1
|
Osadchuk K, Beydler B, Cheng CL, Irish E. Transcriptome analyses at specific plastochrons reveal timing and involvement of phytosulfokine in maize vegetative phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112317. [PMID: 39536951 DOI: 10.1016/j.plantsci.2024.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Successive developmental stages of representative early and late juvenile, transition, and adult maize leaves were compared using machine-learning-aided analyses of gene expression patterns to characterize vegetative phase change (VPC), including identification of the timing of this developmental transition in maize. We used t-SNE to organize 32 leaf samples into 9 groups with similar patterns of gene expression. oposSOM yielded clusters of co-expressed genes from key developmental stages. TO-GCN supported a sequence of events in maize in which germination-associated ROS triggers a JA response, both relieving oxidative stress and inducing miR156 production, which in turn spurs juvenility. Patterns of expression of MIR395, which regulates sulfur assimilation, led to the hypothesis that phytosulfokine, a sulfated peptide, is involved in the transition to adult patterns of differentiation.
Collapse
Affiliation(s)
- Krista Osadchuk
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| | - Ben Beydler
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA
| | - Chi-Lien Cheng
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| | - Erin Irish
- Department of Biology, 143 Biology Building, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Jia X, Xu S, Wang F, Jia Y, Qing Y, Gao T, Zhang Z, Liu X, Yang C, Ma F, Li C. Sorbitol mediates age-dependent changes in apple plant growth strategy through gibberellin signaling. HORTICULTURE RESEARCH 2024; 11:uhae192. [PMID: 39145197 PMCID: PMC11322524 DOI: 10.1093/hr/uhae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024]
Abstract
Plants experience various age-dependent changes during juvenile to adult vegetative phase. However, the regulatory mechanisms orchestrating the changes remain largely unknown in apple (Malus domestica). This study showed that tissue-cultured apple plants at juvenile, transition, and adult phase exhibit age-dependent changes in their plant growth, photosynthetic performance, hormone levels, and carbon distribution. Moreover, this study identified an age-dependent gene, sorbitol dehydrogenase (MdSDH1), a key enzyme for sorbitol catabolism, highly expressed in the juvenile phase in apple. Silencing MdSDH1 in apple significantly decreased the plant growth and GA3 levels. However, exogenous GA3 rescued the reduced plant growth phenotype of TRV-MdSDH1. Biochemical analysis revealed that MdSPL1 interacts with MdWRKY24 and synergistically enhance the repression of MdSPL1 and MdWRKY24 on MdSDH1, thereby promoting sorbitol accumulation during vegetative phase change. Exogenous sorbitol application indicated that sorbitol promotes the transcription of MdSPL1 and MdWRKY24. Notably, MdSPL1-MdWRKY24 module functions as key repressor to regulate GA-responsive gene, Gibberellic Acid-Stimulated Arabidopsis (MdGASA1) expression, thereby leading to a shift from the quick to the slow-growth strategy. These results reveal the pivotal role of sorbitol in controlling apple plant growth, thereby improving our understanding of vegetative phase change in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiwei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Liao X, Su Y, Klintenäs M, Li Y, Sane S, Wu Z, Chen Q, Zhang B, Nilsson O, Ding J. Age-dependent seasonal growth cessation in Populus. Proc Natl Acad Sci U S A 2023; 120:e2311226120. [PMID: 37991940 PMCID: PMC10691234 DOI: 10.1073/pnas.2311226120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023] Open
Abstract
In temperate and boreal regions, perennial plants adapt their annual growth cycle to the change of seasons. In natural forests, juvenile seedlings usually display longer growth seasons compared to adult trees to ensure their establishment and survival under canopy shade. However, how trees adjust their annual growth according to their age is not known. In this study, we show that age-dependent seasonal growth cessation is genetically controlled and found that the miR156-SPL3/5 module, a key regulon of vegetative phase change (VPC), also triggers age-dependent growth cessation in Populus trees. We show that miR156 promotes shoot elongation during vegetative growth, and its targets SPL3/5s function in the same pathway but as repressors. We find that the miR156-SPL3/5s regulon controls growth cessation in both leaves and shoot apices and through multiple pathways, but with a different mechanism compared to how the miR156-SPL regulon controls VPC in annual plants. Taken together, our results reveal an age-dependent genetic network in mediating seasonal growth cessation, a key phenological process in the climate adaptation of perennial trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Yunjie Su
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Maria Klintenäs
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Yue Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Shashank Sane
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Qihui Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Bo Zhang
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
5
|
Lawrence-Paul EH, Poethig RS, Lasky JR. Vegetative phase change causes age-dependent changes in phenotypic plasticity. THE NEW PHYTOLOGIST 2023; 240:613-625. [PMID: 37571856 PMCID: PMC10551844 DOI: 10.1111/nph.19174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that benefit from varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity, and as such, the timing of these transitions can determine when plasticity changes in an organism. Here, we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity and how the timing of this transition responds to environment using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. We found that the adult phase of vegetative development has greater plasticity in leaf morphology than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Furthermore, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments. The consistent age-dependent changes in plasticity caused by VPC suggest that VPC may be adaptive. This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC.
Collapse
Affiliation(s)
- Erica H. Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, PA 16802
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - R. Scott Poethig
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - Jesse R. Lasky
- Pennsylvania State University, Department of Biology, University Park, PA 16802
| |
Collapse
|
6
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Schulten A, Pietzenuk B, Quintana J, Scholle M, Feil R, Krause M, Romera-Branchat M, Wahl V, Severing E, Coupland G, Krämer U. Energy status-promoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7. THE PLANT CELL 2022; 34:3873-3898. [PMID: 35866980 PMCID: PMC9516184 DOI: 10.1093/plcell/koac215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is a cofactor of around 300 Arabidopsis proteins, including photosynthetic and mitochondrial electron transfer chain enzymes critical for adenosine triphosphate (ATP) production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type (WT) and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase is unaffected under both normal and low-Cu cultivation conditions. Supplementing Cu-deficient medium with exogenous sugar stimulated growth of the WT, but not of spl7 mutants. Instead, these mutants accumulated carbohydrates, including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, even under normal Cu supply and without sugar supplementation. Delayed spl7-1 development was in agreement with its attenuated sugar responsiveness. Functional TARGET OF RAPAMYCIN and SNF1-RELATED KINASE1 signaling in spl7-1 argued against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptome profiling identified direct targets of SPL7-mediated positive regulation, including Fe SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1), and the uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help increase crop yields, especially on Cu-deficient soils.
Collapse
Affiliation(s)
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Marleen Scholle
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Marcus Krause
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | |
Collapse
|
8
|
Rahimi A, Karami O, Balazadeh S, Offringa R. miR156-independent repression of the ageing pathway by longevity-promoting AHL proteins in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2424-2438. [PMID: 35642455 PMCID: PMC9540020 DOI: 10.1111/nph.18292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
Plants age by developmental phase changes. In Arabidopsis, the juvenile to adult vegetative phase change (VPC) is marked by clear heteroblastic changes in leaves. VPC and the subsequent vegetative to reproductive phase change are promoted by SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE (SPL) transcription factors and repressed by miR156/157 targeting SPL transcripts. By genetic, phenotypic, and gene expression analyses, we studied the role of the longevity-promoting AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) and family members in SPL-driven plant ageing. Arabidopsis ahl loss-of-function mutants showed accelerated VPC and flowering, whereas AHL15 overexpression delayed these phase changes. Expression analysis and tissue-specific AHL15 overexpression revealed that AHL15 affects VPC and flowering time directly through its expression in the shoot apical meristem and young leaves, and that AHL15 represses SPL2/9/13/15 gene expression in a miR156/157-independent manner. The juvenile traits of spl loss-of-function mutants appeared to depend on enhanced expression of the AHL15 gene, whereas SPL activity prevented vegetative growth from axillary meristem by repressing AHL15 expression. Our results place AHL15 and close family members together with SPLs in a reciprocal regulatory feedback loop that modulates VPC, flowering time, and axillary meristem development in response to both internal and external signals.
Collapse
Affiliation(s)
- Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Salma Balazadeh
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| |
Collapse
|
9
|
Li S, Tahir MM, Wu T, Xie L, Zhang X, Mao J, Ayyoub A, Xing L, Zhang D, Shao Y. Transcriptome Analysis Reveals Multiple Genes and Complex Hormonal-Mediated Interactions with PEG during Adventitious Root Formation in Apple. Int J Mol Sci 2022; 23:ijms23020976. [PMID: 35055162 PMCID: PMC8779459 DOI: 10.3390/ijms23020976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Adventitious root (AR) formation is a bottleneck for the mass propagation of apple rootstocks, and water stress severely restricts it. Different hormones and sugar signaling pathways in apple clones determine AR formation under water stress, but these are not entirely understood. To identify them, GL-3 stem cuttings were cultured on polyethylene glycol (PEG) treatment. The AR formation was dramatically decreased compared with the PEG-free control (CK) cuttings by increasing the endogenous contents of abscisic acid (ABA), zeatin riboside (ZR), and methyl jasmonate (JA-me) and reducing the indole-3-acetic acid (IAA) and gibberellic acid 3 (GA3) contents. We performed a transcriptomic analysis to identify the responses behind the phenotype. A total of 3204 differentially expressed genes (DEGs) were identified between CK and PEG, with 1702 upregulated and 1502 downregulated genes. Investigation revealed that approximately 312 DEGs were strongly enriched in hormone signaling, sugar metabolism, root development, and cell cycle-related pathways. Thus, they were selected for their possible involvement in adventitious rooting. However, the higher accumulation of ABA, ZR, and JA-me contents and the upregulation of their related genes, as well as the downregulation of sugar metabolism-related genes, lead to the inhibition of ARs. These results indicate that AR formation is a complicated biological process chiefly influenced by multiple hormonal signaling pathways and sugar metabolism. This is the first study to demonstrate how PEG inhibits AR formation in apple plants.
Collapse
Affiliation(s)
- Shaohuan Li
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Muhammad Mobeen Tahir
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Tong Wu
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Lingling Xie
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Xiaoyun Zhang
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi 832003, China;
| | - Jiangping Mao
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Anam Ayyoub
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China;
| | - Libo Xing
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
- Correspondence: (D.Z.); (Y.S.)
| | - Yun Shao
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Xianyang 712100, China; (S.L.); (M.M.T.); (T.W.); (L.X.); (J.M.); (L.X.)
- Correspondence: (D.Z.); (Y.S.)
| |
Collapse
|
10
|
Xu M, Hu T, Poethig RS. Low light intensity delays vegetative phase change. PLANT PHYSIOLOGY 2021; 187:1177-1188. [PMID: 34618024 PMCID: PMC8566249 DOI: 10.1093/plphys/kiab243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/07/2021] [Indexed: 05/21/2023]
Abstract
Plants that develop under low light (LL) intensity often display a phenotype known as the "shade tolerance syndrome (STS)". This syndrome is similar to the phenotype of plants in the juvenile phase of shoot development, but the basis for this similarity is unknown. We tested the hypothesis that the STS is regulated by the same mechanism that regulates the juvenile vegetative phase by examining the effect of LL on rosette development in Arabidopsis (Arabidopsis thaliana). We found that LL prolonged the juvenile vegetative phase and that this was associated with an increase in the expression of the master regulators of vegetative phase change, miR156 and miR157, and a decrease in the expression of their SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) targets. Exogenous sucrose partially corrected the effect of LL on seedling development and miR156 expression. Our results suggest that the response of Arabidopsis to LL is mediated by an increase in miR156/miR157 expression and by factors that repress SPL gene expression independently of miR156/miR157, and is caused in part by a decrease in carbohydrate production. The effect of LL on vegetative phase change does not require the photoreceptors and transcription factors responsible for the shade avoidance syndrome, implying that light intensity and light quality regulate rosette development through different pathways.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
- Author for communication:
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| |
Collapse
|
11
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
12
|
Bertolotti G, Scintu D, Dello Ioio R. A small cog in a large wheel: crucial role of miRNAs in root apical meristem patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6755-6767. [PMID: 34350947 DOI: 10.1093/jxb/erab332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In both animal and plants, establishment of body axes is fundamental for proper organ development. Plant roots show two main developmental axes: the proximo-distal axis, which spans from the hypocotyl-root junction to the root tip; and the radial axis, which traverses from the vascular tissue to the epidermis. Root axes are determined in the root meristem. The root meristem occupies the tip of the root and contains self-renewing stem cells, which continuously produce new root cells. An intricate network of signalling pathways regulates meristem function and patterning to ensure proper root development and growth. In the last decade, miRNAs, 20-21 nucleotide-long molecules with morphogenetic activity, emerged as central regulators of root cell patterning. Their activity intersects with master regulators of meristematic activity, including phytohormones. In this review, we discuss the latest findings about the activity of miRNAs and their interaction with other molecular networks in the formation of root meristem axes. Furthermore, we describe how these small molecules allow root growth to adapt to changes in the environment, while maintaining the correct patterning.
Collapse
Affiliation(s)
- Gaia Bertolotti
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Daria Scintu
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| | - Raffaele Dello Ioio
- University of Rome 'La Sapienza', Department of Biology and Biotechnology, 'Charles Darwin', Via dei Sardi 70, Rome, Italy
| |
Collapse
|
13
|
Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nat Commun 2021; 12:5816. [PMID: 34611150 PMCID: PMC8492644 DOI: 10.1038/s41467-021-26088-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
During vegetative growth plants pass from a juvenile to an adult phase causing changes in shoot morphology. This vegetative phase change is primarily regulated by the opposite actions of two microRNAs, the inhibitory miR156 and the promoting miR172 as well as their respective target genes, constituting the age pathway. Here we show that the phytohormone cytokinin promotes the juvenile-to-adult phase transition through regulating components of the age pathway. Reduction of cytokinin signalling substantially delayed the transition to the adult stage. tZ-type cytokinin was particularly important as compared to iP- and the inactive cZ-type cytokinin, and root-derived tZ influenced the phase transition significantly. Genetic and transcriptional analyses indicated the requirement of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors and miR172 for cytokinin activity. Two miR172 targets, TARGET OF EAT1 (TOE1) and TOE2 encoding transcriptional repressors were necessary and sufficient to mediate the influence of cytokinin on vegetative phase change. This cytokinin pathway regulating plant aging adds to the complexity of the regulatory network controlling the juvenile-to-adult phase transition and links cytokinin to miRNA action.
Collapse
|
14
|
Wei XY, Collings DA, McCurdy DW. Review: More than sweet: New insights into the biology of phloem parenchyma transfer cells in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110990. [PMID: 34315604 DOI: 10.1016/j.plantsci.2021.110990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Transfer cells (TCs) develop extensive wall ingrowths to facilitate enhanced rates of membrane transport. In Arabidopsis, TCs trans-differentiate from phloem parenchyma (PP) cells abutting the sieve element/companion cell complex in minor veins of foliar tissues and, based on anatomy and expression of SWEET sucrose uniporters, are assumed to play pivotal roles in phloem loading. While wall ingrowth deposition in PP TCs is a dynamic process responding to abiotic stresses such as high light and cold, the transcriptional control of PP TC development, including deposition of the wall ingrowths themselves, is not understood. PP TC development is a trait of vegetative phase change, potentially linking wall ingrowth deposition with floral induction. Transcript profiling by RNA-seq identified NAC056 and NAC018 (NARS1 and NARS2) as putative regulators of wall ingrowth deposition, while recent single cell RNA-seq analysis of leaf vasculature identified PP-specific expression of NAC056. Numerous membrane transporters, particularly of the UmamiT family of amino acid efflux carriers, were also identified. Collectively, these findings, and the recent discovery that wall ingrowth deposition is regulated by sucrose-dependent loading activity of these cells, provide new insights into the biology of PP TCs and their importance to phloem loading in Arabidopsis, establishing these cells as a key transport hub for phloem loading.
Collapse
Affiliation(s)
- Xiao-Yang Wei
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia
| | - David A Collings
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009 Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - David W McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callahan, NSW, 2308, Australia.
| |
Collapse
|
15
|
Tahir MM, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:123-136. [PMID: 34038809 DOI: 10.1016/j.plaphy.2021.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Apples are economically valuable and widely consumed fruits. The adventitious roots (ARs) formation is gridlock for apple trees mass propagation. The possible function of multiple hormones and sugar signaling pathways regulating ARs formation has not been completely understood in apple. In this study, B9 stem cuttings were treated with KCl treatment, where the highest root numbers (220) and maximum root length of 731.2 cm were noticed in KCl-treated cuttings, which were 98.2% and 215% higher than control cuttings. The content of endogenous hormones: IAA, ZR, JA, GA, and ABA were detected higher in response to KCl at most time-points. To figure out the molecular mechanisms underlying this effect, we investigated transcriptome analysis. In total, 4631 DEGs were determined, from which about 202 DEGs were considerably enriched in pathways associated with hormone signaling, sugar metabolism, root development, and cell cycle-related and were thereupon picked out on their potential involvements in ARs formation. Though, IAA accumulation and up-regulation of various genes contribute to induce AR formation. These results suggest that AR formation is a complex biological process in apple rootstocks, influenced mainly by the auxin signaling pathway and sugar metabolism.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shiyue Chen
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyan Ma
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shaohuan Li
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Yun Shao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Abdullah Shalmani
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Caiping Zhao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Lu Bao
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
16
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
17
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
18
|
Li H, Luo Y, Ma B, Hu J, Lv Z, Wei W, Hao H, Yuan J, He N. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. Int J Mol Sci 2021; 22:ijms22115550. [PMID: 34074049 PMCID: PMC8197408 DOI: 10.3390/ijms22115550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ningjia He
- Correspondence: ; Tel.: +86-23-6825-0797; Fax: +86-23-6825-1128
| |
Collapse
|
19
|
Zhang Q, Zhao YQ, Gao X, Jia GX. Analysis of miRNA-mediated regulation of flowering induction in Lilium × formolongi. BMC PLANT BIOLOGY 2021; 21:190. [PMID: 33879043 PMCID: PMC8058995 DOI: 10.1186/s12870-021-02961-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND MicroRNAs play pivotal roles in plant vegetative phase change and flowering induction via integrating into multiple flowering pathways. Lilium × formolongi is an important ornamental lily cultivar that can flower within one year after sowing. However, it remains unresolved how miRNA-mediated regulation networks contribute to the L. × formolongi characteristics of a short vegetative growth period and rapid flowering. RESULTS In this study, the small RNA libraries and one degradome library were constructed for L. × formolongi during vegetative growth and flowering initiation, and 366 conserved miRNAs and 32 novel miRNAs were identified. Additionally, 84 miRNAs were significantly differentially expressed during development. A total of 396 targets of 185 miRNAs were identified and validated through degradome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that functions of the targets were top enriched in the cold and cadmium ion responses, pentose phosphate pathway and carbon fixation in photosynthetic organisms. Furthermore, among 23 differentially expressed miRNA-target pairs, the miR156s-LfSPL2, miR172a-LfAP2 and miR164a-LfNAC pairs as well as miR159a-LfSPL2 were found to be relevant to flowering based on the correlation analysis of expression profiles in the miRNA libraries, degradome and transcriptome. A coexpression regulatory network focused on differentially expressed pairs was also constructed by WGCNA, and 14 miRNAs were considered putative key miRNAs during vegetative development and flowering induction. miR156a/ d/ e showed particularly strong relationships with other miRNAs in the coexpression network. CONCLUSIONS This study provides cues for the further exploration of the regulatory mechanisms of short vegetative development and flowering in L. × formolongi.
Collapse
Affiliation(s)
- Qian Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yu-Qian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
20
|
Yagi H, Nagano AJ, Kim J, Tamura K, Mochizuki N, Nagatani A, Matsushita T, Shimada T. Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1260-1270. [PMID: 33165567 DOI: 10.1093/jxb/eraa519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.
Collapse
Affiliation(s)
- Hiroki Yagi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Jaewook Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
22
|
Juvenile Leaves or Adult Leaves: Determinants for Vegetative Phase Change in Flowering Plants. Int J Mol Sci 2020; 21:ijms21249753. [PMID: 33371265 PMCID: PMC7766579 DOI: 10.3390/ijms21249753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Vegetative leaves in Arabidopsis are classified as either juvenile leaves or adult leaves based on their specific traits, such as leaf shape and the presence of abaxial trichomes. The timing of the juvenile-to-adult phase transition during vegetative development, called the vegetative phase change, is a critical decision for plants, as this transition is associated with crop yield, stress responses, and immune responses. Juvenile leaves are characterized by high levels of miR156/157, and adult leaves are characterized by high levels of miR156/157 targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. The discovery of this miR156/157-SPL module provided a critical tool for elucidating the complex regulation of the juvenile-to-adult phase transition in plants. In this review, we discuss how the traits of juvenile leaves and adult leaves are determined by the miR156/157-SPL module and how different factors, including embryonic regulators, sugar, meristem regulators, hormones, and epigenetic proteins are involved in controlling the juvenile-to-adult phase transition, focusing on recent insights into vegetative phase change. We also highlight outstanding questions in the field that need further investigation. Understanding how vegetative phase change is regulated would provide a basis for manipulating agricultural traits under various conditions.
Collapse
|
23
|
Fouracre JP, Poethig RS. Lonely at the top? Regulation of shoot apical meristem activity by intrinsic and extrinsic factors. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:17-24. [PMID: 33099210 PMCID: PMC7752823 DOI: 10.1016/j.pbi.2020.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
All the above-ground organs of a plant are derived from stem cells that reside in shoot apical meristems (SAM). Over the past 25 years, the genetic pathways that control the proliferation of stem cells within the SAM, and the differentiation of their progenitors into lateral organs, have been described in great detail. However, longstanding questions regarding the importance of communication between cells within the SAM and lateral organs have, until recently, remained unanswered. In this review, we describe recent investigations into the extent, nature and significance of signaling both to and from the SAM.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA
| | - Richard Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Bernardy K, Farias JG, Pereira AS, Dorneles AOS, Bernardy D, Tabaldi LA, Neves VM, Dressler VL, Nicoloso FT. Plants' genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions. CHEMOSPHERE 2020; 253:126692. [PMID: 32283427 DOI: 10.1016/j.chemosphere.2020.126692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) is a micronutrient, but its excessive concentration can impair plant growth and development. Fertilizers, liming materials, pesticides and fungicides containing Zn have contributed to increase its concentration in agricultural soils. The aim of the present study is to evaluate the effect of Zn excess on the non-enzymatic (anthocyanin and β-ecdysone) and enzymatic (superoxide dismutase-SOD and guaiacol peroxidase-GPX) antioxidant system of two P. glomerata accessions (JB and GD) grown in hydroponic system and soil, under short- and long-term exposure times. Three Zn levels (2, 100 and 200 μM) and two short-term exposure times (7 and 14 d) were tested in the hydroponic experiment. Three Zn levels (2, 100 and 200 mg kg-1) and two long-term exposure times (34 and 74 d) were tested in the soil experiment. The effects of Zn excess on P. glomerata accessions depended on the growth system and exposure time. Zinc excess in both tested growth systems resulted in significant change in the tissue oxidative process (MDA concentration) in both accessions, as well as broadened the antioxidant system response, which was based on antioxidant enzymes (SOD and GPX) and secondary metabolites (anthocyanins and β-ecdysone). The highest anthocyanin concentration was observed in accession JB, which was grown in hydroponics, but tissue anthocyanin concentration increased in both accessions, regardless of growth medium and exposure time. The β-ecdysone concentration in the roots increased in both accessions, but accession GD was more responsive to Zn excess. There was significant physiological variation in P.glomerata accessions in response to Zn excess.
Collapse
Affiliation(s)
- Katieli Bernardy
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Aline Soares Pereira
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Athos Odin Severo Dorneles
- Universidade Federal de Pelotas, Plant Physiology Department, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Daniele Bernardy
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Luciane Almeri Tabaldi
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius Machado Neves
- Universidade Federal de Santa Maria, Chemistry Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Valderi Luiz Dressler
- Universidade Federal de Santa Maria, Chemistry Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernando Teixeira Nicoloso
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
25
|
Preston JC, Fjellheim S. Understanding Past, and Predicting Future, Niche Transitions based on Grass Flowering Time Variation. PLANT PHYSIOLOGY 2020; 183:822-839. [PMID: 32404414 PMCID: PMC7333695 DOI: 10.1104/pp.20.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
Since their origin in the early Cretaceous, grasses have diversified across every continent on Earth, with a handful of species (rice [Oryza sativa], maize [Zea mays], and wheat [Triticum aestivum]) providing most of the caloric intake of contemporary humans and their livestock. The ecological dominance of grasses can be attributed to a number of physiological innovations, many of which contributed to shifts from closed to open habitats that incur daily (e.g. tropical mountains) and/or seasonal extremes in temperature (e.g. temperate/continental regions) and precipitation (e.g. tropical savannas). In addition to strategies that allow them to tolerate or resist periodically stressful environments, plants can adopt escape behaviors by modifying the relative timing of distinct development phases. Flowering time is one of these behaviors that can also act as a postzygotic barrier to reproduction and allow temporal partitioning of resources to promote coexistence. In this review, we explore what is known about the phylogenetic pattern of flowering control in grasses, and how this relates to broad- and fine-scale niche transitions within the family. We then synthesize recent findings on the genetic basis of flowering time evolution as a way to begin deciphering why certain aspects of flowering are seemingly so conserved, and what the implications of this are for future adaptation under climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| |
Collapse
|
26
|
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2490-2504. [PMID: 32067033 PMCID: PMC7210760 DOI: 10.1093/jxb/eraa057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Many plants synchronize their life cycles in response to changing seasons and initiate flowering under favourable environmental conditions to ensure reproductive success. To confer a robust seasonal response, plants use diverse genetic programmes that integrate environmental and endogenous cues and converge on central floral regulatory hubs. Technological advances have allowed us to understand these complex processes more completely. Here, we review recent progress in our understanding of genetic and molecular mechanisms that control flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence: or
| | - René Richter
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
- Correspondence: or
| |
Collapse
|
27
|
Fouracre JP, Chen VJ, Poethig RS. ALTERED MERISTEM PROGRAM1 regulates leaf identity independently of miR156-mediated translational repression. Development 2020; 147:dev186874. [PMID: 32198155 PMCID: PMC7197719 DOI: 10.1242/dev.186874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/24/2022]
Abstract
In Arabidopsis, loss of the carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) produces an increase in the rate of leaf initiation, an enlarged shoot apical meristem and an increase in the number of juvenile leaves. This phenotype is also observed in plants with reduced levels of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, suggesting that AMP1 might promote SPL activity. However, we found that the amp1 mutant phenotype is only partially corrected by elevated SPL gene expression, and that amp1 has no significant effect on SPL transcript levels, or on the level or the activity of miR156. Although AMP1 has been reported to promote miRNA-mediated translational repression, amp1 did not prevent the translational repression of the miR156 target SPL9 or the miR159 target MYB33. These results suggest that AMP1 regulates vegetative phase change downstream of, or in parallel to, the miR156/SPL pathway, and that it is not universally required for miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - Victoria J Chen
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Liu Q, Su Y, Zhu Y, Peng K, Hong B, Wang R, Gaballah M, Xiao L. Manipulating osa-MIR156f Expression by D18 Promoter to Regulate Plant Architecture and Yield Traits both in Seasonal and Ratooning Rice. Biol Proced Online 2019; 21:21. [PMID: 31700499 PMCID: PMC6827258 DOI: 10.1186/s12575-019-0110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Background Rice (Oryza sativa L.) feeds more than half of the world's population. Ratooning rice is an economical alternative to the second seasonal rice, thus increasing the yield of ratooning rice is highly important. Results Here we report an applicable transgenic line constructed through the manipulation of osa-MIR156f expression in rice shoot using the OsGA3ox2 (D18) promoter. In seasonal rice, the D18-11 transgenic line showed moderate height and more effective tillers with normal panicle. In ratooning rice, axillary buds outgrew from the basal node of the D18-11 transgenic line before the harvest of seasonal rice. More effective tillers produced by the outgrowth of axillary buds contributed to the plant architecture improvement and yield increase. Additionally, it was found that osa-miR156f down-regulated the expression of tillering regulators, such as TEOSINTE BRANCHED1 (TB1) and LAX PANICLE 1 (LAX1). The expression of DWARF10, DWARF27 and DWARF53, three genes being involved in the biosynthesis and signaling of strigolactone (SL), decreased in the stem of the D18-11 transgenic line. Conclusion Our results indicated that the manipulation of osa-MIR156f expression may have application significance in rice genetic breeding. This study developed a novel strategy to regulate plant architecture and grain yield potential both in the seasonal and ratooning rice.
Collapse
Affiliation(s)
- Qing Liu
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Yi Su
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Yunhua Zhu
- 3Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Keqin Peng
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Bin Hong
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Ruozhong Wang
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Mahmoud Gaballah
- 4Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Giza, 33717 Egypt
| | - Langtao Xiao
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
29
|
Osadchuk K, Cheng C, Irish EE. Jasmonic acid levels decline in advance of the transition to the adult phase in maize. PLANT DIRECT 2019; 3:e00180. [PMID: 31788658 PMCID: PMC6879778 DOI: 10.1002/pld3.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 05/07/2023]
Abstract
Leaf-derived signals drive the development of the shoot, eventually leading to flowering. In maize, transcripts of genes that facilitate jasmonic acid (JA) signaling are more abundant in juvenile compared to adult leaf primordia; exogenous application of JA both extends the juvenile phase and delays the decline in miR156 levels. To test the hypothesis that JA promotes juvenility, we measured JA and meJA levels using LC-MS in successive stages of leaf one development and in later leaves at stages leading up to phase change in both normal maize and phase change mutants. We concurrently measured gibberellic acid (GA), required for the timely transition to the adult phase. Jasmonic acid levels increased from germination through leaf one differentiation, declining in later formed leaves as the shoot approached phase change. In contrast, levels of GA were low in leaf one after germination and increased as the shoot matured to the adult phase. Multiple doses of exogenous JA resulted in the production of as many as three additional juvenile leaves. We analyzed two transcript expression datasets to investigate when gene regulation by miR156 begins in the context of spatiotemporal patterns of JA and GA signaling. Quantifying these hormones in phase change mutants provided insight into how these two hormones control phase-specific patterns of differentiation. We conclude that the hormone JA is a leaf-provisioned signal that influences the duration, and possibly the initiation, of the juvenile phase of maize by controlling patterns of differentiation in successive leaf primordia.
Collapse
Affiliation(s)
| | | | - Erin E. Irish
- Department of BiologyUniversity of IowaIowa CityIAUSA
| |
Collapse
|
30
|
Hou N, Cao Y, Li F, Yuan W, Bian H, Wang J, Zhu M, Han N. Epigenetic regulation of miR396 expression by SWR1-C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5217-5229. [PMID: 31198943 PMCID: PMC6793462 DOI: 10.1093/jxb/erz285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/31/2019] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the regulatory function of miR396 in the phase transition in Arabidopsis thaliana. Using AtMIR396a/b knockout mutants generated through clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-directed genome editing, we showed that miR396 negatively regulates the leaf size and vegetative phase transition, and the first leaf with abaxial trichomes appeared earlier in the mir396ab double mutant than in the wild type (WT) and was significantly delayed in miR396 overexpression lines. Moreover, mir396ab exhibited early flowering, whereas 35S:MIR396a/b and cib4-1 delayed flowering, and the flowering time was negatively correlated with FT gene expression. Furthermore, in arp6 and pie1 mutants, which are deficient in the ATP-dependent chromatin remodeling complex (SWR1-C), miR396 expression was significantly repressed. Compared with the WT, reduced H2A.Z deposit and stronger relative nucleosome occupancy in the promoter region of MIR396a was found in the arp6 mutant, indicating that SWR1-C contributes to the transcriptional activation of MIR396a via nucleosome dynamics. In addition, miR396 displayed specific spatio-temporal expression patterns in the leaf, which was altered in arp6 and pie1, and therefore affected the transcript levels of CIB4 and FT in these mutants. We propose that miR396 is not only a marker of cell differentiation, but also an age signal for leaf development and phase change. Meanwhile, SWR1-C-mediated epigenetic regulation contributes to the age-dependent enhancement of miR396 expression and differential miR396 accumulation among leaves.
Collapse
Affiliation(s)
- Ning Hou
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanli Cao
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengyun Li
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiyi Yuan
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongwu Bian
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junhui Wang
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muyuan Zhu
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning Han
- Key Lab for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Correspondence:
| |
Collapse
|
31
|
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, Beveridge CA, Mitter N. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC PLANT BIOLOGY 2019; 19:382. [PMID: 31481026 PMCID: PMC6724330 DOI: 10.1186/s12870-019-1994-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Jayeni Hiti Bandaralage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Christine Anne Beveridge
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| |
Collapse
|
32
|
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, Beveridge CA, Mitter N. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC PLANT BIOLOGY 2019; 19:382. [PMID: 31481026 DOI: 10.1186/s12870-019-1994-1995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Jayeni Hiti Bandaralage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Christine Anne Beveridge
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
33
|
Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, Fernandes AM, Barrera-Rojas CH, Ribeiro DM, Nogueira FTS, Otoni WC. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. ANNALS OF BOTANY 2019; 123:1191-1203. [PMID: 30861065 PMCID: PMC6612941 DOI: 10.1093/aob/mcz025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diego S Batista
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Andréa D Koehler
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lorena M Vieira
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda M Fernandes
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Hernan Barrera-Rojas
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Instituto de Biociências, Universidade Estadual de São Paulo, Botucatu, São Paulo, Brazil
| | | | - Fabio T S Nogueira
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- For correspondence. E-mail:
| | - Wagner C Otoni
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
34
|
Wang C, Wang Q, Zhu X, Cui M, Jia H, Zhang W, Tang W, Leng X, Shen W. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Funct Integr Genomics 2019; 19:933-952. [PMID: 31172301 DOI: 10.1007/s10142-019-00679-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/18/2023]
Abstract
miRNA156 family members (miR156s) participate in regulating the transition of plant vegetative and reproductive growth, flower development, and formation of berry skin color by negatively modulating their target gene SPLs. However, the evolution and functional diversification of miR156s in plants remain elusive. Phylogenetic analysis on 310 miR156s from 51 plant species on miRBase 21.0 showed that only miR156a could be conserved in the 51 plant species, but their sequences exhibited variation; another set of miR156s, such as miR156m/n/o/p/q/r/s/t/u/v/w/x/y/z, was identified only in certain special plant species (Glycine max and Malus); also, all base variations in the sequences of 310 miR156s occurred within one miR156 seed sequence, "TGACAGAAGAGAGTGAGCAC," and the changed base sites were mainly located at the 11th and 14th bases from the 5' end of the miR156 seed sequence, in which some base variations of miR156s resulted in a difference in miR156 targeting modes; by contrast, miR156 precursor sequences are highly divergent across diverse species. Similarly, cis-regulatory motifs on the promoter sequence of MIR156s in various plants also exhibited significant discrepancy. The intragenic MIR156 genes overlapped their target SBP genes, thereby suggesting that some microRNAs (miRNAs) originate from duplication of target genes. These traits might be the reasons of the conservation and diversification of miR156 gene family. This study identified the conserved seed sequence "TGACAGAAGAGAGTGAGCAC," and the sequence variation characterization, of miR156 family evolution, also investigated the varied traits of their promoters, precursors, and mature sequences in sequence evolutions and found some miRNAs might originate from duplication of target genes. Our findings will contribute to our understanding of the functional diversification of miRNAs and the interactions of miRNA/target pairs based on the evolutionary history of miRNA genes.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinglian Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menjie Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
35
|
Fouracre JP, Poethig RS. Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:10168-10177. [PMID: 31023887 PMCID: PMC6525512 DOI: 10.1073/pnas.1817853116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent to which the shoot apical meristem (SAM) controls developmental decisions, rather than interpreting them, is a longstanding issue in plant development. Previous work suggests that vegetative phase change is regulated by signals intrinsic and extrinsic to the SAM, but the relative importance of these signals for this process is unknown. We investigated this question by examining the effect of meristem-deficient mutations on vegetative phase change and on the expression of key regulators of this process, miR156 and its targets, SPL transcription factors. We found that the precocious phenotypes of meristem-deficient mutants are a consequence of reduced miR156 accumulation. Tissue-specific manipulation of miR156 levels revealed that the SAM functions as an essential pool of miR156 early in shoot development, but that its effect on leaf identity declines with age. We also found that SPL genes control meristem size by repressing WUSCHEL expression via a novel genetic pathway.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
36
|
Li XY, Guo F, Ma SY, Zhu MY, Pan WH, Bian HW. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa). J Zhejiang Univ Sci B 2019; 20:322-331. [PMID: 30932377 PMCID: PMC6454313 DOI: 10.1631/jzus.b1800003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
We investigated the microRNA172 (miR172)-mediated regulatory network for the perception of changes in external and endogenous signals to identify a universally applicable floral regulation system in ornamental plants, manipulation of which could be economically beneficial. Transgenic gloxinia plants, in which miR172 was either overexpressed or suppressed, were generated using Agrobacterium-mediated transformation. They were used to study the effect of altering the expression of this miRNA on time of flowering and to identify its mRNA target. Early or late flowering was observed in transgenic plants in which miR172 was overexpressed or suppressed, respectively. A full-length complementary DNA (cDNA) of gloxinia (Sinningia speciosa) APETALA2-like (SsAP2-like) was identified as a target of miR172. The altered expression levels of miR172 caused up- or down-regulation of SsAP2-like during flower development, which affected the time of flowering. Quantitative real-time reverse transcription PCR analysis of different gloxinia tissues revealed that the accumulation of SsAP2-like was negatively correlated with the expression of miR172a, whereas the expression pattern of miR172a was negatively correlated with that of miR156a. Our results suggest that transgenic manipulation of miR172 could be used as a universal strategy for regulating time of flowering in ornamental plants.
Collapse
Affiliation(s)
- Xiao-yan Li
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Fu Guo
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-yun Ma
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mu-yuan Zhu
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-huai Pan
- College of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Hong-wu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes (Basel) 2019; 10:genes10030210. [PMID: 30871088 PMCID: PMC6470504 DOI: 10.3390/genes10030210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are short (19⁻24-nucleotide-long), non-coding RNA molecules. They downregulate gene expression by triggering the cleavage or translational inhibition of complementary mRNAs. Senescence is a stage of development following growth completion and is dependent on the expression of specific genes. MicroRNAs control the gene expression responsible for plant competence to answer senescence signals. Therefore, they coordinate the juvenile-to-adult phase transition of the whole plant, the growth and senescence phase of each leaf, age-related cellular structure changes during vessel formation, and remobilization of resources occurring during senescence. MicroRNAs are also engaged in the ripening and postharvest senescence of agronomically important fruits. Moreover, the hormonal regulation of senescence requires microRNA contribution. Environmental cues, such as darkness or drought, induce senescence-like processes in which microRNAs also play regulatory roles. In this review, we discuss recent findings concerning the role of microRNAs in the senescence of various plant species.
Collapse
|
38
|
Chen Y, Zheng Q, Jia X, Chen K, Wang Y, Wu T, Xu X, Han Z, Zhang Z, Zhang X. MdGGT1 Impacts Apple miR156 Precursor Levels via Ontogenetic Changes in Subcellular Glutathione Homeostasis. FRONTIERS IN PLANT SCIENCE 2019; 10:994. [PMID: 31417600 PMCID: PMC6684775 DOI: 10.3389/fpls.2019.00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/16/2019] [Indexed: 05/03/2023]
Abstract
UNLABELLED The vegetative phase change in flowering plants is controlled by microRNA156 (miR156) under transcriptional regulation. However, the developmental signals upstream of miR156 are not well understood. The glutathione/glutathione disulfide (GSH/GSSG) ratios and GSH levels decline significantly during phase change, which is consistent with miR156 expression in apple (Malus domestica Borkh.). Here, we found that the content of protein conjugated glutathione was remarkably higher in chloroplasts and nuclei of adult than juvenile phase apple hybrids. The decrease in miR156 expression was most relevant to the activities of serine acetyltransferase (SAT) and soluble γ-glutamyl transpeptidase (GGT), and the expressions of MdGGT1 or MdSATs. Transgenic apples over-expressing MdMIR156 or miR156-mimetic (MIM156) did not alter MdGGT1 expression or the soluble GGT activity. Inhibition of GGT activity with serine-borate complex or acivicin led to significant reduction in GSH content, the GSH/GSSG ratio, and the expressions of MdMIR156a5, MdMIR156a12, and miR156. Depletion of GSH with diethyl maleate without altering GGT activity caused a dramatic decrease in the expression of MdMIR156a5, MdMIR156a12, and miR156. Manipulating GGT activity and GSH homeostasis by transgenic over-expressing or RNAi MdGGT1 increased or decreased MdMIR156a5 and MdMIR156a12 levels, respectively. These data provided novel evidence that MdGGT1 participates in transcriptional level of transcription regulation of miR156 precursors during ontogenesis. HIGHLIGHTS - MdGGT1 affects thiol redox status and indirectly participates in the regulation of miR156 expression during vegetative phase change.
Collapse
Affiliation(s)
- Yakun Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qingbo Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaolin Jia
- College of Horticulture, China Agricultural University, Beijing, China
| | - Keqin Chen
- Horticulture College, Shenyang Agricultural University, Liaoning, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhihong Zhang
- Horticulture College, Shenyang Agricultural University, Liaoning, China
- *Correspondence: Zhihong Zhang,
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Xinzhong Zhang,
| |
Collapse
|
39
|
Damayanti F, Lombardo F, Masuda JI, Shinozaki Y, Ichino T, Hoshikawa K, Okabe Y, Wang N, Fukuda N, Ariizumi T, Ezura H. Functional Disruption of the Tomato Putative Ortholog of HAWAIIAN SKIRT Results in Facultative Parthenocarpy, Reduced Fertility and Leaf Morphological Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:1234. [PMID: 31681360 PMCID: PMC6801985 DOI: 10.3389/fpls.2019.01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
A number of plant microRNAs have been demonstrated to regulate developmental processes by integrating internal and environmental cues. Recently, the Arabidopsis thaliana F-box protein HAWAIIAN SKIRT (HWS) gene has been described for its role in miRNA biogenesis. We have isolated in a forward genetic screen a tomato (Solanum lycopersicum) line mutated in the putative ortholog of HWS. We show that the tomato hws-1 mutant exhibits reduction in leaflet serration, leaflet fusion, some degree of floral organ fusion, and alteration in miRNA levels, similarly to the original A. thaliana hws-1 mutant. We also describe novel phenotypes for hws such as facultative parthenocarpy, reduction in fertility and flowering delay. In slhws-1, the parthenocarpy trait is influenced by temperature, with higher parthenocarpy rate in warmer environmental conditions. Conversely, slhws-1 is able to produce seeds when grown in cooler environment. We show that the reduction in seed production in the mutant is mainly due to a defective male function and that the levels of several miRNAs are increased, in accordance with previous HWS studies, accounting for the abnormal leaf and floral phenotypes as well as the altered flowering and fruit development processes. This is the first study of HWS in fleshy fruit plant, providing new insights in the function of this gene in fruit development.
Collapse
Affiliation(s)
- Farida Damayanti
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun-ichiro Masuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takuji Ichino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, Japan
| | - Ning Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Naoya Fukuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroshi Ezura,
| |
Collapse
|
40
|
Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, Pocock A, Beveridge CA, Mitter N. Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:729. [PMID: 31214234 PMCID: PMC6558100 DOI: 10.3389/fpls.2019.00729] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/16/2019] [Indexed: 05/16/2023]
Abstract
In plants, juvenile to adult phase transition is regulated by the sequential activity of two microRNAs: miR156 and miR172. A decline in miR156 and increase in miR172 abundance is associated with phase transition. There is very limited information on phase transition in economically important horticultural tree crops, which have a significantly long vegetative phase affecting fruit bearing. Here, we profiled various molecular cues known to be involved in phase transition and flowering, including the microRNAs miR156 and miR172, in three horticultural tree crops: avocado (Persea americana), mango (Mangifera indica), and macadamia (Macadamia integrifolia). We observed that miR156 expression decreases as these trees age and can potentially be used as a juvenility marker. Consistent with findings in annual plants, we also observed conserved regulation of the miR156-SPL3/4/5 regulatory module in these genetically distant tree crops, suggesting that this pathway may play a highly conserved role in vegetative identity. Meanwhile, the abundance of miR172 and its target AP2-like genes as well as the accumulation level of SPL9 transcripts were not related with plant age in these crops except in avocado where miR172 expression increased steadily. Finally, we demonstrate that various floral genes, including AP1 and SOC1 were upregulated in the reproductive phase and can be used as potential markers for the reproductive phase transition. Overall, this study provides an insight into the molecular associations of juvenility and phase transition in horticultural trees where crop breeding and improvement are encumbered by long juvenile phases.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Vered Irihimovitch
- The Volcani Center, Agricultural Research Organization, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Stephen Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Pocock
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Neena Mitter,
| |
Collapse
|
41
|
Wei H, Zhao Y, Xie Y, Wang H. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4675-4688. [PMID: 29992284 DOI: 10.1093/jxb/ery258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/09/2018] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays ssp. mays) is an agronomically important crop and also a classical genetic model for studying the regulation of plant architecture formation, which is a critical determinant of grain yield. Since the 1930s, increasing planting density has been a major contributing factor to the >7-fold increase in maize grain yield per unit land area in the USA, which is accompanied by breeding and utilization of cultivars characterized by high-density-tolerant plant architecture, including decreased ear height, lodging resistance, more upright leaves, reduced tassel branch number, and reduced anthesis-silking interval (ASI). Recent studies demonstrated that phytochrome-mediated red/far-red light signaling pathway and the miR156/SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) regulatory module co-ordinately regulate the shade avoidance response and diverse aspects of plant architecture in responding to shading in Arabidopsis. The maize genome contains 30 ZmSPL genes, and 18 of them are predicted as direct targets of zma-miR156s. Accumulating evidence indicates that ZmSPL genes play important roles in regulating maize flowering time, plant/ear height, tilling, leaf angle, tassel and ear architecture, and grain size and shape. Finally, we discuss ways to exploit maize SPL genes and downstream targets for improving maize plant architecture tailored for high-density planting.
Collapse
Affiliation(s)
- Hongbin Wei
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Transcriptome Analysis Reveals Multiple Hormones, Wounding and Sugar Signaling Pathways Mediate Adventitious Root Formation in Apple Rootstock. Int J Mol Sci 2018; 19:ijms19082201. [PMID: 30060517 PMCID: PMC6121287 DOI: 10.3390/ijms19082201] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
Adventitious roots (AR) play an important role in the vegetative propagation of apple rootstocks. The potential role of hormone, wounding, and sugar signalling pathways in mediating AR formation has not been adequately explored and the whole co-expression network in AR formation has not been well established in apple. In order to identify the molecular mechanisms underlying AR formation in 'T337' apple rootstocks, transcriptomic changes that occur during four stages of AR formation (0, 3, 9 and 16 days) were analyzed using high-throughput sequencing. A total of 4294 differentially expressed genes were identified. Approximately 446 genes related to hormones, wounding, sugar signaling, root development, and cell cycle induction pathways were subsequently selected based on their potential to be involved in AR formation. RT-qPCR validation of 47 genes with known functions exhibited a strong positive correlation with the RNA-seq data. Interestingly, most of the candidate genes involved in AR formation that were identified by transcriptomic sequencing showed auxin-responsive expression patterns in an exogenous Indole-3-butyric acid (IBA)-treatment assay: Indicating that endogenous and exogenous auxin plays key roles in regulating AR formation via similar signalling pathways to some extent. In general, AR formation in apple rootstocks is a complex biological process which is mainly influenced by the auxin signaling pathway. In addition, multiple hormones-, wounding- and sugar-signaling pathways interact with the auxin signaling pathway and mediate AR formation in apple rootstocks.
Collapse
|
43
|
Guo X, Yu C, Luo L, Wan H, Zhen N, Li Y, Cheng T, Wang J, Pan H, Zhang Q. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea. PLANT MOLECULAR BIOLOGY 2018; 97:113-130. [PMID: 29736762 DOI: 10.1007/s11103-018-0727-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2018] [Indexed: 05/17/2023]
Abstract
Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism. Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.
Collapse
Affiliation(s)
- Xuelian Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Huihua Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Ni Zhen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
44
|
Zan Y, Carlborg Ö. A multilocus association analysis method integrating phenotype and expression data reveals multiple novel associations to flowering time variation in wild-collected Arabidopsis thaliana. Mol Ecol Resour 2018; 18:798-808. [PMID: 29356396 DOI: 10.1111/1755-0998.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
The adaptation to a new habitat often results in a confounding between genomewide genotype and beneficial alleles. When the confounding is strong, or the allelic effects is weak, it is a major statistical challenge to detect the adaptive polymorphisms. We describe a novel approach to dissect polygenic traits in natural populations. First, candidate adaptive loci are identified by screening for loci directly associated with the adaptive trait or the expression of genes known to affect it. Then, a multilocus genetic architecture is inferred using a backward elimination association analysis across all candidate loci with an adaptive false discovery rate-based threshold. Effects of population stratification are controlled by accounting for genomic kinship in both steps of the analysis and also by simultaneously testing all candidate loci in the multilocus model. We illustrate the method by exploring the polygenic basis of an important adaptive trait, flowering time in Arabidopsis thaliana, using public data from the 1,001 genomes project. We revealed associations between 33 (29) loci and flowering time at 10 (16)°C in this collection of natural accessions, where standard genomewide association analysis methods detected five (3) loci. The 33 (29) loci explained approximately 55.1 (48.7)% of the total phenotypic variance of the respective traits. Our work illustrates how the genetic basis of highly polygenic adaptive traits in natural populations can be explored in much greater detail using new multilocus mapping approaches taking advantage of prior biological information, genome and transcriptome data.
Collapse
Affiliation(s)
- Yanjun Zan
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Örjan Carlborg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Chomicki G, Coiro M, Renner SS. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. ANNALS OF BOTANY 2017; 120:855-891. [PMID: 29165551 PMCID: PMC5710528 DOI: 10.1093/aob/mcx113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/03/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In contrast to most animals, plants have an indeterminate body plan, which allows them to add new body parts during their lifetime. A plant's realized modular construction is the result of exogenous constraints and endogenous processes. This review focuses on endogenous processes that shape plant architectures and their evolution. SCOPE The phylogenetic distribution of plant growth forms across the phylogeny implies that body architectures have originated and been lost repeatedly, being shaped by a limited set of genetic pathways. We (1) synthesize concepts of plant architecture, so far captured in 23 models; (2) extend them to the fossil record; (3) summarize what is known about their developmental genetics; (4) use a phylogenetic approach in several groups to infer how plant architecture has changed and by which intermediate steps; and (5) discuss which macroecological factors may constrain the geographic and ecological distribution of plant architectures. CONCLUSIONS Dichotomously branching Paleozoic plants already encompassed a considerable diversity of growth forms, here captured in 12 new architectural models. Plotting the frequency of branching types through time based on an analysis of 58 927 land plant fossils revealed a decrease in dichotomous branching throughout the Devonian and Carboniferous, mirrored by an increase in other branching types including axillary branching. We suggest that the evolution of seed plant megaphyllous leaves enabling axillary branching contributed to the demise of dichotomous architectures. The developmental-genetic bases for key architectural traits underlying sympodial vs. monopodial branching, rhythmic vs. continuous growth, and axillary branching and its localization are becoming well understood, while the molecular basis of dichotomous branching and plagiotropy remains elusive. Three phylogenetic case studies of architecture evolution in conifers, Aloe and monocaulous arborescent vascular plants reveal relationships between architectural models and show that some are labile in given groups, whereas others are widely conserved, apparently shaped by ecological factors, such as intercepted sunlight, temperature, humidity and seasonality.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| | - Mario Coiro
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
46
|
Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan. BMC Genomics 2017; 18:878. [PMID: 29141604 PMCID: PMC5688659 DOI: 10.1186/s12864-017-4232-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023] Open
Abstract
Background Non-coding RNAs (ncRNAs) are important players in the post transcriptional regulation of gene expression (PTGR). On one hand, microRNAs (miRNAs) are an abundant class of small ncRNAs (~22nt long) that negatively regulate gene expression at the levels of messenger RNAs stability and translation inhibition, on the other hand, long ncRNAs (lncRNAs) are a large and diverse class of transcribed non-protein coding RNA molecules (> 200nt) that play both up-regulatory as well as down-regulatory roles at the transcriptional level. Cajanus cajan, a leguminosae pulse crop grown in tropical and subtropical areas of the world, is a source of high value protein to vegetarians or very poor populations globally. Hence, genome-wide identification of miRNAs and lncRNAs in C. cajan is extremely important to understand their role in PTGR with a possible implication to generate improve variety of crops. Results We have identified 616 mature miRNAs in C. cajan belonging to 118 families, of which 578 are novel and not reported in MirBase21. A total of 1373 target sequences were identified for 180 miRNAs. Of these, 298 targets were characterized at the protein level. Besides, we have also predicted 3919 lncRNAs. Additionally, we have identified 87 of the predicted lncRNAs to be targeted by 66 miRNAs. Conclusions miRNA and lncRNAs in plants are known to control a variety of traits including yield, quality and stress tolerance. Owing to its agricultural importance and medicinal value, the identified miRNA, lncRNA and their targets in C. cajan may be useful for genome editing to improve better quality crop. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of C. cajan agricultural traits. Electronic supplementary material The online version of this article (10.1186/s12864-017-4232-2) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Jia XL, Chen YK, Xu XZ, Shen F, Zheng QB, Du Z, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Sci Rep 2017; 7:14223. [PMID: 29079841 PMCID: PMC5660156 DOI: 10.1038/s41598-017-14671-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
In higher plants, miR156 regulates the vegetative phase change via the target SBP/SPL genes. The regulation of miR156 during ontogenetic processes is not fully understood. In the apple genome, of 31 putative MdMIR156 genes that encode pre-miR156, seven were dominantly expressed. However, the transcript levels of only MdMIR156a5 and MdMIR156a12 decreased significantly during the vegetative phase change, which was consistent with the mature miR156 level, indicating that miR156 is under transcriptional regulation. Leaf H2O2 content was higher in the adult phase than in the juvenile phase because of excess H2O2 accumulation in chloroplasts. When in vitro shoots were treated with menadione, diphenyleneiodonium, L-2-oxothiazolidine-4-carboxylic acid or buthionine sulphoximine, the expressions of MdMIR156a5, MdMIR156a12, and as well miR156 were coordinated with reduced glutathione (GSH) contents and glutathione/glutathione disulfide ratio but not H2O2 contents. Alteration of miR156 expression level by MdMIR156a6-overexpressing or miR156-mimetic transgenic Nicotiana benthamiana did not cause a corresponding change in reactive oxygen species or GSH status. Collectively, the results indicate that the vegetative phase change in apple is controlled by the MdMIR156a5 and MdMIR156a12 transcriptional regulatory network in response to the plastid–nucleus redox signals, such as GSH.
Collapse
Affiliation(s)
- Xiao Lin Jia
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ya Kun Chen
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao Zhao Xu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fei Shen
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qing Bo Zheng
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhen Du
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xue Feng Xu
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhen Hai Han
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xin Zhong Zhang
- Institute for Horticultural Plants, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
48
|
Zheng Y, Chen K, Xu Z, Liao P, Zhang X, Liu L, Wei K, Liu D, Li YF, Sunkar R, Cui X. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Sci Rep 2017; 7:9418. [PMID: 28842680 PMCID: PMC5573331 DOI: 10.1038/s41598-017-09670-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Plant genomes encode several classes of small regulatory RNAs (sRNAs) that play critical roles in both development and stress responses. Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an important traditional Chinese herbal medicinal plant species for its haemostatic effects. Therefore, the root yield of P. notoginseng is a major economically important trait since the roots of P. notoginseng are the parts used to produce medicine. To identify sRNAs that are critical for the root biomass of P. notoginseng, we performed a comprehensive study of miRNA transcriptomes from P. notoginseng roots of different biomasses. We identified 675 conserved miRNAs, of which 180 pre-miRNAs are also identified, and three TAS3 loci in P. notoginseng. By using degradome sequencing, we identified 79 conserved miRNA:target or tasiRNA:target interactions, of which eight were further confirmed with the RLM 5'-RACE experiments. More importantly, our results revealed that a member of miR156 family and one of its SPL target genes have inverse expression levels, which is tightly correlated with greater root biomass contents. These results not only contributes to overall understanding of post-transcriptional gene regulation in roots of P. notoginseng but also could serve as markers for breeding P. notoginseng with greater root yield.
Collapse
Affiliation(s)
- Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Kun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhenning Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Peiran Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiaotuo Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
- Key laboratory of Panax notoginseng resources sustainable development and utilization of state administration of traditional Chinese medicine, Kunming, Yunnan, 650500, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Key laboratory of Panax notoginseng resources sustainable development and utilization of state administration of traditional Chinese medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
49
|
Bai JF, Wang YK, Wang P, Duan WJ, Yuan SH, Sun H, Yuan GL, Ma JX, Wang N, Zhang FT, Zhang LP, Zhao CP. Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1370. [PMID: 28848574 PMCID: PMC5550412 DOI: 10.3389/fpls.2017.01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/24/2017] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs which play important negative regulatory roles at both the transcriptional and post-transcriptional levels in plants. Wheat is the most commonly cultivated plant species worldwide. In this study, RNA-seq analysis was used to examine the expression profiles of miRNA in the spikelets of photo-thermosenisitive genic male sterile (PTGMS) wheat line BS366 during male fertility transition. Through mapping on their corresponding precursors, 917-7,762 novel miRNAs were found in six libraries. Six novel miRNAs were selected for examination of their secondary structures and confirmation by stem-loop RT-PCR. In a differential expression analysis, 20, 22, and 58 known miRNAs exhibited significant differential expression between developmental stages 1 (secondary sporogenous cells had formed), 2 (all cells layers were present and mitosis had ceased), and 3 (meiotic division stage), respectively, of fertile and sterile plants. Some of these differential expressed miRNAs, such as tae-miR156, tae-miR164, tae-miR171, and tae-miR172, were shown to be associated with their targets. These targets were previously reported to be related to pollen development and/or male sterility, indicating that these miRNAs and their targets may be involved in the regulation of male fertility transition in the PTGMS wheat line BS366. Furthermore, target genes of miRNA cleavage sites were validated by degradome sequencing. In this study, a possible signal model for the miRNA-mediated signaling pathway during the process of male fertility transition in the PTGMS wheat line BS366 was developed. This study provides a new perspective for understanding the roles of miRNAs in male fertility in PTGMS lines of wheat.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Plant Science and Technology, Beijing University of AgricultureBeijing, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Hui Sun
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Guo-Liang Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Jing-Xiu Ma
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| |
Collapse
|
50
|
Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea. Sci Rep 2017; 7:6068. [PMID: 28729527 PMCID: PMC5519770 DOI: 10.1038/s41598-017-05850-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/05/2017] [Indexed: 11/17/2022] Open
Abstract
The floral transition is a crucial developmental event, but little is known about the underlying regulatory networks in seasonally and continuously flowering roses. In this study, we compared the genetic basis of flowering in two rose species, Rosa chinensis ‘Old Blush’, which flowers continuously, and R. odorata var. gigantea, which blooms in early spring. Gene ontology (GO) terms related to methylation, light reaction, and starch metabolism were enriched in R. odorata var. gigantea and terms associated with sugar metabolism were enriched in R. chinensis ‘Old Blush’ during the floral transition. A MapMan analysis revealed that genes involved in hormone signaling mediate the floral transition in both taxa. Furthermore, differentially expressed genes (DEGs) involved in vernalization, photoperiod, gibberellin (GA), and starch metabolism pathways converged on integrators, e.g., LFY, AGL24, SOC1, CAL, and COLs, to regulate the floral transition in R. odorata var. gigantea, while DEGs related to photoperiod, sugar metabolism, and GA pathways, including COL16, LFY, AGL11, 6PGDH, GASA4, and BAM, modulated the floral transition in R. chinensis ‘Old Blush.’ Our analysis of the genes underlying the floral transition in roses with different patterns of flowering provides a basis for further functional studies.
Collapse
|