1
|
Wittayavimol N, Iwabuchi E, Pateetin P, Miki Y, Onodera Y, Sasano H, Boonyaratanakornkit V. Progesterone receptor-Grb2 interaction is associated with better outcomes in breast cancer. J Steroid Biochem Mol Biol 2024; 237:106441. [PMID: 38070754 DOI: 10.1016/j.jsbmb.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
In addition to mediating nuclear transcription, PR mediates extranuclear functions mainly through the PR polyproline domain (PPD) interaction with the SH3 domain of cytoplasmic signaling molecules. PR-PPD-SH3 interaction inhibits EGF-mediated signaling and decreases lung cancer cell proliferation. Grb2 is an essential adaptor molecule with an SH2 domain flanked by two SH3 domains. In this study, we examined whether PR, through interaction between PR-PPD and Grb2-SH3, can interact with Grb2 in cells and breast cancer tissues. Our previous study shows that interaction between PR-PPD and Grb2 could interfere with cytoplasmic signaling and lead to inhibition of EGF-mediated signaling. GST-pulldown analysis shows that PR-PPD specifically interacts with the SH3 domains of Grb2. Immunofluorescence staining shows colocalization of PR and Grb2 in both the nucleus and cytoplasm in BT-474 breast cancer cells. Using Bimolecular Fluorescence Complementation (BiFC) analysis, we show that PR and Grb2 interact in breast cancer cells through the Grb2-SH3 domain. Proximity Ligation Assay (PLA) analysis of 43 breast cancer specimens shows that PR-Grb2 interaction is associated with low histological stage and negatively correlates with lymph node invasion and metastasis in breast cancer. These results, together with our previous findings, suggest that PR-PPD interaction with Grb2 plays an essential role in PR-mediated growth factor signaling inhibition and could contribute significantly to better prognosis in PR- and Grb2-positive breast cancer. Our finding provides a basis for additional studies to explore a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Nattamolphan Wittayavimol
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Prangwan Pateetin
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
2
|
Liao YN, Gai YZ, Qian LH, Pan H, Zhang YF, Li P, Guo Y, Li SX, Nie HZ. Progesterone receptor potentiates macropinocytosis through CDC42 in pancreatic ductal adenocarcinoma. Oncogenesis 2024; 13:10. [PMID: 38424455 PMCID: PMC10904380 DOI: 10.1038/s41389-024-00512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine receptors play an essential role in tumor metabolic reprogramming and represent a promising therapeutic avenue in pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a nutrient-deprived microenvironment. To meet their ascendant energy demands, cancer cells can internalize extracellular proteins via macropinocytosis. However, the roles of endocrine receptors in macropinocytosis are not clear. In this study, we found that progesterone receptor (PGR), a steroid-responsive nuclear receptor, is highly expressed in PDAC tissues obtained from both patients and transgenic LSL-KrasG12D/+; LSL-Trp53R172H/+; PDX1-cre (KPC) mice. Moreover, PGR knockdown restrained PDAC cell survival and tumor growth both in vitro and in vivo. Genetic and pharmacological PGR inhibition resulted in a marked attenuation of macropinocytosis in PDAC cells and subcutaneous tumor models, indicating the involvement of this receptor in macropinocytosis regulation. Mechanistically, PGR upregulated CDC42, a critical regulator in macropinocytosis, through PGR-mediated transcriptional activation. These data deepen the understanding of how the endocrine system influences tumor progression via a non-classical pathway and provide a novel therapeutic option for patients with PDAC.
Collapse
Affiliation(s)
- Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yi-Fan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Pin Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20030, P.R. China
| | - Ying Guo
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| |
Collapse
|
3
|
Aarts MT, Wagner M, van der Wal T, van Boxtel AL, van Amerongen R. A molecular toolbox to study progesterone receptor signaling. J Mammary Gland Biol Neoplasia 2023; 28:24. [PMID: 38019315 PMCID: PMC10687192 DOI: 10.1007/s10911-023-09550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023] Open
Abstract
Progesterone receptor (PR) signaling is required for mammary gland development and homeostasis. A major bottleneck in studying PR signaling is the lack of sensitive assays to measure and visualize PR pathway activity both quantitatively and spatially. Here, we develop new tools to study PR signaling in human breast epithelial cells. First, we generate optimized Progesterone Responsive Element (PRE)-luciferase constructs and demonstrate that these new reporters are a powerful tool to quantify PR signaling activity across a wide range of progesterone concentrations in two luminal breast cancer cell lines, MCF7 and T47D. We also describe a fluorescent lentiviral PRE-GFP reporter as a novel tool to visualize PR signaling at the single-cell level. Our reporter constructs are sensitive to physiological levels of progesterone. Second, we show that low background signaling, and high levels of PR expression are a prerequisite for robustly measuring PR signaling. Increasing PR expression by transient transfection, stable overexpression in MCF7 or clonal selection in T47D, drastically improves both the dynamic range of luciferase reporter assays, and the induction of endogenous PR target genes as measured by qRT-PCR. We find that the PR signaling response differs per cell line, target gene and hormone concentration used. Taken together, our tools allow a more rationally designed approach for measuring PR signaling in breast epithelial cells.
Collapse
Affiliation(s)
- Marleen T Aarts
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Muriel Wagner
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Mauro LJ, Spartz A, Austin JR, Lange CA. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr Rev 2023; 44:1029-1046. [PMID: 37261958 PMCID: PMC11048595 DOI: 10.1210/endrev/bnad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Ovarian cancer (OC) represents a collection of rare but lethal gynecologic cancers where the difficulty of early detection due to an often-subtle range of abdominal symptoms contributes to high fatality rates. With the exception of BRCA1/2 mutation carriers, OC most often manifests as a post-menopausal disease, a time in which the ovaries regress and circulating reproductive hormones diminish. Progesterone is thought to be a "protective" hormone that counters the proliferative actions of estrogen, as can be observed in the uterus or breast. Like other steroid hormone receptor family members, the transcriptional activity of the nuclear progesterone receptor (nPR) may be ligand dependent or independent and is fully integrated with other ubiquitous cell signaling pathways often altered in cancers. Emerging evidence in OC models challenges the singular protective role of progesterone/nPR. Herein, we integrate the historical perspective of progesterone on OC development and progression with exciting new research findings and critical interpretations to help paint a broader picture of the role of progesterone and nPR signaling in OC. We hope to alleviate some of the controversy around the role of progesterone and give insight into the importance of nPR actions in disease progression. A new perspective on the role of progesterone and nPR signaling integration will raise awareness to the complexity of nPRs and nPR-driven gene regulation in OC, help to reveal novel biomarkers, and lend critical knowledge for the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Laura J Mauro
- Department of Animal Science-Physiology, University of Minnesota, Saint Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia R Austin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Medicine (Division of Hematology, Oncology & Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Cartwright M, Louw-du Toit R, Jackson H, Janse van Vuuren M, Africander D. Progesterone receptor isoform ratios influence the transcriptional activity of progestins via the progesterone receptor. J Steroid Biochem Mol Biol 2023; 232:106348. [PMID: 37315868 DOI: 10.1016/j.jsbmb.2023.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Progestins (synthetic progestogens) are progesterone receptor (PR) ligands used globally by women in both hormonal contraception and menopausal hormone therapy. Although four generations of unique progestins have been developed, studies seldom distinguish between the activities of progestins via the two functionally distinct PR isoforms, PR-A and PR-B. Moreover, not much is known about the action of progestins in breast cancer tumors where PR-A is mostly overexpressed relative to PR-B. Understanding progestin action in breast cancer is crucial since the clinical use of some progestins has been associated with an increased risk of developing breast cancer. This study directly compared the agonist activities of selected progestins from all four generations for transactivation and transrepression via either PR-A or PR-B, and when PR-A and PR-B were co-expressed at ratios comparable to those detected in breast cancer tumors. Comparative dose-response analysis showed that earlier generation progestins mostly displayed similar efficacies for transactivation on a minimal progesterone response element via the PR isoforms, while most of the 4th generation progestins, similar to the natural progestogen, progesterone (P4), were more efficacious via PR-B. Most of the progestogens were however more potent via PR-A. We are the first to show that the efficacies of the selected progestogens via the individual PR isoforms were generally decreased when PR-A and PR-B were co-expressed, irrespective of the ratio of PR-A:PR-B. While the potencies of most progestogens via PR-B were enhanced when the ratio of PR-A relative to PR-B was increased, those via PR-A were minimally influenced. This study is also the first to report that all progestogens evaluated, except 1st generation medroxyprogesterone acetate and 4th generation drospirenone, displayed similar agonist activity for transrepression via PR-A and PR-B on a minimal nuclear factor kappa B containing promoter. Moreover, we showed that the progestogen activity for transrepression was significantly increased when PR-A and PR-B were co-expressed. Taken together, our results highlight that PR agonists (progestogens) do not always display the same activity via PR-A and PR-B, or when PR-A and PR-B are co-expressed at ratios mimicking those found in breast cancer tumors. These results suggest that biological responses are progestogen- and PR isoform-dependent and may differ in target tissues expressing varying PR-A:PR-B ratios.
Collapse
Affiliation(s)
- Meghan Cartwright
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Hayley Jackson
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Melani Janse van Vuuren
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
6
|
Gnanasekaran R, Aickareth J, Hawwar M, Sanchez N, Croft J, Zhang J. CmPn/CmP Signaling Networks in the Maintenance of the Blood Vessel Barrier. J Pers Med 2023; 13:jpm13050751. [PMID: 37240921 DOI: 10.3390/jpm13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) arise when capillaries within the brain enlarge abnormally, causing the blood-brain barrier (BBB) to break down. The BBB serves as a sophisticated interface that controls molecular interactions between the bloodstream and the central nervous system. The neurovascular unit (NVU) is a complex structure made up of neurons, astrocytes, endothelial cells (ECs), pericytes, microglia, and basement membranes, which work together to maintain blood-brain barrier (BBB) permeability. Within the NVU, tight junctions (TJs) and adherens junctions (AJs) between endothelial cells play a critical role in regulating the permeability of the BBB. Disruptions to these junctions can compromise the BBB, potentially leading to a hemorrhagic stroke. Understanding the molecular signaling cascades that regulate BBB permeability through EC junctions is, therefore, essential. New research has demonstrated that steroids, including estrogens (ESTs), glucocorticoids (GCs), and metabolites/derivatives of progesterone (PRGs), have multifaceted effects on blood-brain barrier (BBB) permeability by regulating the expression of tight junctions (TJs) and adherens junctions (AJs). They also have anti-inflammatory effects on blood vessels. PRGs, in particular, have been found to play a significant role in maintaining BBB integrity. PRGs act through a combination of its classic and non-classic PRG receptors (nPR/mPR), which are part of a signaling network known as the CCM signaling complex (CSC). This network couples both nPR and mPR in the CmPn/CmP pathway in endothelial cells (ECs).
Collapse
Affiliation(s)
- Revathi Gnanasekaran
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Justin Aickareth
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Majd Hawwar
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Nickolas Sanchez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jacob Croft
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
7
|
Rangsrikitphoti P, Marquez-Garban DC, Pietras RJ, McGowan E, Boonyaratanakornkit V. Sex steroid hormones and DNA repair regulation: Implications on cancer treatment responses. J Steroid Biochem Mol Biol 2023; 227:106230. [PMID: 36450315 DOI: 10.1016/j.jsbmb.2022.106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.
Collapse
Affiliation(s)
- Pattarasiri Rangsrikitphoti
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Diana C Marquez-Garban
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
9
|
Omar IS, Mat Adenan NA, Godoy A, Teo IH, Gunasagran Y, Chung I. Aberrant upregulation of CDK1 contributes to medroxyprogesterone acetate (MPA) resistance in cancer-associated fibroblasts of the endometrium. Biochem Biophys Res Commun 2022; 628:133-140. [PMID: 36084551 DOI: 10.1016/j.bbrc.2022.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/04/2023]
Abstract
The response to medroxyprogesterone acetate (MPA) decreases as endometrial disease progresses from the benign to malignancy. In a mouse model, progesterone receptor (PR) expression in normal fibroblasts is accountable for the MPA's inhibitory effects in cancer cells. However, it is still unclear, if and how, fibroblasts from human tumors respond to MPA. In this study, three benign-associated fibroblasts (BAFs) and four cancer-associated fibroblasts (CAFs) were isolated from human benign and cancerous endometrial tissues, respectively, to examine MPA activation on PR signaling. PR-B protein expression were heterogeneously expressed in both CAFs and BAFs, despite a lower mRNA expression in the former. In a luciferase reporter assay, MPA treatment stimulated some PR DNA-binding activity in BAFs but not in CAFs. Yet, activation of PR target gene was generally more pronounced in MPA-treated CAFs compared to BAFs. Cyclin-dependent kinase 1 (CDK1) was exclusively upregulated by 10 nM MPA in CAFs (5.1-fold vs. 1.1-fold in BAFs, P < 0.05), leading to a higher CDK1 protein expression. Subsequently in a dose-response study, CAFs showed an average of ∼20% higher cell viability when compared to BAFs, indicative of drug resistance to MPA. MPA resistance was also observed in EC-CAFs co-culture, when MPA-treated cells showed greater tumor spheroid formation than in EC-BAFs co-culture (2-fold, P < 0.01). The increased cell viability observed in CAFs was reversed with mifepristone (RU486), a PR antagonist which suppressed MPA-induced CDK1 expression. This indicates that MPA-induced abnormal upregulation of CDK1 may contribute to the enhanced CAFs cell proliferation, suggesting a new mechanism of MPA resistance within endometrial cancer microenvironment.
Collapse
Affiliation(s)
- Intan Sofia Omar
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Cancer Research Institute, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Azmi Mat Adenan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Obstetrics and Gynaecology, Ara Damansara and Subang Jaya Medical Center, Ramsay Sime Darby Health Care, 47500, Subang Jaya, Selangor, Malaysia
| | - Alejandro Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, United States
| | - Ik Hui Teo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yogeeta Gunasagran
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Cancer Research Institute, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Velázquez Hernández DM, Vázquez-Martínez ER, Camacho-Arroyo I. The role of progesterone receptor membrane component (PGRMC) in the endometrium. Steroids 2022; 184:109040. [PMID: 35526781 DOI: 10.1016/j.steroids.2022.109040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
PGRMC is a non-classical receptor that mediates the non-genomic responses to progesterone and is distributed in different subcellular compartments. PGRMC belongs to the membrane-associated progesterone receptor (MAPR) family. Two PGRMC subtypes (PGRMC1 and PGRMC2) have been characterized, and both are expressed in the human endometrium. PGRMC expression is differentially regulated during the menstrual cycle in the human endometrium. Although PGRMC1 is predominantly expressed in the proliferative phase and PGRMC2 in the secretory phase, this expression changes in pathologies such as endometriosis, in which PGRMC2 expression considerably decreases, promoting progesterone resistance. In endometrial cancer, PGRMC1 is overexpressed, its activation induces tumors growth, and confers chemoresistance in the presence of progesterone. Thus, PGRMCs play a key role in progesterone actions in the endometrium.
Collapse
Affiliation(s)
- Dora Maria Velázquez Hernández
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
12
|
Bello-Alvarez C, Zamora-Sánchez CJ, Camacho-Arroyo I. Rapid Actions of the Nuclear Progesterone Receptor through cSrc in Cancer. Cells 2022; 11:cells11121964. [PMID: 35741094 PMCID: PMC9221966 DOI: 10.3390/cells11121964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 12/30/2022] Open
Abstract
The nuclear progesterone receptor (PR) is mainly known for its role as a ligand-regulated transcription factor. However, in the last ten years, this receptor’s extranuclear or rapid actions have gained importance in the context of physiological and pathophysiological conditions such as cancer. The PR’s polyproline (PXPP) motif allows protein–protein interaction through SH3 domains of several cytoplasmatic proteins, including the Src family kinases (SFKs). Among members of this family, cSrc is the most well-characterized protein in the scenario of rapid actions of the PR in cancer. Studies in breast cancer have provided the most detailed information on the signaling and effects triggered by the cSrc–PR interaction. Nevertheless, the study of this phenomenon and its consequences has been underestimated in other types of malignancies, especially those not associated with the reproductive system, such as glioblastomas (GBs). This review will provide a detailed analysis of the impact of the PR–cSrc interplay in the progression of some non-reproductive cancers, particularly, in GBs.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 0451, Mexico
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 0451, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 0451, Mexico
| |
Collapse
|
13
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
14
|
Ward AV, Matthews SB, Fettig LM, Riley D, Finlay-Schultz J, Paul KV, Jackman M, Kabos P, MacLean PS, Sartorius CA. Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism. Cancers (Basel) 2022; 14:1776. [PMID: 35406548 PMCID: PMC8996926 DOI: 10.3390/cancers14071776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
Collapse
Affiliation(s)
- Ashley V. Ward
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Shawna B. Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Lynsey M. Fettig
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Kiran V. Paul
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Matthew Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| |
Collapse
|
15
|
Kaewjanthong P, Sooksai S, Sasano H, Hutvagner G, Bajan S, McGowan E, Boonyaratanakornkit V. Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells. PLoS One 2022; 17:e0264717. [PMID: 35235599 PMCID: PMC8890653 DOI: 10.1371/journal.pone.0264717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Panthita Kaewjanthong
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
| | - Sarah Bajan
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Chuon T, Feri M, Carlson C, Ondrejik S, Micevych PE, Sinchak K. Progesterone receptor-Src kinase signaling pathway mediates neuroprogesterone induction of the luteinizing hormone surge in female rats. J Neuroendocrinol 2022; 34:e13071. [PMID: 34904297 PMCID: PMC8923351 DOI: 10.1111/jne.13071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.
Collapse
Affiliation(s)
- Timbora Chuon
- Department of Biological Sciences, California State
University, Long Beach, Long Beach, CA, USA
| | - Micah Feri
- Department of Biological Sciences, California State
University, Long Beach, Long Beach, CA, USA
| | - Claire Carlson
- Department of Biological Sciences, California State
University, Long Beach, Long Beach, CA, USA
| | - Sharity Ondrejik
- Department of Biological Sciences, California State
University, Long Beach, Long Beach, CA, USA
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine
at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University
of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin Sinchak
- Department of Biological Sciences, California State
University, Long Beach, Long Beach, CA, USA
| |
Collapse
|
17
|
Wright RHG, Vastolo V, Oliete JQ, Carbonell-Caballero J, Beato M. Global signalling network analysis of luminal T47D breast cancer cells in response to progesterone. Front Endocrinol (Lausanne) 2022; 13:888802. [PMID: 36034422 PMCID: PMC9403329 DOI: 10.3389/fendo.2022.888802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breast cancer cells enter into the cell cycle following progestin exposure by the activation of signalling cascades involving a plethora of enzymes, transcription factors and co-factors that transmit the external signal from the cell membrane to chromatin, ultimately leading to a change of the gene expression program. Although many of the events within the signalling network have been described in isolation, how they globally team up to generate the final cell response is unclear. METHODS In this study we used antibody microarrays and phosphoproteomics to reveal a dynamic global signalling map that reveals new key regulated proteins and phosphor-sites and links between previously known and novel pathways. T47D breast cancer cells were used, and phospho-sites and pathways highlighted were validated using specific antibodies and phenotypic assays. Bioinformatic analysis revealed an enrichment in novel signalling pathways, a coordinated response between cellular compartments and protein complexes. RESULTS Detailed analysis of the data revealed intriguing changes in protein complexes involved in nuclear structure, epithelial to mesenchyme transition (EMT), cell adhesion, as well as transcription factors previously not associated with breast cancer cell proliferation. Pathway analysis confirmed the key role of the MAPK signalling cascade following progesterone and additional hormone regulated phospho-sites were identified. Full network analysis shows the activation of new signalling pathways previously not associated with progesterone signalling in T47D breast cancer cells such as ERBB and TRK. As different post-translational modifications can mediate complex crosstalk mechanisms and massive PARylation is also rapidly induced by progestins, we provide details of important chromatin regulatory complexes containing both phosphorylated and PARylated proteins. CONCLUSIONS This study contributes an important resource for the scientific community, as it identifies novel players and connections meaningful for breast cancer cell biology and potentially relevant for cancer management.
Collapse
Affiliation(s)
- Roni H. G. Wright
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| | - Viviana Vastolo
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Carbonell-Caballero
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| |
Collapse
|
18
|
Renteria M, Belkin O, Jang D, Aickareth J, Bhalli M, Zhang J. CmPn signaling networks in the tumorigenesis of breast cancer. Front Endocrinol (Lausanne) 2022; 13:1013892. [PMID: 36246881 PMCID: PMC9556883 DOI: 10.3389/fendo.2022.1013892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
19
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Thiebaut C, Vlaeminck-Guillem V, Trédan O, Poulard C, Le Romancer M. Non-genomic signaling of steroid receptors in cancer. Mol Cell Endocrinol 2021; 538:111453. [PMID: 34520815 DOI: 10.1016/j.mce.2021.111453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors (SRs) are members of the nuclear receptor family, which are ligand-activated transcription factors. SRs regulate many physiological functions including development and reproduction, though they can also be involved in several pathologies, especially cancer. Highly controlled cellular responses to steroids involve transcriptional regulation (genomic activity) combined with direct activation of signaling cascades (non-genomic activity). Non-genomic signaling has been extensively studied in cancer, mainly in breast cancer for ER and PR, and prostate cancer for AR. Even though most of the studies have been conducted in cells, some of them have been confirmed in vivo, highlighting the relevance of this pathway in cancer. This review provides an overview of the current and emerging knowledge on non-genomic signaling with a focus on breast and prostate cancers and its clinical relevance. A thorough understanding of ER, PR, AR and GR non-genomic pathways may open new perspectives for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69495, Pierre-Bénite, France
| | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
21
|
Mazumder A, Shiao S, Haricharan S. HER2 Activation and Endocrine Treatment Resistance in HER2-negative Breast Cancer. Endocrinology 2021; 162:6329618. [PMID: 34320193 PMCID: PMC8379900 DOI: 10.1210/endocr/bqab153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
The lethality of estrogen receptor alpha positive (ER+) breast cancer, which is often considered to have better prognosis than other subtypes, is defined by resistance to the standard of care endocrine treatment. Relapse and metastasis are inevitable in almost every patient whose cancer is resistant to endocrine treatment. Therefore, understanding the underlying causes of treatment resistance remains an important biological and clinical focus of research in this area. Growth factor receptor pathway activation, specifically HER2 activation, has been identified as 1 mechanism of endocrine treatment resistance across a range of experimental model systems. However, clinical trials conducted to test whether targeting HER2 benefits patients with endocrine treatment-resistant ER+ breast cancer have consistently and disappointingly shown mixed results. One reason for the failure of these clinical trials could be the complexity of crosstalk between ER, HER2, and other growth factor receptors and the fluidity of HER2 activation in these cells, which makes it challenging to identify stratifiers for this targeted intervention. In the absence of stratifiers that can be assayed at diagnosis to allow prospective tailoring of HER2 inhibition to the right patients, clinical trials will continue to disappoint. To understand stratifiers, it is important that the field invests in key understudied areas of research including characterization of the tumor secretome and receptor activation in response to endocrine treatment, and mapping the ER-HER2 growth factor network in the normal and developing mammary gland. Understanding these mechanisms further is critical to improving outcomes for the hard-to-treat endocrine treatment-resistant ER+ breast cancer cohort.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stephen Shiao
- Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svasti Haricharan
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: Svasti Haricharan, PhD, Sanford Burnham Prebys, 10901 N Torrey Pines Rd, La Jolla, CA, USA.
| |
Collapse
|
22
|
Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer. Sci Data 2021; 8:100. [PMID: 33846359 PMCID: PMC8042118 DOI: 10.1038/s41597-021-00884-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Progesterone receptor (PR) isoforms, PRA and PRB, act in a progesterone-independent and dependent manner to differentially modulate the biology of breast cancer cells. Here we show that the differences in PRA and PRB structure facilitate the binding of common and distinct protein interacting partners affecting the downstream signaling events of each PR-isoform. Tet-inducible HA-tagged PRA or HA-tagged PRB constructs were expressed in T47DC42 (PR/ER negative) breast cancer cells. Affinity purification coupled with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry technique was performed to comprehensively study PRA and PRB interacting partners in both unliganded and liganded conditions. To validate our findings, we applied both forward and reverse SILAC conditions to effectively minimize experimental errors. These datasets will be useful in investigating PRA- and PRB-specific molecular mechanisms and as a database for subsequent experiments to identify novel PRA and PRB interacting proteins that differentially mediated different biological functions in breast cancer.
Collapse
|
23
|
Boonyaratanakornkit V, McGowan EM, Márquez-Garbán DC, Burton LP, Hamilton N, Pateetin P, Pietras RJ. Progesterone Receptor Signaling in the Breast Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:443-474. [PMID: 34664251 DOI: 10.1007/978-3-030-73119-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment (TME) is a complex infrastructure composed of stromal, epithelial, and immune cells embedded in a vasculature ECM. The microenvironment surrounding mammary epithelium plays a critical role during the development and differentiation of the mammary gland, enabling the coordination of the complex multihormones and growth factor signaling processes. Progesterone/progesterone receptor paracrine signaling interactions in the microenvironment play vital roles in stem/progenitor cell function during normal breast development. In breast cancer, the female sex hormones, estrogen and progesterone, and growth factor signals are altered in the TME. Progesterone signaling modulates not only breast tumors but also the breast TME, leading to the activation of a series of cross-communications that are implicated in the genesis of breast cancers. This chapter reviews the evidence that progesterone and PR signaling modulates not only breast epitheliums but also the breast TME. Furthermore, crosstalk between estrogen and progesterone signaling affecting different cell types within the TME is discussed. A better understanding of how PR and progesterone affect the TME of breast cancer may lead to novel drugs or a therapeutic approach for the treatment of breast cancer shortly.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Eileen M McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - L P Burton
- UCLA Jonsson Comprehensive Cancer Center and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
24
|
Bello-Alvarez C, Moral-Morales AD, González-Arenas A, Camacho-Arroyo I. Intracellular Progesterone Receptor and cSrc Protein Working Together to Regulate the Activity of Proteins Involved in Migration and Invasion of Human Glioblastoma Cells. Front Endocrinol (Lausanne) 2021; 12:640298. [PMID: 33841333 PMCID: PMC8032993 DOI: 10.3389/fendo.2021.640298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas are the most common and aggressive primary brain tumors in adults, and patients with glioblastoma have a median survival of 15 months. Some alternative therapies, such as Src family kinase inhibitors, have failed presumably because other signaling pathways compensate for their effects. In the last ten years, it has been proven that sex hormones such as progesterone (P4) can induce growth, migration, and invasion of glioblastoma cells through its intracellular progesterone receptor (PR), which is mostly known for its role as a transcription factor, but it can also induce non-genomic actions. These non-classic actions are, in part, a consequence of its interaction with cSrc, which plays a significant role in the progression of glioblastomas. We studied the relation between PR and cSrc, and its effects in human glioblastoma cells. Our results showed that P4 and R5020 (specific PR agonist) activated cSrc protein since both progestins increased the p-cSrc (Y416)/cSrc ratio in U251 and U87 human glioblastoma derived cell lines. When siRNA against the PR gene was used, the activation of cSrc by P4 was abolished. The co-immunoprecipitation assay showed that cSrc and PR interact in U251 cells. P4 treatment also promoted the increase in the p-Fak (Y397) (Y576/577)/Fak and the decrease in p-Paxillin (Y118)/Paxillin ratio, which are significant components of the focal adhesion complex and essential for migration and invasion processes. A siRNA against cSrc gene blocked the increase in the p-Fak (Y576/Y577)/Fak ratio and the migration induced by P4, but not the decrease in p-Paxillin (Y118)/Paxillin ratio. We analyzed the potential role of cSrc over PR phosphorylation in three databases, and one putative tyrosine residue in the amino acid 87 of PR was found. Our results showed that P4 induces the activation of cSrc protein through its PR. The latter and cSrc could interact in a bidirectional mode for regulating the activity of proteins involved in migration and invasion of glioblastomas.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aylin Del Moral-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Ignacio Camacho-Arroyo,
| |
Collapse
|
25
|
Mohammed G, Mousa NA, Talaat IM, Ibrahim H, Saber-Ayad M. Breast Cancer Risk with Progestin Subdermal Implants: A Challenge in Patients Counseling. Front Endocrinol (Lausanne) 2021; 12:781066. [PMID: 34975755 PMCID: PMC8719328 DOI: 10.3389/fendo.2021.781066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
There is a steady global rise in the use of progestin subdermal implants, where use has increased by more than 20 times in the past two decades. BC risk has been reported with the older progestin only methods such as oral pills, injectables, and intrauterine devices, however, little is known about the risk with subdermal implants. In this review, we aim to update clinicians and researchers on the current evidence to support patient counseling and to inform future research directions. The available evidence of the association between the use of progestin subdermal implants and BC risk is discussed. We provide an overview of the potential role of endogenous progesterone in BC development. The chemical structure and molecular targets of synthetic progestins of relevance are summarized together with the preclinical and clinical evidence on their association with BC risk. We review all studies that investigated the action of the specific progestins included in subdermal implants. As well, we discuss the potential effect of the use of subdermal implants in women at increased BC risk, including carriers of BC susceptibility genetic mutations.
Collapse
Affiliation(s)
- Ghada Mohammed
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Ghada Mohammed, ; Noha A. Mousa,
| | - Noha A. Mousa
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Ghada Mohammed, ; Noha A. Mousa,
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Haya Ibrahim
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Pharmacology, College of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
26
|
Rossini E, Tamburello M, Abate A, Beretta S, Fragni M, Cominelli M, Cosentini D, Hantel C, Bono F, Grisanti S, Poliani PL, Tiberio GAM, Memo M, Sigala S, Berruti A. Cytotoxic Effect of Progesterone, Tamoxifen and Their Combination in Experimental Cell Models of Human Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:669426. [PMID: 33981288 PMCID: PMC8108132 DOI: 10.3389/fendo.2021.669426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Progesterone (Pg) and estrogen (E) receptors (PgRs and ERs) are expressed in normal and neoplastic adrenal cortex, but their role is not fully understood. In literature, Pg demonstrated cytotoxic activity on AdrenoCortical Carcinoma (ACC) cells, while tamoxifen is cytotoxic in NCI-H295R cells. Here, we demonstrated that in ACC cell models, ERs were expressed in NCI-H295R cells with a prevalence of ER-β over the ER-α.Metastasis-derived MUC-1 and ACC115m cells displayed a very weak ER-α/β signal, while PgR cells were expressed, although at low level. Accordingly, these latter were resistant to the SERM tamoxifen and scarcely sensitive to Pg, as we observed a lower potency compared to NCI-H295R cells in cytotoxicity (IC50: MUC-1 cells: 67.58 µM (95%CI: 63.22-73.04), ACC115m cells: 51.76 µM (95%CI: 46.45-57.67) and cell proliferation rate. Exposure of NCI-H295R cells to tamoxifen induced cytotoxicity (IC50: 5.43 µM (95%CI: 5.18-5.69 µM) mainly involving ER-β, as their nuclear localization increased after tamoxifen: Δ A.U. treated vs untreated: 12 h: +27.04% (p < 0.01); 24 h: +36.46% (p < 0.0001). This effect involved the SF-1 protein reduction: Pg: -36.34 ± 9.26%; tamoxifen: -46.25 ± 15.68% (p < 0.01). Finally, in a cohort of 36 ACC samples, immunohistochemistry showed undetectable/low level of ERs, while PgR demonstrated a higher expression. In conclusion, ACC experimental cell models expressed PgR and low levels of ER in line with data obtained in patient tissues, thus limiting the possibility of a clinical approach targeting ER. Interestingly, Pg exerted cytotoxicity also in metastatic ACC cells, although with low potency.
Collapse
Affiliation(s)
- Elisa Rossini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Abate
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Beretta
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Fragni
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Federica Bono
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido A. M. Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sandra Sigala
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
- *Correspondence: Sandra Sigala,
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
27
|
Astrocytoma: A Hormone-Sensitive Tumor? Int J Mol Sci 2020; 21:ijms21239114. [PMID: 33266110 PMCID: PMC7730176 DOI: 10.3390/ijms21239114] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women's brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
Collapse
|
28
|
Oettel M, Zentel HJ, Nickisch K. A progestin isn't a progestin: dienogest for endometriosis as a blueprint for future research - Review as a contribution for discussion. Horm Mol Biol Clin Investig 2020; 42:133-142. [PMID: 32663169 DOI: 10.1515/hmbci-2020-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 11/15/2022]
Abstract
The different etiopathogenetic mechanisms and the diversity of clinical features of endometriosis has not yet allowed to identify a causal pharmacological monotherapy satisfying the unresolved medical needs in this important female disease. Therefore, despite the search for new therapeutic principles for the indication, the strategy of gradual optimization of established therapeutic principles should not be disregarded.In the case of progestins, the fact that each compound has its own, specific profile may allow to study the therapeutic relevance of the various signal cascades influenced by their receptors.Using the example of the progestin dienogest, the different genomic and non-genomic mechanisms of action are discussed. It is pharmacodynamic profile is unique compared to other progestins.In light of the emerging multitude of pathomechanisms in endometriosis, a monotherapy may not be possible, and then the search for broad spectrum compounds or combination therapies with dual or multiple mode of action in a clinically relevant dose range might be considered. The progestogenic action may greatly benefit from, by way of example, additional anti-inflammatory and/or anti-fibrotic and/or pro-apoptotic activities. Such a strategy could lead to new drug classes.
Collapse
|
29
|
Sinchak K, Mohr MA, Micevych PE. Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge. Front Endocrinol (Lausanne) 2020; 11:420. [PMID: 32670203 PMCID: PMC7333179 DOI: 10.3389/fendo.2020.00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie so-called estrogen positive feedback that induce the surge release of pituitary luteinizing hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It is now well-established that gonadotropin releasing hormone (GnRH) neurons express neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment kisspeptin expression and release needed to stimulate GnRH release, triggering the LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin neurons occurs through membrane PGR activation of Src family kinase (Src). This signaling cascade has been also implicated in PGR signaling in the arcuate nucleus of the hypothalamus, suggesting that Src may be a common mode of membrane PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal development, levels of membrane ERα increase in astrocytes coincident with an increase of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether these developmental changes occur in existing astrocytes or are due to a new population of astrocytes born during puberty. However, strong evidence suggests that it is the former. Blocking new cell addition during puberty attenuates the LH surge. Together these results demonstrate the importance of pubertal maturation involving hypothalamic astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone signaling for the CNS control of ovulation and reproduction.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Margaret A Mohr
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul E Micevych
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
30
|
Asavasupreechar T, Saito R, Miki Y, Edwards DP, Boonyaratanakornkit V, Sasano H. Systemic distribution of progesterone receptor subtypes in human tissues. J Steroid Biochem Mol Biol 2020; 199:105599. [PMID: 31991170 PMCID: PMC9968951 DOI: 10.1016/j.jsbmb.2020.105599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Progesterone receptor (PR) is expressed in a wide variety of human tissues, including both reproductive and non-reproductive tissues. Upon binding to the PR, progesterone can display several non-reproductive functions, including neurosteroid activity in the central nervous system, inhibition of smooth muscle contractile activity in the gastrointestinal tract, and regulating the development and maturation of the lung. PR exists as two major isoforms, PRA and PRB. Differential expression of these PR isoforms reportedly contributes to different biological activities of the hormone. However, the distribution of the PR isoforms in human tissues has remained virtually unexplored. In this study, we immunolocalized PR expression in various human tissues using PR (1294) specific antibody, which is capable of detecting both PRA and PRB, and PRB (250H11) specific antibody. Tissues from the uterus, ovary, breast, placenta, prostate, testis, cerebrum, cerebellum, pituitary, spinal cord, esophagus, stomach, small intestine, colon, pancreas, liver, kidney, urinary bladder, lung, heart, aorta, thymus, adrenal gland, thyroid, spleen, skin, and bone were examined in four different age groups (fetal, pediatric, young, and old) in male and female subjects. PR and PRB were detected in the nuclei of cells in the female reproductive system, in both the nuclei and cytoplasm of pituitary gland and pancreatic acinar cells, and only in the cytoplasm of cells in the testis, stomach, small intestine, colon, liver, kidney, urinary bladder, lung, adrenal gland, and skin. Of particular interest, total PRB expression overlapped with that of total PR expression in most tissues but was negative in the female fetal reproductive system. The findings indicate that progesterone could affect diverse human organs differently than from reproductive organs. These findings provide new insights into the novel biological roles of progesterone in non-reproductive organs.
Collapse
Affiliation(s)
| | - Ryoko Saito
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dean P Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, USA
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
31
|
Pateetin P, Pisitkun T, McGowan E, Boonyaratanakornkit V. Differential quantitative proteomics reveals key proteins related to phenotypic changes of breast cancer cells expressing progesterone receptor A. J Steroid Biochem Mol Biol 2020; 198:105560. [PMID: 31809870 DOI: 10.1016/j.jsbmb.2019.105560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Progesterone receptor isoforms A and B exert different biological effects in breast cancer cells. Alteration of PRA/PRB ratio is often observed during breast cancer progression. High PRA/PRB ratios in breast cancer patients are associated with resistance to chemotherapy and poor prognosis. While it is well accepted that PRA and PRB regulate different sets of genes, how the expression of PRA and PRB alters breast cancer proteomes has not been fully investigated. To directly investigate the effects of PR isoform expression on the breast cancer proteome, both in the presence and absence of progestin, PRA and PRB were independently stably expressed in T47DC42 PR-null breast cancer cells using a doxycycline (Dox)-regulated promoter. Dox induction dose-dependently increased PRA and PRB expression. Dox-induced PRA and PRB showed normal receptor localization and were transcriptionally active. Differential quantitative proteomic analysis by stable isotope dimethyl labeling was performed to quantitatively examine how PR isoforms altered global breast cancer proteomes. Cells expressing PRA in the absence of progestin were enriched in proteins involved in the TCA cycle and enriched in proteins involved in glycolysis in the presence of progestin, whilst cells expressing PRB in the absence and presence progestin were significantly enriched in proteins involved in the cell cycle and cell apoptosis pathways. This proteomic data revealed a link between PR isoform expression and alteration in cell metabolism, cell proliferation, and apoptosis. The enrichment of proteins involved in the glycolytic pathway in breast cancer cells expressing PRA is consistent with stem cell-like properties, previously reported in PRA-rich breast cancer cells. Moreover, compared to liganded PRB, liganded PRA differentially upregulated proteins involved in chromatin remodeling, such as linker histone H1.2. Silencing H1.2 gene expression suppressed PRA-mediated cell proliferation and promoted G2/M and S phase entry of the cell cycle. Additionally, liganded PRA upregulated the expression of cathepsin D (CTSD) protease, whose expression is associated with poor prognosis in breast cancer patients. Together, our data demonstrated that the expression of PRA or PRB dramatically and differentially altered breast cancer cell proteomes. These isoform-specific changes in the breast cancer proteome will help to explain the distinct phenotypic properties of breast cancer cells expressing different levels of PRA and PRB.
Collapse
Affiliation(s)
- Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Bangkok 10330, Thailand
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast Cancer. Endocr Rev 2020; 41:5568276. [PMID: 31512725 PMCID: PMC7156851 DOI: 10.1210/endrev/bnz001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
Abstract
Synthetic progestogens (progestins) have been linked to increased breast cancer risk; however, the role of endogenous progesterone in breast physiology and carcinogenesis is less clearly defined. Mechanistic studies using cell culture, tissue culture, and preclinical models implicate progesterone in breast carcinogenesis. In contrast, limited epidemiologic data generally do not show an association of circulating progesterone levels with risk, and it is unclear whether this reflects methodologic limitations or a truly null relationship. Challenges related to defining the role of progesterone in breast physiology and neoplasia include: complex interactions with estrogens and other hormones (eg, androgens, prolactin, etc.), accounting for timing of blood collections for hormone measurements among cycling women, and limitations of assays to measure progesterone metabolites in blood and progesterone receptor isotypes (PRs) in tissues. Separating the individual effects of estrogens and progesterone is further complicated by the partial dependence of PR transcription on estrogen receptor (ER)α-mediated transcriptional events; indeed, interpreting the integrated interaction of the hormones may be more essential than isolating independent effects. Further, many of the actions of both estrogens and progesterone, particularly in "normal" breast tissues, are driven by paracrine mechanisms in which ligand binding to receptor-positive cells evokes secretion of factors that influence cell division of neighboring receptor-negative cells. Accordingly, blood and tissue levels may differ, and the latter are challenging to measure. Given conflicting data related to the potential role of progesterone in breast cancer etiology and interest in blocking progesterone action to prevent or treat breast cancer, we provide a review of the evidence that links progesterone to breast cancer risk and suggest future directions for filling current gaps in our knowledge.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Nagarajan Kannan
- Laboratory of Stem Cell and Cancer Biology, Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
33
|
New Selective Progesterone Receptor Modulators and Their Impact on the RANK/RANKL Complex Activity. Molecules 2020; 25:molecules25061321. [PMID: 32183159 PMCID: PMC7144723 DOI: 10.3390/molecules25061321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Breast cancer depends on women’s age. Its chemotherapy and hormone therapy lead to the loss of bone density and disruption of the skeleton. The proteins RANK and RANKL play a pivotal role in the formation of osteoclasts. It is also well established that the same proteins (RANK and RANKL) are the main molecules that play an important role in mammary stem cell biology. Mammary stem cells guarantee differentiation of the epithelial mammary cells, the growth of which is regulated by the progesterone-induced RANKL signaling pathway. The crosstalk between progesterone receptor, stimulated by progesterone and its analogues results in RANKL to RANK binding and activation of cell proliferation and subsequently unlimited expansion of the breast cancer cells. Therefore downstream regulation of this signaling pathway is desirable. To meet this need, a new class of selective estrogen receptor modulators (SPRMs) with anti- and mesoprogestin function were tested as potential anti-RANK agents. To establish the new feature of SPRMs, the impact of tested SPRMs on RANK-RANKL proteins interaction was tested. Furthermore, the cells proliferation upon RANKL stimulation, as well as NFkB and cyclin D1 expression, induced by tested SPRMs were analyzed. Conducted experiments proved NFkB expression inhibition as well as cyclin D1 expression limitation under asoprisnil and ulipristal treatment. The established paracrine anti-proliferative activity of antiprogestins together with competitive interaction with RANK make this class of compounds attractive for further study in order to deliver more evidence of their anti-RANK activity and potential application in the breast cancer therapy together with its accompanied osteoporosis.
Collapse
|
34
|
Cenciarini ME, Proietti CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids 2019; 152:108503. [PMID: 31562879 DOI: 10.1016/j.steroids.2019.108503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The ovarian steroid hormone progesterone and its nuclear receptor, the Progesterone Receptor (PR), play an essential role in the regulation of cell proliferation and differentiation in the mammary gland. In addition, experimental and clinical evidence demonstrate their critical role in controlling mammary gland tumorigenesis and breast cancer development. When bound to its ligand, the main action of PR is as a transcription factor, which regulates the expression of target genes networks. PR also activates signal transduction pathways through a rapid or non-genomic mechanism in breast cancer cells, an event that is fully integrated with its genomic effects. This review summarizes the molecular mechanisms of the ligand-activated PR actions that drive epithelial cell proliferation and the regulation of the stem cell population in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
35
|
Wang HC, Huo YN, Lee WS. Folic acid prevents the progesterone-promoted proliferation and migration in breast cancer cell lines. Eur J Nutr 2019; 59:2333-2344. [PMID: 31502059 DOI: 10.1007/s00394-019-02077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE We previously demonstrated that progesterone (P4) interacted with folic acid (FA) and abolished the FA-reduced endothelial cell proliferation and migration. These findings led us to investigate whether FA can interfere with the P4-promoted breast cancer cell proliferation and migration. METHODS We conducted MTT and wound healing assay to evaluate cell proliferation and migration, respectively. Western blot analysis and immunoprecipitation were performed to examine the protein expression and protein-protein interaction, respectively. RESULTS We demonstrated that P4 promoted proliferation and migration of breast cancer cell lines (T47D, MCF-7, BT474, and BT483). However, co-treatment with P4 and FA together abolished these promotion effects. Treatment with P4 alone increased the formation of PR-cSrc complex and the phosphorylation of cSrc at tyrosine 416 (Tyr416). However, co-treatment with P4 and FA together increased the formations of cSrc-p140Cap, cSrc-Csk, and cSrc-p-Csk complex, and the phosphorylation of cSrc at tyrosine 527 (Tyr527). Co-treatment with P4 and FA together also abolished the activation of cSrc-mediated signaling pathways involved in the P4-promoted breast cancer cell proliferation and migration. CONCLUSIONS Co-treatment with FA and P4 together abolished the P4-promoted breast cancer cell proliferation and migration through decreasing the formation of PR-cSrc complex and increasing the formations of cSrc-p140Cap and cSrc-Csk complex, subsequently activating Csk, which in turn suppressed the phosphorylation of cSrc at Tyr416 and increased the phosphorylation of cSrc at Tyr527, hence inactivating the cSrc-mediated signaling pathways. The findings from this study might provide a new strategy for preventing the P4-promoted breast cancer progress.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Fragni M, Fiorentini C, Rossini E, Fisogni S, Vezzoli S, Bonini SA, Dalmiglio C, Grisanti S, Tiberio GAM, Claps M, Cosentini D, Salvi V, Bosisio D, Terzolo M, Missale C, Facchetti F, Memo M, Berruti A, Sigala S. In vitro antitumor activity of progesterone in human adrenocortical carcinoma. Endocrine 2019; 63:592-601. [PMID: 30367443 DOI: 10.1007/s12020-018-1795-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The management of patients with adrenocortical carcinoma (ACC) is challenging. As mitotane and chemotherapy show limited efficacy, there is an urgent need to develop therapeutic approaches. The aim of this study was to investigate the antitumor activity of progesterone and explore the molecular mechanisms underlying its cytotoxic effects in the NCI-H295R cell line and primary cell cultures derived from ACC patients. METHODS Cell viability, cell cycle, and apoptosis were analyzed in untreated and progesterone-treated ACC cells. The ability of progesterone to affect the Wnt/β-catenin pathway in NCI-H295R cells was investigated by immunofluorescence. Progesterone and mitotane combination experiments were also performed to evaluate their interaction on NCI-H295R cell viability. RESULTS We demonstrated that progesterone exerted a concentration-dependent inhibition of ACC cell viability. Apoptosis was the main mechanism, as demonstrated by a significant increase of apoptosis and cleaved-Caspase-3 levels. Reduction of β-catenin nuclear translocation may contribute to the progesterone cytotoxic effect. The progesterone antineoplastic activity was synergically increased when mitotane was added to the cell culture medium. CONCLUSIONS Our results show that progesterone has antineoplastic activity in ACC cells. The synergistic cytotoxic activity of progesterone with mitotane provides the rationale for testing this combination in a clinical study.
Collapse
Affiliation(s)
- Martina Fragni
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simona Fisogni
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sara Vezzoli
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara A Bonini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Dalmiglio
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido A M Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Melanie Claps
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Salvi
- Section of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Section of Oncology and Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences University of Turin, Internal Medicine 1, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy.
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Truong TH, Lange CA. Deciphering Steroid Receptor Crosstalk in Hormone-Driven Cancers. Endocrinology 2018; 159:3897-3907. [PMID: 30307542 PMCID: PMC6236424 DOI: 10.1210/en.2018-00831] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Steroid hormone receptors (SRs) have a multitude of functions in human biology and disease progression. The SR family of related ligand-activated transcription factors includes androgen, estrogen, glucocorticoid, mineralocorticoid, and progesterone receptors. Antiestrogen or estrogen receptor (ER)-targeted therapies to block ER action remain the primary treatment of luminal breast cancers. Although this strategy is successful, ∼40% of patients eventually relapse due to endocrine resistance. The majority of hormone-independent tumors retain some level of SR expression, but sidestep hormone ablation treatments. SRs are known to crosstalk extensively with kinase signaling pathways, and this interplay has been shown to bypass ER-targeted therapies in part by providing alternative proliferation and survival signals that enable hormone independence. Modified receptors adopt alternate conformations that resist antagonism or promote agonism. SR-regulated transcription and SR-binding events have been classically studied as single receptor events using single hormones. However, it is becoming increasingly evident that individual steroids and SRs rarely act alone. Emerging evidence shows that coexpressed SRs crosstalk with each other in hormone-driven cancers, such as breast and prostate. Crosstalk between related SRs allows them to modulate signaling and transcriptional responses to noncognate ligands. This flexibility can lead to altered genomic binding and subsequent changes in SR target gene expression. This review will discuss recent mechanistic advances in elucidating SR crosstalk and the implications for treating hormone-driven cancers. Understanding this crosstalk (i.e., both opposing and collaborative) is a critical step toward expanding and modernizing endocrine therapies and will ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Wang HC, Lee WS. Molecular mechanisms underlying progesterone-induced cytoplasmic retention of p27 in breast cancer cells. J Steroid Biochem Mol Biol 2018; 183:202-209. [PMID: 29959971 DOI: 10.1016/j.jsbmb.2018.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
It has been reported that progesterone (P4) can contribute to the aggressiveness of human breast cancers through promoting cytoplasmic localization of p27 and stimulating proliferation. However, the molecular mechanisms underlying P4-induced cytoplasmic retention of p27 are still unclear. Here, we demonstrated that P4 (12.5-100 nM) concentration-dependently increased the number of T47D and MCF-7 cells. P4 (50 nM) also time-dependently increased the levels of p27 protein. Knock-down of p27 using the small interfering RNA (siRNA) technique abolished the P4-increased cell number of T47D and MCF-7. The signaling pathway involved in the P4-promoted breast cancer cell proliferation was further investigated. Our results suggest that P4 activated the PI3K/AKT-mediated signaling, subsequently increasing phophorylation of p27 at pT198 and T157, and thereby caused cytoplasmic retention of p27 protein. In addition, P4 activated kinase-interacting stathmin (KIS), subsequently increasing phosphorylation of nuclear p27 at serine 10 (S10), and thereby caused cytoplasmic translocation of p27pS10 from the nucleus. P4 also increased the level of nuclear CDK2pT160, thereby inducing p27 phosphorylation at T187, and hence caused cytosolic translocation of p27pT187 from the nucleus. In the cytosol, both p27pS10 and p27pT187 were degraded via the ubiquitin-proteasome pathway. Taken together, our data suggest that P4 promoted breast cancer cell proliferation through cytoplasmic retention of p27pT157 and p27pT198 and nuclear export of p27pS10 and p27pT187.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Cancer Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
39
|
Micevych PE, Sinchak K. Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Horm Behav 2018; 104:4-14. [PMID: 29753716 PMCID: PMC6240501 DOI: 10.1016/j.yhbeh.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Paul E Micevych
- Dept of Neurobiology, David Geffen School of Medicine at UCLA, Laboratory of Neuroendocrinology of the UCLA Brain Research Institute, United States
| | - Kevin Sinchak
- Dept of Biological Sciences, California State University, Long Beach, United States.
| |
Collapse
|
40
|
Yazdani S, Kasajima A, Onodera Y, McNamara KM, Ise K, Nakamura Y, Tachibana T, Motoi F, Unno M, Sasano H. Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm. J Steroid Biochem Mol Biol 2018; 178:243-253. [PMID: 29331723 DOI: 10.1016/j.jsbmb.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
In pancreatic neuroendocrine neoplasms (Pan-NEN) progesterone signaling has been shown to have both inhibitory and stimulatory effects on cell proliferation. The ability of progesterone to inhibit tumor proliferation is of particular interest and is suggested to be mediated through the less abundantly expressed progesterone receptor (PR) isoform A (PRA). To date the mechanistic processes underlying this inhibition of proliferation remain unclear. To examine the mechanism of PRA actions, the human Pan-NEN cell line QGP-1, that endogenously expresses PR isoform B (PRB) without PRA, was transfected with PRA. PRA transfection suppressed the majority of cell cycle related genes increased by progesterone including cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2). Importantly, following progesterone administration cell cycle distribution was shifted to S and G2/M phases in the naïve cell line but in PRA-transfected cells, this effect was suppressed. To see if these mechanistic insights were confirmed in patient samples PRA, PRB, CCNA2, CCNB, CDK1 and CDK2 immunoreactivities were assessed in Pan-NEN cases. Higher levels of cell cycle markers were associated with higher WHO grade tumors and correlations between the markers suggested formation of cyclin/CDK activated complexes in S and G2/M phases. PRA expression was associated with inverse correlation of all cell cycle markers. Collectively, these results indicate that progesterone signals through PRA negatively regulates cell cycle progression through suppressing S and G2/M phases and downregulation of cell cycle phases specific cyclins/CDKs.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Tachibana
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
41
|
Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, Skladanowski AC, Zaczek AJ, Biernat W, Kordek R, Romanska HM, Sadej R. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget 2018; 7:86011-86025. [PMID: 27852068 PMCID: PMC5349893 DOI: 10.18632/oncotarget.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023] Open
Abstract
We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(–) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(–) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa.
Collapse
Affiliation(s)
- Dominika Piasecka
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland.,Department of Pathology, Medical University of Lodz, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Dominika Czaplinska
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Kamil Mieczkowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Andrzej C Skladanowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Anna J Zaczek
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | | | | | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| |
Collapse
|
42
|
Smeester L, Martin EM, Cable P, Bodnar W, Boggess K, Vora NL, Fry RC. Toxic metals in amniotic fluid and altered gene expression in cell-free fetal RNA. Prenat Diagn 2017; 37:1364-1366. [PMID: 29111618 PMCID: PMC5766286 DOI: 10.1002/pd.5183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/09/2023]
Abstract
Both exposures to toxic metals, as well as deficiencies in essential metals, during pregnancy has been linked to a variety of negative reproductive outcomes. The exact etiologies of such outcomes and the effects of fetal exposure to these metals are largely unknown. Therefore, the ability to assess levels of these elements is critical to determining the underlying causes of such conditions and the effects that both essential and nonessential metals have on fetal development. Thus, using cell-free fetal RNA from amniotic fluid, we set out to measure the association between amniotic fluid levels of toxic and essential metals and fetal gene expression. We find that arsenic was associated with increased expression of 3 genes known to play roles in both birth-related and reproductive effects. The results highlight the potential for detrimental health effects of prenatal metals exposure and the potential to identify biomarkers of environmental exposure during this critical developmental period.
Collapse
Affiliation(s)
- Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Elizabeth M. Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Pete Cable
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| | - Kim Boggess
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Neeta L. Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
43
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
44
|
Actions of Steroids: New Neurotransmitters. J Neurosci 2017; 36:11449-11458. [PMID: 27911748 DOI: 10.1523/jneurosci.2473-16.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain.
Collapse
|
45
|
Mittelman-Smith MA, Wong AM, Micevych PE. Estrogen and Progesterone Integration in an in vitro Model of RP3V Kisspeptin Neurons. Neuroendocrinology 2017; 106:101-115. [PMID: 28384629 PMCID: PMC5750133 DOI: 10.1159/000471878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
Positive feedback on gonadotropin release requires not only estrogen but also progesterone to activate neural circuits. In rodents, ovarian estradiol (E2) stimulates progesterone synthesis in hypothalamic astrocytes (neuroP), needed for the luteinizing hormone (LH) surge. Kisspeptin (kiss) neurons are the principal stimulators of gonadotropin-releasing hormone neurons, and disruption of kiss signaling abrogates the LH surge. Similarly, blocking steroid synthesis in the hypothalamus or deleting classical progesterone receptor (PGR) selectively in kiss neurons prevents the LH surge. These results suggest a synergistic action of E2 and progesterone in kiss neurons to affect gonadotropin release. The mHypoA51, immortalized kiss-expressing neuronal cell line derived from adult female mice, is a tractable model for examining integration of steroid signaling underlying estrogen positive feedback. Here, we report that kiss neurons in vitro integrate E2 and progesterone signaling to increase levels of kiss translation and release. mHypoA51 neurons expressed nonclassical membrane progesterone receptors (mPRα and mPRβ) and E2-inducible PGR, required for progesterone-augmentation of E2-induced kiss expression. With astrocyte-conditioned media or in mHypoA51-astrocyte co-culture, neuroP augmented stimulatory effects of E2 on kiss protein. Progesterone activation of classical, membrane-localized PGR led to activation of MAPK and Src kinases. Importantly, progesterone or Src activation induced release of kiss from E2-primed mHypoA51 neurons. Consistent with previous studies, the present results provide compelling evidence that the interaction of E2 and progesterone stimulates kiss expression and release. Further, these results demonstrate a mechanism though which peripheral E2 may prime kiss neurons to respond to neuroP, mediating estrogen positive feedback.
Collapse
|
46
|
Ma J, Hong K, Wang HS. Progesterone Protects Against Bisphenol A-Induced Arrhythmias in Female Rat Cardiac Myocytes via Rapid Signaling. Endocrinology 2017; 158:778-790. [PMID: 28324061 PMCID: PMC5460806 DOI: 10.1210/en.2016-1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine-disrupting chemical (EDC) that has a range of potential adverse health effects. Previously we showed that acute exposure to BPA promoted arrhythmias in female rat hearts through estrogen receptor rapid signaling. Progesterone (P4) and estrogen have antagonistic or complementary actions in a number of tissues and systems. In the current study, we examined the influence and possible protective effect of P4 on the rapid cardiac actions of BPA in female rat cardiac myocytes. Preincubation with physiological concentration (1 nM) of P4 abolished BPA-induced triggered activities in female cardiac myocytes. Further, P4 abrogated BPA-induced alterations in Ca2+ handling, including elevated sarcoplasmic reticulum Ca2+ leak and Ca2+ load. Key to the inhibitory effect of P4 is its blockade of BPA-induced increase in the phosphorylation of phospholamban. At myocyte and protein levels, these inhibitory actions of P4 were blocked by pretreatment with the nuclear P4 receptor (nPR) antagonist RU486. Analysis using membrane-impermeable bovine serum albumin-conjugated P4 suggested that the actions of P4 were mediated by membrane-initiated signaling. Inhibitory G (Gi) protein and phophoinositide-3 kinase (PI3K), but not tyrosine protein kinase activation, were involved in the observed effects of P4. In conclusion, P4 exerts an acute protective effect against BPA-induced arrhythmogenesis in female cardiac myocytes through nPR and the Gi/PI3K signaling pathway. Our findings highlight the importance of considering the impact of EDCs in the context of native hormonals and may provide potential therapeutic strategies for protection against the cardiac toxicities associated with BPA exposure.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Kui Hong
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong-Sheng Wang
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
47
|
Mittelman-Smith MA, Rudolph LM, Mohr MA, Micevych PE. Rodent Models of Non-classical Progesterone Action Regulating Ovulation. Front Endocrinol (Lausanne) 2017; 8:165. [PMID: 28790975 PMCID: PMC5522857 DOI: 10.3389/fendo.2017.00165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4) can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components). This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.
Collapse
Affiliation(s)
- Melinda A. Mittelman-Smith
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Melinda A. Mittelman-Smith,
| | - Lauren M. Rudolph
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Margaret A. Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul E. Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, The Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Wang HC, Lee WS. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration. Sci Rep 2016; 6:31509. [PMID: 27510838 PMCID: PMC4980668 DOI: 10.1038/srep31509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022] Open
Abstract
Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Cancer Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
49
|
Grimm SL, Hartig SM, Edwards DP. Progesterone Receptor Signaling Mechanisms. J Mol Biol 2016; 428:3831-49. [PMID: 27380738 DOI: 10.1016/j.jmb.2016.06.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022]
Abstract
Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. This paper summarizes recent advances in understanding the structure-function properties of the receptor protein and the tissue/cell-type-specific PR signaling pathways that contribute to the biological actions of progesterone in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA.
| |
Collapse
|
50
|
Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD. Rapid steroid hormone actions via membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2289-98. [PMID: 27288742 DOI: 10.1016/j.bbamcr.2016.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Caroline B Bivens
- School of Art, Virginia Commonwealth University, Richmond, VA, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|