1
|
Carney TD, Shcherbata HR. Tumor suppressor miR-317 and lncRNA Peony are expressed from a polycistronic non-coding RNA locus that regulates germline differentiation and testis morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617551. [PMID: 39416153 PMCID: PMC11482908 DOI: 10.1101/2024.10.10.617551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This research focuses on investigating the impact of non-coding RNAs on stem cell biology and differentiation processes. We found that miR-317 plays a role in germline stem cell progeny differentiation. miR-317 and its neighbor, the lncRNA Peony, originate and are co-expressed from a singular polycistronic non-coding RNA locus. Alternative polyadenylation is implicated in regulation of their differential expression. While the increased expression of the lncRNA Peony results in the disruption of the muscle sheath covering the testis, the absence of miR-317 leads to the emergence of germline tumors in young flies. The deficiency of miR-317 increases Notch signaling activity in the somatic cyst cells, which drives germline tumorigenesis. Germline tumors also arise from upregulation of several predicted targets of miR-317, among which are regulators of the Notch pathway. This implicates miR-317 as a novel tumor suppressor that modulates Notch signaling strength.
Collapse
Affiliation(s)
- Travis D Carney
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
2
|
Kubaczka MG, Godoy Herz MA, Chen WC, Zheng D, Petrillo E, Tian B, Kornblihtt AR. Light regulates widespread plant alternative polyadenylation through the chloroplast. Proc Natl Acad Sci U S A 2024; 121:e2405632121. [PMID: 39150783 PMCID: PMC11348263 DOI: 10.1073/pnas.2405632121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024] Open
Abstract
Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.
Collapse
Affiliation(s)
- M. Guillermina Kubaczka
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Micaela A. Godoy Herz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Wei-Chun Chen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Ezequiel Petrillo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA19104
| | - Alberto R. Kornblihtt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires1428, Argentina
| |
Collapse
|
3
|
Ozbulut HC, Hilgers V. Neuronal RNA processing: cross-talk between transcriptional regulation and RNA-binding proteins. Front Mol Neurosci 2024; 17:1426410. [PMID: 39149613 PMCID: PMC11324583 DOI: 10.3389/fnmol.2024.1426410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
In the nervous system, alternative RNA processing is particularly prevalent, which results in the expression of thousands of transcript variants found in no other tissue. Neuron-specific RNA-binding proteins co-transcriptionally regulate alternative splicing, alternative polyadenylation, and RNA editing, thereby shaping the RNA identity of nervous system cells. Recent evidence suggests that interactions between RNA-binding proteins and cis-regulatory elements such as promoters and enhancers play a role in the determination of neuron-specific expression profiles. Here, we discuss possible mechanisms through which transcription and RNA processing cross-talk to generate the uniquely complex neuronal transcriptome, with a focus on alternative 3'-end formation.
Collapse
Affiliation(s)
- Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, Albert Ludwig University, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
4
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Struhl K. How is polyadenylation restricted to 3'-untranslated regions? Yeast 2024; 41:186-191. [PMID: 38041485 PMCID: PMC11001523 DOI: 10.1002/yea.3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Polyadenylation occurs at numerous sites within 3'-untranslated regions (3'-UTRs) but rarely within coding regions. How does Pol II travel through long coding regions without generating poly(A) sites, yet then permits promiscuous polyadenylation once it reaches the 3'-UTR? The cleavage/polyadenylation (CpA) machinery preferentially associates with 3'-UTRs, but it is unknown how its recruitment is restricted to 3'-UTRs during Pol II elongation. Unlike coding regions, 3'-UTRs have long AT-rich stretches of DNA that may be important for restricting polyadenylation to 3'-UTRs. Recognition of the 3'-UTR could occur at the DNA (AT-rich), RNA (AU-rich), or RNA:DNA hybrid (rU:dA- and/or rA:dT-rich) level. Based on the nucleic acid critical for 3'-UTR recognition, there are three classes of models, not mutually exclusive, for how the CpA machinery is selectively recruited to 3'-UTRs, thereby restricting where polyadenylation occurs: (1) RNA-based models suggest that the CpA complex directly (or indirectly through one or more intermediary proteins) binds long AU-rich stretches that are exposed after Pol II passes through these regions. (2) DNA-based models suggest that the AT-rich sequence affects nucleosome depletion or the elongating Pol II machinery, resulting in dissociation of some elongation factors and subsequent recruitment of the CpA machinery. (3) RNA:DNA hybrid models suggest that preferential destabilization of the Pol II elongation complex at rU:dA- and/or rA:dT-rich duplexes bridging the nucleotide addition and RNA exit sites permits preferential association of the CpA machinery with 3'-UTRs. Experiments to provide evidence for one or more of these models are suggested.
Collapse
Affiliation(s)
- Kevin Struhl
- Dept. Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
Alfonso-Gonzalez C, Hilgers V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol 2024:S0962-8924(24)00033-3. [PMID: 38531762 DOI: 10.1016/j.tcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwigs University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
7
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
8
|
Cuevas-Bermúdez A, Martínez-Fernández V, Garrido-Godino AI, Jordán-Pla A, Peñate X, Martín-Expósito M, Gutiérrez G, Govind CK, Chávez S, Pelechano V, Navarro F. The association of the RSC remodeler complex with chromatin is influenced by the prefoldin-like Bud27 and determines nucleosome positioning and polyadenylation sites usage in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194995. [PMID: 37967810 DOI: 10.1016/j.bbagrm.2023.194995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
The tripartite interaction between the chromatin remodeler complex RSC, RNA polymerase subunit Rpb5 and prefoldin-like Bud27 is necessary for proper RNA pol II elongation. Indeed lack of Bud27 alters this association and affects transcription elongation. This work investigates the consequences of lack of Bud27 on the chromatin association of RSC and RNA pol II, and on nucleosome positioning. Our results demonstrate that RSC binds chromatin in gene bodies and lack of Bud27 alters this association, mainly around polyA sites. This alteration impacts chromatin organization and leads to the accumulation of RNA pol II molecules around polyA sites, likely due to pausing or arrest. Our data suggest that RSC is necessary to maintain chromatin organization around those sites, and any alteration of this organization results in the widespread use of alternative polyA sites. Finally, we also find a similar molecular phenotype that occurs upon TOR inhibition with rapamycin, which suggests that alternative polyadenylation observed upon TOR inhibition is likely Bud27-dependent.
Collapse
Affiliation(s)
- Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Verónica Martínez-Fernández
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de València, E-46100 Burjassot, Valencia, Spain
| | - Xenia Peñate
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain
| | | | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain; Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
| |
Collapse
|
9
|
Zhang P, Xue B, Yang H, Zhang L. Transcriptome Responses to Different Salinity Conditions in Litoditis marina, Revealed by Long-Read Sequencing. Genes (Basel) 2024; 15:317. [PMID: 38540376 PMCID: PMC10970011 DOI: 10.3390/genes15030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
The marine nematode Litoditis marina is widely distributed in intertidal zones around the globe, yet the mechanisms underlying its broad adaptation to salinity remain elusive. In this study, we applied ONT long-read sequencing technology to unravel the transcriptome responses to different salinity conditions in L. marina. Through ONT sequencing under 3‱, 30‱ and 60‱ salinity environments, we obtained 131.78 G clean data and 26,647 non-redundant long-read transcripts, including 6464 novel transcripts. The DEGs obtained from the current ONT lrRNA-seq were highly correlated with those identified in our previously reported Illumina short-read RNA sequencing data. When we compared the 30‱ to the 3‱ salinity condition, we found that GO terms such as oxidoreductase activity, cation transmembrane transport and ion transmembrane transport were shared between the ONT lrRNA-seq and Illumina data. Similarly, GO terms including extracellular space, structural constituents of cuticle, substrate-specific channel activity, ion transport and substrate-specific transmembrane transporter activity were shared between the ONT and Illumina data under 60‱ compared to 30‱ salinity. In addition, we found that 79 genes significantly increased, while 119 genes significantly decreased, as the salinity increased. Furthermore, through the GO enrichment analysis of 214 genes containing DAS, in 30‱ compared to 3‱ salinity, we found that GO terms such as cellular component assembly and coenzyme biosynthetic process were enriched. Additionally, we observed that GO terms such as cellular component assembly and coenzyme biosynthetic process were also enriched in 60‱ compared to 30‱ salinity. Moreover, we found that 86, 125, and 81 genes that contained DAS were also DEGs, in comparisons between 30‱ and 3‱, 60‱ and 30‱, and 60‱ and 3‱ salinity, respectively. In addition, we demonstrated the landscape of alternative polyadenylation in marine nematode under different salinity conditions This report provides several novel insights for the further study of the mechanisms by which euryhalinity formed and evolved, and it might also contribute to the investigation of salinity dynamics induced by global climate change.
Collapse
Affiliation(s)
- Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
10
|
Khitun A, Brion C, Moqtaderi Z, Geisberg JV, Churchman LS, Struhl K. Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs. J Biol Chem 2023; 299:105289. [PMID: 37748648 PMCID: PMC10598743 DOI: 10.1016/j.jbc.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.
Collapse
Affiliation(s)
- Alexandra Khitun
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Brion
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zarmik Moqtaderi
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Geisberg
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Struhl
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Zukher I, Dujardin G, Sousa-Luís R, Proudfoot NJ. Elongation roadblocks mediated by dCas9 across human genes modulate transcription and nascent RNA processing. Nat Struct Mol Biol 2023; 30:1536-1548. [PMID: 37783853 PMCID: PMC10584677 DOI: 10.1038/s41594-023-01090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/04/2023] [Indexed: 10/04/2023]
Abstract
Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing.
Collapse
Affiliation(s)
- Inna Zukher
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rui Sousa-Luís
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Cui Y, Wang L, Ding Q, Shin J, Cassel J, Liu Q, Salvino JM, Tian B. Elevated pre-mRNA 3' end processing activity in cancer cells renders vulnerability to inhibition of cleavage and polyadenylation. Nat Commun 2023; 14:4480. [PMID: 37528120 PMCID: PMC10394034 DOI: 10.1038/s41467-023-39793-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Cleavage and polyadenylation (CPA) is responsible for 3' end processing of eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607, which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian cells. Here we show that JTE-607 perturbs gene expression through both transcriptional readthrough and alternative polyadenylation (APA). Sensitive genes are associated with features similar to those previously identified for PCF11 knockdown, underscoring a unified transcriptomic signature of CPAi. The degree of inhibition of an APA site by JTE-607 correlates with its usage level and, consistently, cells with elevated CPA activities, such as those with induced overexpression of FIP1, display greater transcriptomic disturbances when treated with JTE-607. Moreover, JTE-607 causes S phase crisis and is hence synergistic with inhibitors of DNA damage repair pathways. Together, our data reveal CPA activity and proliferation rate as determinants of CPAi-mediated cell death, raising the possibility of using CPAi as an adjunct therapy to suppress certain cancers.
Collapse
Affiliation(s)
- Yange Cui
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qingbao Ding
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joel Cassel
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Hao Y, Cai T, Liu C, Zhang X, Fu XD. Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation. Mol Cells 2023; 46:57-64. [PMID: 36697238 PMCID: PMC9880608 DOI: 10.14348/molcells.2023.2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023] Open
Abstract
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ting Cai
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Present address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
14
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
15
|
Geisberg JV, Moqtaderi Z, Fong N, Erickson B, Bentley DL, Struhl K. Nucleotide-level linkage of transcriptional elongation and polyadenylation. eLife 2022; 11:e83153. [PMID: 36421680 PMCID: PMC9721619 DOI: 10.7554/elife.83153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' untranslated regions. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et al., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters - from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at single nucleotide resolution within clusters but not between them. Pol II occupancy increases just downstream of poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that (1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, (2) poly(A) site clusters are linked to the local elongation rate, and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, (3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and (4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Benjamin Erickson
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - David L Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Wang B, Wang Y, Wen Y, Zhang YL, Ni WJ, Tang TT, Cao JY, Yin Q, Jiang W, Yin D, Li ZL, Lv LL, Liu BC. Tubular-specific CDK12 knockout causes a defect in urine concentration due to premature cleavage of the slc12a1 gene. Mol Ther 2022; 30:3300-3312. [PMID: 35581939 PMCID: PMC9552909 DOI: 10.1016/j.ymthe.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Yao Wang
- Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China.
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Qing Yin
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Wei Jiang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Di Yin
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China; Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Tang P, Zhou Y. Alternative polyadenylation regulation: insights from sequential polyadenylation. Transcription 2022; 13:89-95. [PMID: 36004392 PMCID: PMC9715272 DOI: 10.1080/21541264.2022.2114776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
The processing of the proximal and distal poly(A) sites in alternative polyadenylation (APA) has long been thought to independently occur on pre-mRNAs during transcription. However, a recent study by our groups demonstrated that the proximal sites for many genes could be activated sequentially following the distal ones, suggesting a multi-cleavage-same-transcript mode beyond the canonical one-cleavage-per-transcript view. Here, we review the established mechanisms for APA regulation and then discuss the additional insights into APA regulation from the perspective of sequential polyadenylation, resulting in a unified leverage model for understanding the mechanisms of regulated APA.
Collapse
Affiliation(s)
- Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, P. R. China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
18
|
Bilodeau DY, Sheridan RM, Balan B, Jex AR, Rissland OS. Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA (NEW YORK, N.Y.) 2022; 28:668-682. [PMID: 35110372 PMCID: PMC9014877 DOI: 10.1261/rna.078793.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
During pre-mRNA processing, the poly(A) signal is recognized by a protein complex that ensures precise cleavage and polyadenylation of the nascent transcript. The location of this cleavage event establishes the length and sequence of the 3' UTR of an mRNA, thus determining much of its post-transcriptional fate. Using long-read sequencing, we characterize the polyadenylation signal and related sequences surrounding Giardia lamblia cleavage sites for over 2600 genes. We find that G. lamblia uses an AGURAA poly(A) signal, which differs from the mammalian AAUAAA. We also describe how G. lamblia lacks common auxiliary elements found in other eukaryotes, along with the proteins that recognize them. Further, we identify 133 genes with evidence of alternative polyadenylation. These results suggest that despite pared-down cleavage and polyadenylation machinery, 3' end formation still appears to be an important regulatory step for gene expression in G. lamblia.
Collapse
Affiliation(s)
- Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
19
|
Schärfen L, Zigackova D, Reimer KA, Stark MR, Slat VA, Francoeur NJ, Wells ML, Zhou L, Blackshear PJ, Neugebauer KM, Rader SD. Identification of Alternative Polyadenylation in Cyanidioschyzon merolae Through Long-Read Sequencing of mRNA. Front Genet 2022; 12:818697. [PMID: 35154260 PMCID: PMC8831791 DOI: 10.3389/fgene.2021.818697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kirsten A. Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Viktor A. Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa L. Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Perry J. Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
20
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|
21
|
Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO J 2021; 40:e105740. [PMID: 34254686 PMCID: PMC8327950 DOI: 10.15252/embj.2020105740] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
RNA polymerase II (RNA Pol II) speed or elongation rate, i.e., the number of nucleotides synthesized per unit of time, is a major determinant of transcriptome composition. It controls co-transcriptional processes such as splicing, polyadenylation, and transcription termination, thus regulating the production of alternative splice variants, circular RNAs, alternatively polyadenylated transcripts, or read-through transcripts. RNA Pol II speed itself is regulated in response to intra- and extra-cellular stimuli and can in turn affect the transcriptome composition in response to these stimuli. Evidence points to a potentially important role of transcriptome composition modification through RNA Pol II speed regulation for adaptation of cells to a changing environment, thus pointing to a function of RNA Pol II speed regulation in cellular physiology. Analyzing RNA Pol II speed dynamics may therefore be central to fully understand the regulation of physiological processes, such as the development of multicellular organisms. Recent findings also raise the possibility that RNA Pol II speed deregulation can be detrimental and participate in disease progression. Here, we review initial and current approaches to measure RNA Pol II speed, as well as providing an overview of the factors controlling speed and the co-transcriptional processes which are affected. Finally, we discuss the role of RNA Pol II speed regulation in cell physiology.
Collapse
Affiliation(s)
- Lisa Muniz
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Estelle Nicolas
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| | - Didier Trouche
- MCDCentre de Biologie Integrative (CBI)CNRSUPSUniversity of ToulouseToulouseFrance
| |
Collapse
|
22
|
Goering R, Engel KL, Gillen AE, Fong N, Bentley DL, Taliaferro JM. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genomics 2021; 22:476. [PMID: 34174817 PMCID: PMC8234626 DOI: 10.1186/s12864-021-07781-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The sequence content of the 3' UTRs of many mRNA transcripts is regulated through alternative polyadenylation (APA). The study of this process using RNAseq data, though, has been historically challenging. RESULTS To combat this problem, we developed LABRAT, an APA isoform quantification method. LABRAT takes advantage of newly developed transcriptome quantification techniques to accurately determine relative APA site usage and how it varies across conditions. Using LABRAT, we found consistent relationships between gene-distal APA and subcellular RNA localization in multiple cell types. We also observed connections between transcription speed and APA site choice as well as tumor-specific transcriptome-wide shifts in APA isoform abundance in hundreds of patient-derived tumor samples that were associated with patient prognosis. We investigated the effects of APA on transcript expression and found a weak overall relationship, although many individual genes showed strong correlations between relative APA isoform abundance and overall gene expression. We interrogated the roles of 191 RNA-binding proteins in the regulation of APA isoforms, finding that dozens promote broad, directional shifts in relative APA isoform abundance both in vitro and in patient-derived samples. Finally, we find that APA site shifts in the two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across many contexts, suggesting that they are coregulated. CONCLUSIONS We conclude that LABRAT has the ability to accurately quantify APA isoform ratios from RNAseq data across a variety of sample types. Further, LABRAT is able to derive biologically meaningful insights that connect APA isoform regulation to cellular and molecular phenotypes.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
23
|
Liu J, Hansen D, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput Biol 2021; 17:e1008999. [PMID: 34003867 PMCID: PMC8162642 DOI: 10.1371/journal.pcbi.1008999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
| | - Donald Hansen
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Meghan Turner
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Hernan G. Garcia
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
24
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Larkin A, Marygold SJ, Antonazzo G, Attrill H, Dos Santos G, Garapati PV, Goodman JL, Gramates LS, Millburn G, Strelets VB, Tabone CJ, Thurmond J. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res 2021; 49:D899-D907. [PMID: 33219682 PMCID: PMC7779046 DOI: 10.1093/nar/gkaa1026] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023] Open
Abstract
FlyBase (flybase.org) is an essential online database for researchers using Drosophila melanogaster as a model organism, facilitating access to a diverse array of information that includes genetic, molecular, genomic and reagent resources. Here, we describe the introduction of several new features at FlyBase, including Pathway Reports, paralog information, disease models based on orthology, customizable tables within reports and overview displays ('ribbons') of expression and disease data. We also describe a variety of recent important updates, including incorporation of a developmental proteome, upgrades to the GAL4 search tab, additional Experimental Tool Reports, migration to JBrowse for genome browsing and improvements to batch queries/downloads and the Fast-Track Your Paper tool.
Collapse
Affiliation(s)
- Aoife Larkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Steven J Marygold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Gilberto Dos Santos
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Phani V Garapati
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Joshua L Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - L Sian Gramates
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Victor B Strelets
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Christopher J Tabone
- The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jim Thurmond
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
26
|
Grozdanov PN, Masoumzadeh E, Kalscheuer VM, Bienvenu T, Billuart P, Delrue MA, Latham MP, MacDonald CC. A missense mutation in the CSTF2 gene that impairs the function of the RNA recognition motif and causes defects in 3' end processing is associated with intellectual disability in humans. Nucleic Acids Res 2020; 48:9804-9821. [PMID: 32816001 PMCID: PMC7515730 DOI: 10.1093/nar/gkaa689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022] Open
Abstract
CSTF2 encodes an RNA-binding protein that is essential for mRNA cleavage and polyadenylation (C/P). No disease-associated mutations have been described for this gene. Here, we report a mutation in the RNA recognition motif (RRM) of CSTF2 that changes an aspartic acid at position 50 to alanine (p.D50A), resulting in intellectual disability in male patients. In mice, this mutation was sufficient to alter polyadenylation sites in over 1300 genes critical for brain development. Using a reporter gene assay, we demonstrated that C/P efficiency of CSTF2D50A was lower than wild type. To account for this, we determined that p.D50A changed locations of amino acid side chains altering RNA binding sites in the RRM. The changes modified the electrostatic potential of the RRM leading to a greater affinity for RNA. These results highlight the significance of 3′ end mRNA processing in expression of genes important for brain plasticity and neuronal development.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Research Group Development and Disease, Ihnestr. 63-73, D-14195 Berlin, Germany
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, 102 rue de la Santé, 75014 Paris, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, 102 rue de la Santé, 75014 Paris, France
| | - Marie-Ange Delrue
- Département de Génétique Médicale, CHU Sainte Justine, Montréal, Canada
| | - Michael P Latham
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
27
|
Fischl H, McManus D, Oldenkamp R, Schermelleh L, Mellor J, Jagannath A, Furger A. Cold-induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO J 2020; 39:e105604. [PMID: 33034091 PMCID: PMC7667876 DOI: 10.15252/embj.2020105604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022] Open
Abstract
Cooling patients to sub‐physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature‐specific changes to the higher‐order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear‐restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV‐ERBα. This response is accompanied by compaction of higher‐order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold‐induced upregulation of REV‐ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David McManus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Roel Oldenkamp
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Aarti Jagannath
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Furger
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Geisberg JV, Moqtaderi Z, Struhl K. The transcriptional elongation rate regulates alternative polyadenylation in yeast. eLife 2020; 9:e59810. [PMID: 32845240 PMCID: PMC7532003 DOI: 10.7554/elife.59810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast cells undergoing the diauxic response show a striking upstream shift in poly(A) site utilization, with increased use of ORF-proximal poly(A) sites resulting in shorter 3' mRNA isoforms for most genes. This altered poly(A) pattern is extremely similar to that observed in cells containing Pol II derivatives with slow elongation rates. Conversely, cells containing derivatives with fast elongation rates show a subtle downstream shift in poly(A) sites. Polyadenylation patterns of many genes are sensitive to both fast and slow elongation rates, and a global shift of poly(A) utilization is strongly linked to increased purine content of sequences flanking poly(A) sites. Pol II processivity is impaired in diauxic cells, but strains with reduced processivity and normal Pol II elongation rates have normal polyadenylation profiles. Thus, Pol II elongation speed is important for poly(A) site selection and for regulating poly(A) patterns in response to environmental conditions.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
30
|
Richard P, Feng S, Tsai YL, Li W, Rinchetti P, Muhith U, Irizarry-Cole J, Stolz K, Sanz LA, Hartono S, Hoque M, Tadesse S, Seitz H, Lotti F, Hirano M, Chédin F, Tian B, Manley JL. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2020; 17:1889-1906. [PMID: 32686621 DOI: 10.1080/15548627.2020.1796292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in SETX result in either of two distinct neurodegenerative disorders. SETX dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, whereas recessive mutations are responsible for ataxia called ataxia with oculomotor apraxia type 2 (AOA2). How mutations in the same protein can lead to different phenotypes is still unclear. To elucidate AOA2 disease mechanisms, we first examined gene expression changes following SETX depletion. We observed the effects on both transcription and RNA processing, but surprisingly observed decreased R-loop accumulation in SETX-depleted cells. Importantly, we discovered a strong connection between SETX and the macroautophagy/autophagy pathway, reflecting a direct effect on transcription of autophagy genes. We show that SETX depletion inhibits the progression of autophagy, leading to an accumulation of ubiquitinated proteins, decreased ability to clear protein aggregates, as well as mitochondrial defects. Analysis of AOA2 patient fibroblasts also revealed a perturbation of the autophagy pathway. Our work has thus identified a novel function for SETX in the regulation of autophagy, whose modulation may have a therapeutic impact for AOA2.Abbreviations: 3'READS: 3' region extraction and deep sequencing; ACTB: actin beta; ALS4: amyotrophic lateral sclerosis type 4; AOA2: ataxia with oculomotor apraxia type 2; APA: alternative polyadenylation; AS: alternative splicing; ATG7: autophagy-related 7; ATP6V0D2: ATPase H+ transporting V0 subunit D2; BAF: bafilomycin A1; BECN1: beclin 1; ChIP: chromatin IP; Chloro: chloroquine; CPT: camptothecin; DDR: DNA damage response; DNMT1: DNA methyltransferase 1; DRIP: DNA/RNA IP; DSBs: double strand breaks; EBs: embryoid bodies; FTD: frontotemporal dementia; GABARAP: GABA type A receptor-associated protein; GO: gene ontology; HR: homologous recombination; HTT: huntingtin; IF: immunofluorescence; IP: immunoprecipitation; iPSCs: induced pluripotent stem cells; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; PASS: PolyA Site Supporting; PFA: paraformaldehyde; RNAPII: RNA polymerase II; SCA: spinocerebellar ataxia; SETX: senataxin; SMA: spinal muscular atrophy; SMN1: survival of motor neuron 1, telomeric; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TSS: transcription start site; TTS: transcription termination site; ULK1: unc-51 like autophagy activating kinase 1; WB: western blot; WIPI2: WD repeat domain, phosphoinositide interacting 2; XRN2: 5'-3' exoribonuclease 2.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, USA.,Stellate Therapeutics, JLABS @ NYC, New York, NY, USA
| | | | - Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Paola Rinchetti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.,Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Ubayed Muhith
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Juan Irizarry-Cole
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katharine Stolz
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Stella Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and Université de Montpellier, Montpellier, France
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.,Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Yague-Sanz C, Vanrobaeys Y, Fernandez R, Duval M, Larochelle M, Beaudoin J, Berro J, Labbé S, Jacques PÉ, Bachand F. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev 2020; 34:883-897. [PMID: 32499400 PMCID: PMC7328516 DOI: 10.1101/gad.337212.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022]
Abstract
In this study from Yague-Sanz et al., the authors investigated the physiological relevance of variations in RNAPII elongation kinetics, and show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). Their findings indicate that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation. Transcription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA). We unveil two mechanisms by which APA affects gene expression in the slow mutant: 3′ UTR shortening and gene derepression by premature transcription termination of upstream interfering noncoding RNAs. Strikingly, the genes affected by these mechanisms are enriched for functions involved in phosphate uptake and purine synthesis, processes essential for maintenance of the intracellular nucleotide pool. As nucleotide concentration regulates transcription elongation, our findings argue that RNAPII is a sensor of nucleotide availability and that genes important for nucleotide pool maintenance have adopted regulatory mechanisms responsive to reduced rates of transcription elongation.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Yann Vanrobaeys
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Ronan Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Maxime Duval
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marc Larochelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06520, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Simon Labbé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | | | - François Bachand
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
32
|
Mittleman BE, Pott S, Warland S, Zeng T, Mu Z, Kaur M, Gilad Y, Li Y. Alternative polyadenylation mediates genetic regulation of gene expression. eLife 2020; 9:57492. [PMID: 32584258 PMCID: PMC7338057 DOI: 10.7554/elife.57492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Little is known about co-transcriptional or post-transcriptional regulatory mechanisms linking noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’ Seq to study the impact of genetic variation on alternative polyadenylation (APA) in the nuclear and total mRNA fractions of 52 HapMap Yoruba human lymphoblastoid cell lines. We mapped 602 APA quantitative trait loci (apaQTLs) at 10% FDR, of which 152 were nuclear specific. Effect sizes at intronic apaQTLs are negatively correlated with eQTL effect sizes. These observations suggest genetic variants can decrease mRNA expression levels by increasing usage of intronic PAS. We also identified 24 apaQTLs associated with protein levels, but not mRNA expression. Finally, we found that 19% of apaQTLs can be associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression, protein expression, and disease risk, and reveals uncharted modes of genetic regulation.
Collapse
Affiliation(s)
- Briana E Mittleman
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Shane Warland
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, United States
| | - Tony Zeng
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, United States
| | - Zepeng Mu
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, United States
| | - Mayher Kaur
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, United States
| | - Yang Li
- Department of Human Genetics, University of Chicago, Chicago, United States.,Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, United States
| |
Collapse
|
33
|
Emerging Roles for 3' UTRs in Neurons. Int J Mol Sci 2020; 21:ijms21103413. [PMID: 32408514 PMCID: PMC7279237 DOI: 10.3390/ijms21103413] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in 3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions, and impart translational control. Thousands of mRNAs are localized to subcellular compartments in neurons—including axons, dendrites, and synapses—where they are thought to undergo local translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in neurons, the specific RNA sequences and structural features at play remain poorly understood. The nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA). The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing. Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological disorders—more studies are needed to uncover how these mutations impact gene regulation and what is their relationship to disease severity.
Collapse
|
34
|
Li Y, Schaefke B, Zou X, Zhang M, Heyd F, Sun W, Zhang B, Li G, Liang W, He Y, Zhou J, Li Y, Fang L, Hu Y, Chen W. Pan-tissue analysis of allelic alternative polyadenylation suggests widespread functional regulation. Mol Syst Biol 2020; 16:e9367. [PMID: 32311237 PMCID: PMC7170663 DOI: 10.15252/msb.20199367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative polyadenylation (APA) is a major layer of gene regulation. However, it has recently been argued that most APA represents molecular noise. To clarify their functional relevance and evolution, we quantified allele-specific APA patterns in multiple tissues from an F1 hybrid mouse. We found a clearly negative correlation between gene expression and APA diversity for the 2,866 genes (24.9%) with a dominant polyadenylation site (PAS) usage above or equal to 90%, suggesting that their other PASs represent molecular errors. Among the remaining genes with multiple PASs, 3,971 genes (34.5%) express two or more isoforms with potentially functional importance. Interestingly, the genes with potentially functional minor PASs specific to neuronal tissues often express two APA isoforms with distinct subcellular localizations. Furthermore, our analysis of cis-APA divergence shows its pattern across tissues is distinct from that of gene expression. Finally, we demonstrate that the relative usage of alternative PASs is not only affected by their cis-regulatory elements, but also by potential coupling between transcriptional and APA regulation as well as competition kinetics between alternative sites.
Collapse
Affiliation(s)
- Yisheng Li
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Bernhard Schaefke
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenChina
| | - Xudong Zou
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Min Zhang
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Florian Heyd
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Wei Sun
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Present address:
Department of Pharmaceutical Chemistry and the Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoCAUSA
| | - Bin Zhang
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Present address:
Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| | - Guipeng Li
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenChina
| | - Weizheng Liang
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Yuhao He
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Juexiao Zhou
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Yunfei Li
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Liang Fang
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenChina
| | - Yuhui Hu
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- Department of BiologySouthern University of Science and TechnologyShenzhenChina
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
35
|
Victorino JF, Fox MJ, Smith-Kinnaman WR, Peck Justice SA, Burriss KH, Boyd AK, Zimmerly MA, Chan RR, Hunter GO, Liu Y, Mosley AL. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination. PLoS Genet 2020; 16:e1008317. [PMID: 32187185 PMCID: PMC7105142 DOI: 10.1371/journal.pgen.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/30/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
RNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). The phosphatase Rtr1 has been shown to regulate serine 5 phosphorylation on the CTD; however, its role in the regulation of RNAPII termination has not been explored. As a consequence of RTR1 deletion, interactions within the termination machinery and between the termination machinery and RNAPII were altered as quantified by Disruption-Compensation (DisCo) network analysis. Of note, interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. Globally, rtr1Δ leads to decreases in numerous noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS) -dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes. Additionally, premature RNAPII termination increases globally at protein-coding genes with a decrease in RNAPII occupancy occurring just after the peak of Nrd1 recruitment during early elongation. The effects of rtr1Δ on RNA expression levels were lost following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade a number of noncoding RNAs following termination. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature termination of mRNAs and ncRNAs. Rtr1 facilitates low-level elongation of noncoding transcripts that impact RNAPII interference thereby shaping the transcriptome. Many cellular RNAs including those that encode for proteins are produced by the enzyme RNA Polymerase II. In this work, we have defined a new role for the phosphatase Rtr1 in the regulation of RNA Polymerase II progression from the start of transcription to the 3’ end of the gene where the nascent RNA from protein-coding genes is typically cleaved and polyadenylated. Deletion of the gene that encodes RTR1 leads to changes in the interactions between RNA polymerase II and the termination machinery. Rtr1 loss also causes early termination of RNA Polymerase II at many of its target gene types, including protein coding genes and noncoding RNAs. Evidence suggests that the premature termination observed in RTR1 knockout cells occurs through the termination factor and RNA binding protein Nrd1 and its binding partner Nab3. Deletion of RRP6, a known component of the Nrd1-Nab3 termination coupled RNA degradation pathway, is epistatic to RTR1 suggesting that Rrp6 is required to terminate and/or degrade many of the noncoding RNAs that have increased turnover in RTR1 deletion cells. These findings suggest that Rtr1 normally promotes elongation of RNA Polymerase II transcripts through prevention of Nrd1-directed termination.
Collapse
Affiliation(s)
- Jose F. Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Melanie J. Fox
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Whitney R. Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah A. Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Katlyn H. Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Asha K. Boyd
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Megan A. Zimmerly
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rachel R. Chan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerald O. Hunter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Tang J, Xu Z, Huang L, Luo H, Zhu X. Transcriptional regulation in model organisms: recent progress and clinical implications. Open Biol 2019; 9:190183. [PMID: 31744421 PMCID: PMC6893401 DOI: 10.1098/rsob.190183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this review, we will summarize model organisms used by scientists in the laboratory, including Escherichia coli, yeast, Arabidopsis thaliana, nematodes, Drosophila, zebrafish, mice and other animals. We focus on the progress in research exploring different types of E. coli in the human body, and the specific molecular mechanisms by which they play a role in humans. First, we discuss the specific transcriptional regulation mechanism of E. coli in cell development, maturation, ageing and longevity, as well as tumorigenesis and development. Then, we discuss how the synthesis of some important substances in cells is regulated and how this affects biological behaviour. Understanding and applying these mechanisms, presumably, can greatly improve the quality of people's lives as well as increase their lifespan. For example, some E. coli can activate certain cells by secreting insulin-like growth factor-1, thus activating the inflammatory response of the body, while other E. coli can inactivate the immune response of the body by secreting toxic factors.
Collapse
Affiliation(s)
- Jiaqi Tang
- The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, People's Republic of China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Zhanjiang 524023, People's Republic of China
| | - Zhenhua Xu
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC 20010, USA
| | - Lianfang Huang
- The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, People's Republic of China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Zhanjiang 524023, People's Republic of China
| | - Hui Luo
- The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, People's Republic of China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, People's Republic of China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Zhanjiang 524023, People's Republic of China
| |
Collapse
|
37
|
Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov 2019; 19:112-129. [PMID: 31554928 DOI: 10.1038/s41573-019-0042-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Discoveries in the past decade have highlighted the potential of mRNA as a therapeutic target for cancer. Specifically, RNA sequencing revealed that, in addition to gene mutations, alterations in mRNA can contribute to the initiation and progression of cancer. Indeed, precursor mRNA processing, which includes the removal of introns by splicing and the formation of 3' ends by cleavage and polyadenylation, is frequently altered in tumours. These alterations result in numerous cancer-specific mRNAs that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumour-suppressor genes. Abnormally spliced and polyadenylated mRNAs are also associated with resistance to cancer treatment and, unexpectedly, certain cancers are highly sensitive to the pharmacological inhibition of splicing. This Review summarizes recent progress in our understanding of how splicing and polyadenylation are altered in cancer and highlights how this knowledge has been translated for drug discovery, resulting in the production of small molecules and oligonucleotides that modulate the spliceosome and are in clinical trials for the treatment of cancer.
Collapse
Affiliation(s)
- Joana Desterro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa, Serviço de Hematologia, Lisboa, Portugal
| | - Pedro Bak-Gordon
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
38
|
Shin J, Cheng H, Tian B. New means to an end: mRNA export activity impacts alternative polyadenylation. Transcription 2019; 10:207-211. [PMID: 31474181 DOI: 10.1080/21541264.2019.1658557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Gene expression involves multiple co- and post-transcriptional processes that have been increasingly found intertwined. A recent work by our groups (Chen et al. Mol Cell, 2019) indicates that expression of alternative polyadenylation isoforms in mammalian cells can be controlled by nuclear export activities. This regulation has distinct impacts on genes having different sizes and nucleotide contents, and involves RNA polymerase II distribution toward the 3' end of genes. This work raises a number of intriguing questions concerning how 3' end processing and nuclear export are integrated and how their regulation feeds back to transcription.
Collapse
Affiliation(s)
- Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
39
|
Kamieniarz-Gdula K, Proudfoot NJ. Transcriptional Control by Premature Termination: A Forgotten Mechanism. Trends Genet 2019; 35:553-564. [PMID: 31213387 PMCID: PMC7471841 DOI: 10.1016/j.tig.2019.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.
Collapse
Affiliation(s)
- Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; Center for Advanced Technology, Adam Mickiewicz University, Umultowska 89c, 61-614 Poznań, Poland.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
40
|
Abstract
Elongation factor Paf1C regulates several stages of the RNA polymerase II (Pol II) transcription cycle, although it is unclear how it modulates Pol II distribution and progression in mammalian cells. We found that conditional ablation of Paf1 resulted in the accumulation of unphosphorylated and Ser5 phosphorylated Pol II around promoter-proximal regions and within the first 20 to 30 kb of gene bodies, respectively. Paf1 ablation did not impact the recruitment of other key elongation factors, namely, Spt5, Spt6, and the FACT complex, suggesting that Paf1 function may be mechanistically distinguishable from each of these factors. Moreover, loss of Paf1 triggered an increase in TSS-proximal nucleosome occupancy, which could impose a considerable barrier to Pol II elongation past TSS-proximal regions. Remarkably, accumulation of Ser5P in the first 20 to 30 kb coincided with reductions in histone H2B ubiquitylation within this region. Furthermore, we show that nascent RNA species accumulate within this window, suggesting a mechanism whereby Paf1 loss leads to aberrant, prematurely terminated transcripts and diminution of full-length transcripts. Importantly, we found that loss of Paf1 results in Pol II elongation rate defects with significant rate compression. Our findings suggest that Paf1C is critical for modulating Pol II elongation rates by functioning beyond the pause-release step as an "accelerator" over specific early gene body regions.
Collapse
|
41
|
Wang R, Zheng D, Wei L, Ding Q, Tian B. Regulation of Intronic Polyadenylation by PCF11 Impacts mRNA Expression of Long Genes. Cell Rep 2019; 26:2766-2778.e6. [PMID: 30840896 PMCID: PMC6428223 DOI: 10.1016/j.celrep.2019.02.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of cleavage and polyadenylation (CPA) affects gene expression and polyadenylation site (PAS) choice. Here, we report that the CPA and termination factor PCF11 modulates gene expression on the basis of gene size. Although downregulation of PCF11 leads to inhibition of short gene expression, long genes are upregulated because of suppressed intronic polyadenylation (IPA) enriched in large introns. We show that this regulatory scheme, named PCF11-mediated expression regulation through IPA (PEIPA), takes place in cell differentiation, during which downregulation of PCF11 is coupled with upregulation of long genes with functions in cell morphology, adhesion, and migration. PEIPA targets distinct gene sets in different cell contexts with similar rules. Furthermore, PCF11 is autoregulated through a conserved IPA site, the removal of which leads to global activation of PASs close to gene promotors. Therefore, PCF11 uses distinct mechanisms to regulate genes of different sizes, and its autoregulation maintains homeostasis of PAS usage in the cell.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Lu Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Qingbao Ding
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
42
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3′ end formation for mRNAs during transcription. APA often occurs in a tissue‐ or developmental stage‐specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue‐specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue‐specific factors in APA. However, while a few tissue‐specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue‐specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue‐specific APA could lead to numerous advances in gene activity control. This article is categorized under:RNA Processing > 3′ End Processing RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
43
|
Chen S, Wang R, Zheng D, Zhang H, Chang X, Wang K, Li W, Fan J, Tian B, Cheng H. The mRNA Export Receptor NXF1 Coordinates Transcriptional Dynamics, Alternative Polyadenylation, and mRNA Export. Mol Cell 2019; 74:118-131.e7. [PMID: 30819645 DOI: 10.1016/j.molcel.2019.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Collapse
Affiliation(s)
- Suli Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jing Fan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
44
|
Dubbury SJ, Boutz PL, Sharp PA. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 2018; 564:141-145. [PMID: 30487607 PMCID: PMC6328294 DOI: 10.1038/s41586-018-0758-y] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Abstract
Mutations that attenuate homologous recombination (HR)-mediated repair promote tumorigenesis and sensitize cells to chemotherapeutics that cause replication fork collapse, a phenotype known as 'BRCAness'1. BRCAness tumours arise from loss-of-function mutations in 22 genes1. Of these genes, all but one (CDK12) function directly in the HR repair pathway1. CDK12 phosphorylates serine 2 of the RNA polymerase II C-terminal domain heptapeptide repeat2-7, a modification that regulates transcription elongation, splicing, and cleavage and polyadenylation8,9. Genome-wide expression studies suggest that depletion of CDK12 abrogates the expression of several HR genes relatively specifically, thereby blunting HR repair3-7,10,11. This observation suggests that the mutational status of CDK12 may predict sensitivity to targeted treatments against BRCAness, such as PARP1 inhibitors, and that CDK12 inhibitors may induce sensitization of HR-competent tumours to these treatments6,7,10,11. Despite growing clinical interest, the mechanism by which CDK12 regulates HR genes remains unknown. Here we show that CDK12 globally suppresses intronic polyadenylation events in mouse embryonic stem cells, enabling the production of full-length gene products. Many HR genes harbour more intronic polyadenylation sites than other expressed genes, and these sites are particularly sensitive to loss of CDK12. The cumulative effect of these sites accounts for the enhanced sensitivity of HR gene expression to CDK12 loss, and we find that this mechanism is conserved in human tumours that contain loss-of-function CDK12 mutations. This work clarifies the function of CDK12 and underscores its potential both as a chemotherapeutic target and as a tumour biomarker.
Collapse
Affiliation(s)
- Sara J Dubbury
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul L Boutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Araki S, Nakayama Y, Sano O, Nakao S, Shimizu-Ogasawara M, Toyoshiba H, Nakanishi A, Aparicio S. Decoding Transcriptome Dynamics of Genome-Encoded Polyadenylation and Autoregulation with Small-Molecule Modulators of Alternative Polyadenylation. Cell Chem Biol 2018; 25:1470-1484.e5. [PMID: 30293940 DOI: 10.1016/j.chembiol.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/19/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Alternative polyadenylation (APA) plays a critical role in regulating gene expression. However, the balance between genome-encoded APA processing and autoregulation by APA modulating RNA binding protein (RBP) factors is not well understood. We discovered two potent small-molecule modulators of APA (T4 and T5) that promote distal-to-proximal (DtoP) APA usage in multiple transcripts. Monotonically responsive APA events, induced by short exposure to T4 or T5, were defined in the transcriptome, allowing clear isolation of the genomic sequence features and RBP motifs associated with DtoP regulation. We found that longer vulnerable introns, enriched with distinctive A-rich motifs, were preferentially affected by DtoP APA, thus defining a core set of genes with genomically encoded DtoP regulation. Through APA response pattern and compound-small interfering RNA epistasis analysis of APA-associated RBP factors, we further demonstrated that DtoP APA usage is partly modulated by altered autoregulation of polyadenylate binding nuclear protein-1 signaling.
Collapse
Affiliation(s)
- Shinsuke Araki
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yusuke Nakayama
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Sano
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoichi Nakao
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mari Shimizu-Ogasawara
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroyoshi Toyoshiba
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakanishi
- Research Department, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Samuel Aparicio
- Molecular Oncology, BC Cancer Agency, 675 W 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
46
|
Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 2018; 7:33569. [PMID: 29547124 PMCID: PMC5869017 DOI: 10.7554/elife.33569] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons results in premature transcription termination (PTT) within open reading frames and abolishment of full-length mRNA. PTT is a wide-spread phenomenon in Neurospora, and there is a strong negative correlation between codon usage bias and PTT events. Rare codons lead to the formation of putative poly(A) signals and PTT. A similar role for codon usage bias was also observed in mouse cells. Together, these results suggest that codon usage biases co-evolve with the transcription termination machinery to suppress premature termination of transcription and thus allow for optimal gene expression.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Yuan
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
47
|
Saldi T, Fong N, Bentley DL. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing. Genes Dev 2018; 32:297-308. [PMID: 29483154 PMCID: PMC5859970 DOI: 10.1101/gad.310896.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
In this study, Saldi et al. investigated how transcription elongation rate influences cotranscriptional pre-mRNA maturation. Their findings show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled. Transcription elongation rate influences cotranscriptional pre-mRNA maturation, but how such kinetic coupling works is poorly understood. The formation of nonadenylated histone mRNA 3′ ends requires recognition of an RNA structure by stem–loop-binding protein (SLBP). We report that slow transcription by mutant RNA polymerase II (Pol II) caused accumulation of polyadenylated histone mRNAs that extend past the stem–loop processing site. UV irradiation, which decelerates Pol II elongation, also induced long poly(A)+ histone transcripts. Inhibition of 3′ processing by slow Pol II correlates with failure to recruit SLBP to histone genes. Chemical probing of nascent RNA structure showed that the stem–loop fails to fold in transcripts made by slow Pol II, thereby explaining the absence of SLBP and failure to process 3′ ends. These results show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|