1
|
Roy SC, Sapkota S, Pasula MB, Briski KP. In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat. Neurochem Res 2024; 49:3367-3382. [PMID: 39306597 DOI: 10.1007/s11064-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5'-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
- UL System Foundation and Willis-Knighton Health Systems Professorship in Toxicology, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
2
|
Pasula MB, Sapkota S, Sylvester PW, Briski KP. Sex-dimorphic effects of glucose transporter-2 gene knockdown on hypothalamic primary astrocyte phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt)/mammalian target of rapamycin (mTOR) cascade protein expression and phosphorylation. Mol Cell Endocrinol 2024; 593:112341. [PMID: 39128492 PMCID: PMC11401769 DOI: 10.1016/j.mce.2024.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Glucose transporter-2 (GLUT2), a unique high capacity/low affinity, highly efficient membrane transporter and sensor, regulates hypothalamic astrocyte glucose phosphorylation and glycogen metabolism. The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway participates in glucose homeostasis, but its sensitivity to glucose-sensory cues is unknown. Current research used a hypothalamic astrocyte primary culture model to investigate whether glucoprivation causes PI3K/Akt/mTOR pathway activation in one or both sexes by GLUT2-dependent mechanisms. Glucoprivation did not alter astrocyte PI3K levels, yet up-regulated both phosphorylated derivatives in female and down-regulated male p60 phosphoprotein expression. GLUT2 siRNA pretreatment diminished glucoprivic patterns of PI3K and phospho-PI3K expression in each sex. Astrocyte Akt and phospho-Akt/Thr308 proteins exhibited divergent, sex-contingent responses to GLUT2 gene knockdown or glucoprivation. GLUT2 siRNA pretreatment exacerbated glucoprivic-associated Akt diminution in the female, and either amplified (male) or reversed (female) glucoprivic regulation of phospho-Akt/Thr308 expression. GLUT2 gene silencing down- (male) or up-(female) regulated mTOR protein, and phospho-mTOR protein in male. Male astrocyte mTOR and phospho-mTOR profile were refractory to glucoprivation, but glucose-deprived females showed GLUT2-independent mTOR inhibition and GLUT2-dependent phospho-mTOR up-augmentation. Results identify a larger number of glucoprivic-sensitive PI3K/Akt/mTOR pathway proteins in female versus male astrocytes, and document divergent responses of common glucose-sensitive targets. GLUT2 stimulates phosphoPI3K protein expression in each sex, but imposes differential control of PI3K, Akt, phospho-Akt/Thr308, mTOR, and phospho-mTOR profiles in male versus female. Data implicate GLUT2 as a driver of distinctive pathway protein responses to glucoprivation in female, but not male.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
3
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
4
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
5
|
Pasula MB, Sylvester PW, Briski KP. GLUT2 regulation of p38 MAPK isoform protein expression and p38 phosphorylation in male versus female rat hypothalamic primary astrocyte Cultures. IBRO Neurosci Rep 2024; 16:635-642. [PMID: 38832087 PMCID: PMC11144729 DOI: 10.1016/j.ibneur.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Recent studies documented regulation of hypothalamic astrocyte mitogen-activated protein kinase (MAPK) pathways, including p38, by the plasma membrane glucose carrier/sensor glucose transporter-2 (GLUT2). Sex-specific GLUT2 control of p38 phosphorylation was observed, but effects on individual p38 family protein profiles were not investigated. Current research employed an established primary astrocyte culture model, gene knockdown tools, and selective primary antisera against p38-alpha, p38-beta, p38-gamma, and p38-delta isoforms to investigate whether GLUT2 governs expression of one or more of these variants in a glucose-dependent manner. Data show that GLUT2 inhibits baseline expression of each p38 protein in male cultures, yet stimulates p38-delta profiles without affecting other p38 proteins in female. Glucose starvation caused selective up-regulation of p38-delta profiles in male versus p38-alpha and -gamma proteins in female; these positive responses were amplified by GLUT2 siRNA pretreatment. GLUT2 opposes or enhances basal p38 phosphorylation in male versus female, respectively. GLUT2 siRNA pretreatment did not affect glucoprivic patterns of phospho-p38 protein expression in either sex. Outcomes document co-expression of the four principal p38 MAPK family proteins in hypothalamic astrocytes, and implicate GLUT2 in regulation of all (male) versus one (female) variant(s). Glucoprivation up-regulated expression of distinctive p38 isoforms in each sex; these stimulatory responses are evidently blunted by GLUT2. Glucoprivic-associated loss of GLUT2 gene silencing effects on p38 phosphorylation infers either that glucose status determines whether this sensor controls phosphorylation, or that decrements in screened glucose in each instance are of sufficient magnitude to abolish GLUT2 regulation of that function.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Paul W. Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
6
|
Pasula M, Roy SC, Bheemanapally K, Sylvester PW, Briski KP. Glucose Transporter-2 Regulation of Male versus Female Hypothalamic Astrocyte MAPK Expression and Activation: Impact of Glucose. NEUROGLIA (BASEL, SWITZERLAND) 2023; 4:158-171. [PMID: 37485036 PMCID: PMC10361449 DOI: 10.3390/neuroglia4030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The plasma membrane glucose transporter (GLUT)-2 is unique among GLUT family proteins in that it also functions as a glucose sensor. GLUT2 imposes sex-dimorphic control of hypothalamic astrocyte glucose storage and catabolism by unknown mechanisms. Mitogen-activated protein kinase (MAPK) signaling cascades operate within stress-sensitive signal transduction pathways. Current research employed an established primary astrocyte culture model and gene knockdown tools to investigate whether one or more of the three primary MAP kinase families are regulated by GLUT2. GLUT2 gene knockdown caused opposing adjustments in total ERK1/2 proteins in glucose-supplied male versus female astrocytes, augmenting or reducing the mean phosphorylated/total protein ratio for 44 and 42 kDa variants in these sexes. Glucose deprivation amplified this ratio for both ERK1/2 variants, albeit by a larger magnitude in male; GLUT2 siRNA exacerbated this stimulatory response in males only. Phosphorylated/total p38 MAPK protein ratios were up-regulated by GLUT2 knockdown in male, but not female astrocytes. Glucose-deprived astrocytes exhibited no change (male) or reduction (female) in this ratio after GLUT2 gene silencing. GLUT2 siRNA increased the phosphorylated/total protein ratio for 54 and 46 kDa SAPK/JNK proteins in each sex when glucose was present. However, glucose withdrawal suppressed (male) or amplified (female) these ratios, while GLUT2 knockdown attenuated these inverse responses. Results show that GLUT2 inhibits ERK1/2, p38, and SAPK/JNK MAPK activity in male, but differentially stimulates and inhibits activity of these signaling pathways in female hypothalamic astrocytes. Glucoprivation induces divergent adjustments in astrocyte p38 MAPK and SAPK/JNK activities. The findings demonstrate a stimulatory role for GLUT2 in p38 MAPK activation in glucose-starved female astrocytes, but can act as either an inhibitor or inducer of SAPK/JNK activation in glucose-deprived male versus female glial cells, respectively.
Collapse
Affiliation(s)
- MadhuBabu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| |
Collapse
|
7
|
Pasula MB, Napit PR, Alhamyani A, Roy SC, Sylvester PW, Bheemanapally K, Briski KP. Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism. Neurochem Res 2023; 48:404-417. [PMID: 36173588 PMCID: PMC9898103 DOI: 10.1007/s11064-022-03757-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA.
| |
Collapse
|
8
|
Ahmad M, Abramovich I, Agranovich B, Nemirovski A, Gottlieb E, Hinden L, Tam J. Kidney Proximal Tubule GLUT2-More than Meets the Eye. Cells 2022; 12:cells12010094. [PMID: 36611887 PMCID: PMC9818791 DOI: 10.3390/cells12010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.
Collapse
Affiliation(s)
- Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Bella Agranovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| |
Collapse
|
9
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
10
|
Schmidl S, Tamayo Rojas SA, Iancu CV, Choe JY, Oreb M. Functional Expression of the Human Glucose Transporters GLUT2 and GLUT3 in Yeast Offers Novel Screening Systems for GLUT-Targeting Drugs. Front Mol Biosci 2021; 7:598419. [PMID: 33681287 PMCID: PMC7930720 DOI: 10.3389/fmolb.2020.598419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023] Open
Abstract
Human GLUT2 and GLUT3, members of the GLUT/SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3.
Collapse
Affiliation(s)
- Sina Schmidl
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian A Tamayo Rojas
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cristina V Iancu
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
12
|
Zhang Y, Shaikh N, Ferey JL, Wankhade UD, Chintapalli SV, Higgins CB, Crowley JR, Heitmeier MR, Stothard AI, Mihi B, Good M, Higashiyama T, Swarts BM, Hruz PW, Shankar K, Tarr PI, DeBosch BJ. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology 2020; 158:1402-1416.e2. [PMID: 31838076 PMCID: PMC7103499 DOI: 10.1053/j.gastro.2019.11.295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/20/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Trehalose is a disaccharide that might be used in the treatment of cardiometabolic diseases. However, trehalose consumption promotes the expansion of Clostridioides difficile ribotypes that metabolize trehalose via trehalose-6-phosphate hydrolase. Furthermore, brush border and renal trehalases can reduce the efficacy of trehalose by cleaving it into monosaccharides. We investigated whether a trehalase-resistant analogue of trehalose (lactotrehalose) has the same metabolic effects of trehalose without expanding C difficile. METHODS We performed studies with HEK293 and Caco2 cells, primary hepatocytes from mice, and human intestinal organoids. Glucose transporters were overexpressed in HEK293 cells, and glucose tra2nsport was quantified. Primary hepatocytes were cultured with or without trehalose or lactotrehalose, and gene expression patterns were analyzed. C57B6/J mice were given oral antibiotics and trehalose or lactotrehalose in drinking water, or only water (control), followed by gavage with the virulent C difficile ribotype 027 (CD027); fecal samples were analyzed for toxins A (ToxA) or B (ToxB) by enzyme-linked immunosorbent assay. Other mice were given trehalose or lactotrehalose in drinking water for 2 days before placement on a chow or 60% fructose diet for 10 days. Liver tissues were collected and analyzed by histologic, serum biochemical, RNA sequencing, autophagic flux, and thermogenesis analyses. We quantified portal trehalose and lactotrehalose bioavailability by gas chromatography mass spectrometry. Fecal microbiomes were analyzed by 16S ribosomal RNA sequencing and principal component analyses. RESULTS Lactotrehalose and trehalose each blocked glucose transport in HEK293 cells and induced a gene expression pattern associated with fasting in primary hepatocytes. Compared with mice on the chow diet, mice on the high-fructose diet had increased circulating cholesterol, higher ratios of liver weight-to-body weight, hepatic lipid accumulation (steatosis), and liver gene expression patterns of carbohydrate-responsive de novo lipogenesis. Mice given lactotrehalose while on the high-fructose diet did not develop any of these features and had increased whole-body caloric expenditure compared with mice given trehalose or water and fed a high-fructose diet. Livers from mice given lactotrehalose had increased transcription of genes that regulate mitochondrial energy metabolism compared with liver from mice given trehalose or controls. Lactotrehalose was bioavailable in venous and portal circulation and fecal samples. Lactotrehalose reduced fecal markers of microbial branched-chain amino acid biosynthesis and increased expression of microbial genes that regulate insulin signaling. In mice given antibiotics followed by CD027, neither lactotrehalose nor trehalose increased levels of the bacteria or its toxin in stool-in fact, trehalose reduced the abundance of CD027 in stool. Lactotrehalose and trehalose reduced markers of inflammation in rectal tissue after CD027 infection. CONCLUSIONS Lactotrehalose is a trehalase-resistant analogue that increases metabolic parameters, compared with trehalose, without increasing the abundance or virulence of C difficile strain CD027. Trehalase-resistant trehalose analogues might be developed as next-generation fasting-mimetics for the treatment of diabetes and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeremie L. Ferey
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO 63110
| | - Umesh D. Wankhade
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Sree V. Chintapalli
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jan R. Crowley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Monique R. Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alicyn I. Stothard
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859
| | - Belgacem Mihi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Benjamin M. Swarts
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859
| | - Paul W. Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Kartik Shankar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110,Correspondence: Brian DeBosch, Departments of Pediatrics and Cell Biology and Physiology, Washington University School of Medicine, 5107 McDonnell Pediatrics Research Building, 660 S. Euclid Ave, Box 8208, St. Louis, MO 63110. Telephone: 314-454-6173; FAX: 314-454-2412;
| |
Collapse
|
13
|
Rogers RC, Burke SJ, Collier JJ, Ritter S, Hermann GE. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am J Physiol Regul Integr Comp Physiol 2020; 318:R38-R48. [PMID: 31596114 PMCID: PMC6985801 DOI: 10.1152/ajpregu.00133.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Astrocytes generate robust cytoplasmic calcium signals in response to reductions in extracellular glucose. This calcium signal, in turn, drives purinergic gliotransmission, which controls the activity of catecholaminergic (CA) neurons in the hindbrain. These CA neurons are critical to triggering glucose counter-regulatory responses (CRRs) that, ultimately, restore glucose homeostasis via endocrine and behavioral means. Although the astrocyte low-glucose sensor involvement in CRR has been accepted, it is not clear how astrocytes produce an increase in intracellular calcium in response to a decrease in glucose. Our ex vivo calcium imaging studies of hindbrain astrocytes show that the glucose type 2 transporter (GLUT2) is an essential feature of the astrocyte glucosensor mechanism. Coimmunoprecipitation assays reveal that the recombinant GLUT2 binds directly with the recombinant Gq protein subunit that activates phospholipase C (PLC). Additional calcium imaging studies suggest that GLUT2 may be connected to a PLC-endoplasmic reticular-calcium release mechanism, which is amplified by calcium-induced calcium release (CICR). Collectively, these data help outline a potential mechanism used by astrocytes to convert information regarding low-glucose levels into intracellular changes that ultimately regulate the CRR.
Collapse
Affiliation(s)
- Richard C. Rogers
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Susan J. Burke
- 2Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - J. Jason Collier
- 3Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Sue Ritter
- 4Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | - Gerlinda E. Hermann
- 1Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
14
|
Rogers RC, McDougal DH, Ritter S, Qualls-Creekmore E, Hermann GE. Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent. Am J Physiol Regul Integr Comp Physiol 2018; 315:R153-R164. [PMID: 29590557 PMCID: PMC6087883 DOI: 10.1152/ajpregu.00368.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hindbrain catecholaminergic (CA) neurons are required for critical autonomic, endocrine, and behavioral counterregulatory responses (CRRs) to hypoglycemia. Recent studies suggest that CRR initiation depends on hindbrain astrocyte glucose sensors (McDougal DH, Hermann GE, Rogers RC. Front Neurosci 7: 249, 2013; Rogers RC, Ritter S, Hermann GE. Am J Physiol Regul Integr Comp Physiol 310: R1102-R1108, 2016). To test the proposition that hindbrain CA responses to glucoprivation are astrocyte dependent, we utilized transgenic mice in which the calcium reporter construct (GCaMP5) was expressed selectively in tyrosine hydroxylase neurons (TH-GCaMP5). We conducted live cell calcium-imaging studies on tissue slices containing the nucleus of the solitary tract (NST) or the ventrolateral medulla, critical CRR initiation sites. Results show that TH-GCaMP5 neurons are robustly activated by a glucoprivic challenge and that this response is dependent on functional astrocytes. Pretreatment of hindbrain slices with fluorocitrate (an astrocytic metabolic suppressor) abolished TH-GCaMP5 neuronal responses to glucoprivation, but not to glutamate. Pharmacologic results suggest that the astrocytic connection with hindbrain CA neurons is purinergic via P2 receptors. Parallel imaging studies on hindbrain slices of NST from wild-type C57BL/6J mice, in which astrocytes and neurons were prelabeled with a calcium reporter dye and an astrocytic vital dye, show that both cell types are activated by glucoprivation but astrocytes responded significantly sooner than neurons. Pretreatment of these hindbrain slices with P2 antagonists abolished neuronal responses to glucoprivation without interruption of astrocyte responses; pretreatment with fluorocitrate eliminated both astrocytic and neuronal responses. These results support earlier work suggesting that the primary detection of glucoprivic signals by the hindbrain is mediated by astrocytes.
Collapse
Affiliation(s)
| | | | - Sue Ritter
- 2Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | | | | |
Collapse
|
15
|
López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F. Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 2018; 56:769-796. [PMID: 29796992 DOI: 10.1007/s12035-018-1099-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
The metabolic and energy state of the organism depends largely on the availability of substrates, such as glucose for ATP production, necessary for maintaining physiological functions. Deregulation in glucose levels leads to the appearance of pathological signs that result in failures in the cardiovascular system and various diseases, such as diabetes, obesity, nephropathy, and neuropathy. Particularly, the brain relies on glucose as fuel for the normal development of neuronal activity. Regions adjacent to the cerebral ventricles, such as the hypothalamus and brainstem, exercise central control in energy homeostasis. These centers house nuclei of neurons whose excitatory activity is sensitive to changes in glucose levels. Determining the different detection mechanisms, the phenotype of neurosecretion, and neural connections involving glucose-sensitive neurons is essential to understanding the response to hypoglycemia through modulation of food intake, thermogenesis, and activation of sympathetic and parasympathetic branches, inducing glucagon and epinephrine secretion and other hypothalamic-pituitary axis-dependent counterregulatory hormones, such as glucocorticoids and growth hormone. The aim of this review focuses on integrating the current understanding of various glucose-sensing mechanisms described in the brain, thereby establishing a relationship between neuroanatomy and control of physiological processes involved in both metabolic and energy balance. This will advance the understanding of increasingly prevalent diseases in the modern world, especially diabetes, and emphasize patterns that regulate and stimulate intake, thermogenesis, and the overall synergistic effect of the neuroendocrine system.
Collapse
Affiliation(s)
- A J López-Gambero
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain
| | - F Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - K Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - M Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain.
| | - F Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
16
|
Mayer AL, Zhang Y, Feng EH, Higgins CB, Adenekan O, Pietka TA, Beatty WL, DeBosch BJ. Enhanced Hepatic PPARα Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 2018; 159:2110-2126. [PMID: 29596655 PMCID: PMC6366533 DOI: 10.1210/en.2017-03150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022]
Abstract
The adaptive fasting response is invoked as a promising cardiometabolic and neurodegenerative therapeutic pathway. We and others have defined the carbohydrate transporter glucose transporter 8 (GLUT8) as a critical regulator of hepatic and whole-organism metabolic homeostasis in the overfed and diabetic states. However, the functions of this critical transporter in the physiological fasting response remain poorly understood. Here, we tested the hypothesis that GLUT8 modulates the adaptive hepatic fasting response. We demonstrate that mice with targeted Slc2a8 disruption exhibit enhanced thermogenesis, ketogenesis, and peripheral lipid mobilization during fasting. These metabolic enhancements were observed in the context of mildly impaired hepatic mitochondrial oxidative metabolism in vivo and in vitro. Mechanistically, we show that hepatic peroxisome proliferator-activated receptor α (PPARα) and its transcriptional fasting response target hepatokine, fibroblast growth factor (FGF)21, are cell-autonomously hyperactivated in GLUT8-deficient liver and in isolated primary murine hepatocytes during nutrient depletion. Hepatic PPARα knockdown in GLUT8-deficient mice normalized the enhanced ketogenic and FGF21 secretory responses and decreased mitochondrial respiratory function without altering the hyperthermic response to fasting. Our data demonstrate that hepatocyte GLUT8 regulates adaptive fasting in part through regulation of the PPARα signaling cascade. Moreover, the ketotic and thermic responses to fasting are differentially encoded within the GLUT8-PPARα communication axis. GLUT8 therefore represents a therapeutic target that can be leveraged against cardiometabolic disease.
Collapse
Affiliation(s)
- Allyson L Mayer
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Emily H Feng
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oyinkansola Adenekan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Terri A Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence: Brian J. DeBosch, MD, PhD, 660 South Euclid Avenue, Box 8208, St. Louis, Missouri 63110. E-mail:
| |
Collapse
|
17
|
Abstract
The facilitative glucose transporter (GLUT) family plays a key role in metabolic homeostasis, controlling the absorption rates and rapid response to changing carbohydrate levels. The facilitative GLUT2 transporter is uniquely expressed in metabolic epithelial cells of the intestine, pancreas, liver, and kidney. GLUT2 dysfunction is associated with several pathologies, including Fanconi-Bickel syndrome, a glycogen storage disease, characterized by growth retardation and renal dysfunction. Interestingly, GLUT2 activity is modulated by its cellular localization. Membrane translocation specifically regulates GLUT2 activity in enterocytes, pancreatic β-cells, hepatocytes, and proximal tubule cells. We have established a system to visualize and quantify GLUT2 translocation, and its dynamics, by live imaging of a mCherry-hGLUT2 fusion protein in polarized epithelial cells. This system enables testing of putative modulators of GLUT2 translocation, which are potential drugs for conditions of impaired glucose homeostasis and associated nephropathy.
Collapse
Affiliation(s)
- Sabina Tsytkin-Kirschenzweig
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
18
|
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
|
19
|
Mokashi P, Khanna A, Pandita N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother 2017; 90:268-277. [DOI: 10.1016/j.biopha.2017.03.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023] Open
|
20
|
Niu C, Payne GA, Woloshuk CP. Involvement of FST1 from Fusarium verticillioides in virulence and transport of inositol. MOLECULAR PLANT PATHOLOGY 2017; 18:695-707. [PMID: 27195938 PMCID: PMC6638204 DOI: 10.1111/mpp.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Fumonisin B1 (FB1), a polyketide mycotoxin produced by Fusarium verticillioides during the colonization of maize kernels, is detrimental to human and animal health. FST1 encodes a putative protein with 12 transmembrane domains; however, its function remains unknown. The FST1 gene is highly expressed by the fungus in the endosperm of maize kernels compared with the levels of expression in germ tissues. Previous research has shown that FST1 affects FB1 production, virulence, hydrogen peroxide resistance, hydrophobicity and macroconidia production. Here, we examine the phylogeny of FST1, its expression in a Saccharomyces cerevisiae strain lacking a functional myo-inositol transporter (ITR1) and the effect of amino acid changes in the central loop and C-terminus regions of FST1 on functionality. The results indicate that expression of FST1 in an ITR1 mutant strain restores growth on myo-inositol medium to wild-type levels and restores the inhibitory effects of FB1, suggesting that FST1 can transport both myo-inositol and FB1 into yeast cells. Our results with engineered FST1 also indicate that amino acids in the central loop and C-terminus regions are important for FST1 functionality in both S. cerevisiae and F. verticillioides. Overall, this research has established the first characterized inositol transporter in filamentous fungi and has advanced our knowledge about the global regulatory functions of FST1.
Collapse
Affiliation(s)
- Chenxing Niu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907‐2054USA
| | - Gary A. Payne
- Department of Plant PathologyNorth Carolina State UniversityRaleighNC27695‐7567USA
| | - Charles P. Woloshuk
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907‐2054USA
| |
Collapse
|
21
|
Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, Hyrc KL, Beatty WL, Yarasheski KE, Hruz PW, DeBosch BJ. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci Rep 2016; 6:38586. [PMID: 27922102 PMCID: PMC5138640 DOI: 10.1038/srep38586] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
Trehalose is a disaccharide demonstrated to mitigate disease burden in multiple murine neurodegenerative models. We recently revealed that trehalose rapidly induces hepatic autophagy and abrogates hepatic steatosis by inhibiting hexose transport via the SLC2A family of facilitative transporters. Prior studies, however, postulate that intracellular trehalose is sufficient to induce cellular autophagy. The objective of the current study was to identify the means by which trehalose accesses the hepatocyte cytoplasm, and define the distal signaling mechanisms by which trehalose induces autophagy. We provide gas chromatographic/mass spectrometric, fluorescence microscopic and radiolabeled uptake evidence that trehalose traverses the plasma membrane via SLC2A8 (GLUT8), a homolog of the trehalose transporter-1 (Tret1). Moreover, GLUT8-deficient hepatocytes and GLUT8-deficient mice exposed to trehalose resisted trehalose-induced AMP-activated protein kinase (AMPK) phosphorylation and autophagic induction in vitro and in vivo. Although trehalose profoundly attenuated mTORC1 signaling, trehalose-induced mTORC1 suppression was insufficient to activate autophagy in the absence of AMPK or GLUT8. Strikingly, transient, heterologous Tret1 overexpression reconstituted autophagic flux and AMPK signaling defects in GLUT8-deficient hepatocyte cultures. Together, these data suggest that cytoplasmic trehalose access is carrier-mediated, and that GLUT8 is a mammalian trehalose transporter required for hepatocyte trehalose-induced autophagy and signal transduction.
Collapse
Affiliation(s)
- Allyson L. Mayer
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Cassandra B. Higgins
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Monique R. Heitmeier
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Thomas E. Kraft
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Xia Qian
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Jan R. Crowley
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Krzysztof L. Hyrc
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- The Hope Center for Neurological Disorders, Alafi Neuroimaging Laboratory, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Kevin E. Yarasheski
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Paul W. Hruz
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci 2016; 41:712-730. [PMID: 27345518 DOI: 10.1016/j.tibs.2016.05.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
During evolution, cells acquired the ability to sense and adapt to varying environmental conditions, particularly in terms of fuel supply. Adaptation to fuel availability is crucial for major cell decisions and requires metabolic alterations and differential gene expression that are often epigenetically driven. A new mechanistic link between metabolic flux and regulation of gene expression is through moonlighting of metabolic enzymes in the nucleus. This facilitates delivery of membrane-impermeable or unstable metabolites to the nucleus, including key substrates for epigenetic mechanisms such as acetyl-CoA which is used in histone acetylation. This metabolism-epigenetics axis facilitates adaptation to a changing environment in normal (e.g., development, stem cell differentiation) and disease states (e.g., cancer), providing a potential novel therapeutic target.
Collapse
|
23
|
Schuler D, Wahl R, Wippel K, Vranes M, Münsterkötter M, Sauer N, Kämper J. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis. THE NEW PHYTOLOGIST 2015; 206:1086-1100. [PMID: 25678342 DOI: 10.1111/nph.13314] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/23/2014] [Indexed: 05/23/2023]
Abstract
The smut Ustilago maydis, a ubiquitous pest of corn, is highly adapted to its host to parasitize on its organic carbon sources. We have identified a hexose transporter, Hxt1, as important for fungal development during both the saprophytic and the pathogenic stage of the fungus. Hxt1 was characterized as a high-affinity transporter for glucose, fructose, and mannose; ∆hxt1 strains show significantly reduced growth on these substrates, setting Hxt1 as the main hexose transporter during saprophytic growth. After plant infection, ∆hxt1 strains show decreased symptom development. However, expression of a Hxt1 protein with a mutation leading to constitutively active signaling in the yeast glucose sensors Snf3p and Rgt2p results in completely apathogenic strains. Fungal development is stalled immediately after plant penetration, implying a dual function of Hxt1 as transporter and sensor. As glucose sensors are only known for yeasts, 'transceptor' as Hxt1 may constitute a general mechanism for sensing of glucose in fungi. In U. maydis, Hxt1 links a nutrient-dependent environmental signal to the developmental program during pathogenic development.
Collapse
Affiliation(s)
- David Schuler
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Ramon Wahl
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Kathrin Wippel
- Molecular Plant Physiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Miroslav Vranes
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Jörg Kämper
- Department of Genetics, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
24
|
Comparative effects of Aliskiren and Telmisartan in high fructose diet-induced metabolic syndrome in rats. Eur J Pharmacol 2015; 760:145-53. [PMID: 25917321 DOI: 10.1016/j.ejphar.2015.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 01/18/2023]
Abstract
Fructose is a commonly used sweetener associated with diets that increase the prevalence of metabolic syndrome (MS). Inhibition of the renin-angiotensin system (RAS) has been consistently demonstrated to reduce MS. However, there has been no direct comparison among different pharmacological modes of inhibiting the RAS concerning their effects on MS. This study investigated the effect of aliskiren, a direct renin inhibitor, versus telmisartan, an angiotensin II-receptor blocker, in the treatment of fructose-induced MS in rats. MS was induced by high fructose (FRC) diet feeding for 12 weeks. Oral administrations of telmisartan (TEL, 5 mg/kg), aliskiren (ALS, 30 mg/kg) or vehicle were started in the last 4 weeks. Results showed that administration of either TEL or ALS with FRC diet equally ameliorated the metabolic parameters (glucose level, oral glucose tolerance test, insulin resistance and serum lipids profile), systolic blood pressure and oxidative stress markers (malondialdehyde, nitric oxide, reduced glutathione levels and catalase activity). Additionally, the effects of TEL and ALS were associated with a decrease in body composition index and attenuation of liver index, serum liver enzyme activities and hepatic expressions of inflammatory and fibrotic markers (tumor necrosis factor-α, nuclear factor kappa-B and transforming growth factor-β) with a significant increase in hepatic glucose transporter-2 and peroxisome proliferator-activated receptors-alpha and gamma expressions. The results suggested that, at indicated dosage, ALS has ameliorative effect equal to that of TEL against FRC-induced metabolic and hepatic disorders; implying that drugs which inhibit the RAS, by different mode of inhibition, profoundly affect fructose-induced MS in rats.
Collapse
|
25
|
Ruggiero JE, Northrup H, Au KS. Association of facilitated glucose transporter 2 gene variants with the myelomeningocele phenotype. ACTA ACUST UNITED AC 2015; 103:479-87. [PMID: 25776730 DOI: 10.1002/bdra.23358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) remain the second most common cause of congenital malformations. Myelomeningocele (MM), the most common NTD compatible with survival, results from genetic and environmental factors. Epidemiologic studies and murine models support the hypotheses that obesity, diabetes and hyperglycemia confer increased risk of NTDs. Presence of wild-type facilitated glucose transporter, Glut2, in mouse embryos has been shown to increase risk for NTDs in hyperglycemic pregnancy. METHODS The GLUT2 gene of 96 MM patients was amplified, sequenced and compared with the reference sequence (NM_000340). Variants previously unreported in the single nucleotide polymorphisms (SNP) database were considered novel. Allele frequencies of reported SNPs were compared with reference populations using Fisher's exact test. RESULTS Analysis revealed three novel variants: a substitution in the core promoter region (c.-331c>t), a substitution (c.-182g>a) in the 5'-untranslated region, and a single base pair deletion (c.1441delT) in the coding sequences. Polymorphic alleles for 10 SNPs were also identified. Seven SNPs are significantly associated with MM in the Mexican American patients tested (p < 0.05) and two of the seven remained significant after Bonferroni correction. CONCLUSION We identified three novel variants and seven SNPs associated with MM. The novel variants in the core promoter and in the 5'-untranslated region could affect GLUT2 mRNA transcription and stability and translation efficiency. The c.1441delT variant is predicted to alter the reading frame and prematurely terminate translation of the GLUT2 protein at the C-terminus, affecting GLUT2 protein function. Presence of GLUT2 variants may disrupt GLUT2 activity and influence MM susceptibility.
Collapse
Affiliation(s)
- Jaclyn E Ruggiero
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas.,Shriners Hospitals for Children, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
26
|
Abstract
The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| |
Collapse
|
27
|
Schultz A, Barbosa-da-Silva S, Aguila MB, Mandarim-de-Lacerda CA. Differences and similarities in hepatic lipogenesis, gluconeogenesis and oxidative imbalance in mice fed diets rich in fructose or sucrose. Food Funct 2015; 6:1684-91. [DOI: 10.1039/c5fo00251f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in feeding habits are the primary environmental factors (though modifiable) commonly correlated with increase in diseases such as obesity and associated comorbidities.
Collapse
Affiliation(s)
- Alini Schultz
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | - Marcia B. Aguila
- Laboratory of Morphometry
- Metabolism
- and Cardiovascular Disease
- Biomedical Center
- Institute of Biology
| | | |
Collapse
|
28
|
Shu S, Liu H, Wang M, Su D, Yao L, Wang G. Subchronic olanzapine treatment decreases the expression of pancreatic glucose transporter 2 in rat pancreatic β cells. J Endocrinol Invest 2014; 37:667-73. [PMID: 24880813 DOI: 10.1007/s40618-014-0093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/06/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Olanzapine is a second generation antipsychotic. A common side effect in humans is weight gain, but the mechanisms are mostly unknown. AIM To study the effects of subchronic olanzapine treatment on body weight, fasting plasma glucose (FPG), fasting insulin (FINS), C-peptide, insulin sensitivity index (ISI), and expression of glucose transporter 2 (GLUT2) in rat pancreatic β cells. MATERIALS AND METHODS Female Sprague-Dawley rats were randomly divided into two groups: the olanzapine-treated group and the control group (each n = 8). Rats in the olanzapine-treated group intragastrically received olanzapine 5 mg/kg/day for 28 days; the rats in the control group received the same volume of vehicle. FPG and body weight were measured on the 1st, 7th, 14th and 28th day. FINS and C-peptide were measured using immunoradiometric assays at baseline and on the 28th day. GLUT2 mRNA and protein expressions in pancreatic β cells were analyzed by RT-PCR and western blot. RESULTS Olanzapine-treated rats had higher body weight (227.4 ± 8.9 vs. 211.0 ± 9.9 g), FPG (5.86 ± 0.42 vs. 4.24 ± 0.29 mmol/L), FINS (17.34 ± 3.64 vs. 10.20 ± 1.50 µIU/mL), and C-peptide (0.154 ± 0.027 vs. 0.096 ± 0.009 ng/mL) than those in controls (all P < 0.05) at the 28th day. Pancreatic β cells of the olanzapine-treated group showed lower ISI (-4.60 ± 0.23 vs. -3.76 ± 0.20) and GLUT2 levels (mRNA: 1.12 ± 0.02 vs. 2.00 ± 0.03; protein: 0.884 ± 0.134 vs. 1.118 ± 0.221) than those in controls (all P < 0.05). CONCLUSIONS Subchronic olanzapine treatment inhibited expression of GLUT2 in rat pancreatic β cells. Therefore, it may disturb glucose metabolism via the insulin resistance of β cells, but confirmation in humans is needed.
Collapse
Affiliation(s)
- Shengqiang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
29
|
Schultz A, Neil D, Aguila MB, Mandarim-de-Lacerda CA. Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int J Mol Sci 2013; 14:21873-86. [PMID: 24196354 PMCID: PMC3856040 DOI: 10.3390/ijms141121873] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022] Open
Abstract
The chronic intake of fructose has been linked to insulin resistance, obesity, dyslipidemia and nonalcoholic fatty liver disease (NAFLD), which in turn, may progress to nonalcoholic steatohepatitis (NASH). We aimed to evaluate the magnitude of the effects of the chronic consumption of high-fructose (HFr) and high fat (HF) alone or combined. Four groups of male mice were fed different diets for 16 weeks: standard chow (9% fat: SC), HF diet (42% fat), HFr diet (34% fructose) and HF/HFr diet (42% fat, 34% fructose). The food intake was not different among the groups, and the body mass was not greater in the HFr group than in the SC group. The homeostasis model assessment for insulin resistance (HOMA-IR), as well as plasmatic total cholesterol and triglycerides were greater in the groups HF, HFr, and HF/HFr group than in the SC group. We observed in the groups HF, HFr and HF/HFr, compared to the group SC, nonalcoholic fatty liver disease (NAFLD) with a predominance of lipogenesis mediated by SREBP-1c and PPAR-γ, and a reduction of the oxidation mediated by PPAR-α. We also observed an increase in gluconeogenesis mediated by the GLUT-2 and the PEPCK. Importantly, we identified areas of necroinflammation indicating a transition from NAFLD to nonalcoholic steatohepatitis in the HFr and HF/HFr groups. This study is relevant in demonstrating that fructose consumption, even in the absence of obesity, causes serious and deleterious changes in the liver with the presence of the dyslipidemia, insulin resistance (IR), and NAFLD with areas of necroinflammation. These conditions are associated with a poor prognosis.
Collapse
Affiliation(s)
- Alini Schultz
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av. 28 de Setembro 87 fds, Rio de Janeiro 20551-030, Brazil.
| | | | | | | |
Collapse
|
30
|
Michau A, Guillemain G, Grosfeld A, Vuillaumier-Barrot S, Grand T, Keck M, L'Hoste S, Chateau D, Serradas P, Teulon J, De Lonlay P, Scharfmann R, Brot-Laroche E, Leturque A, Le Gall M. Mutations in SLC2A2 gene reveal hGLUT2 function in pancreatic β cell development. J Biol Chem 2013; 288:31080-92. [PMID: 23986439 DOI: 10.1074/jbc.m113.469189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion.
Collapse
Affiliation(s)
- Aurélien Michau
- From the INSERM UMRS872, Cordeliers Research Center, Université Pierre et Marie Curie, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McDougal DH, Viard E, Hermann GE, Rogers RC. Astrocytes in the hindbrain detect glucoprivation and regulate gastric motility. Auton Neurosci 2013; 175:61-9. [PMID: 23313342 PMCID: PMC3951246 DOI: 10.1016/j.autneu.2012.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/15/2012] [Accepted: 12/15/2012] [Indexed: 01/22/2023]
Abstract
Glucoprivation is a strong signal for the initiation of gastrointestinal contractions. While this relationship between utilizable nutrient levels and gastric motility has been recognized for more than 100 years, the explanation of this phenomenon has remained incomplete. Using widely differing approaches, recent work has suggested that the hindbrain is responsible for this chemoreflex effect. Surprisingly, astrocytes may be the main glucodetector elements under hypoglycemic conditions. Our own work using in vitro live cell calcium imaging shows that astrocytes in the NST increase cytoplasmic calcium in a concentration dependent manner in reaction to reductions in glucose. This effect is reversed on restoration of normal glucose concentrations. In vivo single unit neurophysiological recordings show that brainstem neurons driving gastric motility are activated by glucoprivic stimuli. Studies in intact animals verify that both dorsal medullary and systemic glucoprivation significantly increases gastric motility. Astrocyte inactivation with fluorocitrate blocks the pro-motility effects of glucoprivation. Thus, it appears that intact astrocyte signaling may be essential to glucoregulatory control over gastric motility.
Collapse
Affiliation(s)
- David H McDougal
- Laboratory for Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
32
|
Suppression of myocardial 18F-FDG uptake with a preparatory "Atkins-style" low-carbohydrate diet. Eur Radiol 2012; 22:2221-8. [PMID: 22592807 DOI: 10.1007/s00330-012-2478-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/03/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Physiological myocardial uptake of 18F-FDG during positron emission tomography can mask adjacent abnormal uptake in mediastinal malignancy and inflammatory cardiac diseases. Myocardial uptake is unpredictable and variable. This study evaluates the impact of a low-carbohydrate diet in reducing myocardial FDG uptake. METHOD Patients attending for clinically indicated oncological FDG PET were asked to have an "Atkins-style" low-carbohydrate diet (less than 3 g) the day before examination and an overnight fast. A total of 120 patients following low-carbohydrate diet plus overnight fast were compared with 120 patients prepared by overnight fast alone. Patients having an Atkins-style diet also completed a diet compliance questionnaire. SUV(max) and SUV(mean) for myocardium, blood pool and liver were measured in both groups. RESULTS Myocardial SUV(max) fell from 3.53 ± 2.91 in controls to 1.77 ± 0.91 in the diet-compliant group. 98 % of diet-compliant patients had a myocardial SUV(max) less than 3.6 compared with 67 % of controls. Liver and blood pool SUV(max) rose from 2.68 ± 0.49 and 1.82 ± 0.30 in the control group to 3.14 ± 0.57 and 2.06 ± 0.30. CONCLUSION An Atkins-style diet the day before PET, together with an overnight fast, effectively suppresses myocardial FDG uptake. KEY POINTS • Low-carbohydrate diet (LCD) the day before PET suppresses myocardial FDG uptake. • LCD before PET increases liver and blood pool SUV ( max ) and SUV ( mean ). • Suppression of myocardial uptake may improve PET imaging of thoracic disease. • Suppression of myocardial uptake may help imaging cardiac inflammatory disease with PET.
Collapse
|
33
|
Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin Cell Dev Biol 2012; 23:614-20. [PMID: 22248674 PMCID: PMC3712190 DOI: 10.1016/j.semcdb.2012.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022]
Abstract
The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for “transceptors” in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis.
Collapse
|
34
|
Abstract
Ingestion of a meal triggers a range of physiological responses both within and outside the gut, and results in the remote modulation of appetite and glucose homeostasis. Luminal contents are sensed by specialised chemosensitive cells scattered throughout the intestinal epithelium. These enteroendocrine and tuft cells make direct contact with the gut lumen and release a range of chemical mediators, which can either act in a paracrine fashion interacting with neighbouring cells and nerve endings or as classical circulating hormones. At the molecular level, the chemosensory machinery involves multiple and complex signalling pathways including activation of G-protein-coupled receptors and solute carrier transporters. This chapter will discuss our current knowledge of the molecular mechanisms underlying intestinal chemosensation with a particular focus on the relatively well-characterised nutrient-triggered secretion from the enteroendocrine system.
Collapse
Affiliation(s)
- Gwen Tolhurst
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
35
|
Stolarczyk E, Guissard C, Michau A, Even PC, Grosfeld A, Serradas P, Lorsignol A, Pénicaud L, Brot-Laroche E, Leturque A, Le Gall M. Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am J Physiol Endocrinol Metab 2010; 298:E1078-87. [PMID: 20179244 DOI: 10.1152/ajpendo.00737.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sugar transporter GLUT2, present in several tissues of the gut-brain axis, has been reported to be involved in the control of food intake. GLUT2 is a sugar transporter sustaining energy production in the cell, but it can also function as a receptor for extracellular glucose. A glucose-signaling pathway is indeed triggered, independently of glucose metabolism, through its large cytoplasmic loop domain. However, the contribution of the receptor function over the transporter function of GLUT2 in the control of food intake remains to be determined. Thus, we generated transgenic mice that express a GLUT2-loop domain, blocking the detection of glucose but leaving GLUT2-dependent glucose transport unaffected. Inhibiting GLUT2-mediated glucose detection augmented daily food intake by a mechanism that increased the meal size but not the number of meals. Peripheral hormones (ghrelin, insulin, leptin) were unaffected, leading to a focus on central aspects of feeding behavior. We found defects in c-Fos activation by glucose in the arcuate nucleus and changes in the amounts of TRH and orexin neuropeptide mRNA, which are relevant to poorly controlled meal size. Our data provide evidence that glucose detection by GLUT2 contributes to the control of food intake by the hypothalamus. The sugar transporter receptor, i.e., "transceptor" GLUT2, may constitute a drug target to treat eating disorders and associated metabolic diseases, particularly by modulating its receptor function without affecting vital sugar provision by its transporter function.
Collapse
Affiliation(s)
- Emilie Stolarczyk
- Unité Mixte de Recherche (UMR) S872, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de médecine, Paris, F-75006 France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Beck L, Leroy C, Salaün C, Margall-Ducos G, Desdouets C, Friedlander G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem 2009; 284:31363-74. [PMID: 19726692 DOI: 10.1074/jbc.m109.053132] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PiT1 is a Na(+)-phosphate (P(i)) cotransporter located at the plasma membrane that enables P(i) entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of P(i) to the cell. Moreover, the role of P(i) in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that P(i) availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either P(i) or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na(+)-P(i) transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a P(i) transporter in cell proliferation, tumor growth, and cell signaling.
Collapse
Affiliation(s)
- Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, F-75015 Paris.
| | | | | | | | | | | |
Collapse
|
37
|
Leturque A, Brot-Laroche E, Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 2009; 296:E985-92. [PMID: 19223655 DOI: 10.1152/ajpendo.00004.2009] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cloned 20 years ago, GLUT2 is a facilitative glucose transporter in the liver, pancreas, intestine, kidney, and brain. It ensures large bidirectional fluxes of glucose in and out the cell due to its low affinity and high capacity. It also transports other dietary sugars, such as fructose and galactose, within the range of physiological concentrations. Sugars and hormones regulate its gene expression. The contribution of GLUT2 to human metabolic diseases previously appeared modest. However, in the past decade, three major features of the GLUT2 protein have been revealed. First, GLUT2 mutations cause the severe but rare Fanconi-Bickel syndrome, mainly characterized by glycogenosis. Recently, a GLUT2 polymorphism has been associated with preferences for sugary food. Second, the GLUT2 location at the cell surface is regulated; this governs cellular activities dependent on glucose in the intestine and possibly those in the liver and pancreas. For instance, GLUT2 translocation from an intracellular pool to the apical membrane after a sugar meal transiently increases sugar uptake by enterocytes (reviewed in 32). Third, GLUT2 functions as a membrane receptor of sugar. Independently of glucose metabolism, GLUT2 detects the presence of extracellular sugar and transduces a signal to modulate cell functions, including beta-cell insulin secretion, renal reabsorption, and intestinal absorption according to the sugar environment. These recent developments are examined here in heath and metabolic disease, highlighting various unanswered questions.
Collapse
Affiliation(s)
- Armelle Leturque
- Centre de recherche des Cordeliers 15 rue de l'école de médecine, F-75006 Paris, France.
| | | | | |
Collapse
|
38
|
Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J Cell Physiol 2007; 213:834-43. [PMID: 17786952 DOI: 10.1002/jcp.21245] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.
Collapse
Affiliation(s)
- Maude Le Gall
- INSERM, UMR S 872, Centre de Recherche des Cordeliers, Paris, France.
| | | | | | | | | | | |
Collapse
|
39
|
Loss of sugar detection by GLUT2 affects glucose homeostasis in mice. PLoS One 2007; 2:e1288. [PMID: 18074013 PMCID: PMC2100167 DOI: 10.1371/journal.pone.0001288] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 11/14/2007] [Indexed: 11/19/2022] Open
Abstract
Background Mammals must sense the amount of sugar available to them and respond appropriately. For many years attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-detector GLUT2 and measured the physiological impact of this pathway. Methodology/Principal Findings We produced mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. Conclusions/Significance Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis, highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets.
Collapse
|
40
|
Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V. The role of GLUT2 in dietary sugar handling. J Physiol Biochem 2006; 61:529-37. [PMID: 16669350 DOI: 10.1007/bf03168378] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GLUT2 is a facilitative glucose transporter located in the plasma membrane of the liver, pancreatic, intestinal, kidney cells as well as in the portal and the hypothalamus areas. Due to its low affinity and high capacity, GLUT2 transports dietary sugars, glucose, fructose and galactose in a large range of physiological concentrations, displaying large bidirectional fluxes in and out the cells. This review focuses on the roles of GLUT2. The first identified function of GLUT2 is its capacity to fuel metabolism and to provide metabolites stimulating the transcription of glucose sensitive genes. Recently, two other functions of GLUT2 are uncovered. First, the insertion of GLUT2 into the apical membrane of enterocytes induces the acute regulation of intestinal sugar absorption after a meal. Second, the GLUT2 protein itself initiates a protein signalling pathway triggering a glucose signal from the plasma membrane to the transcription machinery.
Collapse
Affiliation(s)
- A Leturque
- UMR 505 INSERM-UPMC, Institut Biomedical des Cordeliers, 15 rue de l'Ecole de Médecine, 75 006 Paris, France.
| | | | | | | | | |
Collapse
|
41
|
Samikkannu T, Thomas JJ, Bhat GJ, Wittman V, Thekkumkara TJ. Acute effect of high glucose on long-term cell growth: a role for transient glucose increase in proximal tubule cell injury. Am J Physiol Renal Physiol 2006; 291:F162-75. [PMID: 16467130 DOI: 10.1152/ajprenal.00189.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although chronic exposure of renal cells to high glucose has been shown to cause cell injury, the effect of acute exposure has not been elucidated. In this study, we demonstrate that acute (10 min) exposure of human proximal tubule epithelial cells (hPTEC) to high glucose (25 mM) induces a time-dependent dual effect consisting of an early proliferation and a late apoptosis. Acute exposure of hPTEC to high glucose induced a twofold increase in DNA synthesis and cell number at 12 h. However, after 36 h, a significant decrease in cell growth is observed, followed by apoptosis. On glucose treatment, both p42/p44 mitogen-activated protein (MAP) kinases and the downstream signaling intermediate NF-κB were phosphorylated and translocated to the nucleus. Pretreatment of cells with MAP kinase and NF-κB-specific inhibitors abolished glucose-induced proliferation. However, these inhibitors were ineffective in preventing glucose-induced apoptosis. Interestingly, conditioned medium from cells exposed to high-glucose concentrations inhibited proliferation and concomitantly induced apoptosis in normal cells, suggesting that the inhibitory effect of glucose occurs through secretion of a secondary factor(s). In parallel to apoptosis, we observed an increased production of reactive oxygen species (ROS). Pretreatment of cells with the antioxidant N-acetyl cysteine reversed glucose-mediated ROS production and apoptosis, suggesting that ROS is involved in apoptosis. Our study demonstrates for the first time that a single high-glucose exposure for 10 min alone is sufficient to elicit proliferation and apoptosis in hPTEC and suggests that episodes of transient increase in glucose may contribute to cell damage leading to epithelial cell dysfunction.
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
42
|
Cassany A, Guillemain G, Klein C, Dalet V, Brot-Laroche E, Leturque A. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells. Traffic 2004; 5:10-9. [PMID: 14675421 DOI: 10.1046/j.1398-9219.2003.0143.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.
Collapse
Affiliation(s)
- Aurélia Cassany
- Inserm U505, UPMC and Service commun d'imagerie cellulaire IFR58,15 rue de l'Ecole de Médecine, F-75006 Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Villadsen D, Smith SM. Identification of more than 200 glucose-responsive Arabidopsis genes none of which responds to 3-O-methylglucose or 6-deoxyglucose. PLANT MOLECULAR BIOLOGY 2004; 55:467-77. [PMID: 15604693 DOI: 10.1007/s11103-004-1050-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The response of some plant genes to glucose analogues 3-O-methylglucose (3OMG) or 6-deoxyglucose (6DOG) has been cited as evidence for metabolism-independent glucose signalling. To analyse such signalling using a genetic approach, we sought to identify Arabidopsis glucose-responsive genes which also respond to 3OMG and 6DOG in seedlings. Microarray analysis of gene expression in glucose-treated seedlings and RT-PCR analysis of glucose-treated leaf sections identified more than 200 glucose-responsive genes, but none responded to 3OMG or 6DOG. These data together with other published data on individual genes fail to identify any Arabidopsis sugar-responsive genes which also respond to 3OMG or 6DOG.
Collapse
Affiliation(s)
- Dorthe Villadsen
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JH, UK
| | | |
Collapse
|
44
|
Moriya H, Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci U S A 2004; 101:1572-7. [PMID: 14755054 PMCID: PMC341776 DOI: 10.1073/pnas.0305901101] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 12/09/2003] [Indexed: 11/18/2022] Open
Abstract
The yeast Saccharomyces cerevisiae senses glucose through two transmembrane glucose sensors, Snf3 and Rgt2. Extracellular glucose causes these sensors to generate an intracellular signal that induces expression of HXT genes encoding glucose transporters by inhibiting the function of Rgt1, a transcriptional repressor of HXT genes. We present the following evidence that suggests that the glucose sensors are coupled to the membrane-associated protein kinase casein kinase I (Yck1). (i) Overexpression of Yck1 leads to constitutive HXT1 expression; (ii) Yck1 (or its paralogue Yck2) is required for glucose induction of HXT1 expression; (iii) Yck1 interacts with the Rgt2 glucose sensor; and (iv) attaching the C-terminal cytoplasmic tail of Rgt2 to Yck1 results in a constitutive glucose signal. The likely targets of Yck1 in this signal transduction pathway are Mth1 and Std1, which bind to and regulate function of the Rgt1 transcription factor and bind to the C-terminal cytoplasmic domain of glucose sensors. Potential casein kinase I phosphorylation sites in Mth1 and Std1 are required for normal glucose regulation of HXT1 expression, and Yck1 catalyzes phosphorylation of Mth1 and Std1 in vitro. These results support a model of glucose signaling in which glucose binding to the glucose sensors causes them to activate Yck1 in the cell membrane, which then phosphorylates Mth1 and Std1 bound to the cytoplasmic face of the glucose sensors, triggering their degradation and leading to the derepression of HXT gene expression. Our results add nutrient sensing to the growing list of processes in which casein kinase I is involved.
Collapse
Affiliation(s)
- Hisao Moriya
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
45
|
Boles E, André B. Role of transporter-like sensors in glucose and amino acid signalling in yeast. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b95773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 2003; 278:19127-33. [PMID: 12649277 DOI: 10.1074/jbc.m301333200] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose homeostasis is a function of glucose supply, transport across the plasma membrane, and metabolism. To monitor glucose dynamics in individual cells, a glucose nanosensor was developed by flanking the Escherichia coli periplasmic glucose/galactose-binding protein with two different green fluorescent protein variants. Upon binding of substrate the FLIPglu-170n sensor showed a concentration-dependent decrease in fluorescence resonance energy transfer between the attached chromophores with a binding affinity for glucose of 170 nm. Fluorescence resonance energy transfer measurements with different sugars indicated a broad selectivity for monosaccharides. An affinity mutant with a Kd of approximately 600 microM was generated, which showed higher substrate specificity, and thus allowed specific monitoring of reversible glucose dynamics in COS-7 cells in the physiological range. At external glucose concentrations between 0.5 and 10 mM, reflecting typical blood levels, free cytosolic glucose concentrations remained at approximately 50% of external levels. The removal of glucose lead to reduced glucose levels in the cell, demonstrating reversibility and visualizing homeostasis. Glucose levels dropped even in the presence of the transport inhibitor cytochalasin B, indicating rapid metabolism. Consistently, the addition of 2-deoxyglucose, which is not recognized by the sensor, affects glucose uptake and metabolism rates. Within the physiological range, glucose utilization, i.e. hexokinase activity, was not limiting. Furthermore, the results show that in COS-7 cells, cytosolic glucose concentrations can vary over at least two orders of magnitude. The glucose nanosensor provides a novel tool with numerous scientific, medical, and environmental applications.
Collapse
Affiliation(s)
- Marcus Fehr
- Zentrum für Molekular biologie der Pflanzen Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:525-31. [PMID: 12508063 DOI: 10.1093/jxb/erg055] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The hydrolysis of sucrose by cell-wall invertases (cwINV) and the subsequent import of hexoses into target cells appears to be crucial for appropriate metabolism, growth and differentiation in plants. Hexose uptake from the apoplast is catalysed by monosaccharide/H+ symporters (Sugar Transport Proteins or STPs), which have the potential to sense sugars. Import of extracellular hexoses may generate signals to orchestrate cellular activities, or simply feed metabolic pathways distinct from those fed by sucrose. It is predicted that Arabidopsis has six cwINV genes and at least 14 STP genes. These genes show different spatial and temporal patterns of expression, and several knock-out mutants have been isolated for analysis. AtSTP1 transports glucose, galactose, xylose, and mannose, but not fructose. It accounts for the majority of the AtSTP activity in vegetative tissues and its activity is markedly repressed by treatment with exogenous sugars. These observations are consistent with a role in the retrieval of cell-wall-derived sugars, for example, during carbohydrate limitation or cell expansion. The AtSTP1 gene is also expressed in developing seeds, where it might be responsible for the uptake of glucose derived from imported sucrose. The large number of AtcwINV and AtSTP genes, together with complex patterns of expression for each, and the possibility that each protein may have more than one physiological function, provides the plant with the potential for a multiplicity of patterns of monosaccharide utilization to direct growth and differentiation or to respond flexibly to changing environmental conditions.
Collapse
Affiliation(s)
- Sarah M Sherson
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JH, Scotland, UK
| | | | | | | | | |
Collapse
|
48
|
Moreno F, Herrero P. The hexokinase 2-dependent glucose signal transduction pathway of Saccharomyces cerevisiae. FEMS Microbiol Rev 2002; 26:83-90. [PMID: 12007644 DOI: 10.1111/j.1574-6976.2002.tb00600.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sugars, predominantly glucose, evoke a variety of responses in Saccharomyces cerevisiae. These responses are elicited through a complex network of regulatory mechanisms that transduce the signal of presence of external glucose to their final intracellular targets. The HXK2 gene, encoding hexokinase 2 (Hxk2), the enzyme that initiates glucose metabolism, is highly expressed during growth in glucose and plays a pivotal role in the control of the expression of numerous genes, including itself. The mechanism of this autocontrol of expression is not completely understood. Hxk2 is found both in the nucleus and in the cytoplasm of S. cerevisiae; the nuclear localization is dependent on the presence of a stretch of amino acids located from lysine-6 to methionine-15. Although serine-14, within this stretch, can be phosphorylated in the absence of glucose, it is still unsettled whether this phosphorylation plays a role in the cellular localization of Hxk2. The elucidation of the mechanism of transport of Hxk2 to and from the nucleus, the influence of the oligomeric state of the protein on the nuclear transport and the fine mechanism of regulation of transcription of HXK2 are among the important unanswered questions in relation with the regulatory role of Hxk2.
Collapse
Affiliation(s)
- Fernando Moreno
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, Campus del Cristo, 33006 Oviedo, Spain.
| | | |
Collapse
|
49
|
Pantaleon M, Ryan JP, Gil M, Kaye PL. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol Reprod 2001; 64:1247-54. [PMID: 11259273 DOI: 10.1095/biolreprod64.4.1247] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although mouse oocytes and cleavage-stage embryos prefer pyruvate and lactate for metabolic fuels, they do take up and metabolize glucose. Indeed, presentation of glucose during the cleavage stages is required for subsequent blastocyst formation, which normally relies on uptake and metabolism of large amounts of glucose. Expression of the facilitative glucose transporter GLUT1 was examined using immunohistochemistry and Western blotting, and in polyspermic oocytes, metabolism of glucose was measured and compared with that of pyruvate and glutamine. GLUT1 was observed in all oocytes and embryos, and membrane and vesicular staining was present. Additionally, however, in polyspermic oocytes, the most intense staining was in the pronuclei, and this nuclear staining persisted in cleaving normal embryos. Furthermore, GLUT1 expression appeared to be up-regulated both in nuclei and plasma membranes following culture of oocytes in the absence of glucose. In polyspermic oocytes, the metabolism of glucose, but not of pyruvate or glutamine, was directly proportional to the number of pronuclei formed. After compaction, nuclear staining diminished, and GLUT1 localized to basolateral membranes of the outer cells and trophectoderm. In blastocysts, a weak but uniform staining of inner-cell-mass plasma membranes was apparent. The results are discussed in terms of potential roles for GLUT1 in pronuclei of oocytes and zygotes, nuclei of cleavage-stage embryos, and a transepithelial transport function for GLUT1, probably coupled with GLUT3, in compacted embryos and blastocysts.
Collapse
Affiliation(s)
- M Pantaleon
- Department of Physiology & Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- S Vaulont
- Institut Cochin de Génétique Moléculaire, U.129 INSERM, Université René Descartes, 75014 Paris, France.
| | | | | |
Collapse
|