels of circulating FGF-21 in 207 overweight and obese Tanzanian males with or without type 2 diabetes mellitus (T2DM), and using statistical approaches, we explored their relationship with anthropometric and biochemical parameters. RESULTS Consistent with previous reports from European and Asian populations, we found higher levels of FGF-21 in people with T2DM compared to those without the disease. Based on statistical models, measures of adiposity explained up to 59% of the variability in FGF-21 levels in the circulation. CONCLUSION Levels of circulating FGF-21 in overweight and obese African males are higher in T2DM and strongly correlate with measures of adiposity.
Collapse
Affiliation(s)
- Fredirick L. Mashili
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Box 65001, Dar es Salaam, Tanzania
| | - Kaushik Ramaiya
- Tanzania Diabetes Association, Box 65201, Dar Es Salaam, Tanzania
| | - Janet Lutale
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Box 65001, Dar es Salaam, Tanzania
| | - Marina Njelekela
- Tanzania Diabetes Association, Box 65201, Dar Es Salaam, Tanzania
| | - Filbert Francis
- National Institute of Medical Research, Box 5004, Tanga, Tanzania
| | - Juleen Zierath
- Department of Physiology and Pharmacology, SE-17177 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, SE-17177 Stockholm, Sweden
| |
Collapse
|
15
|
Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Häring HU. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr Rev 2017; 38:468-488. [PMID: 28938407 DOI: 10.1210/er.2017-00016] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022]
Abstract
Since its identification in 2000, the interest of scientists in the hepatokine fibroblast growth factor (FGF) 21 has tremendously grown, and still remains high, due to a wealth of very robust data documenting this factor's favorable effects on glucose and lipid metabolism in mice. For more than ten years now, intense in vivo and ex vivo experimentation addressed the physiological functions of FGF21 in humans as well as its pathophysiological role and pharmacological effects in human metabolic disease. This work produced a comprehensive collection of data revealing overlaps in FGF21 expression and function but also significant differences between mice and humans that have to be considered before translation from bench to bedside can be successful. This review summarizes what is known about FGF21 in mice and humans with a special focus on this factor's role in glucose and lipid metabolism and in metabolic diseases, such as obesity and type 2 diabetes mellitus. We highlight the discrepancies between mice and humans and try to decipher their underlying reasons.
Collapse
Affiliation(s)
- Harald Staiger
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Interfaculty Center for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michaela Keuper
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Lucia Berti
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany.,Chair for Experimental Genetics, Technical University Munich, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Interfaculty Center for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Morovat A, Weerasinghe G, Nesbitt V, Hofer M, Agnew T, Quaghebeur G, Sergeant K, Fratter C, Guha N, Mirzazadeh M, Poulton J. Use of FGF-21 as a Biomarker of Mitochondrial Disease in Clinical Practice. J Clin Med 2017; 6:jcm6080080. [PMID: 28825656 PMCID: PMC5575582 DOI: 10.3390/jcm6080080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Recent work has suggested that fibroblast growth factor-21 (FGF-21) is a useful biomarker of mitochondrial disease (MD). We routinely measured FGF-21 levels on patients who were investigated at our centre for MD and evaluated its diagnostic performance based on detailed genetic and other laboratory findings. Patients’ FGF-21 results were assessed by the use of age-adjusted z-scores based on normalised FGF-21 values from a healthy population. One hundred and fifty five patients were investigated. One hundred and four of these patients had molecular evidence for MD, 27 were deemed to have disorders other than MD (non-MD), and 24 had possible MD. Patients with defects in mitochondrial DNA (mtDNA) maintenance (n = 32) and mtDNA rearrangements (n = 17) had the highest median FGF-21 among the MD group. Other MD patients harbouring mtDNA point mutations (n = 40) or mutations in other autosomal genes (n = 7) and those with partially characterised MD had lower FGF-21 levels. The area under the receiver operating characteristic curve for distinguishing MD from non-MD patients was 0.69. No correlation between FGF-21 and creatinine, creatine kinase, or cardio-skeletal myopathy score was found. FGF-21 was significantly associated with plasma lactate and ocular myopathy. Although FGF-21 was found to have a low sensitivity for detecting MD, at a z-score of 2.8, its specificity was above 90%. We suggest that a high serum concentration of FGF-21 would be clinically useful in MD, especially in adult patients with chronic progressive external ophthalmoplegia, and may enable bypassing muscle biopsy and directly opting for genetic analysis. Availability of its assay has thus modified our diagnostic pathway.
Collapse
Affiliation(s)
- Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Gayani Weerasinghe
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Victoria Nesbitt
- Department of Paediatrics, The Children's Hospital, Oxford OX3 9DU, UK.
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, West Wing, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Geralrine Quaghebeur
- Department of Neuroradiology, West Wing, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Kate Sergeant
- NHS Specialised Services for Rare Mitochondrial Disorders of Adults and Children UK, Oxford Medical Genetics Laboratories, Oxford University Hospitals, Oxford OX3 7LE, UK.
| | - Carl Fratter
- NHS Specialised Services for Rare Mitochondrial Disorders of Adults and Children UK, Oxford Medical Genetics Laboratories, Oxford University Hospitals, Oxford OX3 7LE, UK.
| | - Nishan Guha
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Mehdi Mirzazadeh
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford OX3 9DU, UK.
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
17
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
18
|
Cheung CYY, Tang CS, Xu A, Lee CH, Au KW, Xu L, Fong CHY, Kwok KHM, Chow WS, Woo YC, Yuen MMA, Cherny SS, Hai J, Cheung BMY, Tan KCB, Lam TH, Tse HF, Sham PC, Lam KSL. An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels. Diabetes 2017; 66:1723-1728. [PMID: 28385800 DOI: 10.2337/db16-1384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, GCKR, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of GCKR, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (P = 1.61 × 10-12; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (P = 3.01 × 10-14; β [SE] = 0.15 [0.02]). GCKR Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.
Collapse
Affiliation(s)
- Chloe Y Y Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara S Tang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chi-Ho Lee
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Wing Au
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Xu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carol H Y Fong
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin H M Kwok
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Sun Chow
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Cho Woo
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michele M A Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stacey S Cherny
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - JoJo Hai
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Kathryn C B Tan
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tai-Hing Lam
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Fjeldborg K, Pedersen SB, Møller HJ, Richelsen B. Reduction in serum fibroblast growth factor-21 after gastric bypass is related to changes in hepatic fat content. Surg Obes Relat Dis 2017; 13:1515-1523. [PMID: 28552744 DOI: 10.1016/j.soard.2017.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/27/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is elevated in obesity. OBJECTIVES We investigated the circulating level of FGF21 and the expression of FGF21, beta-klotho (KLB), and FGF receptor 1 (FGFR1) in adipose tissue in relation to weight, fat distribution, and Roux-en-Y gastric bypass (RYGB)-induced weight loss. SETTING The Department of Endocrinology at Aarhus University Hospital. METHODS Thirty-one obese patients were enrolled. Visceral adipose tissue volume measured by magnetic resonance imaging, hepatic fat content measured by magnetic resonance spectroscopy, and body composition measured by dual-energy x-ray absorbtiometry were determined at baseline and 12 months after RYGB. Fasting blood samples and subcutaneous and visceral adipose tissue samples were obtained. Moreover, 25 lean controls were enrolled. RESULTS FGF21 was significantly elevated in obese patients compared with lean patients (281±151 pg/mL versus 149±99 pg/mL, P<.05). RYGB-induced weight loss resulted in a smaller reduction in FGF21 (P = .08). However, a significant reduction was seen in obese patients with initially high FGF21 levels (42% reduction, P<.001). A significant association was found between FGF21 and hepatic fat content at baseline (r = 0.40, P<.05). Moreover, ΔFGF21 was significantly associated with Δhepatic fat content after RYGB (r = 0.39, P<.05). FGF21 mRNA was not detectable in AT from either lean or obese patients. KLB and FGFR1 were upregulated in AT in relation to obesity, and both were further increased 12 months after RYGB. CONCLUSIONS FGF21 is reduced in relation to weight loss in patients with initial high levels of FGF21 and this reduction is significantly associated with a reduction in hepatic fat content. Thus, changes in FGF21 after RYGB-induced weight loss are closely related to changes in liver fat content.
Collapse
Affiliation(s)
- Karen Fjeldborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Steen B Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Taniguchi H, Tanisawa K, Sun X, Higuchi M. Acute endurance exercise lowers serum fibroblast growth factor 21 levels in Japanese men. Clin Endocrinol (Oxf) 2016; 85:861-867. [PMID: 27453549 DOI: 10.1111/cen.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The independent effects of acute endurance exercise on FGF21 metabolism are poorly understood. Therefore, the purpose of this study was to determine whether acute endurance exercise modulates serum postprandial FGF21 levels in an age-dependent manner. DESIGN Exercise intervention trial. PATIENTS Twenty-eight subjects participated in the experiment, of whom 13 were excluded mainly because of a serum FGF21 level below the limit of detection. Thus, data from seven young (age: 18-22 years) and eight elderly male subjects (age: 62-69 years) were analysed. MEASUREMENTS Participants were asked to perform a cycling exercise for 30 min at 70% maximal oxygen uptake, following carbohydrate intake. Blood samples were collected pre-exercise and 0 min, 30 min, 1 h, 3 h and 24 h after the cessation of exercise. Serum FGF21 levels were measured by an enzyme-linked immunosorbent assay. RESULTS Higher serum FGF21 was observed in the elderly subjects group throughout the experiment (P < 0·05). There was no significant increase in serum FGF21 levels after the cessation of exercise, whereas serum FGF21 levels were significantly lower 24 h after the exercise compared with those pre-exercise, 0 min, 30 min and 1 h after the cessation of exercise in both groups (P < 0·01). The response did not differ between the two groups because of no significant group × time interaction. CONCLUSIONS Acute endurance exercise lowers serum FGF21 levels 24 h following exercise. The results suggest that acute endurance exercise modulates postprandial FGF21 metabolism regardless of age.
Collapse
Affiliation(s)
| | - Kumpei Tanisawa
- Department of Health Promotion and Exercise, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Institute of Advanced Active Aging Research, Tokorozawa, Japan
| | - Xiaomin Sun
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Institute of Advanced Active Aging Research, Tokorozawa, Japan
| |
Collapse
|
21
|
Lehtonen JM, Forsström S, Bottani E, Viscomi C, Baris OR, Isoniemi H, Höckerstedt K, Österlund P, Hurme M, Jylhävä J, Leppä S, Markkula R, Heliö T, Mombelli G, Uusimaa J, Laaksonen R, Laaksovirta H, Auranen M, Zeviani M, Smeitink J, Wiesner RJ, Nakada K, Isohanni P, Suomalainen A. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 2016; 87:2290-2299. [PMID: 27794108 DOI: 10.1212/wnl.0000000000003374] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To validate new mitochondrial myopathy serum biomarkers for diagnostic use. METHODS We analyzed serum FGF21 (S-FGF21) and GDF15 from patients with (1) mitochondrial diseases and (2) nonmitochondrial disorders partially overlapping with mitochondrial disorder phenotypes. We (3) did a meta-analysis of S-FGF21 in mitochondrial disease and (4) analyzed S-Fgf21 and skeletal muscle Fgf21 expression in 6 mouse models with different muscle-manifesting mitochondrial dysfunctions. RESULTS We report that S-FGF21 consistently increases in primary mitochondrial myopathy, especially in patients with mitochondrial translation defects or mitochondrial DNA (mtDNA) deletions (675 and 347 pg/mL, respectively; controls: 66 pg/mL, p < 0.0001 for both). This is corroborated in mice (mtDNA deletions 1,163 vs 379 pg/mL, p < 0.0001). However, patients and mice with structural respiratory chain subunit or assembly factor defects showed low induction (human 335 pg/mL, p < 0.05; mice 335 pg/mL, not significant). Overall specificities of FGF21 and GDF15 to find patients with mitochondrial myopathy were 89.3% vs 86.4%, and sensitivities 67.3% and 76.0%, respectively. However, GDF15 was increased also in a wide range of nonmitochondrial conditions. CONCLUSIONS S-FGF21 is a specific biomarker for muscle-manifesting defects of mitochondrial translation, including mitochondrial transfer-RNA mutations and primary and secondary mtDNA deletions, the most common causes of mitochondrial disease. However, normal S-FGF21 does not exclude structural respiratory chain complex or assembly factor defects, important to acknowledge in diagnostics. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that elevated S-FGF21 accurately distinguishes patients with mitochondrial myopathies from patients with other conditions, and FGF21 and GDF15 mitochondrial myopathy from other myopathies.
Collapse
Affiliation(s)
- Jenni M Lehtonen
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Saara Forsström
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Emanuela Bottani
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Carlo Viscomi
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Olivier R Baris
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Helena Isoniemi
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Krister Höckerstedt
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Pia Österlund
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Mikko Hurme
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Juulia Jylhävä
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Sirpa Leppä
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Ritva Markkula
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Tiina Heliö
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Giuliana Mombelli
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Johanna Uusimaa
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Reijo Laaksonen
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Hannu Laaksovirta
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Mari Auranen
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Massimo Zeviani
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Jan Smeitink
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Rudolf J Wiesner
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Kazuto Nakada
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Pirjo Isohanni
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland
| | - Anu Suomalainen
- From the Research Programs Unit, Molecular Neurology (J.M.L., S.F., H.L., M.A., P.I.), Faculty of Medicine/Clinicum, Oncology (P.O.), and Finland Genome Scale Biology Program (S.L.), University of Helsinki, Finland; Mitochondrial Medicine Group (E.B., C.V., M.Z.), Medical Research Council Mitochondrial Biology Unit, Cambridge, UK; Center for Physiology and Pathophysiology (O.R.B., R.J.W.), Institute of Vegetative Physiology, University of Köln, Germany; Transplantation and Liver Surgery Clinic (H.I., K.H.), Department of Oncology (P.O., S.L.), and Heart and Lung Center, Department of Cardiology (T.H.), Helsinki University Hospital; School of Medicine (M.H., J.J., R.L.), University of Tampere; Anaesthesiology, Intensive Care and Pain Medicine (R.M.), Clinical Neurosciences, Neurology (H.L., M.A., A.S.), and Child Neurology, Children's Hospital (P.I.), University of Helsinki and Helsinki University Hospital, Finland; Dyslipidemia Center (G.M.), Cardiotoracovascular Department, Niguarda Hospital, Milan, Italy; PEDEGO Research Unit (J.U.) and Biocenter Oulu (J.U.), University of Oulu; Finnish Clinical Biobank Tampere (R.L.), Tampere University Hospital, Finland; Nijmegen Centre for Mitochondrial Disorders (J.S.), Radboud University Medical Centre, Nijmegen, the Netherlands; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) (R.J.W.), Köln; Center for Molecular Medicine Cologne (R.J.W.), CMMC, University of Köln, Germany; Faculty of Life and Environmental Sciences (K.N.), University of Tsukuba, Japan; and Medical Research Center Oulu (J.U.), Oulu University Hospital and University of Oulu, Finland.
| |
Collapse
|
22
|
Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 2015; 14:72. [PMID: 26047614 PMCID: PMC4475300 DOI: 10.1186/s12933-015-0229-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/23/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21), a glucose and lipid metabolic regulator, has recently been demonstrated to be associated with cardiovascular diseases (CVD) such as carotid atherosclerosis, coronary heart disease and carotid artery plaques. However, the relationship between circulating FGF21 and subclinical atherosclerosis or atherosclerosis of other arteries such as the femoral and iliac artery remains unclear. In this study, we evaluated the association of serum FGF21 with intima-media thickness (IMT) and subclinical atherosclerosis in type 2 diabetic patients. METHODS Serum FGF21 levels were detected by enzyme-linked immunosorbent assay in 212 newly diagnosed type 2 diabetic patients without clinical symptoms of atherosclerosis or cardiovascular diseases. IMT of the carotid, femoral, and iliac arteries were measured by high-resolution B-mode ultrasound to determine the presence of subclinical atherosclerosis, which was defined as having an IMT > 1.0 mm and/or plaque on one or more of the three arteries without any clinical manifestations. The relationship between serum FGF21 levels and subclinical atherosclerosis was analyzed. RESULTS Serum FGF21 levels were significantly higher in patients with subclinical atherosclerosis compared to those without [261.3 (135.1-396.4) versus 144.9 (95.9-223.0) ng/L, P < 0.001]. These differences were also observed in both men and women with subclinical atherosclerosis compared to their respective groups without [men: 243.2 (107.6-337.0) versus 136.8 (83.6-212.8) ng/L, P = 0.048; women: 292.4 (174.2-419.9) versus 160.4 (115.3-258.5) ng/L, P = 0.001]. Moreover, serum FGF21 levels showed a significantly positive correlation with carotid IMT in women (r = 0.23, P = 0.018) and with iliac IMT in both genders (women: r = 0.27, P = 0.005; men: r = 0.22, P = 0.024). Multiple logistic regression analysis further showed that serum FGF21 was an independent impact factor for subclinical atherosclerosis in patients with type 2 diabetes. CONCLUSIONS Serum FGF21 is elevated in newly diagnosed type 2 diabetes, and positively correlates with carotid and iliac lesions in patients with subclinical atherosclerosis, especially in women. High levels of FGF21 may be a compensatory reaction to offset atherosclerosis.
Collapse
|
23
|
Liu JJ, Foo JP, Liu S, Lim SC. The role of fibroblast growth factor 21 in diabetes and its complications: A review from clinical perspective. Diabetes Res Clin Pract 2015; 108:382-9. [PMID: 25796513 DOI: 10.1016/j.diabres.2015.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 02/13/2015] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factor 21 (FGF21) has been well-recognized as a metabolic hormone and a promising target for treatment of metabolic diseases. The level of endogenous FGF21 is elevated in patients with impaired glucose tolerance and progressively increased from patients with overt type 2 diabetes to those with micro- and macro-vascular complications, presumably as a compensation or response to the deterioration of metabolic imbalance. A few exploratory in vivo studies, including a recent clinical trial, showed that exogenous FGF21 mimetics targeting FGF21 signaling can attain beneficial metabolic effects not with-standing the already elevated ambient FGF21 levels. In addition, some clinically available pharmacologic agents such as fenofibrates and metformin may modulate energy and macronutrients metabolism by acting through FGF21. This review mainly focuses on the role of FGF21 in development, progression and treatment of type 2 diabetes from a clinical perspective.
Collapse
Affiliation(s)
- Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore.
| | - Joo Pin Foo
- Department of Medicine, Changi General Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Diabetes Center, Khoo Teck Puat Hospital, Singapore.
| |
Collapse
|
24
|
Serum fibroblast growth factor 21 levels are increased in atrial fibrillation patients. Cytokine 2015; 73:176-80. [DOI: 10.1016/j.cyto.2015.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/12/2015] [Indexed: 11/20/2022]
|
25
|
Ollikainen M, Ismail K, Gervin K, Kyllönen A, Hakkarainen A, Lundbom J, Järvinen EA, Harris JR, Lundbom N, Rissanen A, Lyle R, Pietiläinen KH, Kaprio J. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics 2015; 7:39. [PMID: 25866590 PMCID: PMC4393626 DOI: 10.1186/s13148-015-0073-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Background The current epidemic of obesity and associated diseases calls for swift actions to better understand the mechanisms by which genetics and environmental factors affect metabolic health in humans. Monozygotic (MZ) twin pairs showing discordance for obesity suggest that epigenetic influences represent one such mechanism. We studied genome-wide leukocyte DNA methylation variation in 30 clinically healthy young adult MZ twin pairs discordant for body mass index (BMI; average within-pair BMI difference: 5.4 ± 2.0 kg/m2). Results There were no differentially methylated cytosine-guanine (CpG) sites between the co-twins discordant for BMI. However, stratification of the twin pairs based on the level of liver fat accumulation revealed two epigenetically highly different groups. Significant DNA methylation differences (n = 1,236 CpG sites (CpGs)) between the co-twins were only observed if the heavier co-twins had excessive liver fat (n = 13 twin pairs). This unhealthy pattern of obesity was coupled with insulin resistance and low-grade inflammation. The differentially methylated CpGs included 23 genes known to be associated with obesity, liver fat, type 2 diabetes mellitus (T2DM) and metabolic syndrome, and potential novel metabolic genes. Differentially methylated CpG sites were overrepresented at promoters, insulators, and heterochromatic and repressed regions. Based on predictions by overlapping histone marks, repressed and weakly transcribed sites were significantly more often hypomethylated, whereas sites with strong enhancers and active promoters were hypermethylated. Further, significant clustering of differentially methylated genes in vitamin, amino acid, fatty acid, sulfur, and renin-angiotensin metabolism pathways was observed. Conclusions The methylome in leukocytes is altered in obesity associated with metabolic disturbances, and our findings indicate several novel candidate genes and pathways in obesity and obesity-related complications. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0073-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miina Ollikainen
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Khadeeja Ismail
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kristina Gervin
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anjuska Kyllönen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Jesper Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Elina A Järvinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jennifer R Harris
- Division of Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Central Hospital, Helsinki, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland.,Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
26
|
Olszanecka-Glinianowicz M, Madej P, Wdowczyk M, Owczarek A, Chudek J. Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome. Eur J Endocrinol 2015; 172:173-9. [PMID: 25411238 DOI: 10.1530/eje-14-0539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to analyse relationships between plasma fibroblast growth factor 21 (FGF21) levels and nutritional status, and metabolic and hormonal disturbances in polycystic ovary syndrome (PCOS) women. DESIGN AND SETTING A cross-sectional study involving 85 PCOS (48 obese) and 72 non-PCOS women (41 obese) was conducted to evaluate the relationship between FGF21 levels and PCOS. METHODS Anthropometric parameters and body composition were determined. In the fasting state; serum concentrations of glucose, androgens, FSH, LH, SHBG, insulin and FGF21 were measured. RESULTS Plasma FGF21 levels were significantly higher in obese women compared with normal-weight women in both PCOS and non-PCOS subgroups (120.3 (18.2-698) vs 62.3 (16.4-323.6) pg/ml, P<0.05 and 87.2 (12.9-748.4) vs 62.9 (18.0-378.8) pg/ml, P<0.05 respectively). Additionally, circulating FGF21 levels were significantly higher in the obese PCOS subgroup compared with the non-PCOS subgroup (120.3 (18.2-698.0) vs 87.2 (12.9-748.4) pg/ml, P<0.05). Circulating FGF21 levels were proportional to BMI (R=0.27; P<0.001), body fat mass (R=0.24; P<0.01) and percentage (R=0.24; P<0.01), as well as waist circumference (R=0.26; P<0.01). Additionally, plasma insulin and homeostasis model assessment of insulin resistance (HOMA-IR) values were related to FGF21 levels (R=0.44; P<0.001 and R=0.19; P<0.05 respectively). In multiple regression analysis, circulating FGF21 level variability was explained by HOMA-IR values and fat percentage, as well as waist circumference, but not correlated with oestradiol levels and free androgen index values. CONCLUSIONS Higher circulating FGF21 levels are related to nutritional status and insulin resistance independent of PCOS. Increased FGF21 is associated with metabolic but not hormonal disturbances.
Collapse
Affiliation(s)
- Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management UnitDepartment of Pathophysiology, Medical Faculty in KatowiceDepartment of Endocrinological GynecologyMedical Faculty in KatowiceDivision of Statistics in SosnowiecFaculty of Pharmacy and Laboratory Medicine in SosnowiecPathophysiology UnitDepartment of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752 Katowice, Poland
| | - Paweł Madej
- Health Promotion and Obesity Management UnitDepartment of Pathophysiology, Medical Faculty in KatowiceDepartment of Endocrinological GynecologyMedical Faculty in KatowiceDivision of Statistics in SosnowiecFaculty of Pharmacy and Laboratory Medicine in SosnowiecPathophysiology UnitDepartment of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752 Katowice, Poland
| | - Michał Wdowczyk
- Health Promotion and Obesity Management UnitDepartment of Pathophysiology, Medical Faculty in KatowiceDepartment of Endocrinological GynecologyMedical Faculty in KatowiceDivision of Statistics in SosnowiecFaculty of Pharmacy and Laboratory Medicine in SosnowiecPathophysiology UnitDepartment of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752 Katowice, Poland
| | - Aleksander Owczarek
- Health Promotion and Obesity Management UnitDepartment of Pathophysiology, Medical Faculty in KatowiceDepartment of Endocrinological GynecologyMedical Faculty in KatowiceDivision of Statistics in SosnowiecFaculty of Pharmacy and Laboratory Medicine in SosnowiecPathophysiology UnitDepartment of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752 Katowice, Poland
| | - Jerzy Chudek
- Health Promotion and Obesity Management UnitDepartment of Pathophysiology, Medical Faculty in KatowiceDepartment of Endocrinological GynecologyMedical Faculty in KatowiceDivision of Statistics in SosnowiecFaculty of Pharmacy and Laboratory Medicine in SosnowiecPathophysiology UnitDepartment of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Medyków Street 18, 40-752 Katowice, Poland
| |
Collapse
|
27
|
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015; 26:22-9. [PMID: 25476453 PMCID: PMC4277911 DOI: 10.1016/j.tem.2014.10.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) 15/19 and 21 belong to a subfamily of FGFs that function as hormones. Produced in response to specific nutritional cues, they act on overlapping sets of cell surface receptors composed of classic FGF receptors in complex with βKlotho, and regulate metabolism and related processes during periods of fluctuating energy availability. Pharmacologically, both FGF15/19 and FGF21 cause weight loss and improve both insulin-sensitivity and lipid parameters in rodent and primate models of metabolic disease. Recently, FGF21 was shown to have similar effects in obese patients with type 2 diabetes. We discuss here emerging concepts in FGF15/19 and FGF21 tissue-specific actions and critically assess their putative role as candidate targets for treating metabolic disease.
Collapse
Affiliation(s)
- Bryn M Owen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Abstract
Protein quality control is regulated by the proteostasis network and cell stress response pathways to promote cellular health. In this review, van Oosten-Hawle and Morimoto cover recent advances in model systems that reveal how communication between subcellular compartments and across different cells and tissues maintains a functional proteome during stress. The authors propose that transcellular stress signaling provides a critical control mechanism for the proteostasis network to maintain organismal health and life span. Protein quality control is essential in all organisms and regulated by the proteostasis network (PN) and cell stress response pathways that maintain a functional proteome to promote cellular health. In this review, we describe how metazoans employ multiple modes of cell-nonautonomous signaling across tissues to integrate and transmit the heat-shock response (HSR) for balanced expression of molecular chaperones. The HSR and other cell stress responses such as the unfolded protein response (UPR) can function autonomously in single-cell eukaryotes and tissue culture cells; however, within the context of a multicellular animal, the PN is regulated by cell-nonautonomous signaling through specific sensory neurons and by the process of transcellular chaperone signaling. These newly identified forms of stress signaling control the PN between neurons and nonneuronal somatic tissues to achieve balanced tissue expression of chaperones in response to environmental stress and to ensure that metastable aggregation-prone proteins expressed within any single tissue do not generate local proteotoxic risk. Transcellular chaperone signaling leads to the compensatory expression of chaperones in other somatic tissues of the animal, perhaps preventing the spread of proteotoxic damage. Thus, communication between subcellular compartments and across different cells and tissues maintains proteostasis when challenged by acute stress and upon chronic expression of metastable proteins. We propose that transcellular chaperone signaling provides a critical control step for the PN to maintain cellular and organismal health span.
Collapse
|
29
|
Sahin SB, Ayaz T, Cure MC, Sezgin H, Ural UM, Balik G, Sahin FK. Fibroblast growth factor 21 and its relation to metabolic parameters in women with polycystic ovary syndrome. Scand J Clin Lab Invest 2014; 74:465-9. [PMID: 24724557 DOI: 10.3109/00365513.2014.900821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to compare the serum levels of fibroblast growth factor 21 (FGF-21) between patients with polycystic ovary syndrome (PCOS) and control subjects and to assess the possible relation with the hormonal and metabolic parameters. METHODS A total of 91 patients with PCOS and 53 age- and body mass index (BMI)-matched healthy controls were included in the study. We evaluated anthropometric, hormonal and metabolic parameters in all the cases. Serum FGF-21 and high sensitive C-reactive protein (hsCRP) levels were measured by ELISA. RESULTS Mean fasting glucose and insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, total testosterone, dehydroepiandrosterone sulfate (DHEAS) levels were significantly higher in PCOS patients. Serum FGF-21 levels were similar in PCOS (236.8 ± 171.2 pg/ml) and the control (224.6 ± 128.9 pg/ml) group (p = 0.654). FGF-21 level had no correlation with BMI, waist circumference, HOMA-IR, hsCRP and lipid parameters. However there was a significant negative correlation between FGF-21 and DHEAS levels (r = - 0.309, p = 0.003). CONCLUSION FGF-21 levels were similar in women with PCOS compared with those of age- and BMI- matched controls.
Collapse
Affiliation(s)
- Serap B Sahin
- Department of Endocrinology and Metabolism Disease, Recep Tayyip Erdogan University Medical School , Rize , Turkey
| | | | | | | | | | | | | |
Collapse
|
30
|
Salehi MH, Kamalidehghan B, Houshmand M, Aryani O, Sadeghizadeh M, Mossalaeie MM. Association of fibroblast growth factor (FGF-21) as a biomarker with primary mitochondrial disorders, but not with secondary mitochondrial disorders (Friedreich Ataxia). Mol Biol Rep 2014; 40:6495-9. [PMID: 24078096 PMCID: PMC3824290 DOI: 10.1007/s11033-013-2767-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/14/2013] [Indexed: 12/21/2022]
Abstract
Mitochondrial respiratory chain deficiencies are a group of more than 100 disorders of adults and children, with highly variable phenotypes. The high prevalence of mitochondrial disorders (MIDs) urges the clinician to diagnose these disorders accurately, which is difficult in the light of highly variable and overlapping phenotypes, transmission patterns and molecular backgrounds. Fibroblast growth factor 21 (FGF-21) is an important endocrine and paracrine regulator of metabolic homeostasis. The FGF-21 transcript is reported to be abundantly expressed in liver, but little is known about the regulation of FGF-21 expression in other tissues. FGF-21 could play a role in the metabolic alterations that are often associated with mitochondrial diseases. The aim of this study was to show the association of the FGF-21 biomarker with human primary MIDs and secondary MIDs in suspected patients in Iran. Serum FGF-21 levels were determined using ELISA in 47 mitochondrial patients, including 32 with primary MIDs, 15 patients with Friedreich ataxia as a secondary MID and 30 control subjects. Serum FGF-21 levels were significantly higher in subjects with the primary MIDs (p < 0.05), compared to subjects without MIDs. However, serum FGF-21 levels did not show significant increase in subjects with FA as a secondary MID. There is an association between increasing concentrations of FGF-21 with mitochondrial diseases, suggesting FGF-21 as a biomarker for diagnosis of primary MIDs in humans. However, this biomarker is not appropriate for the diagnosis of FA.
Collapse
|
31
|
Cui Y, Giesy SL, Hassan M, Davis K, Zhao S, Boisclair YR. Hepatic FGF21 production is increased in late pregnancy in the mouse. Am J Physiol Regul Integr Comp Physiol 2014; 307:R290-8. [PMID: 24898837 DOI: 10.1152/ajpregu.00554.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Female mammals call on hormonally driven metabolic adaptations to meet the energy demand of late pregnancy and lactation. These maternal adaptations preserve limiting nutrients and promote their transfer to the uterus during pregnancy or mammary gland during lactation. The novel metabolic hormone fibroblast growth factor-21 (FGF21) was recently shown to increase suddenly at the onset of lactation in dairy cows, but whether FGF21 is induced during the reproductive cycle of other mammals is unknown. To start addressing this question, we studied subsets of mice when virgin (V), on day 18 of pregnancy (P18) and on lactation day 1 (L1), L5 and L14. Plasma FGF21 increased from nearly undetectable levels to over 8 ng/ml between V and P18 and returned to V levels by L1. Gene expression studies showed that liver was the major source of plasma FGF21 at P18 with little or no contribution from other known expressing tissues or from the developing placenta and mammary epithelial cells. The increased FGF21 production at P18 was dissociated from plasma nonesterified fatty acids and liver lipids, unlike that seen in fasted V mice. Changes in FGF21 signaling components in target tissues were modest except for reduced β-Klotho and FGFR1c expression in P18 adipose tissue. The placenta expressed both β-Klotho and FGFR1c, raising the possibility that it responds to FGF21. In conclusion, maternal FGF21 is increased when products of conception account for ∼ 40% of maternal weight, suggesting that FGF21 orchestrates some of the adaptations needed to meet the energy demand of late pregnancy.
Collapse
Affiliation(s)
- Yingjun Cui
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, Peoples Republic of China; and
| | - Sarah L Giesy
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Mahmoud Hassan
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Kristen Davis
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Shuhong Zhao
- Department of Animal Science, Cornell University, Ithaca, New York
| | - Yves R Boisclair
- Department of Animal Science, Cornell University, Ithaca, New York
| |
Collapse
|
32
|
Bisgaard A, Sørensen K, Johannsen TH, Helge JW, Andersson AM, Juul A. Significant gender difference in serum levels of fibroblast growth factor 21 in Danish children and adolescents. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2014; 2014:7. [PMID: 24883065 PMCID: PMC4039053 DOI: 10.1186/1687-9856-2014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/17/2014] [Indexed: 02/26/2023]
Abstract
Introduction Fibroblast Growth Factor 21 (FGF21) is a novel metabolic factor with effect on glucose and lipid metabolism, and shown to be elevated in diseases related to metabolic syndrome. Due to the increasing frequency of metabolic syndrome in the pediatric population, and as FGF21 studies in children are limited, we investigated baseline serum levels of FGF21 in healthy children during an oral glucose tolerance test. Methods A total of 179 children and adolescents from the COPENHAGEN Puberty Study were included. An OGTT with glucose and insulin measurements, a dual energy X-ray absorptiometry (DXA) scan and a clinical examination including pubertal staging were done on all subjects. Serum levels of FGF21, adiponectin, and leptin were determined by immunoassays at baseline. Results The girls had significantly higher levels of FGF21 compared with boys (155 pg/mL vs. 105 pg/mL, P = 0.04). 38 children (21%) had levels below detection limit of assay. Baseline levels of FGF21 showed positive correlation with triglycerides, but no significant correlations were found between FGF21-concentration and body mass index (BMI), DXA-derived fat percentage, LDL- HDL- and non-HDL cholesterol, leptin or adiponectin levels, respectively. Neither was any correlation found between baseline FGF21-levels and the dynamic changes in glucose and insulin levels during the OGTT. Conclusion FGF21 is independent of adiposity in children, and the significant metabolic effect seems to be limited to pathological conditions associated with insulin resistance. The higher levels of triglycerides in the girls may explain the significantly higher levels of FGF21 in girls compared with boys. Systematic review registration The COPENHAGEN Puberty Study was registered in ClinicalTrials.gov (identifier NCT01411527), and approved by the local ethics committee (reference no. KF 01 282214 and KF 11 2006–2033).
Collapse
Affiliation(s)
- Amalie Bisgaard
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, section 5064 Blegdamsvej 9, DK-2100 Copenhagen, Denmark ; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, section 5064 Blegdamsvej 9, DK-2100 Copenhagen, Denmark ; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, section 5064 Blegdamsvej 9, DK-2100 Copenhagen, Denmark ; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, section 5064 Blegdamsvej 9, DK-2100 Copenhagen, Denmark ; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, section 5064 Blegdamsvej 9, DK-2100 Copenhagen, Denmark ; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Cheung BMY, Deng HB. Fibroblast growth factor 21: a promising therapeutic target in obesity-related diseases. Expert Rev Cardiovasc Ther 2014; 12:659-66. [DOI: 10.1586/14779072.2014.904745] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Matikainen N, Bogl LH, Hakkarainen A, Lundbom J, Lundbom N, Kaprio J, Rissanen A, Holst JJ, Pietiläinen KH. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance. Diabetes Care 2014; 37:242-51. [PMID: 23990519 DOI: 10.2337/dc13-1283] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Impaired incretin response represents an early and uniform defect in type 2 diabetes, but the contributions of genes and the environment are poorly characterized. RESEARCH DESIGN AND METHODS We studied 35 monozygotic (MZ) and 75 dizygotic (DZ) twin pairs (discordant and concordant for obesity) to determine the heritability of glucagon-like peptide 1 (GLP-1) responses to an oral glucose tolerance test (OGTT) and the influence of acquired obesity to GLP-1, glucose-dependent insulinotropic peptide (GIP), and peptide YY (PYY) during OGTT or meal test. RESULTS The heritability of GLP-1 area under the curve was 67% (95% CI 45-80). Cotwins from weight-concordant MZ and DZ pairs and weight-discordant MZ pairs but concordant for liver fat content demonstrated similar glucose, insulin, and incretin profiles after the OGTT and meal tests. In contrast, higher insulin responses and blunted 60-min GLP-1 responses during the OGTT were observed in the heavier as compared with leaner MZ cotwins discordant for BMI, liver fat, and insulin sensitivity. Blunted GLP-1 response to OGTT was observed in heavier as compared with leaner DZ cotwins discordant for obesity and insulin sensitivity. CONCLUSIONS Whereas the GLP-1 response to the OGTT is heritable, an acquired unhealthy pattern of obesity characterized by liver fat accumulation and insulin resistance is closely related to impaired GLP-1 response in young adults.
Collapse
|
35
|
Lee Y, Lim S, Hong ES, Kim JH, Moon MK, Chun EJ, Choi SI, Kim YB, Park YJ, Park KS, Jang HC, Choi SH. Serum FGF21 concentration is associated with hypertriglyceridaemia, hyperinsulinaemia and pericardial fat accumulation, independently of obesity, but not with current coronary artery status. Clin Endocrinol (Oxf) 2014; 80:57-64. [PMID: 23278761 DOI: 10.1111/cen.12134] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/11/2012] [Accepted: 12/14/2012] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is an emerging metabolic regulator associated with glucose and lipid metabolism. However, previous studies of FGF21 have been largely confounded by obesity, and data are limited for advanced outcomes such as coronary artery disease (CAD) and ectopic fat accumulation. We investigated the associations between serum FGF21 concentrations and glucose/lipid metabolism, CAD, and pericardial fat deposition in subjects strictly matched for obesity parameters. DESIGN, PATIENTS AND MEASUREMENTS We enrolled 189 patients who had undergone cardiac multidetector coronary computed tomography. We measured cardiometabolic parameters and serum FGF21 levels within body mass index (BMI)-matched groups. Correlations and linear regressions were analysed among serum FGF21 levels, pericardial fat volumes and cardiometabolic parameters. Serum FGF21 concentrations were compared in patients with and without diabetes, metabolic syndrome (MS) or CAD. RESULTS Serum FGF21 concentrations were significantly higher in BMI-matched patients with MS (107·2 ± 83·6 vs 82·1 ± 67·4 ng/l without MS, P < 0·05), but not among those with diabetes (84·3 ± 56·4 vs 96·3 ± 98·9 ng/l without diabetes, P = 0·300) or CAD (89·6 ± 65·8 vs 84·2 ± 83·1 ng/l without CAD, P = 0·633). Serum FGF21 concentrations correlated positively with triglycerides, low-density lipoprotein-cholesterol, insulin, HOMA-IR and pericardial fat volume. They showed an independent association with pericardial fat volume (β = 0·111 ± 0·053, P < 0·05). CONCLUSIONS Serum FGF21 concentrations were significantly associated with lipid profiles, insulin resistance, pericardial fat volume and MS, independently of obesity, but not with overt CAD or diabetes.
Collapse
Affiliation(s)
- Yenna Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shen Y, Ma X, Zhou J, Pan X, Hao Y, Zhou M, Lu Z, Gao M, Bao Y, Jia W. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc Diabetol 2013; 12:124. [PMID: 23981342 PMCID: PMC3766150 DOI: 10.1186/1475-2840-12-124] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 01/25/2023] Open
Abstract
Background Expression and activity of the fibroblast growth factor (FGF) 21 hormone-like protein are associated with development of several metabolic disorders. This study was designed to investigate whether serum FGF21 level was also associated with the metabolic syndrome-related cardiovascular disease, atherosclerosis, and its clinical features in a Chinese cohort. Methods Two-hundred-and-fifty-three subjects visiting the Cardiology Department (Sixth People's Hospital affiliated to Shanghai JiaoTong University) were examined by coronary arteriography (to diagnose coronary artery disease (CAD)) and hepatic ultrasonography (to diagnose non-alcoholic fatty liver disease (NAFLD)). Serum FGF21 level was measured by enzyme-linked immunosorbent assay and analyzed for correlation to subject and clinical characteristics. The independent factors of CAD were determined by multivariate logistic regression analysis. Results Subjects with NAFLD showed significantly higher serum FGF21 than those without NAFLD (388.0 pg/mL (253.0-655.4) vs. 273.3 pg/mL (164.9-383.7), P < 0.01). Subjects with CAD showed significantly higher serum FGF21, regardless of NAFLD diagnosis (P < 0.05). Serum FGF21 level significantly elevated with the increasing number of metabolic disorders (P for trend < 0.01). After adjustment of age, sex, and BMI, FGF21 was positively correlated with total cholesterol (P < 0.05) and triglyceride (P < 0.01). FGF21 was identified as an independent factor of CAD (odds ratio = 2.984, 95% confidence interval: 1.014-8.786, P < 0.05). Conclusions Increased level of serum FGF21 is associated with NAFLD, metabolic disorders and CAD.
Collapse
Affiliation(s)
- Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Giannini C, Feldstein AE, Santoro N, Kim G, Kursawe R, Pierpont B, Caprio S. Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage. J Clin Endocrinol Metab 2013; 98:2993-3000. [PMID: 23626003 PMCID: PMC3701279 DOI: 10.1210/jc.2013-1250] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Fibroblast growth factor (FGF)-21 is highly expressed in the liver and regulates glucose and lipid metabolism in rodents. The effects of obesity and fatty liver on circulating FGF-21 levels have been described mainly in adults. Herein, we measured plasma FGF-21 levels in lean and obese adolescents with low and high hepatic fat content (HFF% <5.5% and HFF% ≥ 5.5%, respectively) and explored their relationship with hepatic fat content, measures of hepatic apoptosis, and insulin sensitivity. METHODS A total of 217 lean and obese adolescents with both low and high HFF% (lean = 31; obese low HFF% = 107; and obese high HFF% = 79) underwent an oral glucose tolerance test, a fast gradient magnetic resonance imaging to measure the %HFF and abdominal fat distribution. Cytokeratin 18 levels were measured as a biomarker of liver apoptosis. A subset of adolescents underwent a 2-step hyperinsulinemic-euglycemic clamp, and a liver biopsy (N = 14), to assess insulin sensitivity and steatohepatitis, respectively. RESULTS Compared to controls, FGF-21 levels were higher in obese youth, especially in those with high HFF (P < .001). FGF-21 significantly correlated with adiposity indexes (P < .001), visceral fat (r² = 0.240, P < .001), hepatic fat content (r² = 0.278, P < .001), cytokeratin 18 (r² = 0.217, P < .001), and alanine aminotransferase (r² = .164, P < .001). In subjects with steatoheaptitis, FGF-21 levels significantly correlated with the nonalcoholic fatty liver disease activity score (r² = 0.27, P = .04). Stepwise regression analysis indicated that these relationships are independent of body mass index, visceral fat, and insulin sensitivity. An inverse correlation was documented with insulin, hepatic resistance indexes, and adipose resistance indexes, which disappeared after adjusting for hepatic fat content. CONCLUSIONS Plasma FGF-21 levels are increased in obese adolescents, particularly in those with fatty liver. FGF-21 concentrations significantly and independently correlate with hepatic fat content and markers of hepatic apoptosis in obese youths.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Suomalainen A. Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. ACTA ACUST UNITED AC 2013; 7:313-7. [PMID: 23782039 DOI: 10.1517/17530059.2013.812070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Diagnosis of mitochondrial disorders is challenging, because of their highly variable clinical manifestations and age-of-onset and the shortage of specific diagnostic tools. Recent molecular studies have found that serum fibroblast growth factor 21 (FGF21) has potential to be a biomarker for muscle-manifesting mitochondrial disease, as well as for follow-up of disease progression and effect of intervention. AREAS COVERED Serum FGF21 as a biomarker is compared to conventional serum diagnostic tools for mitochondrial disorders. EXPERT OPINION Mitochondrial disorders are a large group of different progressive disorders, with the age-of-onset from neonatal life to late adulthood, and symptoms originating from any organ system but sharing an underlying cause of mitochondrial dysfunction. The prevalence of these disorders is about 1:2000, varying somewhat between different countries. Serum diagnostic tools include lactate, pyruvate, their ratio, creatine kinase and amino acids. However, none of these markers are both sensitive and specific. Increased levels of FGF21 cytokine were recently found in the serum of patients, who have a muscle-manifesting mitochondrial disease, thus providing a promising, novel, sensitive and specific biomarker for these disorders.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.
| |
Collapse
|
39
|
Abstract
The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY(3-36), produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.
Collapse
|
40
|
Iglesias P, Selgas R, Romero S, Díez JJ. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur J Endocrinol 2012; 167:301-9. [PMID: 22740503 DOI: 10.1530/eje-12-0357] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fibroblast growth factor 21 (FGF21), a 181 amino acid circulating protein, is a member of the FGF superfamily, with relevant metabolic actions. It acts through the interaction with specific FGF receptors and a cofactor called β-Klotho, whose expression is predominantly detected in metabolically active organs. FGF21 stimulates glucose uptake in adipocytes via the induction of glucose transporter-1. This action is additive and independent of insulin. β-Cell function and survival are preserved, and glucagon secretion is reduced by this protein, thus decreasing hepatic glucose production and improving insulin sensitivity. Lipid profile has been shown to be improved by FGF21 in several animal models. FGF21 increases energy expenditure in rodents and induces weight loss in diabetic nonhuman primates. It also exerts favorable effects on hepatic steatosis and reduces tissue lipid content in rodents. Adaptive metabolic responses to fasting, including stimulation of ketogenesis and fatty acid oxidation, seem to be partially mediated by FGF21. In humans, serum FGF21 concentrations have been found elevated in insulin-resistant states, such as impaired glucose tolerance and type 2 diabetes. FGF21 levels are correlated with hepatic insulin resistance index, fasting blood glucose, HbA1c, and blood glucose after an oral glucose tolerance test. A relationship between FGF21 levels and long-term diabetic complications, such as nephropathy and carotid atheromatosis, has been reported. FGF21 levels decreased in diabetic patients after starting therapy with insulin or oral agents. Increased FGF21 serum levels have also been found to be associated with obesity. In children, it is correlated with BMI and leptin levels, whereas in adults, FGF21 levels are mainly related to several components of the metabolic syndrome. Serum FGF21 levels have been found to be elevated in patients with ischemic heart disease. In patients with renal disease, FGF21 levels exhibited a progressive increase as renal function deteriorates. Circulating FGF21 levels seem to be related to insulin resistance and inflammation in dialysis patients. In summary, FGF21 is a recently identified hormone with antihyperglycemic, antihyperlipidemic, and thermogenic properties. Direct or indirect potentiation of its effects might be a potential therapeutic target in insulin-resistant states.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Ramón y Cajal, Ctra. de colmenar, Km 9,100, 28034 Madrid, Spain.
| | | | | | | |
Collapse
|
41
|
Fletcher JA, Meers GM, Laughlin MH, Ibdah JA, Thyfault JP, Rector RS. Modulating fibroblast growth factor 21 in hyperphagic OLETF rats with daily exercise and caloric restriction. Appl Physiol Nutr Metab 2012; 37:1054-62. [PMID: 22891896 DOI: 10.1139/h2012-091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic treatment with fibroblast growth factor 21 (FGF-21) favorably improves obesity and nonalcoholic fatty liver disease (NAFLD) outcomes; however, FGF-21 expression is paradoxically elevated in obese conditions. Here, we sought to determine the effects of obesity prevention by daily exercise (EX) vs. caloric restriction (CR) on hepatic FGF-21 in the hyperphagic, Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Four-week-old male OLETF rats were randomized into groups (n = 7-8 per group) of ad libitum fed, sedentary (OLETF-SED), voluntary wheel running exercise (OLETF-EX), or CR (OLETF-CR; 70% of SED) until 40 weeks of age. Nonhyperphagic, Long-Evans Tokushima Otsuka (LETO-SED) rats served as controls. Both daily EX and CR prevented obesity and NAFLD development observed in the OLETF-SED animals. This was associated with significantly (p < 0.01) lower serum FGF-21 (~80% lower) and hepatic FGF-21 mRNA expression (~65% lower) in the OLETF-EX and OLETF-CR rats compared with the OLETF-SED rats. However, hepatic FGF-21 protein content was reduced to the greatest extent in the OLETF-EX animals (50% of OLETF-SED) and did not differ between the OLETF-SED and OLETF-CR rats. Hepatic FGF-21 signaling mediators - hepatic FGF-21 receptor 2 (FGFR2, mRNA expression), hepatic FGF-21 receptor substrate 2 (FRS2, protein content), and co-receptor β-Klotho (protein content) - were all elevated (60%-100%, ~40%, and +30%-50%, respectively) in the OLETF-EX and OLETF-CR animals compared with the OLETF-SED animals. Daily exercise and caloric restriction modulate hepatic FGF-21 and its primary signaling mediators in the hyperphagic OLETF rat. Enhanced metabolic action of FGF-21 may partially explain the benefits of exercise and caloric restriction on NAFLD outcomes.
Collapse
Affiliation(s)
- Justin A Fletcher
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Current world literature. Curr Opin Pediatr 2012; 24:547-53. [PMID: 22790103 DOI: 10.1097/mop.0b013e3283566807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Reinehr T, Woelfle J, Wunsch R, Roth CL. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: a longitudinal analysis. J Clin Endocrinol Metab 2012; 97:2143-50. [PMID: 22438225 DOI: 10.1210/jc.2012-1221] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Fibroblast growth factor 21 (FGF-21), a potent activator of glucose uptake, has been proposed to be related to insulin resistance, metabolic syndrome (MetS), nonalcoholic fatty liver disease (NAFLD), and weight status. OBJECTIVE Our objective was to study the relationships between FGF-21, parameters of MetS, and NAFLD before and after weight loss in obese children. DESIGN AND SETTING This was a cross-sectional comparison between obese and normal-weight children and longitudinal 1-yr follow-up study in obese children participating in a lifestyle intervention in a primary care setting. PATIENTS Patients included 60 obese and 40 lean children of same age, gender, and pubertal stage. INTERVENTION The outpatient 1-yr intervention program was based on exercise, behavior, and nutrition therapy. MAIN OUTCOMES MEASURES We evaluated fasting serum FGF-21, weight status [body mass index (BMI) expressed as sd score (SDS)], body fat, insulin resistance index (homeostasis model assessment), leptin, transaminases, free fatty acids (FFA), waist circumference, blood pressure, and lipids. RESULTS Compared with the normal-weight children, obese children demonstrated significantly (P < 0.001) increased FGF-21, leptin, and homeostasis model assessment levels. FGF-21 was significantly (P < 0.05) correlated to BMI, SDS-BMI, FFA, and leptin both in cross-sectional and longitudinal analyses but not to any additional analyzed parameter. Children with and without MetS or NAFLD did not differ significantly with respect to their FGF-21 concentrations. A decrease of SDS-BMI was associated with a significant (P = 0.038) decrease of FGF-21 levels (mean -34%). CONCLUSIONS FGF-21 concentrations are reversibly increased in obese children and are related to leptin and FFA. However, our data do not support a significant relationship between FGF-21, insulin resistance, and features of MetS or NAFLD in children.
Collapse
Affiliation(s)
- Thomas Reinehr
- Department of Pediatric Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Strasse 5, D-45711 Datteln, Germany.
| | | | | | | |
Collapse
|
44
|
Schoenberg KM, Giesy SL, Harvatine KJ, Waldron MR, Cheng C, Kharitonenkov A, Boisclair YR. Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 2011; 152:4652-61. [PMID: 21990311 DOI: 10.1210/en.2011-1425] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many mammals, lactation success depends on substantial use of lipid reserves and requires integrated metabolic activities between white adipose tissue (WAT) and liver. Mechanisms responsible for this integration in lactation are poorly understood, but data collected in other conditions of elevated lipid use suggest a role for fibroblast growth factor-21 (FGF21). To address this possibility in the context of lactation, we studied high-yielding dairy cows during the transition from late pregnancy (LP) to early lactation (EL). Plasma FGF21 was nearly undetectable in LP, peaked on the day of parturition, and then stabilized at lower, chronically elevated concentrations during the energy deficit of EL. Plasma FGF21 was similarly increased in the absence of parturition when an energy-deficit state was induced by feed restricting late-lactating dairy cows, implicating energy insufficiency as a cause of chronically elevated FGF21 in EL. Gene expression studies showed that liver was a major source of plasma FGF21 in EL with little or no contribution by WAT, skeletal muscle, and mammary gland. Meaningful expression of the FGF21 coreceptor β-Klotho was restricted to liver and WAT in a survey of 15 tissues that included the mammary gland. Expression of β-Klotho and its subset of interacting FGF receptors was modestly affected by the transition from LP to EL in liver but not in WAT. Overall, these data suggest a model whereby liver-derived FGF21 regulates the use of lipid reserves during lactation via focal actions on liver and WAT.
Collapse
Affiliation(s)
- Katie M Schoenberg
- Department of Animal Science, Cornell University, 259 Morrison Hall, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Suomalainen A, Elo JM, Pietiläinen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK, Tyni T, Kiuru-Enari S, Pihko H, Darin N, Õunap K, Kluijtmans LAJ, Paetau A, Buzkova J, Bindoff LA, Annunen-Rasila J, Uusimaa J, Rissanen A, Yki-Järvinen H, Hirano M, Tulinius M, Smeitink J, Tyynismaa H. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 2011; 10:806-18. [PMID: 21820356 PMCID: PMC7568343 DOI: 10.1016/s1474-4422(11)70155-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised in skeletal muscle and serum in mice with mitochondrial respiratory chain deficiencies. We investigated in a retrospective diagnostic study whether FGF-21 could be a biomarker for human mitochondrial disorders. METHODS We assessed samples from adults and children with mitochondrial disorders or non-mitochondrial neurological disorders (disease controls) from seven study centres in Europe and the USA, and recruited healthy volunteers (healthy controls), matched for age where possible, from the same centres. We used ELISA to measure FGF-21 concentrations in serum or plasma samples (abnormal values were defined as >200 pg/mL). We compared these concentrations with values for lactate, pyruvate, lactate-to-pyruvate ratio, and creatine kinase in serum or plasma and calculated sensitivity, specificity, and positive and negative predictive values for all biomarkers. FINDINGS We analysed serum or plasma from 67 patients (41 adults and 26 children) with mitochondrial disorders, 34 disease controls (22 adults and 12 children), and 74 healthy controls. Mean FGF-21 concentrations in serum were 820 (SD 1151) pg/mL in adult and 1983 (1550) pg/mL in child patients with respiratory chain deficiencies and 76 (58) pg/mL in healthy controls. FGF-21 concentrations were high in patients with mitochondrial disorders affecting skeletal muscle but not in disease controls, including those with dystrophies. In patients with abnormal FGF-21 concentrations in serum, the odds ratio of having a muscle-manifesting mitochondrial disease was 132·0 (95% CI 38·7-450·3). For the identification of muscle-manifesting mitochondrial disease, the sensitivity was 92·3% (95% CI 81·5-97·9%) and specificity was 91·7% (84·8-96·1%). The positive and negative predictive values for FGF-21 were 84·2% (95% CI 72·1-92·5%) and 96·1 (90·4-98·9%). The accuracy of FGF-21 to correctly identify muscle-manifesting respiratory chain disorders was better than that for all conventional biomarkers. The area under the receiver-operating-characteristic curve for FGF-21 was 0·95; by comparison, the values for other biomarkers were 0·83 lactate (p=0·037, 0·83 for pyruvate (p=0·015), 0·72 for the lactate-to-pyruvate ratio (p=0·0002), and 0·77 for creatine kinase (p=0·013). INTERPRETATION Measurement of FGF-21 concentrations in serum identified primary muscle-manifesting respiratory chain deficiencies in adults and children and might be feasible as a first-line diagnostic test for these disorders to reduce the need for muscle biopsy. FUNDING Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Molecular Medicine Institute of Finland, University of Helsinki, Helsinki University Central Hospital, Academy of Finland, Novo Nordisk, Arvo and Lea Ylppö Foundation.
Collapse
Affiliation(s)
- Anu Suomalainen
- Research Programmes Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Conjugated linoleic acid induces hepatic expression of fibroblast growth factor 21 through PPAR-α. Br J Nutr 2011; 107:461-5. [PMID: 21767451 DOI: 10.1017/s0007114511003205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a PPAR-α-regulated metabolic regulator that plays critical roles in glucose homoeostasis, lipid metabolism, insulin sensitivity and obesity. Conjugated linoleic acids (CLA), especially trans-10 (t-10), cis-12 (c-12), have shown anti-obesity properties. In addition, CLA is reported as a high-affinity ligand and activator of PPAR-α. This raises the possibility that FGF21 might be involved in the anti-obesity effect of CLA. In the present study, we tested the hypothesis that FGF21 expression in the liver could be induced by t-10, c-12-CLA through PPAR-α. HepG2 cells were treated with 100 μm-bovine serum albumin, 10 μm-t-10, c-12-CLA or 100 μm-t-10, c-12-CLA for 8 h. A total of ten adult C57BL/6J mice were fed with the diets containing 1 % soya oil or t-10, c-12-CLA for 5 d. t-10, c-12-CLA stimulated hepatic FGF21 mRNA abundance as determined by real-time RT-PCR. t-10, c-12-CLA also increased serum FGF21 concentrations as measured by an ELISA. Co-transfection analysis indicated that reporter gene expression from the mouse FGF21 promoter was induced by t-10, c-12-CLA in a PPAR-α-dependent manner. Taken together, these results suggest that t-10, c-12-CLA induces hepatic FGF21 expression through PPAR-α. This FGF21 and PPAR-α linkage may provide another potential explanation for the anti-obesity effect of t-10, c-12-CLA.
Collapse
|
47
|
Kralisch S, Fasshauer M. Fibroblast growth factor 21: effects on carbohydrate and lipid metabolism in health and disease. Curr Opin Clin Nutr Metab Care 2011; 14:354-9. [PMID: 21505329 DOI: 10.1097/mco.0b013e328346a326] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The review summarizes recent findings examining the effects of fibroblast growth factor (FGF) 21 on carbohydrate and lipid metabolism with emphasis on publications from 2010. RECENT FINDINGS FGF21 is considered to be a metabolic hormone rather than a traditional growth factor. Recent studies identified the important role of FGF21 in regulation of energy balance. Thus, the protein regulates hepatic metabolism and improves insulin sensitivity. Furthermore, central FGF21 action in the brain increases energy expenditure and insulin sensitivity in rodents. Interestingly, FGF21 expression is elevated in the adaptive response to fasting but also regulated by feeding-induced mechanisms. Moreover, FGF21 levels are elevated in obese animals and positively correlate with BMI in humans suggesting obesity as a FGF21-resistant state. SUMMARY FGF21 is a metabolic hormone that is regulated by nutritional status and influences glucose and lipid metabolism by central and peripheral mechanisms. Future research is needed to expand our understanding of the diagnostic and therapeutic relevance of FGF21-dependent pathways in humans.
Collapse
Affiliation(s)
- Susan Kralisch
- IFB AdiposityDiseases, Leipzig University Medical Center, Medical Department, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
48
|
Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietiläinen KH. Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 2011; 52:1575-82. [PMID: 21596930 DOI: 10.1194/jlr.p015867] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal studies have suggested that angiopoietin-like 4 (Angptl4) regulates adiposity through central and peripheral mechanisms. The aim of this study was to investigate whether serum concentration and adipose tissue expression of Angptl4 are associated with obesity-related parameters in humans. Altogether, 75 dizygotic (DZ) and 46 monozygotic (MZ) twin pairs were studied, from the FinnTwin12 and FinnTwin16 cohorts. Among the MZ pairs, 21 were discordant for body mass index (BMI) (intra-pair BMI-difference >2.5 kg/m², age 23-33 years). Serum Angptl4 (s-Angptl4) levels were measured by ELISA, and adipose tissue gene expression was analyzed by genome-wide transcript profiling. In MZ twin pairs discordant for BMI, s-Angptl4 and adipose tissue ANGPTL4 mRNA (at-ANGPTL4) levels were significantly decreased (P = 0.04 and P = 0.03, respectively) in obese twins as compared with their nonobese cotwins. In all twins, intra-pair differences in s-Angptl4 levels were inversely correlated with intra-pair differences in BMI (r = -0.27, P = 0.003). In individual MZ twins, at-ANGPTL4 expression was inversely correlated with BMI (r = -0.44, P = 0.001) and positively correlated with at-LIPE (r = 0.24, P = 0.01) and at-ABHD5 (r = 0.41, P = 0.005) expression. Our results demonstrated that variation in Angptl4 concentration was only modestly accounted for by genetic factors and suggest a role for Angptl4 in acquired obesity in humans.
Collapse
Affiliation(s)
- Marius R Robciuc
- National Institute for Health and Welfare, Biomedicum, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|