1
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Boura I, Poplawska-Domaszewicz K, Limbachiya N, Trivedi D, Batzu L, Chaudhuri KR. Prodromal Parkinson's Disease: A Snapshot of the Landscape. Neurol Clin 2025; 43:209-228. [PMID: 40185519 DOI: 10.1016/j.ncl.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Early observations of specific nonmotor and subtle motor symptoms preceding clinical diagnosis of Parkinson's disease (PD) have paved the way for prodromal PD research, significantly propelling our understanding of early, subclinical stages of neurodegeneration. Prodromal PD has emerged as a complex concept with some researchers suggesting that the period before PD onset is divided into the "at-risk," "preclinical," and "prodromal" phases. Advances in genetic, imaging, laboratory, and digital technologies have enabled the identification of pathophysiological patterns and the potential development of diagnostic, progressive, and therapeutic biomarkers, which could lead to early PD detection and intervention.
Collapse
Affiliation(s)
- Iro Boura
- School of Medicine, University of Crete, Heraklion, Greece; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Naomi Limbachiya
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Dhaval Trivedi
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lucia Batzu
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
3
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Niu J, Zhong Y, Xue L, Wang H, Hu D, Liao Y, Zhang X, Dou X, Yu C, Wang B, Sun Y, Tian M, Zhang H, Wang J. Spatial-temporal dynamic evolution of lewy body dementia by metabolic PET imaging. Eur J Nucl Med Mol Imaging 2024; 52:145-157. [PMID: 39155308 DOI: 10.1007/s00259-024-06881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Lewy body dementia (LBD) is a neurodegenerative disease with high heterogeneity and complex pathogenesis. Our study aimed to use disease progression modeling to uncover spatial-temporal dynamic evolution of LBD in vivo, and to explore differential profiles of clinical features, glucose metabolism, and dopaminergic function among different evolution-related subtypes. METHODS A total of 123 participants (31 healthy controls and 92 LBD patients) who underwent 18F-FDG PET scans were retrospectively enrolled. 18F-FDG PET-based Subtype and Stage Inference (SuStaIn) model was established to illustrate spatial-temporal evolutionary patterns and categorize relevant subtypes. Then subtypes and stages were further related to clinical features, glucose metabolism, and dopaminergic function of LBD patients. RESULTS This 18F-FDG PET imaging-based approach illustrated two distinct patterns of neurodegenerative evolution originating from the neocortex and basal ganglia in LBD and defined them as subtype 1 and subtype 2, respectively. There were obvious differences between subtypes. Compared with subtype 1, subtype 2 exhibited a greater proportion of male patients (P = 0.045) and positive symptoms such as visual hallucinations (P = 0.033) and fluctuating cognitions (P = 0.033). Cognitive impairment, metabolic abnormalities, dopaminergic dysfunction and progression were all more severe in subtype 2 (all P < 0.05). In addition, a strong association was observed between SuStaIn subtypes and two clinical phenotypes (Parkinson's disease dementia and dementia with Lewy bodies) (P = 0.005). CONCLUSIONS Our findings based on 18F-FDG PET and data-driven model illustrated spatial-temporal dynamic evolution of LBD and categorized novel subtypes with different evolutionary patterns, clinical and imaging features in vivo. The evolution-related subtypes are associated with LBD clinical phenotypes, which supports the perspective of existence of distinct entities in LBD spectrum.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| | - Le Xue
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China
| | - Haotian Wang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Daoyan Hu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China
| | - Yi Liao
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaofeng Dou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Congcong Yu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yuan Sun
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310014, China.
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
5
|
Jensen NM, Fu Y, Betzer C, Li H, Elfarrash S, Shaib AH, Krah D, Vitic Z, Reimer L, Gram H, Buchman V, Denham M, Rizzoli SO, Halliday GM, Jensen PH. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. NPJ Parkinsons Dis 2024; 10:227. [PMID: 39613827 DOI: 10.1038/s41531-024-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
α-Synuclein proximity ligation assay (PLA) has proved a sensitive technique for detection of non-Lewy body α-synuclein aggregate pathology. Here, we describe the MJF-14 PLA, a new PLA towards aggregated α-synuclein with unprecedented specificity, using the aggregate-selective α-synuclein antibody MJFR-14-6-4-2 (hereafter MJF-14). Signal in the assay correlates with α-synuclein aggregation in cell culture and human neurons, induced by α-synuclein overexpression or pre-formed fibrils. Co-labelling of MJF-14 PLA and pS129-α-synuclein immunofluorescence in post-mortem cases of dementia with Lewy bodies shows that while the MJF-14 PLA reveals extensive non-inclusion pathology, it is not sensitive towards pS129-α-synuclein-positive Lewy bodies. In Parkinson's disease brain, direct comparison of PLA and immunohistochemistry with the MJF-14 antibody shows widespread α-synuclein pathology preceding the formation of conventional Lewy pathology. In conclusion, we introduce an improved α-synuclein aggregate PLA to uncover abundant non-inclusion pathology, which deserves future validation with brain bank resources and in different synucleinopathies.
Collapse
Affiliation(s)
- Nanna Møller Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sara Elfarrash
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali H Shaib
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Donatus Krah
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Zagorka Vitic
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse Reimer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hjalte Gram
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Mark Denham
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Neuroscience Research Australia & Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
6
|
Paulėkas E, Vanagas T, Lagunavičius S, Pajėdienė E, Petrikonis K, Rastenytė D. Navigating the Neurobiology of Parkinson's: The Impact and Potential of α-Synuclein. Biomedicines 2024; 12:2121. [PMID: 39335634 PMCID: PMC11429448 DOI: 10.3390/biomedicines12092121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide; therefore, since its initial description, significant progress has been made, yet a mystery remains regarding its pathogenesis and elusive root cause. The widespread distribution of pathological α-synuclein (αSyn) aggregates throughout the body raises inquiries regarding the etiology, which has prompted several hypotheses, with the most prominent one being αSyn-associated proteinopathy. The identification of αSyn protein within Lewy bodies, coupled with genetic evidence linking αSyn locus duplication, triplication, as well as point mutations to familial Parkinson's disease, has underscored the significance of αSyn in initiating and propagating Lewy body pathology throughout the brain. In monogenic and sporadic PD, the presence of early inflammation and synaptic dysfunction leads to αSyn aggregation and neuronal death through mitochondrial, lysosomal, and endosomal functional impairment. However, much remains to be understood about αSyn pathogenesis, which is heavily grounded in biomarkers and treatment strategies. In this review, we provide emerging new evidence on the current knowledge about αSyn's pathophysiological impact on PD, and its presumable role as a specific disease biomarker or main target of disease-modifying therapies, highlighting that this understanding today offers the best potential of disease-modifying therapy in the near future.
Collapse
Affiliation(s)
- Erlandas Paulėkas
- Department of Neurology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (T.V.); (S.L.); (E.P.); (K.P.); (D.R.)
| | | | | | | | | | | |
Collapse
|
7
|
Freuchet A, Pinçon A, Sette A, Lindestam Arlehamn CS. Inflammation and heterogeneity in synucleinopathies. Front Immunol 2024; 15:1432342. [PMID: 39281666 PMCID: PMC11392857 DOI: 10.3389/fimmu.2024.1432342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Neurodegenerative diseases represent a huge healthcare challenge which is predicted to increase with an aging population. Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), present complex challenges in understanding their onset and progression. They are characterized by the abnormal aggregation of α-synuclein in the brain leading to neurodegeneration. Accumulating evidence supports the existence of distinct subtypes based on the site of α-synuclein aggregation initiation, genetics, and, more recently, neuroinflammation. Mediated by both central nervous system-resident cells, peripheral immune cells, and gut dysbiosis, neuroinflammation appears as a key process in the onset and progression of neuronal loss. Sex-based differences add another layer of complexity to synucleinopathies, influencing disease prevalence - with a known higher incidence of PD in males compared to females - as well as phenotype and immune responses. Biological sex affects neuroinflammatory pathways and the immune response, suggesting the need for sex-specific therapeutic strategies and biomarker identification. Here, we review the heterogeneity of synucleinopathies, describing the etiology, the mechanisms by which the inflammatory processes contribute to the pathology, and the consideration of sex-based differences to highlight the need for personalized therapeutics.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anaëlle Pinçon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Master de Biologie, Ecole Normale Superieure de Lyon, University of Lyon, Lyon, France
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
8
|
Baiardi S, Hansson O, Levin J, Parchi P. In vivo detection of Alzheimer's and Lewy body disease concurrence: Clinical implications and future perspectives. Alzheimers Dement 2024; 20:5757-5770. [PMID: 38955137 PMCID: PMC11350051 DOI: 10.1002/alz.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The recent introduction of seed amplification assays (SAAs) detecting misfolded α-synuclein, a pathology-specific marker for Lewy body disease (LBD), has allowed the in vivo identification and phenotypic characterization of patients with co-occurring Alzheimer's disease (AD) and LBD since the early clinical or even preclinical stage. METHODS We reviewed studies with an in vivo biomarker-based diagnosis of AD-LBD copathology. RESULTS Studies in large cohorts of cognitively impaired individuals have shown that cerebrospinal fluid (CSF) biomarkers detect the coexistence of AD and LB pathology in approximately 20%-25% of them, independently of the primary clinical diagnosis. Compared to those with pure AD, AD-LBD patients showed worse global cognition, especially in attentive/executive and visuospatial functions, and worse motor functions. In cognitively unimpaired individuals, concurrent AD-LBD pathologies predicted longitudinal cognitive progression with faster worsening of global cognition, memory, and attentive/executive functions. DISCUSSION Future research studies aiming for a better precision medicine approach should develop SAAs further to reach a quantitative evaluation or staging of each underlying pathology using a single biofluid sample. HIGHLIGHTS α-Synuclein seed amplification assays (SAAs) provide a specific marker for Lewy body disease (LBD). SAAs allow for the in vivo identification of co-occurring LBD in patients with Alzheimer's disease (AD). AD-LBD coexist in 20-25% of cognitively impaired elderly individuals, and ∼8% of those asymptomatic. Compared to pure AD, AD-LBD causes a faster worsening of cognitive functions. AD-LBD is associated with worse attentive/executive, memory, visuospatial and motor functions.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöFaculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Piero Parchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| |
Collapse
|
9
|
Seelarbokus BA, Menozzi E, Schapira AHV, Kalea AZ, Macnaughtan J. Mediterranean Diet Adherence, Gut Microbiota and Parkinson's Disease: A Systematic Review. Nutrients 2024; 16:2181. [PMID: 39064625 PMCID: PMC11280252 DOI: 10.3390/nu16142181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND There is mounting evidence to suggest that high adherence to the Mediterranean diet (MedDiet) may reduce the risk of age-related diseases, including Parkinson's disease (PD). However, evidence for the role of the MedDiet in the relief of motor and non-motor symptoms in patients with PD remains limited and inconclusive. We provide a systematic review of the effects of the MedDiet on the clinical features of PD using data from randomised controlled trials (RCT) and prospective observational studies. METHODS We searched MEDLINE, EMCare, EMBASE, Scopus and PubMed from inception until June 2023. Reference lists and the grey literature were also searched. Human studies with no restriction on language or publication date, examining associations between MedDiet adherence and the symptoms of PD, were included. We employed standard methodological procedures for data extraction and evidence synthesis and used the Quality Criteria Checklist for assessing the studies included. RESULTS Four studies from three unique cohorts, including two observational studies (n = 1213) and one RCT (n = 70), met the inclusion criteria. Despite the short study duration reported in all included reports, high MedDiet adherence was associated with changes in the gut microbiota (e.g., increased abundance of short-chain fatty acids producers). These outcomes correlated with a significant improvement in several non-motor symptoms including cognitive dysfunction, dyspepsia and constipation. However, there were no significant changes in diarrhoea, gastrointestinal reflux, abdominal pain and motor symptoms. CONCLUSION High MedDiet adherence may be associated with significant improvement in global cognition and several gastrointestinal symptoms, possibly associated to changes in gut microbiota composition. Further studies are warranted to clarify potential cause-and-effect relationships and to elucidate MedDiet impact on motor symptoms.
Collapse
Affiliation(s)
- Bibi Aliya Seelarbokus
- Division of Medicine, University College London (UCL), London WC1E 6JF, UK; (B.A.S.); (A.H.V.S.)
| | - Elisa Menozzi
- Division of Medicine, University College London (UCL), London WC1E 6JF, UK; (B.A.S.); (A.H.V.S.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H. V. Schapira
- Division of Medicine, University College London (UCL), London WC1E 6JF, UK; (B.A.S.); (A.H.V.S.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anastasia Z. Kalea
- Division of Medicine, University College London (UCL), London WC1E 6JF, UK; (B.A.S.); (A.H.V.S.)
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London WC1E 6JF, UK
| |
Collapse
|
10
|
Adler CH, Halverson M, Zhang N, Shill HA, Driver-Dunckley E, Mehta SH, Atri A, Caviness JN, Serrano GE, Shprecher DR, Belden CM, Sabbagh MN, Long K, Beach TG. Conjugal Synucleinopathies: A Clinicopathologic Study. Mov Disord 2024; 39:1212-1217. [PMID: 38597193 PMCID: PMC11260251 DOI: 10.1002/mds.29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND While preclinical studies have shown that alpha-synuclein can spread through cell-to-cell transmission whether it can be transmitted between humans is unknown. OBJECTIVES The aim was to assess the presence of a synucleinopathy in autopsied conjugal couples. METHODS Neuropathological findings in conjugal couples were categorized as Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease with Lewy bodies (ADLB), incidental Lewy body disease (ILBD), or no Lewy bodies. RESULTS Ninety conjugal couples were included; the mean age of death was 88.3 years; 32 couples had no Lewy bodies; 42 couples had 1 spouse with a synucleinopathy: 10 PD, 3 DLB, 13 ADLB, and 16 ILBD; 16 couples had both spouses with a synucleinopathy: in 4 couples both spouses had PD, 1 couple had PD and DLB, 4 couples had PD and ADLB, 2 couples had PD and ILBD, 1 couple had DLB and ADLB, in 3 couples both had ADLB, and 1 couple had ADLB and ILBD. No couples had both spouses with ILBD. CONCLUSIONS This large series of 90 autopsied conjugal couples found 16 conjugal couples with synucleinopathies, suggesting transmission of synucleinopathy between spouses is unlikely. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles H. Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Nan Zhang
- Department of Biostatistics, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | | | - Alireza Atri
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | - Kathy Long
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ
| |
Collapse
|
11
|
Kok EH, Paetau A, Martiskainen M, Lyytikäinen LP, Lehtimäki T, Karhunen P, Myllykangas L. Accumulation of Lewy-Related Pathology Starts in Middle Age: The Tampere Sudden Death Study. Ann Neurol 2024; 95:843-848. [PMID: 38501694 DOI: 10.1002/ana.26912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
When effective treatments against neurodegenerative diseases become a reality, it will be important to know the age these pathologies begin to develop. We investigated alpha-synuclein pathology in brain tissue of the Tampere Sudden Death Study-unselected forensic autopsies on individuals living outside hospital institutions in Finland. Of 562 (16-95 years) participants, 42 were positive for Lewy-related pathology (LRP). The youngest LRP case was aged 54 years, and the frequency of LRP in individuals aged ≥50 years was 9%. This forensic autopsy study indicates LRP starts already in middle age and is more common than expected in the ≥50 years-of-age non-hospitalized population. ANN NEUROL 2024;95:843-848.
Collapse
Affiliation(s)
- Eloise H Kok
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mika Martiskainen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Institute for Health and Welfare, Government Services, Forensic Medicine Unit, Helsinki, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Pekka Karhunen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced Spine Stability and Survival Lead to Increases in Dendritic Spine Density as an Early Response to Local Alpha-Synuclein Overexpression in Mouse Prefrontal Cortex. Cell Mol Neurobiol 2024; 44:42. [PMID: 38668880 PMCID: PMC11052719 DOI: 10.1007/s10571-024-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Rachel Cole
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | | | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Akash Pradeep
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Emma Bagnall
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Georgina M Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Ishiguro Y, Tsunemi T, Shimada T, Yoroisaka A, Ueno SI, Takeshige-Amano H, Hatano T, Inoue Y, Saiki S, Hattori N. Extracellular vesicles contain filamentous alpha-synuclein and facilitate the propagation of Parkinson's pathology. Biochem Biophys Res Commun 2024; 703:149620. [PMID: 38359614 DOI: 10.1016/j.bbrc.2024.149620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Parkinson's disease (PD) is characterized by the pathological deposition of a-synuclein (a-syn) inclusions, known as Lewy bodies/neurites. Emerging evidence suggests that extracellular vesicles (EVs) play a role in facilitating the spreading of Lewy pathology between the peripheral nervous system and the central nervous system. We analyzed serum EVs obtained from patients with PD (n = 142), multiple system atrophy (MSA) (n = 18), progressive supranuclear palsy (PSP) (n = 28), rapid eye movement sleep behavior disorder (n = 31), and controls (n = 105). While we observed a significant reduction in the number of EVs in PD compared to controls (p = 0.006), we also noted a substantial increase in filamentous α-synuclein within EVs in PD compared to controls (p < 0.0001), MSA (0.012), and PSP (p = 0.03). Further analysis unveiled the role of EVs in facilitating the transmission of filamentous α-synuclein between neurons and from peripheral blood to the CNS. These findings highlight the potential utility of serum α-synuclein filaments within EVs as diagnostic markers for synucleinopathies and underscore the significance of EVs in promoting the dissemination of filamentous α-synuclein throughout the entire body.
Collapse
Affiliation(s)
- Yuta Ishiguro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taiji Tsunemi
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Neurology, Koto Hospital, 6-8-5 Ojima, Koto-ku, Tokyo, 136-0072, Japan.
| | - Tomoyo Shimada
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Asako Yoroisaka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Shinji Saiki
- Department of Neurology Faculty of Medicine, University of Tsukuba, 2-1-1 Tenkubo, Tsukuba-shi, Ibaragi, 305-8576, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
14
|
Čepukaitytė G, Newton C, Chan D. Early detection of diseases causing dementia using digital navigation and gait measures: A systematic review of evidence. Alzheimers Dement 2024; 20:3054-3073. [PMID: 38425234 PMCID: PMC11032572 DOI: 10.1002/alz.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Wearable digital technologies capable of measuring everyday behaviors could improve the early detection of dementia-causing diseases. We conducted two systematic reviews following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to establish the evidence base for measuring navigation and gait, two everyday behaviors affected early in AD and non-AD disorders and not adequately measured in current practice. PubMed and Web of Science databases were searched for studies on asymptomatic and early-stage symptomatic individuals at risk of dementia, with the Newcastle-Ottawa Scale used to assess bias and evaluate methodological quality. Of 316 navigation and 2086 gait records identified, 27 and 83, respectively, were included in the final sample. We highlight several measures that may identify at-risk individuals, whose quantifiability with different devices mitigates the risk of future technological obsolescence. Beyond navigation and gait, this review also provides the framework for evaluating the evidence base for future digital measures of behaviors considered for early disease detection.
Collapse
|
15
|
Brash-Arias D, García LI, Pérez-Estudillo CA, Rojas-Durán F, Aranda-Abreu GE, Herrera-Covarrubias D, Chi-Castañeda D. The Role of Astrocytes and Alpha-Synuclein in Parkinson's Disease: A Review. NEUROSCI 2024; 5:71-86. [PMID: 39483813 PMCID: PMC11523690 DOI: 10.3390/neurosci5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
The search for new therapies to reduce symptoms and find a cure for Parkinson's disease has focused attention on two key points: the accumulation of alpha-synuclein aggregates and astrocytes. The former is a hallmark of the disease, while the latter corresponds to a type of glial cell with an important role in both the prevention and development of this neurodegenerative disorder. Traditionally, research has focused on therapies targeting dopaminergic neurons. Currently, as more is known about the genetic and molecular factors and the neuroglial interaction in the disease, great emphasis has been placed on the neuroprotective role of astrocytes in the early stages of the disease and on the astrocytic capture of alpha-synuclein under both physiological and pathological conditions. This review aims to analyze the contribution of alpha-synuclein and astrocytes to the development and progression of Parkinson's disease, as well as to evaluate recent therapeutic proposals specifically focused on synucleopathies and astroglial cells as potential therapies for the disease.
Collapse
Affiliation(s)
- David Brash-Arias
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico;
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | | | - Donaji Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
16
|
Bentivenga GM, Mammana A, Baiardi S, Rossi M, Ticca A, Magliocchetti F, Mastrangelo A, Poleggi A, Ladogana A, Capellari S, Parchi P. Performance of a seed amplification assay for misfolded alpha-synuclein in cerebrospinal fluid and brain tissue in relation to Lewy body disease stage and pathology burden. Acta Neuropathol 2024; 147:18. [PMID: 38240849 PMCID: PMC10799141 DOI: 10.1007/s00401-023-02663-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
The development of in vitro seed amplification assays (SAA) detecting misfolded alpha-synuclein (αSyn) in cerebrospinal fluid (CSF) and other tissues has provided a pathology-specific biomarker for Lewy body disease (LBD). However, αSyn SAA diagnostic performance in early pathological stages or low Lewy body (LB) pathology load has only been assessed in small cohorts. Moreover, the relationship between SAA kinetic parameters, the number of αSyn brain seeds and the LB pathology burden assessed by immunohistochemistry has never been systematically investigated. We tested 269 antemortem CSF samples and 138 serially diluted brain homogenates from patients with and without neuropathological evidence of LBD in different stages by the αSyn Real-Time Quaking-Induced Conversion (RT-QuIC) SAA. Moreover, we looked for LB pathology by αSyn immunohistochemistry in a consecutive series of 604 Creutzfeldt-Jakob disease (CJD)-affected brains. αSyn CSF RT-QuIC showed 100% sensitivity in detecting LBD in limbic and neocortical stages. The assay sensitivity was significantly lower in patients in early stages (37.5% in Braak 1 and 2, 73.3% in Braak 3) or with focal pathology (50% in amygdala-predominant). The average number of CSF RT-QuIC positive replicates significantly correlated with LBD stage. Brain homogenate RT-QuIC showed higher sensitivity than immunohistochemistry for the detection of misfolded αSyn. In the latter, the kinetic parameter lag phase (time to reach the positive threshold) strongly correlated with the αSyn seed concentration in serial dilution experiments. Finally, incidental LBD prevalence was 8% in the CJD cohort. The present results indicate that (a) CSF RT-QuIC has high specificity and sufficient sensitivity to detect all patients with LB pathology at Braak stages > 3 and most of those at stage 3; (b) brain deposition of misfolded αSyn precedes the formation of LB and Lewy neurites; (c) αSyn SAA provides "quantitative" information regarding the LB pathology burden, with the lag phase and the number of positive replicates being the most promising variables to be used in the clinical setting.
Collapse
Affiliation(s)
| | - Angela Mammana
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Merrick R, Brayne C. Sex Differences in Dementia, Cognition, and Health in the Cognitive Function and Ageing Studies (CFAS). J Alzheimers Dis 2024; 100:S3-S12. [PMID: 39121118 DOI: 10.3233/jad-240358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background There is renewed interest in whether sex differences in dementia risk exist, and what influence social and biological factors have. Objective To review evidence from the Cognitive Function and Ageing Studies (CFAS), a multi-center population-representative cohort study in the UK; focusing on dementia and cognition, incorporating findings on participants' health and social circumstances. Methods After identifying all CFAS publications, the results of all sex-stratified primary analyses of CFAS data were narratively reviewed. Results Of 337 publications, 94 report results by sex (including null findings), which are summarized by theme: dementia epidemiology, cognition, mental health, health expectancy, social context and biological resource (including neuropathology). Conclusions Where differences are found they most commonly favor men; however, greater mortality in men may confound associations with age-related outcomes. This 'survival bias' may explain findings of greater risk of dementia and faster cognitive decline in women. Age-specific dementia incidence was similar between sexes, although reduced incidence across study generations was more pronounced in men. Mood disorders were more prevalent in women, but adjusting for disability and deprivation attenuated the association. Prominent findings from other cohorts that women have more Alzheimer's disease pathology and greater risk of dementia from the Apolipoprotein E ɛ4 allele were not observed, warranting further investigation. The 'male-female health-survival paradox' is demonstrated whereby women live longer but with more comorbidity and disability. Examining why health expectancies changed differently over two decades for each sex (interacting with deprivation) may inform population interventions to improve cognitive, mental and physical health in later life.
Collapse
Affiliation(s)
- Richard Merrick
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Yamamoto R, Takenoshita N, Inagawa Y, Kato H, Kaneshiro K, Kamiya T, Inagawa S, Saisho A, Tsugawa A, Mastumoto Y, Yoshimura M, Saito K, Shimizu S, Sato T. Association between longitudinal changes in striatal dopamine transporter uptake and clinical features of dementia with Lewy bodies. Psychogeriatrics 2023; 23:1036-1042. [PMID: 37726104 DOI: 10.1111/psyg.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND It is widely known that there is low striatal 123 I-2β-Carbomethoxy-3β-(4-iodophenyl)-N-(3- fluoropropyl) nortropane (123 I-FP-CIT) dopamine transporter single photon emission tomography (DaT-SPECT) uptake in patients with dementia with Lewy bodies (DLB). No studies to date have analyzed the association between longitudinal changes of clinical features and DaT uptake in patients with Parkinson syndrome, particularly those with DLB. The aim of this study was to investigate the association between the longitudinal changes in DaT uptake and the severity of parkinsonism and cognitive function in DLB patients. METHODS A total of 35 outpatients with probable DLB who underwent DaT-SPECT twice (at the initial examination and the follow-up period) in the Memory Disorder Clinic at the Department of Geriatric Medicine, Tokyo Medical University, were enrolled in this study between April 2014 and September 2020. The correlation between annual changes in DaT uptake and clinical features (cognitive function decline and parkinsonism) of the patients was analyzed. RESULTS A significant correlation was detected between annual changes in parkinsonism symptom severity and DaT uptake in the left posterior putamen (r = -0.39, P = 0.03), and between Mini-Mental State Examination scores and DaT uptake in all regions except the right posterior putamen (P < 0.05) in patients with DLB. CONCLUSIONS Our results suggested that the pathway from the ventrolateral tier of the substantia nigra to the putamen might be more crucial for motor function than other pathways, not only in Parkinson's disease but also in DLB.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yuta Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hikaru Kato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Kyoko Kaneshiro
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomoki Kamiya
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shoya Inagawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Aya Saisho
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yukari Mastumoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Mana Yoshimura
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Sato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced spine stability and survival lead to increases in dendritic spine density as an early response to local alpha-synuclein overexpression in mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559765. [PMID: 37808820 PMCID: PMC10557684 DOI: 10.1101/2023.09.28.559765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. Patients with LBDs develop cognitive changes, including abnormalities in executive function, attention, hallucinations, slowed processing, and cognitive fluctuations. The causes of these non-motor symptoms remain unclear; however, accumulation of alpha-Synuclein aggregates in the cortex and subsequent interference of synaptic and cellular function could contribute to psychiatric and cognitive symptoms. It is unknown how the cortex responds to local pathology in the absence of significant secondary effects of alpha-Synuclein pathology in the brainstem. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1-2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
|
20
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
21
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Carceles-Cordon M, Weintraub D, Chen-Plotkin AS. Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron 2023; 111:1531-1546. [PMID: 37028431 PMCID: PMC10198897 DOI: 10.1016/j.neuron.2023.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Cognitive impairment occurs in most individuals with Parkinson's disease (PD), exacting a high toll on patients, their caregivers, and the healthcare system. In this review, we begin by summarizing the current clinical landscape surrounding cognition in PD. We then discuss how cognitive impairment and dementia may develop in PD based on the spread of the pathological protein alpha-synuclein (aSyn) from neurons in brainstem regions to those in the cortical regions of the brain responsible for higher cognitive functions, as first proposed in the Braak hypothesis. We appraise the Braak hypothesis from molecular (conformations of aSyn), cell biological (cell-to-cell spread of pathological aSyn), and organ-level (region-to-region spread of aSyn pathology at the whole brain level) viewpoints. Finally, we argue that individual host factors may be the most poorly understood aspect of this pathological process, accounting for substantial heterogeneity in the pattern and pace of cognitive decline in PD.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
24
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
25
|
Louis ED, Iglesias-Hernandez D, Hernandez NC, Flowers X, Kuo SH, Vonsattel JPG, Faust PL. Characterizing Lewy Pathology in 231 Essential Tremor Brains From the Essential Tremor Centralized Brain Repository. J Neuropathol Exp Neurol 2022; 81:796-806. [PMID: 35950950 PMCID: PMC9487643 DOI: 10.1093/jnen/nlac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Essential Tremor Centralized Brain Repository is the largest repository of prospectively collected essential tremor (ET) brains (n = 231). Hence, we are uniquely poised to address several questions: What proportion of ET cases has Lewy pathology (LP)? What is the nature of that pathology and how does it relate to other comorbidities? Each brain had a complete neuropathological assessment, including α-synuclein immunostaining. We created a 10-category classification scheme to fully encapsulate the patterns of LP observed. Four metrics of cerebellar pathology were also quantified. Mean age at death = 89.0 ± 6.4 years. Fifty-eight (25.1%) had LP and 46 (19.9%) had early to late stages of Parkinson disease (PD). LP was very heterogeneous. Of 58 cases with LP, 14 (24.1%) clinically developed possible PD or PD after a latency of 5 or more years. There was a similar degree of cerebellar pathology in ET cases both with and without LP. In summary, 1 in 4 ET cases had LP-a proportion that seems higher than expected based on studies among control populations. Heterogeneous LP likely reflects clinical associations between ET and PD, and ET with Alzheimer disease-type neuropathology. These data further our understanding of ET and its relatedness to other degenerative diseases.
Collapse
Affiliation(s)
- Elan D Louis
- From the Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | | | - Nora C Hernandez
- From the Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jean Paul G Vonsattel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
26
|
Sekiya H, Tsuji A, Hashimoto Y, Takata M, Koga S, Nishida K, Futamura N, Kawamoto M, Kohara N, Dickson DW, Kowa H, Toda T. Discrepancy between distribution of alpha-synuclein oligomers and Lewy-related pathology in Parkinson's disease. Acta Neuropathol Commun 2022; 10:133. [PMID: 36068646 PMCID: PMC9450240 DOI: 10.1186/s40478-022-01440-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The pathological hallmarks of Parkinson’s disease (PD) are α-synuclein (αSYN)-positive inclusions referred to as Lewy bodies and Lewy neurites, collectively referred to as Lewy-related pathology (LRP). LRP is thought to propagate in an ascending manner throughout the brain as the disease progresses. LRP is visible with histologic methods and is thought to represent a later stage of the disease process, while αSYN oligomers, which are not visible with routine histologic methods, are considered earlier. There is increasing evidence to suggest that αSYN oligomers may be more toxic than visible LRP. Detecting αSYN oligomers requires special techniques, and their distribution and association with clinical features are important research objectives. In this report, we describe the distribution of αSYN oligomers in multiple cortical and subcortical regions of PD using a proximity ligation assay (PLA). We observe widespread distribution of αSYN oligomers with PLA and more restricted distribution of LRP with αSYN immunohistochemistry. The distribution of αSYN oligomers differed from LRP in that αSYN oligomer burden was significantly greater in the neocortex, while LRP was greater in vulnerable subcortical regions, including the brainstem. We also found that cognitive impairment was associated with αSYN oligomers in the hippocampus. These results suggest that αSYN oligomers may be widely distributed in PD early in the disease process and that they may contribute to cognitive impairment in PD.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. .,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan. .,Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Asato Tsuji
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuki Hashimoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mariko Takata
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Hyogo, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Hyogo, Japan
| | - Michi Kawamoto
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Nobuo Kohara
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hisatomo Kowa
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan. .,Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
27
|
Chung EJ, Cho HJ, Hur DY, Kim YS, Lee KH, Kim SJ. One Autopsy Proved Neocortical Lewy Body Disease Without the Involvement of the Olfactory Bulb and Brainstem. J Korean Med Sci 2022; 37:e195. [PMID: 35698841 PMCID: PMC9194488 DOI: 10.3346/jkms.2022.37.e195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
Lewy bodies (LBs) and Lewy neurites (LNs) are pathological hallmarks of Parkinson's disease (PD) or dementia with LBs (DLB). Incidental Lewy body disease (iLBD) is defined when LBs and LNs are found in the brain of normal elderly individuals. A 65-year-old man presented with autopsy-proven Lewy body pathology (LBP). He had never complained of cognitive impairments or parkinsonian motor symptoms, and he had always maintained independence in activities of daily living. Hypopigmentations in the locus coeruleus and substantia nigra were discovered during the autopsy. The patient showed severe-to-extremely severe LBs in the neocortex and limbic areas, except in the nucleus basalis of Meynert, amygdala, and brainstem, according to microscopic findings. Hence, using several of the previously known staging systems, it was difficult to classify the patient's LBP type. Furthermore, these findings were unique because they had never been observed before in iLBD.
Collapse
Affiliation(s)
- Eun Joo Chung
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan, Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hwa Jin Cho
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Dae Young Hur
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Anatomy, Inje University College of Medicine, Busan, Korea
| | - Yeong Seok Kim
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Department of Anatomy, Inje University College of Medicine, Busan, Korea
| | - Kyung-Hwa Lee
- Chonnam National University Hospital Brain Bank, Gwangju, Korea
- Department of Pathology, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea.
| | - Sang Jin Kim
- Inje University Busan Paik Hospital Brain Bank, Busan, Korea
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan, Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
28
|
Nuzum ND, Loughman A, Szymlek-Gay EA, Teo WP, Hendy AM, Macpherson H. To the Gut Microbiome and Beyond: The Brain-First or Body-First Hypothesis in Parkinson's Disease. Front Microbiol 2022; 13:791213. [PMID: 35432226 PMCID: PMC9005966 DOI: 10.3389/fmicb.2022.791213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
There is continued debate regarding Parkinson’s disease etiology and whether it originates in the brain or begins in the gut. Recently, evidence has been provided for both, with Parkinson’s disease onset presenting as either a “body-first” or “brain-first” progression. Most research indicates those with Parkinson’s disease have an altered gut microbiome compared to controls. However, some studies do not report gut microbiome differences, potentially due to the brain or body-first progression type. Based on the etiology of each proposed progression, individuals with the body-first progression may exhibit altered gut microbiomes, i.e., where short-chain fatty acid producing bacteria are reduced, while the brain-first progression may not. Future microbiome research should consider this hypothesis and investigate whether gut microbiome differences exist between each type of progression. This may further elucidate the impact of the gut microbiome in Parkinson’s disease and show how it may not be homogenous across individuals with Parkinson’s disease.
Collapse
Affiliation(s)
- Nathan D Nuzum
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Amy Loughman
- Food and Mood Center, IMPACT Strategic Research Center, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ewa A Szymlek-Gay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
29
|
Bezard E, Dehay B. [Aggregation and spread of synuclein in Parkinson's disease]. Med Sci (Paris) 2022; 38:45-51. [PMID: 35060886 DOI: 10.1051/medsci/2021241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The vast majority of neurodegenerative diseases are associated with an accumulation of undegraded and aggregated proteins. Hence the word proteinopathies is now used to refer to these neurodegenerative diseases. The synucleinopathies are one component of them, in particular in Parkinson's disease. The neuropathological features of Parkinson's disease are the progressive loss of dopamine neurons in the midbrain and the formation of aggregates composed mainly of a-synuclein protein. Experimental evidence suggests that under pathological conditions, normal soluble a-synuclein protein adopts an abnormal folding and subsequently aggregates, with a propensity to spread throughout the central nervous system. This review article discusses the specifics of a-synuclein aggregation and emerging mechanisms for understanding its spread and aims at providing a molecular explanation for the progression of the disease in humans.
Collapse
Affiliation(s)
- Erwan Bezard
- Univ. Bordeaux, CNRS, IMN (Institut des maladies neurodégénératives), UMR 5293, 33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN (Institut des maladies neurodégénératives), UMR 5293, 33000 Bordeaux, France
| |
Collapse
|
30
|
Passive Immunization in Alpha-Synuclein Preclinical Animal Models. Biomolecules 2022; 12:biom12020168. [PMID: 35204668 PMCID: PMC8961624 DOI: 10.3390/biom12020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain.
Collapse
|
31
|
Donlon E, Lynch R, Murphy OC, Farrell M, Noel J, Keogan M, O'Connell M, Lynch T. Braak's Unfinished Hypothesis: A Clinicopathological Case Report of α-Synuclein Peripheral Neuropathy Preceding Parkinsonism by 20 Years. Mov Disord Clin Pract 2021; 8:1129-1133. [PMID: 34631951 DOI: 10.1002/mdc3.13321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background α-synuclein aggregates in the form of Lewy bodies and Lewy neurites are the pathological hallmark of Parkinson disease (PD) and dementia with Lewy bodies (DLB). Autopsy studies suggest that α-synuclein aggregates appear in localized areas of the central nervous system before spreading in a sequential pattern from the brainstem to the cerebral cortex, known as the Braak hypothesis. Increased prevalence of peripheral neuropathy in PD is recognized, with multiple hypothesized mechanisms including α-synuclein deposition. Method We describe a patient who developed a peripheral sensory neuropathy at age 60, which progressed insidiously over the following decade. Results During the patient's eighth decade, the patient developed a fluctuant cognitive disturbance with hallucinations before becoming overtly parkinsonian at age 78 years leading to a diagnosis of DLB. At this point, histology slides from a sural nerve biopsy taken at age 72 were re-evaluated and immunohistochemistry demonstrated α-synuclein deposition. Conclusion This case provides important in vivo clinical correlation for the Braak hypothesis, extending its scope beyond idiopathic PD. A growing body of evidence supports the α-synuclein spreading hypothesis that posits the pathologic process begins in the peripheral nerves and spreads trans-synaptically to the CNS in an ascending pattern.
Collapse
Affiliation(s)
- Eoghan Donlon
- Department of Neurology Dublin Neurological Institute at the Mater Misericordiae University Hospital Dublin Ireland
| | - Rionagh Lynch
- Department of Neurology Dublin Neurological Institute at the Mater Misericordiae University Hospital Dublin Ireland
| | - Olwen C Murphy
- Department of Neurology Dublin Neurological Institute at the Mater Misericordiae University Hospital Dublin Ireland.,Department of Neurology Johns Hopkins Hospital Baltimore Maryland USA
| | - Michael Farrell
- Department of Neuropathology Beaumont Hospital Dublin Ireland
| | - Jaques Noel
- Department of Medicine for the Elderly Mater Misericordiae University Hospital Dublin Ireland
| | - Mary Keogan
- Department of Neuropathology Beaumont Hospital Dublin Ireland
| | - Martin O'Connell
- Department of Radiology Mater Misericordiae University Hospital Dublin Ireland
| | - Timothy Lynch
- Department of Neurology Dublin Neurological Institute at the Mater Misericordiae University Hospital Dublin Ireland.,Health Affairs University College Dublin Dublin Ireland
| |
Collapse
|
32
|
Mehra S, Gadhe L, Bera R, Sawner AS, Maji SK. Structural and Functional Insights into α-Synuclein Fibril Polymorphism. Biomolecules 2021; 11:1419. [PMID: 34680054 PMCID: PMC8533119 DOI: 10.3390/biom11101419] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal accumulation of aggregated α-synuclein (α-Syn) is seen in a variety of neurodegenerative diseases, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), Parkinson's disease dementia (PDD), and even subsets of Alzheimer's disease (AD) showing Lewy-body-like pathology. These synucleinopathies exhibit differences in their clinical and pathological representations, reminiscent of prion disorders. Emerging evidence suggests that α-Syn self-assembles and polymerizes into conformationally diverse polymorphs in vitro and in vivo, similar to prions. These α-Syn polymorphs arising from the same precursor protein may exhibit strain-specific biochemical properties and the ability to induce distinct pathological phenotypes upon their inoculation in animal models. In this review, we discuss clinical and pathological variability in synucleinopathies and several aspects of α-Syn fibril polymorphism, including the existence of high-resolution molecular structures and brain-derived strains. The current review sheds light on the recent advances in delineating the structure-pathogenic relationship of α-Syn and how diverse α-Syn molecular polymorphs contribute to the existing clinical heterogeneity in synucleinopathies.
Collapse
Affiliation(s)
- Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| | | | | | | | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (L.G.); (R.B.); (A.S.S.)
| |
Collapse
|
33
|
Bayram E, Coughlin DG, Banks SJ, Litvan I. Sex differences for phenotype in pathologically defined dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2021; 92:745-750. [PMID: 33563809 PMCID: PMC8530264 DOI: 10.1136/jnnp-2020-325668] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sex differences in dementia with Lewy bodies (DLB) have been reported in clinically defined cohorts; however, clinical diagnostic accuracy in DLB is suboptimal and phenotypic differences have not been assessed in pathologically confirmed participants. METHODS Core DLB features were compared across 55 women and 156 men with pathologically defined DLB in the National Alzheimer's Coordinating Center. These analyses were repeated for 55 women and 55 men matched for age, education and tau burden. RESULTS In the total sample, women died older, had fewer years of education, had higher tau burden but were less likely to be diagnosed with dementia and clinical DLB. In the matched sample, visual hallucinations continued to be less common in women, and fewer women met clinical DLB criteria. DISCUSSION Sex impacts clinical manifestations of underlying pathologies in DLB. Despite similar underlying Lewy body pathology, women are less likely to manifest core DLB features and may be clinically underdiagnosed.
Collapse
Affiliation(s)
- Ece Bayram
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - David G Coughlin
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Sarah J Banks
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Irene Litvan
- Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
34
|
Simonet C, Noyce A. Mild parkinsonian signs: the interface between aging and Parkinson’s disease. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2021. [DOI: 10.47795/khgp5988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild Parkinsonian Signs (MPS) describe a spectrum that exists between the expected motor decline of normal aging and a more serious motor deterioration resulting from Parkinson’s disease (PD) and neurodegeneration. Although MPS are a feature of the prodromal stage of PD, their formal definition is unclear and still relies somewhat on conventional clinical criteria for PD. This review will summarise the early motor features of PD and methods of assessment, from conventional clinical scales to advances in quantitative measures. Finally, the boundaries of motor decline as part of normal aging and pathological neurodegeneration will be discussed.
Collapse
|
35
|
Jung JH, Jeon S, Baik K, Lee YH, Chung SJ, Yoo HS, Jeong SH, Sohn YH, Lee PH, Ye BS. Apolipoprotein E4, amyloid, and cognition in Alzheimer's and Lewy body disease. Neurobiol Aging 2021; 106:45-54. [PMID: 34242895 DOI: 10.1016/j.neurobiolaging.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
The role of apolipoprotein E4 (APOE4) in the risk of Alzheimer's disease (AD) and Lewy body disease (LBD), and their relationship with β-amyloid deposition and cognitive dysfunction, remain unclear. Using amyloid and dopamine transporter imaging, we enrolled 126 controls and 208 patients with typical AD (pure AD and Lewy body variant of AD), AD with dementia with Lewy bodies, or typical LBD (dementia with Lewy bodies with amyloid deposition and pure LBD). APOE4 was associated with an increased risk of all disease subtypes except pure LBD. APOE4 was associated with increased frontal β-amyloid burden, and typical LBD was associated with increased occipital β-amyloid levels through its interaction with APOE4. APOE4 was associated with deteriorated general cognition and memory dysfunction via its interaction with typical LBD and AD, respectively. In conclusion, the impact of APOE4 on disease risk depends on its effects on β-amyloid deposition, and APOE4 is associated with β-amyloid deposition regardless of the clinical diagnosis. However, it interacts with typical LBD to cause occipital β-amyloid deposition.
Collapse
Affiliation(s)
- Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
36
|
Gupta HV, Beach TG, Mehta SH, Shill HA, Driver-Dunckley E, Sabbagh MN, Belden CM, Liebsack C, Dugger BN, Serrano GE, Sue LI, Siderowf A, Pontecorvo MJ, Mintun MA, Joshi AD, Adler CH. Clinicopathological Correlation: Dopamine and Amyloid PET Imaging with Neuropathology in Three Subjects Clinically Diagnosed with Alzheimer's Disease or Dementia with Lewy Bodies. J Alzheimers Dis 2021; 80:1603-1612. [PMID: 33720879 PMCID: PMC10109539 DOI: 10.3233/jad-200323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Imaging biomarkers have the potential to distinguish between different brain pathologies based on the type of ligand used with PET. AV-45 PET (florbetapir, Amyvid™) is selective for the neuritic plaque amyloid of Alzheimer's disease (AD), while AV-133 PET (florbenazine) is selective for VMAT2, which is a dopaminergic marker. OBJECTIVE To report the clinical, AV-133 PET, AV-45 PET, and neuropathological findings of three clinically diagnosed dementia patients who were part of the Avid Radiopharmaceuticals AV133-B03 study as well as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). METHODS Three subjects who had PET imaging with both AV-133 and AV-45 as well as a standardized neuropathological assessment were included. The final clinical, PET scan, and neuropathological diagnoses were compared. RESULTS The clinical and neuropathological diagnoses were made blinded to PET scan results. The first subject had a clinical diagnosis of dementia with Lewy bodies (DLB); AV-133 PET showed bilateral striatal dopaminergic degeneration, and AV-45 PET was positive for amyloid. The final clinicopathological diagnosis was DLB and AD. The second subject was diagnosed clinically with probable AD; AV-45 PET was positive for amyloid, while striatal AV-133 PET was normal. The final clinicopathological diagnosis was DLB and AD. The third subject had a clinical diagnosis of DLB. Her AV-45 PET was positive for amyloid and striatal AV-133 showed dopaminergic degeneration. The final clinicopathological diagnosis was multiple system atrophy and AD. CONCLUSION PET imaging using AV-133 for the assessment of striatal VMAT2 density may help distinguish between AD and DLB. However, some cases of DLB with less-pronounced nigrostriatal dopaminergic neuronal loss may be missed.
Collapse
Affiliation(s)
- Harsh V Gupta
- Department of Neurology, The University of Kansas Health System, Kansas City, KS, USA
| | | | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | | | | | | | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California-Davis School of Medicine, Sacramento, CA, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
37
|
Brisson M, Brodeur C, Létourneau‐Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa‐Neto P, Soucy J. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12098. [PMID: 33532543 PMCID: PMC7821956 DOI: 10.1002/trc2.12098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 04/21/2023]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines. Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emisson Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscanTM) is now included as a useful study in differentiating Alzheimer's disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost. We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.
Collapse
Affiliation(s)
- Mélanie Brisson
- Centre hospitalier de l'université de QuébecQuebec CityCanada
| | | | | | | | - Jon Stoessl
- Vancouver Coastal Health, University of British‐ColumbiaVancouverCanada
| | | | | | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | | | - Pedro Rosa‐Neto
- McGill Center for Studies in AgingCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
| | - Jean‐Paul Soucy
- Centre hospitalier de l'université de MontréalMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- PERFORM Center, Concordia UniversityMontrealCanada
| |
Collapse
|
38
|
Nishiwaki H, Hamaguchi T, Ito M, Ishida T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems 2020; 5:e00797-20. [PMID: 33293403 PMCID: PMC7771407 DOI: 10.1128/msystems.00797-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gut dysbiosis has been repeatedly reported in Parkinson's disease (PD) but only once in idiopathic rapid-eye-movement sleep behavior disorder (iRBD) from Germany. Abnormal aggregation of α-synuclein fibrils causing PD possibly starts from the intestine, although this is still currently under debate. iRBD patients frequently develop PD. Early-stage gut dysbiosis that is causally associated with PD is thus expected to be observed in iRBD. We analyzed gut microbiota in 26 iRBD patients and 137 controls by 16S rRNA sequencing (16S rRNA-seq). Our iRBD data set was meta-analyzed with the German iRBD data set and was compared with gut microbiota in 223 PD patients. Unsupervised clustering of gut microbiota by LIGER, a topic model-based tool for single-cell RNA sequencing (RNA-seq) analysis, revealed four enterotypes in controls, iRBD, and PD. Short-chain fatty acid (SCFA)-producing bacteria were conserved in an enterotype observed in controls and iRBD, whereas they were less conserved in enterotypes observed in PD. Genus Akkermansia and family Akkermansiaceae were consistently increased in both iRBD in two countries and PD in five countries. Short-chain fatty acid (SCFA)-producing bacteria were not significantly decreased in iRBD in two countries. In contrast, we previously reported that recognized or putative SCFA-producing genera Faecalibacterium, Roseburia, and Lachnospiraceae ND3007 group were consistently decreased in PD in five countries. In α-synucleinopathy, increase of mucin-layer-degrading genus Akkermansia is observed at the stage of iRBD, whereas decrease of SCFA-producing genera becomes obvious with development of PD.IMPORTANCE Twenty studies on gut microbiota in PD have been reported, whereas only one study has been reported on iRBD from Germany. iRBD has the highest likelihood ratio to develop PD. Our meta-analysis of iRBD in Japan and Germany revealed increased mucin-layer-degrading genus Akkermansia in iRBD. Genus Akkermansia may increase the intestinal permeability, as we previously observed in PD patients, and may make the intestinal neural plexus exposed to oxidative stress, which can lead to abnormal aggregation of prion-like α-synuclein fibrils in the intestine. In contrast to PD, SCFA-producing bacteria were not decreased in iRBD. As SCFA induces regulatory T (Treg) cells, a decrease of SCFA-producing bacteria may be a prerequisite for the development of PD. We propose that prebiotic and/or probiotic therapeutic strategies to increase the intestinal mucin layer and to increase intestinal SCFA potentially retard the development of iRBD and PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Wakabayashi K. Where and how alpha-synuclein pathology spreads in Parkinson's disease. Neuropathology 2020; 40:415-425. [PMID: 32750743 DOI: 10.1111/neup.12691] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
In Parkinson's disease (PD), neuronal alpha-synuclein aggregates are distributed throughout the nervous system, including the brain, spinal cord, sympathetic ganglia, submandibular gland, enteric nervous system, cardiac and pelvic plexuses, adrenal medulla, and skin. Thus, PD is a progressive multiorgan disease clinically associated with various motor and nonmotor symptoms. The earliest PD-related lesions appear to develop in the olfactory bulb, dorsal vagal nucleus, and possibly also the peripheral autonomic nervous system. The brain is closely connected with the enteric nervous system via axons of the efferent fibers of the dorsal nucleus of vagal nerve. Anatomical connections also exist between the olfactory bulb and brainstem. Accumulating evidence from experimental studies indicates that transneuronal propagation of misfolded alpha-synuclein is involved in the progression of PD. However, it cannot be ruled out that alpha-synuclein pathology in PD is multicentric in origin. Based on pathological findings from studies on human materials, the present review will update the progression pattern of alpha-synuclein pathology in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
40
|
Borghammer P, Van Den Berge N. Brain-First versus Gut-First Parkinson's Disease: A Hypothesis. JOURNAL OF PARKINSONS DISEASE 2020; 9:S281-S295. [PMID: 31498132 PMCID: PMC6839496 DOI: 10.3233/jpd-191721] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is a highly heterogeneous disorder, which probably consists of multiple subtypes. Aggregation of misfolded alpha-synuclein and propagation of these proteinacious aggregates through interconnected neural networks is believed to be a crucial pathogenetic factor. It has been hypothesized that the initial pathological alpha-synuclein aggregates originate in the enteric or peripheral nervous system (PNS) and invade the central nervous system (CNS) via retrograde vagal transport. However, evidence from neuropathological studies suggests that not all PD patients can be reconciled with this hypothesis. Importantly, a small fraction of patients do not show pathology in the dorsal motor nucleus of the vagus. Here, it is hypothesized that PD can be divided into a PNS-first and a CNS-first subtype. The former is tightly associated with REM sleep behavior disorder (RBD) during the prodromal phase and is characterized by marked autonomic damage before involvement of the dopaminergic system. In contrast, the CNS-first phenotype is most often RBD-negative during the prodromal phase and characterized by nigrostriatal dopaminergic dysfunction prior to involvement of the autonomic PNS. The existence of these subtypes is supported by in vivo imaging studies of RBD-positive and RBD-negative patient groups and by histological evidence— reviewed herein. The present proposal provides a fresh hypothesis-generating framework for future studies into the etiopathogenesis of PD and seems capable of explaining a number of discrepant findings in the neuropathological literature.
Collapse
Affiliation(s)
- Per Borghammer
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
41
|
Beach TG, Adler CH, Zhang N, Serrano GE, Sue LI, Driver-Dunckley E, Mehta SH, Zamrini EE, Sabbagh MN, Shill HA, Belden CM, Shprecher DR, Caselli RJ, Reiman EM, Davis KJ, Long KE, Nicholson LR, Intorcia AJ, Glass MJ, Walker JE, Callan MM, Oliver JC, Arce R, Gerkin RC. Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer's disease dementia. PLoS One 2020; 15:e0231720. [PMID: 32320406 PMCID: PMC7176090 DOI: 10.1371/journal.pone.0231720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/30/2020] [Indexed: 11/19/2022] Open
Abstract
Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are never diagnosed during life, instead being categorized as Alzheimer's disease dementia (ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to clinical studies and treatment trials of both ADD and DLB. There are studies that suggest that olfactory function tests may be able to distinguish DLB from ADD, but few of these had neuropathological confirmation of diagnosis. We compared University of Pennsylvania Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuropathological examination. Consensus clinicopathological diagnostic criteria were used to define ADD and DLB, as well as Parkinson's disease with dementia (PDD), with (PDD+AD) or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not meeting criteria for DLB (ADLB) and a clinically normal control group were also included. The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001, pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respectively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score, conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowledge, this is the largest study to date comparing olfactory function in subjects with neuropathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or conversely, reducing the inclusion of DLB subjects in ADD studies or trials.
Collapse
Affiliation(s)
- Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charles H. Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | | | - Shayamal H. Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Edouard E. Zamrini
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, United States of America
| | - Holly A. Shill
- Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - David R. Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Kathryn J. Davis
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Kathy E. Long
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lisa R. Nicholson
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Michael M. Callan
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Javon C. Oliver
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Richard C. Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
42
|
Coughlin DG, Hurtig H, Irwin DJ. Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Mov Disord 2020; 35:5-19. [PMID: 31660655 PMCID: PMC7233798 DOI: 10.1002/mds.27867] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
PD, PD with dementia, and dementia with Lewy bodies are clinical syndromes characterized by the neuropathological accumulation of alpha-synuclein in the CNS that represent a clinicopathological spectrum known as Lewy body disorders. These clinical entities have marked heterogeneity of motor and nonmotor symptoms with highly variable disease progression. The biological basis for this clinical heterogeneity remains poorly understood. Previous attempts to subtype patients within the spectrum of Lewy body disorders have centered on clinical features, but converging evidence from studies of neuropathology and ante mortem biomarkers, including CSF, neuroimaging, and genetic studies, suggest that Alzheimer's disease beta-amyloid and tau copathology strongly influence clinical heterogeneity and prognosis in Lewy body disorders. Here, we review previous clinical biomarker and autopsy studies of Lewy body disorders and propose that Alzheimer's disease copathology is one of several likely pathological contributors to clinical heterogeneity of Lewy body disorders, and that such pathology can be assessed in vivo. Future work integrating harmonized assessments and genetics in PD, PD with dementia, and dementia with Lewy bodies patients followed to autopsy will be critical to further refine the classification of Lewy body disorders into biologically distinct endophenotypes. This approach will help facilitate clinical trial design for both symptomatic and disease-modifying therapies to target more homogenous subsets of Lewy body disorders patients with similar prognosis and underlying biology. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David G Coughlin
- University of Pennsylvania Health System, Department of Neurology
- Digital Neuropathology Laboratory
- Lewy Body Disease Research Center of Excellence
| | - Howard Hurtig
- University of Pennsylvania Health System, Department of Neurology
| | - David J Irwin
- University of Pennsylvania Health System, Department of Neurology
- Digital Neuropathology Laboratory
- Lewy Body Disease Research Center of Excellence
- Frontotemporal Degeneration Center, Philadelphia PA, USA 19104
| |
Collapse
|
43
|
Lewy-related pathology exhibits two anatomically and genetically distinct progression patterns: a population-based study of Finns aged 85. Acta Neuropathol 2019; 138:771-782. [PMID: 31494694 PMCID: PMC6800868 DOI: 10.1007/s00401-019-02071-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/17/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
According to a generally accepted concept Lewy-related pathology (LRP) follows hierarchical caudo-rostral progression. LRP is also frequently present concomitantly with Alzheimer’s disease (AD), and it has been hypothesized that AD-associated LRP forms a distinct type of α-synucleinopathy, where LRP originates in the amygdala. The frequency of distinct forms of LRP progression types has not been studied in a population-based setting. We investigated the distribution and progression of LRP and its relation to AD pathology and apolipoprotein (APOE) ε4 in a population-based sample of Finns aged over 85 years (N = 304). Samples from spinal cord to neocortical areas representing 11 anatomical sites without any hierarchical selection were analyzed immunohistochemically (α-synuclein antibody clone 5G4). LRP was present in 124 individuals (41%) and according to DLB Consortium guidelines 19 of them were categorized as brainstem, 10 amygdala-predominant, 41 limbic, and 43 diffuse neocortical type, whereas 11 could not be classified. To determine the LRP progression patterns, a systematic anatomical scoring was carried out by taking into account the densities of the semiquantitative LRP scores in each anatomic site. With this scoring 123 (99%) subjects could be classified into two progression pattern types: 67% showed caudo-rostral and 32% amygdala-based progression. The unsupervised statistical K-means cluster analysis was used as a supplementary test and supported the presence of two progression patterns and had a 90% overall concordance with the systematic anatomical scoring method. Severe Braak NFT stage, high CERAD score and APOE ε4 were significantly (all p < 0.00001) associated with amygdala-based, but not with caudo-rostral progression type (all p > 0.2). This population-based study demonstrates two distinct common LRP progression patterns in the very elderly population. The amygdala-based pattern was associated with APOE ε4 and AD pathology. The results confirm the previous progression hypotheses but also widen the concept of the AD-associated LRP.
Collapse
|
44
|
Af Bjerkén S, Stenmark Persson R, Barkander A, Karalija N, Pelegrina-Hidalgo N, Gerhardt GA, Virel A, Strömberg I. Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance. Neurochem Int 2019; 131:104551. [PMID: 31542295 DOI: 10.1016/j.neuint.2019.104551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Sara Af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
| | - Rasmus Stenmark Persson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anna Barkander
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | | | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Center for Microelectrode Technology, Lexington, KY, USA
| | - Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Neocortical Lewy bodies are associated with impaired odor identification in community-dwelling elders without clinical PD. J Neurol 2019; 266:3108-3118. [PMID: 31535271 DOI: 10.1007/s00415-019-09540-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The association of Lewy bodies (LBs) with olfactory dysfunction was investigated in community-dwelling elders without clinical Parkinson's disease (PD) using the 12-item Brief Smell Identification Test (BSIT), a standard measure of odor identification. METHODS 280 participants in the Rush Memory and Aging Project completed the BSIT annually. Lewy bodies were detected in 13 brain regions by immunohistochemistry and were assigned to the Braak PD stages 1-6. RESULTS Of the 280 participants, 101 (36.1%) had LBs which were maximal in the olfactory bulb and tract (85.1%) and least in Heschl's cortex (21.8%). Due to the small number of cases in Braak PD stages 2, 3 and 5, the distribution of LBs in the 6 Braak PD stages was contracted into 3 main LB stages: (1) LBs in olfactory bulbs and dorsal motor nucleus of vagus, (2) further extension of LBs to limbic and other brainstem regions and (3) additional extension of LBs to neocortical areas. MMSE, global cognition and odor test scores were lower and frequency of dementia was higher at the time of the last valid BSIT, in cases with LBs as compared to those without LBs. Linear regression analyses showed that LBs were associated with impaired olfaction. However, on stratification of LBs into 3 stages, only the stage 3 cases were independently associated with impaired olfaction. CONCLUSION Although LB pathology was detected in olfactory bulbs in the early stage of LB progression (stage 1), the strongest association of LBs with olfactory dysfunction was observed in the late pathological stage (stage 3) when LBs extended to neocortical areas.
Collapse
|
46
|
Mou L, Ding W, Fernandez-Funez P. Open questions on the nature of Parkinson's disease: from triggers to spreading pathology. J Med Genet 2019; 57:73-81. [PMID: 31484719 DOI: 10.1136/jmedgenet-2019-106210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 01/25/2023]
Abstract
Parkinson's disease (PD) is a movement disorder identified more than 200 years ago; today it is defined by specific motor symptoms that together receive the name of parkinsonism. PD diagnosis is reached with the full parkinsonian syndrome, but in recent years, a series of non-motor symptoms have arisen as intrinsic components of PD. These non-motor symptoms are variable, creating a widely heterogenous disease presentation. Some non-motor symptoms appear in late disease stages and are explained as the natural progression of PD pathology into other brain centres, including the frontal cortex. Other symptoms can appear a decade or earlier preceding PD diagnosis, particularly hyposmia (loss of smell) and constipation. These early symptoms and the accompanying protein pathology have stimulated a lively conversation about the origin and nature of PD and other related conditions: some authors propose that PD starts in the olfactory mucosa and the gut due to direct exposure to toxins or pathogens. This pathology then travels by anatomically interconnected networks to the midbrain to cause motor symptoms and the cortex to cause late complications. Other models propose that PD develops in multiple independent foci that do not require pathology spread. We will review these hypotheses in the context of recent developments regarding the spread of amyloids and propose a mixed model where a multifocal origin explains the variable presentation of PD, while cell-to-cell spread explains stereotypical disease progression.
Collapse
Affiliation(s)
- Lei Mou
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Wei Ding
- Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Pedro Fernandez-Funez
- Biomedical Sciences, University of Minnesota Medical School - Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
47
|
Durcan R, Donaghy PC, Barnett NA, Olsen K, Yarnall AJ, Taylor JP, McKeith I, O'Brien JT, Thomas AJ. Prevalence and severity of symptoms suggestive of gastroparesis in prodromal dementia with Lewy bodies. Int J Geriatr Psychiatry 2019; 34:990-998. [PMID: 30901488 DOI: 10.1002/gps.5100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/17/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Lewy body disease is postulated, by the Braak model, to originate in the enteric nervous system, before spreading to the central nervous system. Therefore, a high prevalence of gastroparesis symptoms would be expected in prodromal dementia with Lewy bodies (DLB) and be highest in those with a dopaminergic deficit on imaging. The aim of this study was to explore whether gastroparesis symptoms are an early diagnostic marker of prodromal DLB and explore the relationship between symptoms and dopaminergic imaging findings on FP-CIT SPECT. METHODS We recruited 75 patients over 60 with mild cognitive impairment (MCI), 48 with MCI with suspected Lewy body disease (MCI-LB) and 27 with MCI with suspected Alzheimer's disease (MCI-AD). All patients completed the Gastroparesis Cardinal Symptom Index (GSCI) questionnaire and also underwent FP-CIT [123 I-N-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)] dopaminergic imaging. RESULTS At least one symptom suggestive of gastroparesis was reported in 48% (n = 23) MCI-LB vs 37% MCI-AD (n = 10) (P = 0.36). Rates of definite symptoms of gastroparesis, as defined by a GCSI total score ≥ 1.90, were rare and rates in MCI-LB were not different from MCI-AD (6% vs 0%, p = 0.55). After adjusting for gender differences between groups, no difference in gastroparesis symptom prevalence (2.27 vs 0.81 P = 0.05) or severity score (0.62 vs 0.28, p = 0.28) was noted between normally and abnormally visually rated FP-CIT SPECT scans. CONCLUSION The GCSI is not a useful tool for differentiating MCI-LB from MCI-AD. A low rate of definite gastroparesis was detected in prodromal DLB. No association was found between gastroparesis symptoms and FP-CIT SPECT findings.
Collapse
Affiliation(s)
- Rory Durcan
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Nicky A Barnett
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Kirsty Olsen
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Ian McKeith
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alan J Thomas
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Coughlin DG, Petrovitch H, White LR, Noorigian J, Masaki KH, Ross GW, Duda JE. Most cases with Lewy pathology in a population-based cohort adhere to the Braak progression pattern but 'failure to fit' is highly dependent on staging system applied. Parkinsonism Relat Disord 2019; 64:124-131. [PMID: 30948243 PMCID: PMC6739131 DOI: 10.1016/j.parkreldis.2019.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 01/23/2023]
Abstract
Braak et al.'s 2003 paper detailing the caudo-rostral progression of Lewy body pathology (LP) formed the foundation of current understanding of disease spread in Parkinson's disease (PD); however, its methods are difficult to recreate and consequently multiple new staging systems emerged to recapitulate Braak's staging system using standard neuropathological methods and to account for other patterns of LP. Studies using these systems have documented widely variable rates of cases that 'fail to fit' expected patterns of LP spread. This could be due to population differences, features of individual systems, or may constitute under-recognized patterns of disease. We examined 324 neuropathological cases from the Honolulu Asia Aging Study and applied four different LP staging systems to determine the proportion of cases adhering to different staging methodologies and those that 'fail to fit' expected patterns of LP. Of 141 cases with LP (24: PD, 8: Dementia with Lewy bodies (DLB), 109: Incidental Lewy body disease (ILBD)), our application of Braak et al., 2003 classified 83.7%, Müller et al., 2005 classified 87.9%, Beach et al., 2009 classified 100%, and Leverenz et al., 2008 classified 98.6%. There were significant differences in the cases classifiable by the Leverenz and Beach systems versus the Braak and Müller systems (p < 0.001 for each). In this population-based autopsy cohort with a high prevalence of ILBD, the majority of cases were consistent with the progression characterized by the Braak et al. however, the determination of cases as atypical is highly dependent on the staging system applied.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Helen Petrovitch
- Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA; Departments of Medicine and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA; The John A Hartford Foundation Center of Excellence in Geriatrics, Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Lon R White
- Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA; Departments of Medicine and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA; The John A Hartford Foundation Center of Excellence in Geriatrics, Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Joseph Noorigian
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Kamal H Masaki
- The John A Hartford Foundation Center of Excellence in Geriatrics, Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA; Kuakini Medical Center, Honolulu, HI, USA
| | - G Webster Ross
- Veterans Affairs Pacific Islands Health Care System, Honolulu, HI, USA; Departments of Medicine and John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA; The John A Hartford Foundation Center of Excellence in Geriatrics, Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - John E Duda
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
50
|
Kasanuki K, Koga S, Dickson DW, Sato K, Iseki E, Ichimiya Y, Arai H. Mixed Alzheimer's and Lewy-related Pathology Can Cause Corticobasal Syndrome with Visual Hallucinations. Intern Med 2019; 58:1813. [PMID: 30799336 PMCID: PMC6630134 DOI: 10.2169/internalmedicine.1427-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Koji Kasanuki
- Department of Psychiatry, Juntendo School of Medicine, Japan
- Department of Neuroscience, Mayo Clinic, USA
- Mental Clinic, Juntendo Tokyo Koto Geriatric Medical Center, Japan
- PET-CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Japan
| | | | | | - Kiyoshi Sato
- PET-CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Japan
| | - Eizo Iseki
- PET-CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Japan
| | - Yosuke Ichimiya
- Department of Psychiatry, Juntendo School of Medicine, Japan
- Mental Clinic, Juntendo Tokyo Koto Geriatric Medical Center, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo School of Medicine, Japan
| |
Collapse
|