1
|
Franchi MV, Candia J, Sarto F, Sirago G, Valli G, Paganini M, Hartnell L, Giacomello E, Toniolo L, Monti E, Nogara L, Moro T, Paoli A, Murgia M, Brocca L, Pellegrino MA, Grassi B, Bottinelli R, De Vito G, Ferrucci L, Narici MV. Previous short-term disuse dictates muscle gene expression and physiological adaptations to subsequent resistance exercise. J Physiol 2025. [PMID: 39792484 DOI: 10.1113/jp287003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading. Eleven males (22.09 ± 2.91 years) underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of knee extensor RT (three times/week). Data collection occurred at Baseline (LS0), after ULLS (LS10) and at active recovery (AR21). Knee extensor maximum voluntary contraction (MVC) was evaluated. Quadriceps volume was estimated by ultrasonography. Muscle fibre cross-sectional area, fibre type distribution, glycogen content and succinate dehydrogenase (SDH) activity were measured from vastus lateralis biopsies. Mitochondrial-related proteins were quantified by western blot and transcriptional responses were assessed by RNA sequencing. Following ULLS, quadriceps volume and MVC decreased significantly (3.7%, P < 0.05; 29.3%, P < 0.001). At AR21 (vs. LS10), MVC was fully restored (42%) and quadriceps volume increased markedly (18.6%, P < 0.001). Glycogen content and whole-body water increased at AR21 (14%, P < 0.001; 3.1%, P < 0.05). We observed a marked increase in fibre type I at AR21 (38%, P < 0.05). SDH immunoreactivity increased significantly after exercise (20%, P < 0.001). Mitochondrial fusion (MFN1, MFN2 and OPA1) and fission (DRP1) proteins were markedly increased by RT, and the most differentially expressed genes belonged to oxidative phosphorylation pathways. In contrast with what is usually observed after RT, oxidative metabolism, slow fibre type and mitochondrial dynamics were enhanced beyond expected. We propose that prior exposure to short-term muscle unloading may drive the nature of molecular adaptations to subsequent RT. KEY POINTS: Short-term unloading is often experienced during recovery from injuries and hospitalisation, leading to loss of muscle mass and strength. Although exercise can be beneficial in mitigating/reversing such alterations during disuse, only a few studies have focused on the effects of exercise following muscle unloading. With an integrative physiological approach, we aimed to elucidate the basic mechanisms of muscle function recovery in response to 21 days of resistance exercise that followed 10 days of unilateral lower limb suspension (ULLS), assessing whether the mechanisms underlying recovery are defined by a specific reversal of those that occurred during disuse. Resistance training was successful in recovering functional and structural muscle properties after 10 days of ULLS, but in contrast with what is usually observed in response to this training modality, oxidative metabolism and slow fibre type were mostly enhanced. We propose that prior exposure to short-term muscle unloading may drive the adaptations to subsequent exercise.
Collapse
Affiliation(s)
- Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| | - Julián Candia
- National Institute on Aging, Baltimore, Maryland, USA
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lisa Hartnell
- National Institute on Aging, Baltimore, Maryland, USA
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | | | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Preobrazenski N, Seigel J, Janssen I, Halliday S, McGlory C. Plantar flexor strength and size decrease following single-leg disuse in uninjured adults: A meta-analysis. Clin Physiol Funct Imaging 2025; 45:e12912. [PMID: 39494709 DOI: 10.1111/cpf.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Plantar flexors play a pivotal role in human locomotion and balance. Several original research studies and systematic reviews have characterised the impact of single-leg disuse on plantar flexor strength and size. However, no meta-analysis has quantified the effects of single-leg disuse on changes in plantar flexor strength and size in uninjured adults. AIM To quantify changes in plantar flexor strength and size in response to single-leg disuse. METHODS Data were extracted from 19 studies captured in our previous systematic review on studies that employed a unilateral lower limb immobilisation model (cast or brace) and were published up to January 30, 2022. Random-effects meta-analyses were performed on original research studies reporting measures of plantar flexor strength (isometric, isokinetic, or repetition maximum) and size (magnetic resonance imaging or computed tomography) in uninjured adults. RESULTS Single-leg disuse decreased plantar flexor strength (Hedges gav = -0.71 [95% confidence interval: -0.93, -0.48], p < 0.001, 7-28 days, N = 16 studies, n = 121 participants including ≥13 females, ages 19-29) and plantar flexor size (-0.33 [-0.50, -0.15], p < 0.001, 14-35 days, N = 6, n = 49, 10 females, ages 22-27) across all durations of disuse. DISCUSSION Single-leg disuse decreases plantar flexor strength and size in uninjured adults. This work adds to recent meta-analytic findings demonstrating the declines in knee extensors strength and size following single-leg disuse. The paucity of female and participants >30 years old in the single-leg disuse literature examining plantar flexors represents a priority of future work.
Collapse
Affiliation(s)
| | - Joel Seigel
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Ian Janssen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sandra Halliday
- Queen's University Library, Queen's University, Kingston, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Greaves H, Wright D, Eleuteri A, Ray E, Pinzone O, Bass A, Walton R, Barton G. Patellar tendon shortening surgery restores the knee extensor mechanism in flexed knee gait in children with cerebral palsy. J Orthop Sci 2025; 30:164-170. [PMID: 38262799 DOI: 10.1016/j.jos.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND This study evaluated a patellar tendon shortening (PTS) surgical procedure that uses an overlapping repair combined with an additional Tycron non-absorbable suture to support the shortening in children with Cerebral Palsy (CP). This study aimed to outline this surgical technique and to evaluate its effectiveness in restoring the knee extensor mechanism. METHODS The sagittal plane lower limb kinematics, peak knee extensor moment, gait deviation index (GDI), localised movement deviation profile (MDP), temporospatial parameters, passive knee extension ROM, quadriceps lag, and knee extensor strength were calculated pre- and postoperatively. To determine significant differences a robust linear regression model with high breakdown point and high efficiency was fitted to the data. RESULTS In this retrospective cohort study, a total of 41 patients with CP who were treated with unilateral or bilateral PTS in isolation or as part of single event multilevel surgery (SEMLS), with a mean age of 11.1 years were included. The knee extension angle improved at initial contact (p < 0.0001), and during stance phase (p < 0.0001). The peak internal knee extensor moment decreased during early (p = 0.0014) and late stance phase (p < 0.0001). The quadriceps lag decreased (p < 0.0001) and knee extensor strength increased (p < 0.0001). The GDI improved (p < 0.0001), as well as the localised MDP for sagittal angles (p < 0.0001) and moments (p = 0.0001). Walking speed (p = 1.0) remained unchanged, but the cadence decreased (p = 0.024) and step length increased (p = 0.0001). CONCLUSIONS The knee extension angle and moment during stance phase improved significantly. The children with CP in this study showed improvements in knee extensor strength and quadriceps lag. Thereby it can be concluded that the PTS procedure was able to restore the knee extensor mechanism effectively.
Collapse
Affiliation(s)
- Henrike Greaves
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK; Liverpool John Moores University, Liverpool, UK.
| | - David Wright
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Antonio Eleuteri
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Elizabeth Ray
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Ornella Pinzone
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Alfie Bass
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Roger Walton
- Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | | |
Collapse
|
4
|
Ikeda T, Oka S, Nomura N, Suzuki A, Matsuda K. Relationship Between One-Leg Standing and Foot Sole Sensation Following Short-Term Immobilization of a Unilateral Lower Extremity. Cureus 2024; 16:e76031. [PMID: 39835037 PMCID: PMC11743617 DOI: 10.7759/cureus.76031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Several studies have suggested that approximately 10 hours of inactivity can reduce motor performance. Specifically, restricted lower limb movement may impair postural stability, subsequently increasing the incidence of falls. However, the relationship between postural sway and its related factors remains unclear. This study investigated the relationship between postural sway in the upright standing position and foot sole sensitivity after short-term immobilization. METHODS Healthy young adults were enrolled. Each participant's lower limb was immobilized for 10 hours using a soft bandage and a medical splint made from metal and soft urethane. The sway in the center of the pressure trajectory was measured before and after immobilization. Evaluation parameters included path length, mean velocity, and sway area. Foot sole sensitivity was assessed using an esthesiometer to measure two-point discrimination before cast application and immediately after cast removal. RESULTS After cast removal, total and anterior-posterior path lengths, mean velocity and sway area increased, whereas big toe sensitivity decreased. However, no significant correlations were observed among these factors. CONCLUSIONS Our results suggest that short-term movement restriction induces acute changes in center of pressure (COP) movement and foot sensitivity. However, the COP movement was not associated with foot sensation, indicating that another factor may contribute to postural sway after cast removal.
Collapse
Affiliation(s)
- Takuro Ikeda
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Fukuoka, JPN
| | - Shinichiro Oka
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, JPN
| | - Naoki Nomura
- Department of Rehabilitation, Akiyama Clinic, Fukuoka, JPN
| | - Akari Suzuki
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Fukuoka, JPN
| | - Kensuke Matsuda
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Fukuoka, JPN
| |
Collapse
|
5
|
Re R, Scano A, Amata O, Spinelli L, Tomba A, Brambilla C, Frizziero A, Caserta AV, Cubeddu R, Torricelli A, Contini D. A personalized clinical assessment: multi-sensor approach for understanding musculoskeletal health in the frail population. Biomed Eng Online 2024; 23:91. [PMID: 39252062 PMCID: PMC11382456 DOI: 10.1186/s12938-024-01287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sarcopenia is a muscle disorder causing a progressive reduction of muscle mass and strength, but the mechanism of its manifestation is still partially unknown. The three main parameters to assess are: muscle strength, muscle volume or quality and low physical performance. There is not a definitive approach to assess the musculoskeletal condition of frail population and often the available tests to be performed in those clinical bedridden patients is reduced because of physical impairments. In this paper, we propose a novel instrumental multi-domain and non-invasive approach during a well-defined protocol of measurements for overcoming these limitations. A group of 28 bedridden elder people, subjected to surgery after hip fracture, was asked to perform voluntary isometric contractions at the 80% of their maximum voluntary contraction with the non-injured leg. The sensor employed before and/or during the exercise were: ultrasound to determine the muscle architecture (vastus lateralis); force acquisition with a load cell placed on the chair, giving an indication of the muscle strength; surface electromyography (EMG) for monitoring muscular electrical activity; time-domain (TD) near-infrared spectroscopy (NIRS) for evaluating muscle oxidative metabolism. RESULTS A personalized "report card" for each subject was created. It includes: the force diagram (both instantaneous and cumulative, expected and measured); the EMG-force diagram for a comparison between EMG derived median frequency and measured force; two graphs related to the hemodynamic parameters for muscle oxidative metabolism evaluation, i.e., oxy-, deoxy-, total-hemoglobin and tissue oxygen saturation for the whole exercise period. A table with the absolute values of the previous hemodynamic parameters during the rest and the ultrasound related parameters are also included. CONCLUSIONS In this work, we present the union of protocols, multi-domain sensors and parameters for the evaluation of the musculoskeletal condition. The novelties are the use of sensors of different nature, i.e., force, electrical and optical, together with a new way to visualize and combine the results, by means of a concise, exhaustive and personalized medical report card for each patient. This assessment, totally non-invasive, is focused on a bedridden population, but can be extended to the monitoring of rehabilitation progresses or of the training of athletes.
Collapse
Affiliation(s)
- R Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
- Istituto di Fotonica e Nanotecnologie (IFN), National Research Council (CNR), Piazza Leonardo da Vinci, 32, 20133, Milan, Italy.
| | - A Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), 20133, Milan, Italy
| | - O Amata
- Department of Rehabilitation, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-Centro Specialistico Ortopedico Traumatologico (CTO), Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - L Spinelli
- Istituto di Fotonica e Nanotecnologie (IFN), National Research Council (CNR), Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - A Tomba
- Department of Rehabilitation, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-Centro Specialistico Ortopedico Traumatologico (CTO), Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - C Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), 20133, Milan, Italy
| | - A Frizziero
- Department of Rehabilitation, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-Centro Specialistico Ortopedico Traumatologico (CTO), Piazza Cardinal Ferrari 1, 20122, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - A V Caserta
- Department of Rehabilitation, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini-Centro Specialistico Ortopedico Traumatologico (CTO), Piazza Cardinal Ferrari 1, 20122, Milan, Italy
| | - R Cubeddu
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - A Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), National Research Council (CNR), Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - D Contini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| |
Collapse
|
6
|
Golden AP, Hogan KK, Morris JB, Pickens BB. The Impact of Blood Flow Restriction Training on Tibial Bone Stress Injury Rehabilitation: An Exploratory Case Series. Int J Sports Phys Ther 2024; 19:1126-1137. [PMID: 39229454 PMCID: PMC11368450 DOI: 10.26603/001c.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Lower extremity bone stress injuries (BSI) are common injuries among athletes and military members. Typical management involves a period of restricted weightbearing which can have rapid detrimental effects upon both muscle and bone physiology. Few studies have investigated the effect of blood flow restriction (BFR) training on bone in the rehabilitative setting. Purpose The purpose of this study was to investigate the effects of lower extremity exercise with the addition of BFR upon bone mineral density, bone mineral content, and lean body mass in military members with tibial BSIs. Study Design Case series. Methods Twenty military members with MRI-confirmed tibial BSI were recruited to complete lower extremity exercise with the addition of BFR twice per week for four weeks. The BFR cuff was applied proximally to the participant's involved limb while they performed gluteal, thigh, and leg resistance exercises. Outcomes were assessed at baseline and four weeks. The primary outcomes were whole leg bone mineral density (BMD), bone mineral content (BMC), and lean body mass (LM) as measured by dual-energy x-ray absorptiometry. Secondary outcomes included thigh and leg circumference measures and patient-reported outcomes, including the Lower Extremity Functional Scale (LEFS), Patient-Reported Outcomes Measurement Information System 57 (PROMIS-57), and Global Rating of Change (GROC). Results No significant differences were found in BMD (p=0.720) or BMC (p=0.749) between limbs or within limbs over time. LM was generally less in the involved limb (p=0.019), however there were no significant differences between or within limbs over time (p=0.404). For thigh circumference, significant main effects were found for time (p=0.012) and limb (p=0.015), however there was no significant interaction effect (p=0.510). No significant differences were found for leg circumference (p=0.738). Participants showed significant mean changes in LEFS (15.15 points), PROMIS physical function (8.98 points), PROMIS social participation (7.60 points), PROMIS anxiety (3.26 points), and PROMIS pain interference (8.39 points) at four weeks. Conclusion The utilization of BFR in the early rehabilitative management of tibial BSI may help mitigate decrements in both bone and muscle tissue during periods of decreased physical loading. Level of Evidence 4.
Collapse
Affiliation(s)
- Andrew P Golden
- Army-Baylor University Doctoral Fellowship in Orthopaedic Manual Physical Therapy, Fort Sam Houston, TX 78234, USA
| | - Kathleen K Hogan
- Special Warfare Human Performance Squadron, San Antonio, TX 78236, USA
| | - Jamie B Morris
- Army-Baylor University Doctoral Fellowship in Division 1 Sports Physical Therapy, West Point, NY 10996, USA
| | - Bryan B Pickens
- Army-Baylor University Doctoral Program in Physical Therapy, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
7
|
McGinley JJ, Dabis J, Morrison T, Podvin C, Ellis HB, Ulman S. Greater Post-Operative Nutrition Risks Identified in Pediatric and Adolescent Patients after Anterior Cruciate Ligament Reconstruction Regardless of Age and Sex. Nutrients 2024; 16:2379. [PMID: 39125260 PMCID: PMC11314380 DOI: 10.3390/nu16152379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Systematic detection of risky nutrition behaviors after sports surgery may better promote healing for return-to-sport. The purpose of this study was to assess nutritional behavior differences between patients following anterior cruciate ligament reconstruction (ACLR) and following other lower-extremity orthopedic surgeries. One pediatric sports medicine center was reviewed for a custom Sports Nutrition Assessment for Consultation, which investigates nutrition-related risk factors for youth athletes at their first post-operative visit. Patients reported "Yes" or "No" to eight questions, after which they were offered a nutrition consultation for any response indicating risk. A total of 243 post-ACLR and 242 non-ACLR patients were reviewed. The post-ACLR patients more often reported a change in appetite (p = 0.021), recent weight changes (p = 0.011), a desire to better understand nutrition (p = 0.004), and recommendations to change their body composition (p = 0.032). More post-ACLR patients were identified for a nutrition consultation (p = 0.002), though an equal percentage accepted the consultation between groups. Age and sex were not determined to be significant confounders after matched sub-analysis. The post-ACLR patients more often reported nutrition risks, specifically weight-related issues, regardless of age or sex. Sports surgeons should regularly inquire about nutrition-related concerns with patients and refer to sports dietitians for recovery nutrition support as needed, particularly after ACLR.
Collapse
Affiliation(s)
- James J. McGinley
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
| | - Jessica Dabis
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
| | - Taylor Morrison
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
| | - Caroline Podvin
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
| | - Henry B. Ellis
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390, USA
| | - Sophia Ulman
- Center for Excellence in Sports Medicine, Scottish Rite for Children Orthopedic and Sports Medicine Center, 5700 Dallas Parkway, Frisco, TX 75034, USA; (J.J.M.); (J.D.); (T.M.); (C.P.); (H.B.E.)
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, 1801 Inwood Road, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Michel JM, Hettinger Z, Ambrosio F, Egan B, Roberts MD, Ferrando AA, Graham ZA, Bamman MM. Mitigating skeletal muscle wasting in unloading and augmenting subsequent recovery. J Physiol 2024. [PMID: 39031694 DOI: 10.1113/jp284301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024] Open
Abstract
Skeletal muscle wasting is the hallmark pathophysiological adaptation to unloading or disuse that demonstrates the dependency on frequent mechanical stimulation (e.g. muscle activation and subsequent loading) for homeostasis of normally load-bearing muscles. In the absence of mitigation strategies, no mammalian organism is resistant to muscle atrophy driven by unloading. Given the profound impact of unloading-induced muscle wasting on physical capacity, metabolic health and immune function; mitigation strategies during unloading and/or augmentation approaches during recovery have broad healthcare implications in settings of bed-bound hospitalization, cast immobilization and spaceflight. This topical review aims to: (1) provide a succinct, state-of-the-field summary of seminal and recent findings regarding the mechanisms of unloading-induced skeletal muscle wasting; (2) discuss unsuccessful vs. promising mitigation and recovery augmentation strategies; and (3) identify knowledge gaps ripe for future research. We focus on the rapid muscle atrophy driven by relatively short-term mechanical unloading/disuse, which is in many ways mechanistically distinct from both hypermetabolic muscle wasting and denervation-induced muscle atrophy. By restricting this discussion to mechanical unloading during which all components of the nervous system remain intact (e.g. without denervation models), mechanical loading requiring motor and sensory neural circuits in muscle remain viable targets for both mitigation and recovery augmentation. We emphasize findings in humans with comparative discussions of studies in rodents which enable elaboration of key mechanisms. We also discuss what is currently known about the effects of age and sex as biological factors, and both are highlighted as knowledge gaps and novel future directions due to limited research.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Zachary Hettinger
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan Egan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | | | - Arny A Ferrando
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Zachary A Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Marcas M Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
9
|
Inoue M, Kubota A, Takazawa Y, Nakagawara K, Ishige K, Suzuki Y. 5'-UMP inhibited muscle atrophy due to detraining: a randomized, double-blinded, placebo-controlled, parallel-group comparative study. Front Sports Act Living 2024; 6:1403215. [PMID: 39076851 PMCID: PMC11284071 DOI: 10.3389/fspor.2024.1403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose A short period of disuse of 1-2 weeks due to factors such as illness or injury can lead to muscle atrophy, affecting both athletic performance and health. Recent research has shown that uridine 5'-monophosphate (5'-UMP) can counteract disuse-induced muscle atrophy by increasing PGC-1α expression and inhibiting atrogin-1 expression. However, the effect of 5'-UMP on disuse muscle atrophy in humans remains unknown. Therefore, the aimed of this study was to explore the effects of 5'-UMP supplementation during detraining on short-term disuse muscle atrophy in healthy men. Methods Following a 6-week resistance training program on upper arm, healthy men were randomized to either a UMP group (n = 11) or a placebo group (n = 10), taking their respective supplements during the 2-week detraining period. Muscle thickness, an indicator of muscle hypertrophy and atrophy, was measured at 3 positions (MT50, MT60, and MT70) at baseline, 1 week, and 2 weeks after detraining. Results Both groups showed a significant decrease in muscle thickness at MT70. The relative decrease was greater in the placebo group (2.4 ± 2.8%) than in the UMP group (0.0 ± 2.0%), significantly (p = 0.034) at 1 week. However, no significant difference was observed at MT50 and MT60. Conclusion After the hypertrophy, 5'-UMP may prevent muscle atrophy due to the detraining within the first week.
Collapse
Affiliation(s)
- Mika Inoue
- Juntendo Administration for Sports, Health and Medical Sciences, Juntendo University, Tokyo, Japan
| | - Atsushi Kubota
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Yuji Takazawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | - Kazuya Ishige
- Biochemicals Division, YAMASA Corporation, Chiba, Japan
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
10
|
Deane C, Piasecki M, Atherton P. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies. Clin Sci (Lond) 2024; 138:741-756. [PMID: 38895777 PMCID: PMC11186857 DOI: 10.1042/cs20231198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, U.K
| | - Matthew Piasecki
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| |
Collapse
|
11
|
Casuso RA, Huertas JR, Aragón‐Vela J. The role of muscle disuse in muscular and cardiovascular fitness: A systematic review and meta-regression. Eur J Sport Sci 2024; 24:812-823. [PMID: 38874988 PMCID: PMC11235952 DOI: 10.1002/ejsc.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
We aimed to assess the effects of muscle disuse on muscle strength (MS), muscle mass (MM) and cardiovascular fitness. Databases were scrutinized to identify human studies assessing the effects of muscle disuse on both (1) MM and (2) maximal oxygen uptake (VO2max) and/or MS. Random-effects meta-analysis and meta-regression with initial physical fitness and length of the protocol as a priori determined moderators were performed. We quantitatively analyzed 51 different studies, and the level of significance was set at p < 0.05. Data from the participants in 14 studies showed a decline in both VO2max (SMD: -0.93; 95% CI: -1.27 to -0.58) and MM (SMD: -0.34; 95% CI: -0.57 to -0.10). Data from 47 studies showed a decline in strength (-0.88; 95% CI: -1.04 to -0.73) and mass (SMD: -0.47; 95% CI: -0.58 to -0.36). MS loss was twice as high as MM loss, but differences existed between anatomical regions. Notably, meta-regression analysis revealed that initial MS was inversely associated with MS decline. VO2max and MS decline to a higher extent than MM during muscle disuse. We reported a more profound strength loss in subjects with high muscular strength. This is physiologically relevant for athletes because their required muscular strength can profoundly decline during a period of muscle disuse. It should however be noted that a period of muscle disuse can have devastating consequences in old subjects with low muscular strength.
Collapse
Affiliation(s)
- Rafael A. Casuso
- Department of Health SciencesUniversidad Loyola AndalucíaCórdobaSpain
| | - Jesús R. Huertas
- Department of PhysiologyInstitute of Nutrition and Food TechnologyUniversity of GranadaGranadaSpain
| | | |
Collapse
|
12
|
Li ZI, Buldo-Licciardi M, Moore M, Kanakamedala A, Burke CJ, Samim MM, Youm T. Assessment of fatty infiltration of the hamstring muscles in chronic proximal hamstring ruptures and effect on clinical outcomes after surgical repair: a novel application of the Goutallier classification. Arch Orthop Trauma Surg 2024; 144:2171-2179. [PMID: 38480556 DOI: 10.1007/s00402-024-05255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/18/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Increased time to surgery has been previously associated with poorer clinical outcomes after surgical treatment of proximal hamstring ruptures, though the etiology remains unclear. The purpose of this study was to evaluate whether degree of muscle atrophy, as assessed using the Goutallier classification system, is associated with worse outcomes following surgical treatment of chronic proximal hamstring ruptures. MATERIALS AND METHODS This was a retrospective case series of patients who underwent repair of proximal hamstring ruptures from 2012 to 2020 with minimum 2-year follow-up. Patients were included if they underwent primary repair of a proximal hamstring rupture ≥ 6 weeks after the date of injury and had accessible preoperative magnetic resonance imaging (MRI). Exclusion criteria were allograft reconstruction, endoscopic repair, or prior ipsilateral hip surgery. Patients were administered validated surveys: the modified Harris Hip Score (mHHS) and Perth Hamstring Assessment Tool (PHAT). Fatty atrophy on preoperative MRI was independently graded by two musculoskeletal radiologists using the Goutallier classification. Multivariate regression analysis was performed to evaluate associations of preoperative characteristics with muscle atrophy, as well as mHHS and PHAT scores. RESULTS Complete data sets were obtained for 27 patients. A majority of this cohort was male (63.0%), with a mean age of 51.5 ± 11.8 years and BMI of 26.3 ± 3.8. The mean follow-up time was 62.6 ± 23.1 months, and the mean time from injury-to-surgery was 20.4 ± 15.3 weeks. The Goutallier grading inter-reader weighted kappa coefficient was 0.655. Regression analysis demonstrated that atrophy was not significantly associated with PHAT (p = 0.542) or mHHS (p = 0.574) at latest follow-up. Increased age was significantly predictive of muscle atrophy (β = 0.62, p = 0.005) and was also found to be a significant predictor of poorer mHHS (β = - 0.75; p = 0.037). CONCLUSIONS The degree of atrophy was not found to be an independent predictor of clinical outcomes following repair of chronic proximal hamstring ruptures. Increasing age was significantly predictive of increased atrophy and poorer patient-reported outcomes.
Collapse
Affiliation(s)
- Zachary I Li
- Department of Orthopedic Surgery, NYU Langone Health, 333 E 38th St, New York, NY, 10016, USA.
- Tufts University School of Medicine, Boston, MA, USA.
| | - Michael Buldo-Licciardi
- Department of Orthopedic Surgery, NYU Langone Health, 333 E 38th St, New York, NY, 10016, USA
| | - Michael Moore
- Department of Orthopedic Surgery, NYU Langone Health, 333 E 38th St, New York, NY, 10016, USA
| | - Ajay Kanakamedala
- Department of Orthopedic Surgery, NYU Langone Health, 333 E 38th St, New York, NY, 10016, USA
| | | | | | - Thomas Youm
- Department of Orthopedic Surgery, NYU Langone Health, 333 E 38th St, New York, NY, 10016, USA
| |
Collapse
|
13
|
Clouette J, Potvin-Desrochers A, Seo F, Churchward-Venne TA, Paquette C. Reorganization of Brain Resting-state Functional Connectivity Following 14 Days of Elbow Immobilization in Young Females. Neuroscience 2024; 540:77-86. [PMID: 38246474 DOI: 10.1016/j.neuroscience.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Limb immobilization is known to cause significant decreases in muscle strength and muscle mass as early as two days following the onset of immobilization. However, the decline in strength surpasses the decline in muscle mass, suggesting that factors in addition to muscle loss, such as neuroplasticity, contribute to the decrease in force production. However, little is known regarding immobilization-induced neural changes, although sensorimotor regions seem to be the most affected. The present study aimed to determine whether brain functional organization is altered following 14 days of unilateral elbow immobilization. Functional organization was quantified using resting-state functional connectivity, a measure of the synchronicity of the spontaneous discharge of different brain regions at rest. Data was obtained from twelve healthy young females before and after completing the immobilization period. A seed-to-voxel analysis was performed using seeds associated with cortical, subcortical, and cerebellar sensorimotor regions of the brain. The results showed changes predominantly involving cerebellar connectivity. For example, the immobilization period caused a decrease in connectivity between the motor cerebellar region of the immobilized arm and the left temporal lobe, and an increase between the same cerebellar region and the supplementary motor area. Overall, changes in connectivity occurred in regions typically associated with error detection and motor learning, suggesting a potential functional reorganization of the brain within 14 days of elbow immobilization.
Collapse
Affiliation(s)
- Julien Clouette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada
| | - Freddie Seo
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Division of Geriatric Medicine, McGill University, 1650 Cedar Ave., Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, 1033 Pine Ave., Montreal, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, 6363 Hudson Road, Montreal, Quebec, Canada.
| |
Collapse
|
14
|
Dirks ML, Jameson TSO, Andrews RC, Dunlop MV, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. The impact of forearm immobilization and acipimox administration on muscle amino acid metabolism and insulin sensitivity in healthy, young volunteers. Am J Physiol Endocrinol Metab 2024; 326:E277-E289. [PMID: 38231001 PMCID: PMC11193527 DOI: 10.1152/ajpendo.00345.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration [i.e., pharmacologically lowering circulating nonesterified fatty acid (NEFA) availability] on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age: 22 ± 1 years; body mass index: 24.0 ± 0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n = 9) or acipimox (ACI; 250 mg Olbetam; n = 9) ingestion four times daily. Before and after immobilization, whole body glucose disposal rate (GDR), forearm glucose uptake (FGU; i.e., muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinemic-hyperaminoacidemic-euglycemic clamp conditions using forearm balance and l-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, more so in ACI (from 53 ± 8 to 12 ± 5 µmol·min-1) than PLA (from 52 ± 8 to 38 ± 13 µmol·min-1; P < 0.05). In ACI only, and in contrast to our hypothesis, fasting arterialized NEFA concentrations were elevated to 1.3 ± 0.1 mmol·L-1 postimmobilization (P < 0.05), and fasting forearm NEFA balance increased approximately fourfold (P = 0.10). Forearm phenylalanine net balance decreased following immobilization (P < 0.10), driven by an increased rate of appearance [from 32 ± 5 (fasting) and 21 ± 4 (clamp) preimmobilization to 53 ± 8 and 31 ± 4 postimmobilization; P < 0.05] while the rate of disappearance was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.NEW & NOTEWORTHY We demonstrate that 2 days of forearm cast immobilization in healthy young volunteers leads to the rapid development of insulin resistance, which is accompanied by accelerated muscle amino acid efflux in the absence of impaired muscle amino acid uptake. Acutely elevated fasting nonesterified fatty acid (NEFA) availability as a result of acipimox supplementation worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.
Collapse
Affiliation(s)
- Marlou L Dirks
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom S O Jameson
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Rob C Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
- National Institute for Health and Care Research Exeter Biomedical Research Centre, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, United Kingdom
| |
Collapse
|
15
|
Holsgrove‐West RK, Revuelta Iniesta R, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. Maximal sustainable energy intake during transatlantic ocean rowing is insufficient for total energy expenditure and skeletal muscle mass maintenance. Exp Physiol 2024; 109:227-239. [PMID: 37966359 PMCID: PMC10988706 DOI: 10.1113/ep091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.
Collapse
Affiliation(s)
| | | | | | - Andrew J. Murton
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Benjamin T. Wall
- Public Health and Sport Sciences, Medical SchoolUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Public Health and Sport Sciences, Medical SchoolUniversity of ExeterExeterUK
| |
Collapse
|
16
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
18
|
de Souza Teixeira D, Carneiro MAS, de Queiroz Freitas AC, de Souza Lino AD, Pelet DCS, Assumpção CO, Vinicius Campos Souza M, Lera Orsatti F. Does cross-education minimize the loss of muscle force and power and sEMG amplitude during short-term detraining in older women who are recreationally engaged in resistance training? J Electromyogr Kinesiol 2023; 73:102835. [PMID: 37857209 DOI: 10.1016/j.jelekin.2023.102835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to investigate whether 4 weeks of unilateral resistance training (RT) could attenuate the decline in muscle function in the contralateral limb of older women recreationally engaged in RT compared to control group (CTL). Twenty-four participants completed a 10-week RT before the cross-education (CR-Edu) phase and subsequent detraining. Afterward, participants were randomized into two groups: CTL (n = 8 women, n = 16 legs) who underwent 4 weeks of detraining without any training, and CR-Edu (n = 16 women, n = 16 legs) who performed 4 weeks of unilateral RT. Muscle force, power, and surface electromyography were measured unilaterally before and after the 4-week period, using five repetitions conducted at 40% and 60% of the 1RM. The results showed a reduction in muscle force at both 40% and 60% of 1RM, as well as a decrease in power at 60% of 1RM (P-time < 0.05) without significant differences between the two groups (P interaction > 0.05). There was a decline in power at 60% of 1RM (P-time < 0.05) but no significant change at 40% of 1RM (P-time > 0.05), and again, no significant differences were observed between the groups (P-interaction > 0.05). The surface electromyography of vastus lateralis decreased only in the CTL group (P-interaction < 0.05). Older women recreationally engaged in RT who perform in unilateral leg extension compared to a brief period of detraining seem not to retain muscle force and power, and sEMG amplitude of their homologous and contralateral limb.
Collapse
Affiliation(s)
- Daniel de Souza Teixeira
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Marcelo A S Carneiro
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, State University of Londrina, Londrina, PR, Brazil
| | - Augusto Corrêa de Queiroz Freitas
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Anderson Diogo de Souza Lino
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Danyelle Cristina Silva Pelet
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Cláudio O Assumpção
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Markus Vinicius Campos Souza
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Fábio Lera Orsatti
- Applied Physiology, Nutrition and Exercise Research Group (PhyNER), Exercise Biology Research Lab (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
19
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
20
|
Dirks ML, Jameson TS, Andrews RC, Dunlop MV, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB. The impact of short-term forearm immobilization and acipimox administration on muscle amino acid metabolism and insulin sensitivity in healthy, young volunteers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561668. [PMID: 37873346 PMCID: PMC10592751 DOI: 10.1101/2023.10.10.561668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The mechanisms underpinning short-term muscle disuse atrophy remain to be elucidated, but perturbations in lipid metabolism may be involved. Specifically, positive muscle non-esterified fatty acid (NEFA) balance has been implicated in the development of disuse-induced insulin and anabolic resistance. Our aim was to determine the impact of acipimox administration (i.e. pharmacologically lowering circulating NEFA availability) on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age 22±1 years, BMI 24.0±0.6 kg·m-2) underwent 2 days of forearm cast immobilization with placebo (PLA; n=9, 5M/4F) or acipimox (ACI; 250 mg Olbetam; n=9, 4M/5F) ingestion four times daily. Before and after immobilization, whole-body glucose disposal rate (GDR), forearm glucose uptake (FGU, i.e. muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinaemic-hyperaminoacidaemic-euglycaemic clamp conditions using arteriovenous forearm balance and intravenous L-[ring-2H5]phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, but to a greater degree in ACI (from 53±8 to 12±5 μmol·min-1) than in PLA (from 52±8 to 38±13 μmol·min-1; P<0.05). In ACI only, fasting arterialised NEFA concentrations were elevated to 1.3±0.1 mmol·L-1 post-immobilization (P<0.05), and fasting forearm NEFA balance increased ~4-fold (P=0.10). Forearm phenylalanine net balance tended to decrease following immobilization (P<0.10), driven by increases in phenylalanine rates of appearance (from 32±5 (fasting) and 21±4 (clamp) pre-immobilization to 53±8 and 31±4 post-immobilization; P<0.05) while rates of disappearance were unaffected and no effects of acipimox observed. Altogether, we show disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting muscle amino acid kinetics, suggesting that disuse-associated increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not represent an early mechanism causing anabolic resistance.
Collapse
Affiliation(s)
- Marlou L. Dirks
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom S.O. Jameson
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Rob C. Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- National Institute for Health and Care Research (NIHR) Exeter Biomedical Research Centre (BRC), Exeter, UK
| | - Mandy V. Dunlop
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Doaa R. Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin T. Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Francis B. Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| |
Collapse
|
21
|
Pavis GF, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB, Dirks ML. Short-term disuse does not affect postabsorptive or postprandial muscle protein fractional breakdown rates. J Cachexia Sarcopenia Muscle 2023; 14:2064-2075. [PMID: 37431714 PMCID: PMC10570083 DOI: 10.1002/jcsm.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The decline in postabsorptive and postprandial muscle protein fractional synthesis rates (FSR) does not quantitatively account for muscle atrophy during uncomplicated, short-term disuse, when atrophy rates are the highest. We sought to determine whether 2 days of unilateral knee immobilization affects mixed muscle protein fractional breakdown rates (FBR) during postabsorptive and simulated postprandial conditions. METHODS Twenty-three healthy, male participants (age: 22 ± 1 year; height: 179 ± 1 cm; body mass: 73.4 ± 1.5 kg; body mass index 22.8 ± 0.5 kg·m-2 ) took part in this randomized, controlled study. After 48 h of unilateral knee immobilization, primed continuous intravenous l-[15 N]-phenylalanine and l-[ring-2 H5 ]-phenylalanine infusions were used for parallel determinations of FBR and FSR, respectively, in a postabsorptive (saline infusion; FAST) or simulated postprandial state (67.5 mg·kg body mass-1 ·h-1 amino acid infusion; FED). Bilateral m. vastus lateralis biopsies from the control (CON) and immobilized (IMM) legs, and arterialized-venous blood samples, were collected throughout. RESULTS Amino acid infusion rapidly increased plasma phenylalanine (59 ± 9%), leucine (76 ± 5%), isoleucine (109 ± 7%) and valine (42 ± 4%) concentrations in FED only (all P < 0.001), which was sustained for the remainder of infusion. Serum insulin concentrations peaked at 21.8 ± 2.2 mU·L-1 at 15 min in FED only (P < 0.001) and were 60% greater in FED than FAST (P < 0.01). Immobilization did not influence FBR in either FAST (CON: 0.150 ± 0.018; IMM: 0.143 ± 0.017%·h-1 ) or FED (CON: 0.134 ± 0.012; IMM: 0.160 ± 0.018%·h-1 ; all effects P > 0.05). However, immobilization decreased FSR (P < 0.05) in both FAST (0.071 ± 0.004 vs. 0.086 ± 0.007%·h-1 ; IMM vs CON, respectively) and FED (0.066 ± 0.016 vs. 0.119 ± 0.016%·h-1 ; IMM vs CON, respectively). Consequently, immobilization decreased net muscle protein balance (P < 0.05) and to a greater extent in FED (CON: -0.012 ± 0.025; IMM: -0.095 ± 0.023%·h-1 ; P < 0.05) than FAST (CON: -0.064 ± 0.020; IMM: -0.072 ± 0.017%·h-1 ). CONCLUSIONS We conclude that merely 2 days of leg immobilization does not modulate postabsorptive and simulated postprandial muscle protein breakdown rates. Instead, under these conditions the muscle negative muscle protein balance associated with brief periods of experimental disuse is driven near exclusively by reduced basal muscle protein synthesis rates and anabolic resistance to amino acid administration.
Collapse
Affiliation(s)
- George F. Pavis
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Doaa R. Abdelrahman
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Sealy Center of AgingUniversity of Texas Medical BranchGalvestonTXUSA
| | - Andrew J. Murton
- Department of SurgeryUniversity of Texas Medical BranchGalvestonTXUSA
- Sealy Center of AgingUniversity of Texas Medical BranchGalvestonTXUSA
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Marlou L. Dirks
- Nutritional Physiology Research Group, Public Health & Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
22
|
Frouin A, Guenanten H, Le Sant G, Lacourpaille L, Liebard M, Sarcher A, McNair PJ, Ellis R, Nordez A. Validity and Reliability of 3-D Ultrasound Imaging to Measure Hamstring Muscle and Tendon Volumes. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1457-1464. [PMID: 36948893 DOI: 10.1016/j.ultrasmedbio.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The validity and reliability of 3-D ultrasound (US) in estimation of muscle and tendon volume was assessed in a very limited number of muscles that can be easily immersed. The objective of the present study was to assess the validity and reliability of muscle volume measurements for all hamstring muscle heads and gracilis (GR), as well as tendon volume for the semitendinosus (ST) and GR using freehand 3-D US. METHODS Three-dimensional US acquisitions were performed for 13 participants in two distinct sessions on separate days, in addition to one session dedicated to magnetic resonance imaging (MRI). Volumes of ST, semimembranosus (SM), biceps femoris short (BFsh) and long (BFlh) heads, and GR muscles and from the tendon from semitendinosus (STtd) and gracilis (GRtd) were collected. RESULTS The bias and the 95% confidence intervals of 3-D US compared with MRI ranged from -1.9 mL (-0.8%) to 1.2 mL (1.0%) for muscle volume and from 0.01 mL (0.2%) to -0.03 mL (-2.6%) for tendon volume. For muscle volume assessed using 3-D US, intraclass correlation coefficients (ICCs) ranged from 0.98 (GR) to 1.00, and coefficients of variation (CV) from 1.1% (SM) to 3.4% (BFsh). For tendon volume, ICCs were 0.99, and CVs between 3.2% (STtd) and 3.4% (GRtd). CONCLUSION Three-dimensional US can provide a valid and reliable inter-day measurement of hamstrings and GR for both muscle and tendon volumes. In the future, this technique could be used as an outcome for strengthening interventions and potentially in clinical environments.
Collapse
Affiliation(s)
- Antoine Frouin
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Institut Sport Atlantique (ISA), Nantes, France
| | - Hugo Guenanten
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Guillaume Le Sant
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Lilian Lacourpaille
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Martin Liebard
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Aurélie Sarcher
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Richard Ellis
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Active Living and Rehabilitation: Aotearoa, Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
23
|
Ikeda T, Takeda K, Ikeda M. Acute effect of short-term immobilization on lower leg muscle tissue hardness in healthy adults. J Back Musculoskelet Rehabil 2023:BMR220339. [PMID: 37248879 DOI: 10.3233/bmr-220339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Previous studies have reported altered neural activity in the motor cortex after short-term cast immobilization, even in healthy participants. However, the effects of short-term movement restriction on tissue structure are not well understood. OBJECTIVE To investigate the effects of short-term lower limb immobilization on muscle tissue hardness. METHODS Seventeen healthy participants were enrolled in the study. Each participant's non-dominant lower limb was fixed with a soft bandage and medical splint for 10 h. Gastrocnemius muscle tissue hardness was measured using a tissue hardness meter before cast application and immediately after cast removal. Measurements were performed five times for each lower limb, and the three values with the lowest coefficient of variance were adopted as the value of muscle tissue hardness. RESULTS Gastrocnemius muscle tissue hardness in the immobilized limb was lower after cast removal than that before cast application (from 53.6 to 51.8; p< 0.01), whereas the non-fixed limb showed an increase in muscle tissue hardness at the end of the experiment (from 52.9 to 54.3; p= 0.03). CONCLUSION The findings indicate that 10 h movement restriction induced a reduction in muscle tissue hardness, suggesting acute adverse effects of cast immobilization for orthopedic treatment.
Collapse
Affiliation(s)
- Takuro Ikeda
- Department of Physical Therapy, Faculty of Medical Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | | | | |
Collapse
|
24
|
Liu C, Liu N, Zeng Y, Xiao B, Wang P, Zhou C, Xia Y, Zhao Z, Xiao T, Li H. COVID-19 and sarcopenia-related traits: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1162936. [PMID: 37234804 PMCID: PMC10206246 DOI: 10.3389/fendo.2023.1162936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Background Emerging evidence suggested that coronavirus disease 2019 (COVID-19) patients were more prone to acute skeletal muscle loss and suffer sequelae, including weakness, arthromyalgia, depression and anxiety. Meanwhile, it was observed that sarcopenia (SP) was associated with susceptibility, hospitalization and severity of COVID-19. However, it is not known whether there is causal relationship between COVID-19 and SP-related traits. Mendelian randomization (MR) was a valid method for inferring causality. Methods Data was extracted from the COVID-19 Host Genetic Initiative and the UK Biobank without sample overlapping. The MR analysis was performed with inverse variance weighted, weighted median, MR-Egger, RAPS and CAUSE, MR-APSS. Sensitivity analysis was conducted with MR-Egger intercept test, Cochran's Q test, MR-PRESSO to eliminate pleiotropy. Results There was insufficient result in the MR-APSS method to support a direct causal relationship after the Bonferroni correction. Most other MR results were also nominally consistent with the MR-APSS result. Conclusions Our study first explored the causal relationship between COVID-19 and SP-related traits, but the result indicated that they may indirectly interact with each other. We highlighted that older people had better absorb enough nutrition and strengthen exercise to directly cope with SP during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Chao Liu
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Ningyuan Liu
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zeng
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bo Xiao
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Pingxiao Wang
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Chuqiao Zhou
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Yu Xia
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Ziyue Zhao
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, the Second Xiangya Hospital of Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
25
|
Fuchs CJ, Kuipers R, Rombouts JA, Brouwers K, Schrauwen-Hinderling VB, Wildberger JE, Verdijk LB, van Loon LJ. Thigh muscles are more susceptible to age-related muscle loss when compared to lower leg and pelvic muscles. Exp Gerontol 2023; 175:112159. [PMID: 36967049 DOI: 10.1016/j.exger.2023.112159] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND A key hallmark of aging is the progressive loss of skeletal muscle mass. Due to limitations of the various methods typically applied to assess muscle mass, only limited information is available on age-related differences between various muscle groups. This study assessed differences in individual lower body muscle group volumes between healthy young and older males. METHODS Lower body muscle mass assessments were performed in 10 young (age: 27 ± 4 y) and 10 older (age: 71 ± 6 y) healthy, male adults using Dual-energy X-ray Absorptiometry (DXA), single slice (thigh) Computed Tomography (CT), as well as Magnetic Resonance Imaging (MRI). Muscle volumes of all individual muscle groups in the lower body were assessed by MRI. RESULTS Leg lean mass, as assessed with DXA, was not significantly different between older (9.2 ± 1.0 kg) and young (10.5 ± 2.0 kg) men (P = 0.075). Thigh muscle cross-sectional area, as assessed with CT, was significantly lower (by 13 %) in the older (137 ± 17 cm2) compared to young (157 ± 24 cm2) participants (P = 0.044). MRI-derived lower body muscle volume was also significantly lower (by 20 %) in older (6.7 ± 0.9 L) compared to young (8.3 ± 1.3 L) men (P = 0.005). This was primarily attributed to substantial differences in thigh (24 %), rather than lower leg (12 %) and pelvis (15 %) muscle volume in the older vs the young. Thigh muscle volume averaged 3.4 ± 0.5 L in older and 4.5 ± 0.7 L in young men (P = 0.001). Of all thigh muscle groups, the quadriceps femoris showed the most profound difference (30 %) between young (2.3 ± 0.4 L) and older (1.6 ± 0.2 L) men (P < 0.001). CONCLUSIONS The most profound differences in lower body muscle volume between young and older men are observed in the thigh. Within the thigh muscle groups, the quadriceps femoris shows the largest difference in muscle volume between young and older men. Finally, DXA appears less sensitive when compared to CT and MRI to assess age-related differences in muscle mass.
Collapse
|
26
|
Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resistance: inevitable or preventable? Nutr Rev 2023; 81:441-454. [PMID: 36018750 DOI: 10.1093/nutrit/nuac062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related loss of muscle mass, strength, and performance, commonly referred to as sarcopenia, has wide-ranging detrimental effects on human health, the ramifications of which can have serious implications for both morbidity and mortality. Various interventional strategies have been proposed to counteract sarcopenia, with a particular emphasis on those employing a combination of exercise and nutrition. However, the efficacy of these interventions can be confounded by an age-related blunting of the muscle protein synthesis response to a given dose of protein/amino acids, which has been termed "anabolic resistance." While the pathophysiology of sarcopenia is undoubtedly complex, anabolic resistance is implicated in the progression of age-related muscle loss and its underlying complications. Several mechanisms have been proposed as underlying age-related impairments in the anabolic response to protein consumption. These include decreased anabolic molecular signaling activity, reduced insulin-mediated capillary recruitment (thus, reduced amino acid delivery), and increased splanchnic retention of amino acids (thus, reduced availability for muscular uptake). Obesity and sedentarism can exacerbate, or at least facilitate, anabolic resistance, mediated in part by insulin resistance and systemic inflammation. This narrative review addresses the key factors and contextual elements involved in reduction of the acute muscle protein synthesis response associated with aging and its varied consequences. Practical interventions focused on dietary protein manipulation are proposed to prevent the onset of anabolic resistance and mitigate its progression.
Collapse
Affiliation(s)
- Alan A Aragon
- is with the Department of Family and Consumer Sciences, California State University, Northridge, California, USA
| | - Kevin D Tipton
- is with the Institute of Performance Nutrition, Edinburgh, Scotland
| | - Brad J Schoenfeld
- is with the Department of Health Sciences, CUNY Lehman College, Bronx, New York, USA
| |
Collapse
|
27
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. The temporal and spatial effects of reconstructive surgery on the atrophy of hindlimb muscles in anterior cruciate ligament transected rats. Physiol Res 2023; 72:99-109. [PMID: 36545871 PMCID: PMC10069818 DOI: 10.33549/physiolres.934909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
After anterior cruciate ligament (ACL) injury, a decrease in muscle strength associated with muscle atrophy is frequently observed. The temporal and spatial effects of reconstructive surgery on muscle atrophy have not been examined in detail. This study aimed to 1) reveal the short and mid-term effects of reconstructive surgery on muscle atrophy, and 2) investigate the differences in the degree of atrophy after ACL reconstruction in the hindlimb muscles. ACL transection with or without reconstructive surgery was performed unilaterally on the knees of rats. Untreated rats were used as controls. At one or four weeks post-surgery, the relative muscle wet weights (wet weight/body weight) of the hindlimb muscles were calculated to assess atrophy. At one week post-surgery, muscle atrophy was induced by ACL transection and further aggravated by reconstructive surgery. Reconstructive surgery facilitated recovery from muscle atrophy in some muscles compared with those without reconstructive surgery (ACL transection alone) at four weeks post-surgery. Muscle atrophy after ACL reconstruction was greater in the rectus femoris and plantar flexors than in the semitendinosus and plantar extensors at one week post-surgery. These results indicate that reconstructive surgery exacerbates muscle atrophy in the first week post-surgery, while facilitating recovery between the first and fourth week post-surgery. After reconstructive surgery, muscle atrophy was observed not only in the quadriceps and hamstrings, but also in the lower leg muscles, suggesting the need for muscle strengthening interventions for the lower leg muscles as well as the quadriceps and hamstrings.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | |
Collapse
|
28
|
Preobrazenski N, Seigel J, Halliday S, Janssen I, McGlory C. Single-leg disuse decreases skeletal muscle strength, size, and power in uninjured adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:684-696. [PMID: 36883219 PMCID: PMC10067508 DOI: 10.1002/jcsm.13201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
We aimed to quantify declines from baseline in lower limb skeletal muscle size and strength of uninjured adults following single-leg disuse. We searched EMBASE, Medline, CINAHL, and CCRCT up to 30 January 2022. Studies were included in the systematic review if they (1) recruited uninjured participants; (2) were an original experimental study; (3) employed a single-leg disuse model; and (4) reported muscle strength, size, or power data following a period of single-leg disuse for at least one group without a countermeasure. Studies were excluded if they (1) did not meet all inclusion criteria; (2) were not in English; (3) reported previously published muscle strength, size, or power data; or (4) could not be sourced from two different libraries, repeated online searches, and the authors. We used the Cochrane Risk of Bias Assessment Tool to assess risk of bias. We then performed random-effects meta-analyses on studies reporting measures of leg extension strength and extensor size. Our search revealed 6548 studies, and 86 were included in our systematic review. Data from 35 and 20 studies were then included in the meta-analyses for measures of leg extensor strength and size, respectively (40 different studies). No meta-analysis for muscle power was performed due to insufficient homogenous data. Effect sizes (Hedges' gav ) with 95% confidence intervals for leg extensor strength were all durations = -0.80 [-0.92, -0.68] (n = 429 participants; n = 68 aged 40 years or older; n ≥ 78 females); ≤7 days of disuse = -0.57 [-0.75, -0.40] (n = 151); >7 days and ≤14 days = -0.93 [-1.12, -0.74] (n = 206); and >14 days = -0.95 [-1.20, -0.70] (n = 72). Effect sizes for measures of leg extensor size were all durations = -0.41 [-0.51, -0.31] (n = 233; n = 32 aged 40 years or older; n ≥ 42 females); ≤7 days = -0.26 [-0.36, -0.16] (n = 84); >7 days and ≤14 days = -0.49 [-0.67, -0.30] (n = 102); and >14 days = -0.52 [-0.74, -0.30] (n = 47). Decreases in leg extensor strength (cast: -0.94 [-1.30, -0.59] (n = 73); brace: -0.90 [-1.18, -0.63] (n = 106)) and size (cast: -0.61[-0.87, -0.35] (n = 41); brace: (-0.48 [-1.04, 0.07] (n = 41)) following 14 days of disuse did not differ for cast and brace disuse models. Single-leg disuse in adults resulted in a decline in leg extensor strength and size that reached a nadir beyond 14 days. Bracing and casting led to similar declines in leg extensor strength and size following 14 days of disuse. Studies including females and males and adults over 40 years of age are lacking.
Collapse
Affiliation(s)
| | - Joel Seigel
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Sandra Halliday
- Queen's University Library, Queen's University, Kingston, Ontario, Canada
| | - Ian Janssen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Impact of COVID-19 on the Surrounding Environment of Nursing Home Residents and Attitudes towards Infection Control and Oral Health Care among Nursing Home Staff in Japan. J Clin Med 2023; 12:jcm12051944. [PMID: 36902732 PMCID: PMC10003858 DOI: 10.3390/jcm12051944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The environments of nursing home staff and residents have dramatically changed since the onset of the COVID-19 pandemic, with greater demand for infection control. This study aimed to clarify the changes and regional differences in the surrounding environment of nursing home residents as well as the working environment of staff, including oral health care, after the spread of SARS-CoV-2. A self-administered questionnaire survey was sent to nursing staff at about 40 nursing homes in different areas of Japan in September and October 2021. The questionnaire consisted of items centered around: (1) the surrounding environment of nursing home residents, (2) awareness and attitudes towards daily work among staff, and (3) attitudes to and procedures for oral health care among staff. A total of 929 respondents included 618 (66.5%) nursing care workers and 134 (14.4%) nurses. Regarding changes in resident daily life, 60% of staff perceived decreases in psychosocial and physical function after the start of the pandemic due to limited family communication and recreational activities, especially in urban areas. Concerning infection control, most respondents adopted routines of disinfecting hands before and after their duties. Oral health care was part of the regular duties of over 80% of respondents. Many participants answered that the frequency and time of oral health care only slightly changed after the onset of COVID-19, but many also reported disinfecting hands both before and after oral health care, particularly in rural areas. Our findings suggested that the COVID-19 pandemic decreased the daily living activities of residents, leading to psychosocial and physical decline, especially in urban areas. The results also indicated that the spread of SARS-CoV-2 triggered improvements in the awareness and attitudes towards infection control in daily work, including oral health care, among nursing care staff, notably in rural areas. Such an effect may contribute to a more positive perception of oral health care infection measures after the pandemic.
Collapse
|
30
|
Frigotto MF, Rodrigues R, Rabello R, Pietta-Dias C. COVID-19 in older adult residents in nursing homes: factors associated with mortality and impact on functional capacity. SPORT SCIENCES FOR HEALTH 2023; 19:527-535. [PMID: 36855399 PMCID: PMC9951134 DOI: 10.1007/s11332-022-01040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/02/2023]
Abstract
Objective To verify if the functional capacity prior to COVID-19 infection was different between Survivor and Non-survivor older adults. Also, to verify the effect of the isolation period after COVID-19 infection on the functional capacity of the Survivors residing in nursing homes. Materials and methods Older adults residing in nursing homes were evaluated 30 days before the COVID-19 outbreak at the site for (i) general health characteristics (obtained from medical records); (ii) gait speed, handgrip strength and 30-s sit-to-stand; (iii) sarcopenia and (iv) estimated muscle mass. Comparisons were made between Survivors and Non-survivors of COVID-19. After the isolation, the Survivors performed the assessments again. Results Twenty-one (81 ± 9.3 years) participants tested positive for COVID-19 and participated in the study, 12 survivors. No difference was observed between Survivors and Non-survivors in any of the outcomes evaluated. However, a moderate effect size was observed for handgrip strength, with lower values for the Non-survivors group (- 16%; d = 0.53). The isolation period reduced the number of sit-to-stand repetitions with moderate effect size in the Survivors (p = 0.046, gav = 0.66). Conclusion Although the null hypothesis analysis did not find significant differences between the groups, the effect size suggests that older adults residing in nursing homes who died from COVID-19 had lower handgrip strength. In the survivors, the isolation period after COVID-19 infection only negatively impacted the sit-to-stand performance.
Collapse
Affiliation(s)
- Michele Fernandes Frigotto
- Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 90690-200 Brazil
| | - Rodrigo Rodrigues
- Institute of Education, Federal University of Rio Grande, Rio Grande, RS Brazil
| | - Rodrigo Rabello
- Department of Biomedical Sciences for Health, University of Milan, Milan, MI Italy
| | - Caroline Pietta-Dias
- Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 90690-200 Brazil
| |
Collapse
|
31
|
Monteyne AJ, Coelho MOC, Murton AJ, Abdelrahman DR, Blackwell JR, Koscien CP, Knapp KM, Fulford J, Finnigan TJA, Dirks ML, Stephens FB, Wall BT. Vegan and Omnivorous High Protein Diets Support Comparable Daily Myofibrillar Protein Synthesis Rates and Skeletal Muscle Hypertrophy in Young Adults. J Nutr 2023:S0022-3166(23)12680-0. [PMID: 36822394 DOI: 10.1016/j.tjnut.2023.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND It remains unclear whether non-animal-derived dietary protein sources (and therefore vegan diets) can support resistance training-induced skeletal muscle remodeling to the same extent as animal-derived protein sources. METHODS In Phase 1, 16 healthy young adults (m = 8, f = 8; age: 23 ± 1 y; BMI: 23 ± 1 kg/m2) completed a 3-d dietary intervention (high protein, 1.8 g·kg bm-1·d-1) where protein was derived from omnivorous (OMNI1; n = 8) or exclusively non-animal (VEG1; n = 8) sources, alongside daily unilateral leg resistance exercise. Resting and exercised daily myofibrillar protein synthesis (MyoPS) rates were assessed using deuterium oxide. In Phase 2, 22 healthy young adults (m = 11, f = 11; age: 24 ± 1 y; BMI: 23 ± 0 kg/m2) completed a 10 wk, high-volume (5 d/wk), progressive resistance exercise program while consuming an omnivorous (OMNI2; n = 12) or non-animal-derived (VEG2; n = 10) high-protein diet (∼2 g·kg bm-1·d-1). Muscle fiber cross-sectional area (CSA), whole-body lean mass (via DXA), thigh muscle volume (via MRI), muscle strength, and muscle function were determined pre, after 2 and 5 wk, and postintervention. OBJECTIVES To investigate whether a high-protein, mycoprotein-rich, non-animal-derived diet can support resistance training-induced skeletal muscle remodeling to the same extent as an isonitrogenous omnivorous diet. RESULTS Daily MyoPS rates were ∼12% higher in the exercised than in the rested leg (2.46 ± 0.27%·d-1 compared with 2.20 ± 0.33%·d-1 and 2.62 ± 0.56%·d-1 compared with 2.36 ± 0.53%·d-1 in OMNI1 and VEG1, respectively; P < 0.001) and not different between groups (P > 0.05). Resistance training increased lean mass in both groups by a similar magnitude (OMNI2 2.6 ± 1.1 kg, VEG2 3.1 ± 2.5 kg; P > 0.05). Likewise, training comparably increased thigh muscle volume (OMNI2 8.3 ± 3.6%, VEG2 8.3 ± 4.1%; P > 0.05), and muscle fiber CSA (OMNI2 33 ± 24%, VEG2 32 ± 48%; P > 0.05). Both groups increased strength (1 repetition maximum) of multiple muscle groups, to comparable degrees. CONCLUSIONS Omnivorous and vegan diets can support comparable rested and exercised daily MyoPS rates in healthy young adults consuming a high-protein diet. This translates to similar skeletal muscle adaptive responses during prolonged high-volume resistance training, irrespective of dietary protein provenance. This trial was registered at clinicaltrials.gov as NCT03572127.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Mariana O C Coelho
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States; Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States; Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jamie R Blackwell
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Christopher P Koscien
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Karen M Knapp
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | | - Marlou L Dirks
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, Nutritional Physiology Research Group, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
32
|
Coffey VG, McGlory C, Phillips SM, Doering TM. Does initial skeletal muscle size or sex affect the magnitude of muscle loss in response to 14 days immobilization? Appl Physiol Nutr Metab 2023; 48:411-416. [PMID: 36802453 DOI: 10.1139/apnm-2022-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We aimed to determine whether there was a relationship between pre-immobilization skeletal muscle size and the magnitude of muscle atrophy following 14 days of unilateral lower limb immobilization. Our findings (n = 30) show that pre-immobilization leg fat-free mass and quadriceps cross-sectional area (CSA) were unrelated to the magnitude of muscle atrophy. However, sex-based differences may be present, but confirmatory work is required. In women, pre-immobilization leg fat-free mass and CSA were associated with changes in quadriceps CSA after immobilization (n = 9, r2 = 0.54-0.68; P < 0.05). The extent of muscle atrophy is not affected by initial muscle mass, but there is potential for sex-based differences.
Collapse
Affiliation(s)
- Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Thomas M Doering
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
33
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
34
|
Genome Editing to Abrogate Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:157-176. [DOI: 10.1007/978-981-19-5642-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Gil S, de Oliveira Júnior GN, Sarti FM, Filho WJ, Longobardi I, Turri JAO, Shinjo SK, Ferriolli E, Avelino-Silva TJ, Busse AL, Gualano B, Roschel H. Acute Muscle Mass Loss Predicts Long-Term Fatigue, Myalgia, and Health Care Costs in COVID-19 Survivors. J Am Med Dir Assoc 2023; 24:10-16. [PMID: 36493804 PMCID: PMC9682050 DOI: 10.1016/j.jamda.2022.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We examined the impact of loss of skeletal muscle mass in post-acute sequelae of SARS-CoV-2 infection, hospital readmission rate, self-perception of health, and health care costs in a cohort of COVID-19 survivors. DESIGN Prospective observational study. SETTING AND PARTICIPANTS Tertiary Clinical Hospital. Eighty COVID-19 survivors age 59 ± 14 years were prospectively assessed. METHODS Handgrip strength and vastus lateralis muscle cross-sectional area were evaluated at hospital admission, discharge, and 6 months after discharge. Post-acute sequelae of SARS-CoV-2 were evaluated 6 months after discharge (main outcome). Also, health care costs, hospital readmission rate, and self-perception of health were evaluated 2 and 6 months after hospital discharge. To examine whether the magnitude of muscle mass loss impacts the outcomes, we ranked patients according to relative vastus lateralis muscle cross-sectional area reduction during hospital stay into either "high muscle loss" (-18 ± 11%) or "low muscle loss" (-4 ± 2%) group, based on median values. RESULTS High muscle loss group showed greater prevalence of fatigue (76% vs 46%, P = .0337) and myalgia (66% vs 36%, P = .0388), and lower muscle mass (-8% vs 3%, P < .0001) than low muscle loss group 6 months after discharge. No between-group difference was observed for hospital readmission and self-perceived health (P > .05). High muscle loss group demonstrated greater total COVID-19-related health care costs 2 ($77,283.87 vs. $3057.14, P = .0223, respectively) and 6 months ($90,001.35 vs $12, 913.27, P = .0210, respectively) after discharge vs low muscle loss group. Muscle mass loss was shown to be a predictor of total COVID-19-related health care costs at 2 (adjusted β = $10, 070.81, P < .0001) and 6 months after discharge (adjusted β = $9885.63, P < .0001). CONCLUSIONS AND IMPLICATIONS COVID-19 survivors experiencing high muscle mass loss during hospital stay fail to fully recover muscle health. In addition, greater muscle loss was associated with a higher frequency of post-acute sequelae of SARS-CoV-2 and greater total COVID-19-related health care costs 2 and 6 months after discharge. Altogether, these data suggest that the loss of muscle mass resulting from COVID-19 hospitalization may incur in an economical burden to health care systems.
Collapse
Affiliation(s)
- Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gersiel Nascimento de Oliveira Júnior
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Flavia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo (USP), São Paulo, Brazil, SP, BR
| | - Wilson Jacob Filho
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | - Samuel Katsuyuki Shinjo
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eduardo Ferriolli
- Division of Internal and Geriatric Medicine, Department of Internal Medicine - Ribeirão Preto Medical School, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Thiago Junqueira Avelino-Silva
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alexandre Leopold Busse
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Servico de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR.
| |
Collapse
|
36
|
Kerr NR, Booth FW. Contributions of physical inactivity and sedentary behavior to metabolic and endocrine diseases. Trends Endocrinol Metab 2022; 33:817-827. [PMID: 36283907 DOI: 10.1016/j.tem.2022.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Physical inactivity is the fourth leading global cause of death and is a major contributor to metabolic and endocrine diseases. In this review we provide a current update of the past 5 years in the field as it pertains to the most prevalent and deadly chronic diseases. Despite the prevalence of physical inactivity in modern society, it remains largely overlooked relative to other comparable risk factors such as obesity, and our molecular understanding of how physical inactivity impacts metabolism is still partially unknown. Therefore, we discuss current clinical inactivity models along with their most recent findings regarding health outcomes along with any discrepancies that are present in the field. Lastly, we discuss future directions and the need for translatable animal models of physical inactivity to discover novel molecular targets for the prevention of chronic disease.
Collapse
Affiliation(s)
- Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
37
|
Hardy EJO, Inns TB, Hatt J, Doleman B, Bass JJ, Atherton PJ, Lund JN, Phillips BE. The time course of disuse muscle atrophy of the lower limb in health and disease. J Cachexia Sarcopenia Muscle 2022; 13:2616-2629. [PMID: 36104842 PMCID: PMC9745468 DOI: 10.1002/jcsm.13067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.
Collapse
Affiliation(s)
- Edward J O Hardy
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Thomas B Inns
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jacob Hatt
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Brett Doleman
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,Department of Anaesthetics, Royal Derby Hospital, Derby, UK
| | - Joseph J Bass
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Philip J Atherton
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jonathan N Lund
- Department of General Surgery, Royal Derby Hospital, Derby, UK.,Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Bethan E Phillips
- Centre Of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) and NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
38
|
Edwards SJ, Carter S, Nicholson T, Allen SL, Morgan PT, Jones SW, Rendeiro C, Breen L. (-)-Epicatechin and its colonic metabolite hippuric acid protect against dexamethasone-induced atrophy in skeletal muscle cells. J Nutr Biochem 2022; 110:109150. [PMID: 36049668 DOI: 10.1016/j.jnutbio.2022.109150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Cocoa flavanols have been shown to improve muscle function and may offer a novel approach to protect against muscle atrophy. Hippuric acid (HA) is a colonic metabolite of (-)-epicatechin (EPI), the primary bioactive compound of cocoa, and may be responsible for the associations between cocoa supplementation and muscle metabolic alterations. Accordingly, we investigated the effects of EPI and HA upon skeletal muscle morphology and metabolism within an in vitro model of muscle atrophy. Under atrophy-like conditions (24h 100μM dexamethasone (DEX)), C2C12 myotube diameter was significantly greater following co-incubation with either 25μM HA (11.19±0.39μm) or 25μM EPI (11.01±0.21μm) compared to the vehicle control (VC; 7.61±0.16μm, both P < .001). In basal and leucine-stimulated states, there was a significant reduction in myotube protein synthesis (MPS) rates following DEX treatment in VC (P = .024). Interestingly, co-incubation with EPI or HA abrogated the DEX-induced reductions in MPS rates, whereas no significant differences versus control treated myotubes (CTL) were noted. Furthermore, co-incubation with EPI or HA partially attenuated the increase in proteolysis seen in DEX-treated cells, preserving LC3 α/β II:I and caspase-3 protein expression in atrophy-like conditions. The protein content of PGC1α, ACC, and TFAM (regulators of mitochondrial function) were significantly lower in DEX-treated versus. CTL cells (all P < .050). However, co-incubation with EPI or HA was unable to prevent these DEX-induced alterations. For the first time we demonstrate that EPI and HA exert anti-atrophic effects on C2C12 myotubes, providing novel insight into the association between flavanol supplementation and favourable effects on muscle health.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Steven Carter
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Department for Health, University of Bath, Bath, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sophie Louise Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Simon Wyn Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK.
| |
Collapse
|
39
|
Inns TB, Bass JJ, Hardy EJ, Wilkinson DJ, Stashuk DW, Atherton PJ, Phillips BE, Piasecki M. Motor unit dysregulation following 15 days of unilateral lower limb immobilisation. J Physiol 2022; 600:4753-4769. [PMID: 36088611 PMCID: PMC9827843 DOI: 10.1113/jp283425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023] Open
Abstract
Disuse atrophy, caused by situations of unloading such as limb immobilisation, causes a rapid yet diverging reduction in skeletal muscle function when compared to muscle mass. While mechanistic insight into the loss of mass is well studied, deterioration of muscle function with a focus towards the neural input to muscle remains underexplored. This study aimed to determine the role of motor unit adaptation in disuse-induced neuromuscular deficits. Ten young, healthy male volunteers underwent 15 days of unilateral lower limb immobilisation with intramuscular electromyography (iEMG) bilaterally recorded from the vastus lateralis (VL) during knee extensor contractions normalised to maximal voluntary contraction (MVC), pre and post disuse. Muscle cross-sectional area was determined by ultrasound. Individual MUs were sampled and analysed for changes in motor unit (MU) discharge and MU potential (MUP) characteristics. VL CSA was reduced by approximately 15% which was exceeded by a two-fold decrease of 31% in muscle strength in the immobilised limb, with no change in either parameter in the non-immobilised limb. Parameters of MUP size were reduced by 11% to 24% with immobilisation, while neuromuscular junction (NMJ) transmission instability remained unchanged, and MU firing rate decreased by 8% to 11% at several contraction levels. All adaptations were observed in the immobilised limb only. These findings highlight impaired neural input following immobilisation reflected by suppressed MU firing rate which may underpin the disproportionate reductions of strength relative to muscle size. KEY POINTS: Muscle mass and function decline rapidly in situations of disuse such as bed rest and limb immobilisation. The reduction in muscle function commonly exceeds that of muscle mass, which may be associated with the dysregulation of neural input to muscle. We have used intramuscular electromyography to sample individual motor unit and near fibre potentials from the vastus lateralis following 15 days of unilateral limb immobilisation. Following disuse, the disproportionate loss of muscle strength when compared to size coincided with suppressed motor unit firing rate. These motor unit adaptations were observed at multiple contraction levels and in the immobilised limb only. Our findings demonstrate neural dysregulation as a key component of functional loss following muscle disuse in humans.
Collapse
Affiliation(s)
- Thomas B. Inns
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Joseph J. Bass
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Edward J.O. Hardy
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
- Department of Surgery and AnaestheticsRoyal Derby HospitalDerbyUK
| | - Daniel J. Wilkinson
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Daniel W. Stashuk
- Department of Systems Design EngineeringUniversity of WaterlooOntarioCanada
| | - Philip J. Atherton
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| | - Mathew Piasecki
- Centre Of Metabolism, Ageing & PhysiologyMRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRCUniversity of NottinghamDerbyUK
| |
Collapse
|
40
|
Barrea L, Vetrani C, Caprio M, Cataldi M, Ghoch ME, Elce A, Camajani E, Verde L, Savastano S, Colao A, Muscogiuri G. From the Ketogenic Diet to the Mediterranean Diet: The Potential Dietary Therapy in Patients with Obesity after CoVID-19 Infection (Post CoVID Syndrome). Curr Obes Rep 2022; 11:144-165. [PMID: 35524067 PMCID: PMC9075143 DOI: 10.1007/s13679-022-00475-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW This review primarily examines the evidence for areas of consensus and on-going uncertainty or controversy about diet and physical exercise approaches for in the post-CoVID. We propose an ideal dietary and physical activity approach that the patient with obesity should follow after CoVID-19 infection in order to reduce the clinical conditions associated with post-CoVID syndrome. RECENT FINDINGS The CoVID-19 disease pandemic, caused by the severe acute respiratory syndrome coronavirus-2, has spread all over the globe, infecting hundreds of millions of individuals and causing millions of death. It is also known to be is associated with several medical and psychological complications, especially in patients with obesity and weight-related disorders who in general pose a significant global public health problem, and in specific affected individuals are on a greater risk of developing poorer CoVID-19 clinical outcomes and experience a higher rate of mortality. Little is still known about the best nutritional approach to be adopted in this disease especially in the patients post-CoVID syndrome. To the best of our knowledge, no specific nutritional recommendations exist to manage in the patients post-CoVID syndrome. We report a presentation of nutritional therapeutic approach based on a ketogenic diet protocol followed by a transition to the Mediterranean diet in patients post-infection by CoVID, combined to a physical activity program to address conditions associated with post-CoVID syndrome.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, isola F2, 80143, Napoli, Italy.
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Mauro Cataldi
- Department of Neuroscience, Reproductive Medicine and Dentistry, Section of Pharmacology, Medical School of Naples, Federico II University, 80131, Naples, Italy
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut, 11072809, Lebanon
| | - Ausilia Elce
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzio, isola F2, 80143, Napoli, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- PhD Programme in Endocrinological Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Ludovica Verde
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
41
|
Franchi MV, Sarto F, Simunič B, Pišot R, Narici MV. Early Changes of Hamstrings Morphology and Contractile Properties during 10 d of Complete Inactivity. Med Sci Sports Exerc 2022; 54:1346-1354. [PMID: 35324511 DOI: 10.1249/mss.0000000000002922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The hamstrings (HS) muscle group plays a fundamental role in maintaining knee stability, thus contributing to the prevention and rehabilitation of lower limb musculoskeletal injuries. However, little is known about HS structural and functional adaptations after periods of prolonged inactivity. Our purpose was to investigate the HS morphological and contractile properties changes during 10 d of bed rest (BR). METHODS Ten young healthy males underwent a 10-d BR. HS cross-sectional area (CSA) (at 30%, 50%, and 70% of femur length) and biceps femoris long head (BFlh) architecture were assessed by ultrasound imaging after 0 d (BR0), 2 d (BR2), 4 d (BR4), 6 d (BR6), and 10 d (BR10) of BR, whereas BFlh contractile properties (radial twitch displacement [Dm] and contraction time [Tc]) were evaluated at the same time points by tensiomyography. HS muscle volume was assessed by magnetic resonance imaging at BR0 and BR10. RESULTS A reduction in muscle volume was observed in BFlh ( P = 0.002; Δ = -3.53%), biceps femoris short head ( P = 0.002; Δ = -3.54%), semitendinosus ( P = 0.002; Δ = -2.63%), semimembranosus ( P = 0.002; Δ = -2.01%), and HS pooled together ( P < 0.001; Δ = -2.78%). Early changes in CSA were detected at 30% femur length already at BR6 for BFlh ( P = 0.009; Δ = -2.66%) and biceps femoris short head ( P = 0.049; Δ = -1.96%). We also found a reduction in fascicle length at BR6 ( P = 0.035; Δ = -2.44%) and BR10 ( P < 0.001; Δ = -2.84%). Dm and Tc increased at BR2 ( P = 0.010; Δ = 30.0%) and B10 ( P = 0.019; Δ = 19.7%), respectively. CONCLUSIONS Despite being a nonpostural muscle group, HS exhibited a moderate reduction in muscle dimensions in response to a short unloading period. Small changes in BFlh fascicle length were also observed, accompanied by alterations in BFLh contractile properties. These HS modifications should not be ignored from a clinical perspective.
Collapse
Affiliation(s)
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, ITALY
| | - Boštian Simunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, SLOVENIA
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, SLOVENIA
| | | |
Collapse
|
42
|
Brook MS, Stokes T, Gorissen SH, Bass JJ, McGlory C, Cegielski J, Wilkinson DJ, Phillips BE, Smith K, Phillips SM, Atherton PJ. Declines in muscle protein synthesis account for short-term muscle disuse atrophy in humans in the absence of increased muscle protein breakdown. J Cachexia Sarcopenia Muscle 2022; 13:2005-2016. [PMID: 35606155 PMCID: PMC9397550 DOI: 10.1002/jcsm.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND We determined the short-term (i.e. 4 days) impacts of disuse atrophy in relation to muscle protein turnover [acute fasted-fed muscle protein synthesis (MPS)/muscle protein breakdown (MPB) and integrated MPS/estimated MPB]. METHODS Healthy men (N = 9, 22 ± 2 years, body mass index 24 ± 3 kg m-2 ) underwent 4 day unilateral leg immobilization. Vastus lateralis (VL) muscle thickness (MT) and extensor strength and thigh lean mass (TLM) were measured. Bilateral VL muscle biopsies were collected on Day 4 at t = -120, 0, 90, and 180 min to determine integrated MPS, estimated MPB, acute fasted-fed MPS (l-[ring-13 C6 ]-phe), and acute fasted tracer decay rate representative of MPB (l-[15 N]-phe and l-[2 H8 ]-phe). Protein turnover cell signalling was measured by immunoblotting. RESULTS Immobilization decreased TLM [pre: 7477 ± 1196 g, post: 7352 ± 1209 g (P < 0.01)], MT [pre: 2.67 ± 0.50 cm, post: 2.55 ± 0.51 cm (P < 0.05)], and strength [pre: 260 ± 43 N m, post: 229 ± 37 N m (P < 0.05)] with no change in control legs. Integrated MPS decreased in immob vs. control legs [control: 1.55 ± 0.21% day-1 , immob: 1.29 ± 0.17% day-1 (P < 0.01)], while tracer decay rate (i.e. MPB) (control: 0.02 ± 0.006, immob: 0.015 ± 0.015) and fractional breakdown rate (FBR) remained unchanged [control: 1.44 ± 0.51% day-1 , immob: 1.73 ± 0.35% day-1 (P = 0.21)]. Changes in MT correlated with those in MPS but not FBR. MPS increased in the control leg following feeding [fasted: 0.043 ± 0.012% h-1 , fed: 0.065 ± 0.017% h-1 (P < 0.05)] but not in immob [fasted: 0.034 ± 0.014% h-1 , fed: 0.049 ± 0.023% h-1 (P = 0.09)]. There were no changes in markers of MPB with immob (P > 0.05). CONCLUSIONS Human skeletal muscle disuse atrophy is driven by declines in MPS, not increases in MPB. Pro-anabolic therapies to mitigate disuse atrophy would likely be more effective than therapies aimed at attenuating protein degradation.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Tanner Stokes
- Department of KinesiologyMcMaster UniversityHamiltonONCanada
| | | | - Joseph J. Bass
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Chris McGlory
- School of Kinesiology and Health StudiesQueen's UniversityKingstonONCanada
| | - Jessica Cegielski
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Daniel J. Wilkinson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Bethan E. Phillips
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | - Ken Smith
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| | | | - Philip J. Atherton
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre Of Metabolism, Ageing and Physiology (COMAP), School of MedicineUniversity of NottinghamDerbyUK
| |
Collapse
|
43
|
Pavis GF, Jameson TSO, Blackwell JR, Fulford J, Abdelrahman DR, Murton AJ, Alamdari N, Mikus CR, Wall BT, Stephens FB. Daily protein-polyphenol ingestion increases daily myofibrillar protein synthesis rates and promotes early muscle functional gains during resistance training. Am J Physiol Endocrinol Metab 2022; 322:E231-E249. [PMID: 35037473 PMCID: PMC8897029 DOI: 10.1152/ajpendo.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Factors underpinning the time-course of resistance-type exercise training (RET) adaptations are not fully understood. This study hypothesized that consuming a twice-daily protein-polyphenol beverage (PPB; n = 15; age, 24 ± 1 yr; BMI, 22.3 ± 0.7 kg·m-2) previously shown to accelerate recovery from muscle damage and increase daily myofibrillar protein synthesis (MyoPS) rates would accelerate early (10 sessions) improvements in muscle function and potentiate quadriceps volume and muscle fiber cross-sectional area (fCSA) following 30 unilateral RET sessions in healthy, recreationally active, adults. Versus isocaloric placebo (PLA; n = 14; age, 25 ± 2 yr; BMI, 23.9 ± 1.0 kg·m-2), PPB increased 48 h MyoPS rates after the first RET session measured using deuterated water (2.01 ± 0.15 vs. 1.51 ± 0.16%·day-1, respectively; P < 0.05). In addition, PPB increased isokinetic muscle function over 10 sessions of training relative to the untrained control leg (%U) from 99.9 ± 1.8 pretraining to 107.2 ± 2.4%U at session 10 (vs. 102.6 ± 3.9 to 100.8 ± 2.4%U at session 10 in PLA; interaction P < 0.05). Pre to posttraining, PPB increased type II fCSA (PLA: 120.8 ± 8.2 to 109.5 ± 8.6%U; PPB: 92.8 ± 6.2 to 108.4 ± 9.7%U; interaction P < 0.05), but the gain in quadriceps muscle volume was similar between groups. Similarly, PPB did not further increase peak isometric torque, muscle function, or MyoPS measured posttraining. This suggests that although PPB increases MyoPS and early adaptation, it may not influence longer term adaptations to unilateral RET.NEW & NOTEWORTHY Using a unilateral model of resistance training, we show for the first time that a protein-polyphenol beverage increases initial rates of myofibrillar protein synthesis and promotes early functional improvements. Following a prolonged period of training, this strategy also increases type II fiber hypertrophy and causes large individual variation in gains in quadricep muscle cross-sectional area.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Research Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
44
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
45
|
Silver JK, Santa Mina D, Bates A, Gillis C, Silver EM, Hunter TL, Jack S. Physical and Psychological Health Behavior Changes During the COVID-19 Pandemic that May Inform Surgical Prehabilitation: a Narrative Review. CURRENT ANESTHESIOLOGY REPORTS 2022; 12:109-124. [PMID: 35194411 PMCID: PMC8855650 DOI: 10.1007/s40140-022-00520-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review Multimodal prehabilitation aims to improve preoperative health in ways that reduce surgical complications and expedite post-operative recovery. However, the extent to which preoperative health has been affected by the COVID-19 pandemic is unclear and evidence for the mitigating effects of prehabilitation in this context has not been elucidated. The COVID-19 pandemic has forced a rapid reorganization of perioperative pathways. Delayed diagnosis and surgery have caused a backlog of cases awaiting surgery increasing the risk of more complex procedures due to disease progression. Poor fitness and preoperative deconditioning are predictive of surgical complications and may be compounded by pandemic-related restrictions to accessing supportive services. The COVID-19 pandemic has forced a rapid reorganization of perioperative pathways. This narrative review aims to summarize the understanding of the effects of the COVID-19 pandemic on preoperative health and related behaviors and their implication for the need and delivery for prehabilitation to engender improved surgical outcomes. A literature search of Medline was conducted for articles related to preoperative health, prehabilitation, and surgical outcomes published between December 1, 2020 and January 31, 2021. Additional hand searches for relevant publications within the included literature were also conducted through October 15, 2021. Recent Findings The COVID-19 pandemic, and measures designed to reduce the spread of the virus, have resulted in physical deconditioning, deleterious dietary changes, substance misuse, and heightened anxiety prior to surgery. Due to the adverse health changes prior to surgery, and often protracted waiting time for surgery, there is likely an elevated risk of peri- and post-operative complications. A small number of prehabilitation services and research programmes have been rapidly adapted or implemented to address these needs. Summary During the COVID-19 pandemic to date, people undergoing surgery have faced a triple threat posed by extended wait times for surgery, reduced access to supportive services, and an elevated risk of poor outcomes. It is imperative that healthcare providers find ways to employ evidence-based prehabilitation strategies that are accessible and safe to mitigate the negative impact of the pandemic on surgical outcomes. Attention should be paid to cohorts most affected by established health inequities and further exacerbated by the pandemic.
Collapse
Affiliation(s)
- Julie K. Silver
- Harvard Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, 55 Fruit Street, Boston, MA USA
| | - Daniel Santa Mina
- Faculty of Kinesiology and Physical Education, The University of Toronto, 55 Harbord St, Toronto, ON M5S 2W6 Canada
| | - Andrew Bates
- NIHR Southampton Biomedical Research Centre, Critical Care Research, University Hospital, Tremona Road, Southampton, SO16 6YD UK
| | - Chelsia Gillis
- School of Human Nutrition, McGill University, QC, Canada
| | - Emily M. Silver
- Department of Psychology and Integrative Neuroscience Program, The University of Chicago, Chicago, IL USA
| | - Tracey L. Hunter
- Department of Internal Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA USA
| | - Sandy Jack
- NIHR Southampton Biomedical Research Centre, Critical Care Research, University Hospital, Tremona Road, Southampton, SO16 6YD UK
| |
Collapse
|
46
|
Effect of High-Protein Diets on Integrated Myofibrillar Protein Synthesis before Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Pilot Study. Nutrients 2022; 14:nu14030563. [PMID: 35276922 PMCID: PMC8840691 DOI: 10.3390/nu14030563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing dietary protein intake during periods of muscle disuse may mitigate the resulting decline in muscle protein synthesis (MPS). The purpose of this randomized pilot study was to determine the effect of increased protein intake during periods of disuse before anterior cruciate ligament (ACL) reconstruction on myofibrillar protein synthesis (MyoPS), and proteolytic and myogenic gene expression. Six healthy, young males (30 ± 9 y) were randomized to consume a high-quality, optimal protein diet (OP; 1.9 g·kg−1·d−1) or adequate protein diet (AP; 1.2 g·kg−1·d−1) for two weeks before ACL reconstruction. Muscle biopsies collected during surgery were used to measure integrated MyoPS during the intervention (via daily deuterium oxide ingestion) and gene expression at the time of surgery. MyoPS tended to be higher, with a large effect size in OP compared to AP (0.71 ± 0.1 and 0.54 ± 0.1%·d−1; p = 0.076; g = 1.56). Markers of proteolysis and myogenesis were not different between groups (p > 0.05); however, participants with greater MyoPS exhibited lower levels of MuRF1 gene expression compared to those with lower MyoPS (r = −0.82, p = 0.047). The data from this pilot study reveal a potential stimulatory effect of increased daily protein intake on MyoPS during injury-mediated disuse conditions that warrants further investigation.
Collapse
|
47
|
Blood Flow Restriction Therapy and Its Use for Rehabilitation and Return to Sport: Physiology, Application, and Guidelines for Implementation. Arthrosc Sports Med Rehabil 2022; 4:e71-e76. [PMID: 35141538 PMCID: PMC8811521 DOI: 10.1016/j.asmr.2021.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Blood flow restriction (BFR) is an expanding rehabilitation modality that uses a tourniquet to reduce arterial inflow and occlude venous outflow in the setting of resistance training or exercise. Initially, this technique was seen as a way to stimulate muscular development, but improved understanding of its physiologic benefits and mechanism of action has allowed for innovative clinical applications. BFR represents a way to decrease stress placed on the joints without compromising improvements in strength, whereas for postoperative, injured, or load-compromised individuals BFR represents a way to accelerate recovery and prevent atrophy. There is also growing evidence to suggest that it augments cardiovascular fitness and attenuates pain. The purpose of this review is to highlight the physiology and evidence behind the various applications of BFR, with a focus on postoperative rehabilitation. While much remains to be learned, it is clear that blood flow restriction therapy stimulates muscle hypertrophy via a synergistic response to metabolic stress and mechanical tension, with supplemental benefits on cardiovascular fitness and pain. New forms of BFR and expanding applications in postoperative patients and athletes hold promise for expedited recovery. Continued adherence to rehabilitation guidelines and exploration of BFRs physiology and various applications will help optimize its effect and prescription. Level of Evidence V, expert opinion.
Collapse
|
48
|
Stępień A, Sobińska M, Rekowski W, Krawczyk MJ. Pandemic decrease of in-person physiotherapy as a factor in parent perceived decline in function in children with neuromuscular disorders. J Pediatr Rehabil Med 2022; 15:677-689. [PMID: 36530101 DOI: 10.3233/prm-210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Restrictions related to the COVID-19 pandemic can negatively affect patients who require physiotherapy. This study aimed to analyze the consequences of limited physiotherapy on the functional state of children with neuromuscular diseases (NMD). In addition, the caregivers' well-being and caregiver opinions on physiotherapy were analyzed. METHODS A questionnaire was shared with parents of children with NMD immediately after the COVID-19 lockdown. The survey included questions regarding the physical and mental condition of children and parents before the pandemic and during lockdown as well as their views on physiotherapy and telephysiotherapy. Statistical analysis was performed using the Wilcoxon Matched-Pairs Signed Ranks test, Spearman's Rank Correlation test, McNemar test, and Chi-square test. RESULTS Parents of 235 children participated in the study. Results indicated that children devoted more time to physiotherapy before the pandemic than during the lockdown period, which was true for those living in cities and the countryside. The functional state of 50.2% of the children deteriorated during the lockdown, in the opinion of their parents. Significant correlations were found between limited physiotherapy time and the deterioration of children's functional condition, ability to maintain a standing position, and increased anxiety. The majority of parents reported increased levels of fear and anxiety (72.8%), fatigue (67.7%), and pain (53.2%). In-person physiotherapy was rated significantly higher than telephysiotherapy by parents. CONCLUSIONS Limited access to physiotherapy and shorter therapy times may lead to functional deterioration in children with NMD, but this assumption needs to be objectively confirmed. According to the parents' opinions, telephysiotherapy is less beneficial than direct physiotherapy but may support therapy conducted directly by a physiotherapist. Results based on subjective parental opinions may be helpful in planning future projects.
Collapse
Affiliation(s)
- Agnieszka Stępień
- Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | | | - Witold Rekowski
- Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | | |
Collapse
|
49
|
Fanous J, Zero AM, Gilmore KJ, Doherty TJ, Rice CL. Length-dependent changes of lower limb muscle morphology in Chronic Inflammatory Demyelinating Polyneuropathy assessed with magnetic resonance imaging. Eur J Transl Myol 2021; 31. [PMID: 34802220 PMCID: PMC8758964 DOI: 10.4081/ejtm.2021.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to assess muscle quantity of the thigh and leg in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) compared to age and sex matched controls in exploring length-dependent changes of innervated muscles. In five people with CIDP and seven controls, magnetic resonance imaging was used to assess muscle morphology of the four parts of the quadriceps and medial hamstring muscles. Findings were compared to the triceps surae from a subset of participants. The CIDP group had less contractile tissue in the quadriceps (11.5%, P<0.05), hamstrings (15.6%, P<0.05) and triceps surae (35.9%, P<0.05) compared to controls. Additionally, CIDP had less contractile tissue (18.7%) in the triceps surae compared to the hamstrings (P<0.05). Muscle quantity in the quadriceps and hamstrings in CIDP was less than controls, but differences were greater for the distal triceps surae. These findings support a length-dependent affect of CIDP on limb musculature composition.
Collapse
Affiliation(s)
- Jacob Fanous
- School of Kinesiology, The University of Western Ontario, London, ON.
| | - Alexander M Zero
- School of Kinesiology, The University of Western Ontario, London, ON.
| | | | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada ; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON.
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON.
| |
Collapse
|
50
|
Edwards SJ, Shad BJ, Marshall RN, Morgan PT, Wallis GA, Breen L. Short-term step reduction reduces CS activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signalling in young males. J Appl Physiol (1985) 2021; 131:1653-1662. [PMID: 34734783 PMCID: PMC8714983 DOI: 10.1152/japplphysiol.00650.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day−1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth Anthony Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| |
Collapse
|