1
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2024; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
2
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Matheson R, Sexton CL, Wise CF, O'Brien J, Keyser AJ, Kauffman M, Dunbar MD, Stapleton HM, Ruple A. Silicone tags as an effective method of monitoring environmental contaminant exposures in a geographically diverse sample of dogs from the Dog Aging Project. Front Vet Sci 2024; 11:1394061. [PMID: 39220770 PMCID: PMC11363705 DOI: 10.3389/fvets.2024.1394061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Companion animals offer a unique opportunity to investigate risk factors and exposures in our shared environment. Passive sampling techniques have proven effective in capturing environmental exposures in dogs and humans. Methods In a pilot study, we deployed silicone monitoring devices (tags) on the collars of a sample of 15 dogs from the Dog Aging Project Pack cohort for a period of 120 h (5 days). We extracted and analyzed the tags via gas chromatography-mass spectrometry for 119 chemical compounds in and around participants' homes. Results Analytes belonging to the following chemical classes were detected: brominated flame retardants (BFRs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, phthalates, and personal care products. The types and amounts of analytes detected varied substantially among participants. Discussion Data from this pilot study indicate that silicone dog tags are an effective means to detect and measure chemical exposure in and around pet dogs' households. Having created a sound methodological infrastructure, we will deploy tags to a geographically diverse and larger sample size of Dog Aging Project participants with a goal of further assessing geographic variation in exposures.
Collapse
Affiliation(s)
- Rylee Matheson
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Courtney L Sexton
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Catherine F Wise
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Janice O'Brien
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amber J Keyser
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Mandy Kauffman
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Audrey Ruple
- Population Health Sciences Department, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Gao Y, Li R, Ma Q, Baker JM, Rauch S, Gunier RB, Mora AM, Kogut K, Bradman A, Eskenazi B, Reiss AL, Sagiv SK. Childhood exposure to organophosphate pesticides: Functional connectivity and working memory in adolescents. Neurotoxicology 2024; 103:206-214. [PMID: 38908438 PMCID: PMC11302996 DOI: 10.1016/j.neuro.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Early life exposure to organophosphate (OP) pesticides is linked with adverse neurodevelopment and brain function in children. However, we have limited knowledge of how these exposures affect functional connectivity, a measure of interaction between brain regions. To address this gap, we examined the association between early life OP pesticide exposure and functional connectivity in adolescents. METHODS We administered functional near-infrared spectroscopy (fNIRS) to 291 young adults with measured prenatal or childhood dialkylphosphates (DAPs) in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a longitudinal study of women recruited during pregnancy and their offspring. We measured DAPs in urinary samples collected from mothers during pregnancy (13 and 26 weeks) and children in early life (ages 6 months, 1, 2, 3, and 5 years). Youth underwent fNIRS while they performed executive function and semantic language tasks during their 18-year-old visit. We used covariate-adjusted regression models to estimate the associations of prenatal and childhood DAPs with functional connectivity between the frontal, temporal, and parietal regions, and a mediation model to examine the role of functional connectivity in the relationship between DAPs and task performance. RESULTS We observed null associations of prenatal and childhood DAP concentrations and functional connectivity for the entire sample. However, when we looked for sex differences, we observed an association between childhood DAPs and functional connectivity for the right interior frontal and premotor cortex after correcting for the false discovery rate, among males, but not females. In addition, functional connectivity appeared to mediate an inverse association between DAPs and working memory accuracy among males. CONCLUSION In CHAMACOS, a secondary analysis showed that adolescent males with elevated childhood OP pesticide exposure may have altered brain regional connectivity. This altered neurofunctional pattern in males may partially mediate working memory impairment associated with childhood DAP exposure.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States.
| | - Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau; Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Qianheng Ma
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Asa Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States; Department of Public Health, University of California, Merced, CA, United States
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States; Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States; Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Conejo-Bolaños LD, Mora AM, Hernández-Bonilla D, Cano JC, Menezes-Filho JA, Eskenazi B, Lindh CH, van Wendel de Joode B. Prenatal current-use pesticide exposure and children's neurodevelopment at one year of age in the Infants' Environmental Health (ISA) birth cohort, Costa Rica. ENVIRONMENTAL RESEARCH 2024; 249:118222. [PMID: 38272290 PMCID: PMC11065598 DOI: 10.1016/j.envres.2024.118222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Pesticide exposure may affect young children's neurodevelopment, but only few cohort studies have addressed possible effects of non-organophosphate pesticides. OBJECTIVE We evaluated associations between prenatal current-use pesticide exposure and neurodevelopmental outcomes among 1-year-old children from the Infants' Environmental Health (ISA) birth cohort. METHODS To determine prenatal pesticide exposure, we measured biomarkers of pyrimethanil, chlorpyrifos, synthetic pyrethroids, and 2,4-D in urine samples among 355 women, 1-3 times during pregnancy. One-year post-partum, we evaluated children's neurodevelopment with the Bayley Scales of Infant and Toddler Development 3rd edition (BSID-III). We assessed associations between exposures and neurodevelopmental outcomes (composite and z-scores) using single-chemical linear regression models adjusted for possible confounders (maternal education, parity, sex, gestational age at birth, child age, HOME-score, location of assessment, biomarkers of mancozeb), and studied effect-modification by sex. We evaluated non-linear associations of multiple pesticide exposures with Bayesian kernel machine regression (BKMR). RESULTS We found higher prenatal urinary 2,4-D concentrations were associated with lower language (βper ten-fold increase = -2.0, 95 % confidence interval (CI) = -3.5, -0.5) and motor (βper ten-fold increase = -2.2, 95 %CI = -4.2, -0.1) composite scores among all children. Also, higher chlorpyrifos exposure [measured as urinary 3,5,6-trichloro-2-pyridinol (TCPy)] was associated with lower cognitive composite scores (βper ten-fold increase = -1.9, 95 %CI = -4.7, 0.8), and lower motor composite scores among boys (βper ten-fold increase = -3.8, 95 % CI = -7.7, 0.1) but not girls (βper ten-fold increase = 2.3, 95 %CI = -1.6, 6.3, pINT = 0.11). Finally, higher pyrimethanil was associated with lower language abilities among girls, but not boys. Pyrethroid metabolite concentrations did not explain variability in BSID-III composite scores. Associations were similar for BSID-III z-scores, and we found no evidence for non-linear associations or mixture effects. DISCUSSION Prenatal exposure to common-use pesticides may affect children's neurodevelopment at 1-year of age, some effects may be sex-specific.
Collapse
Affiliation(s)
- L Diego Conejo-Bolaños
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Institute for Interdisciplinary Studies in Childhood and Adolescence (INEINA), Universidad Nacional, Heredia, Costa Rica
| | - Ana M Mora
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Center for Environmental Research and Community Health (CERCH), University of California at Berkeley, United States
| | | | - Juan Camilo Cano
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo s/n Campus, Universitário de Ondina, 40170-115, Salvador, Bahia, Brazil
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), University of California at Berkeley, United States
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Berna van Wendel de Joode
- Infants' Environmental Health Study (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
6
|
Normann SS, Beck IH, Nielsen F, Andersen MS, Bilenberg N, Jensen TK, Andersen HR. Prenatal exposure to pyrethroids and chlorpyrifos and IQ in 7-year-old children from the Odense Child Cohort. Neurotoxicol Teratol 2024; 103:107352. [PMID: 38636567 DOI: 10.1016/j.ntt.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Organophosphates and pyrethroids are two major groups of insecticides used for crop protection worldwide. They are neurotoxicants and exposure during vulnerable windows of brain development may have long-term impact on human neurodevelopment. Only few longitudinal studies have investigated associations between prenatal exposure to these substances and intelligence quotient (IQ) at school age in populations with low, mainly dietary, exposure. OBJECTIVE To investigate associations between maternal urinary concentrations of insecticide metabolites at gestational week 28 and IQ in offspring at 7-years of age. MATERIALS AND METHODS Data was derived from the Odense Child Cohort (OCC). Metabolites of chlorpyrifos (TCPy) and pyrethroids (3-PBA, cis- and trans-DCCA, 4-F-3PBA, cis-DBCA) were measured in maternal urine collected at gestational week (GW) 28. An abbreviated version of the Danish Wechsler Intelligence Scale for Children fifth edition (WISC-V) consisting of four subtests to estimate full scale IQ (FSIQ) was administered by trained psychologists. Data were analyzed by use of multiple linear regression and adjusted for confounders. RESULTS 812 mother/child-pairs were included. Median concentrations were 0.21 μg/L for 3-PBA, 1.67 μg/L for TCPy and the mean IQ for children were 99.4. Null association between maternal 3-PBA and child IQ at 7 years was seen, but with trends suggesting an inverse association. There was a significant association for maternal TCPy and child IQ at mid-level exposure. Trans-DCCA above the level of detection (LOD) was also associated with slightly lower child IQ, but the association was also not statistically significant. CONCLUSIONS We found no significant associations between maternal 3-PBA metabolites and child IQ at 7 years, but with trends suggesting an inverse association. A non-significant trend between maternal TCPy exposure and child IQ in 7-year-children was seen even in this low exposed population. Given the widespread exposure and increasing use of insecticides, this should be elaborated in future studies.
Collapse
Affiliation(s)
- Stine Søgaard Normann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Iben Have Beck
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Niels Bilenberg
- Department of Child and Adolescent Psychiatry, Mental Health Services in Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; OPEN Patient data Explorative Network, Odense, Denmark
| | - Helle Raun Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Rueda-García V, Rondón-Barragán IS. Molecular Characterization of Neurogranin (NRGN) Gene from Red‑Bellied Pacu (Piaractus brachypomus). Mol Neurobiol 2024; 61:2620-2630. [PMID: 37922064 PMCID: PMC11043121 DOI: 10.1007/s12035-023-03700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Neurogranin (NRGN) is a small brain protein expressed in various telencephalic areas and plays an essential role in synaptic plasticity by regulating the availability of calmodulin (CaM). The study aims to characterize the neurogranin gene in Colombian native fish, red-bellied pacu, Piaractus brachypomus, its basal tissue expression and differential expression in brain injury and sublethal toxicity by organophosphates. NRGN gene contains an open reading frame of 183 nucleotides encoding for 60 amino acids. Bioinformatics analysis showed an IQ motif necessary in the interaction with CaM. NRGN mRNA was detected in tissues with higher expression in brain, gills, and head kidney. In brain regions, NRGN showed high expression in the telencephalon (TE) and olfactory bulb (OB). In the sublethal toxicity experiment, NRGN mRNA was upregulated in individuals under organophosphate exposure in the OB and optic chiasm (OC). In brain injury experiment, NRGN showed upregulation at 14 days in OC and at 24 h and 7 days in TE. These findings demonstrate the differential expression of NRGN under different experimental conditions which make it a candidate for a biomarker in the brain of P. brachypomus.
Collapse
Affiliation(s)
- Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Building 33 L105, 730002, Ibagué, Tolima, Colombia.
| |
Collapse
|
8
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
9
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
10
|
Lejeune N, Mercier F, Chevrier C, Bonvallot N, Le Bot B. Characterization of multiple pesticide exposure in pregnant women in Brittany, France. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:278-286. [PMID: 36496457 DOI: 10.1038/s41370-022-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND France is one of the biggest users of pesticides in Europe and exposure to pesticides is a current concern, especially when it occurs early in life. OBJECTIVE The aim of this study was to assess the exposure of pregnant women in Brittany (western France) with high pesticide use. METHODS The pesticides were selected according to agricultural practices. Forty pesticides or metabolites were measured in urine samples collected in 2004 from 296 pregnant women in Brittany. The samples were analyzed by ultra-high performance liquid chromatography (UHPLC) coupled to high resolution mass spectrometry (HRMS) after a solid phase extraction (SPE) step. RESULTS Twenty seven pesticides were detected: the most frequently detected were the metabolites of organophosphate and pyrethroid insecticides (>89%) and several herbicides (phenoxypropionic acid derivatives and fluazifop >60%). Organophosphate and pyrethroid metabolites were also quantified in highest levels with maximum values of 590 μg/l for dimethylphosphate and 5.4 μg/l for 3- phenoxybenzoic acid. For the other parent compounds, such as prochloraz, bromoxynil and procymidone, they were also detected in 10-29% of the samples. SIGNIFICANCE Our results are consistent with pesticide use at the time of collection. The median concentrations of organophosphorus and pyrethroids were of the same order of magnitude as those reported in other countries. Herbicides and fungicides (fluazifop-p-butyl, bromoxynil, and prochloraz) were measured for the first time in this biomonitoring study, showing the usefulness of measuring widely used pesticides locally to improve knowledge of exposure. IMPACT The objective of this study is to assess the exposure of pregnant women in a region of Europe with high pesticide use.
Collapse
Affiliation(s)
- Naomi Lejeune
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nathalie Bonvallot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
11
|
Longoni V, Kandel Gambarte PC, Rueda L, Fuchs JS, Rovedatti MG, Wolansky MJ. Long-lasting developmental effects in rat offspring after maternal exposure to acetamiprid in the drinking water during gestation. Toxicol Sci 2024; 198:61-75. [PMID: 38011675 DOI: 10.1093/toxsci/kfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neonicotinoids (NNTs) are a class of insecticides proposed to be safe for pest control in urban, suburban, and agricultural applications. However, little is known about their developmental effects after repeated low-dose exposures during gestation. Here, we tested a dose considered subthreshold for maternal toxicity in rats (6 mg/kg/day) by assessing several morphological, biochemical, and neurobehavioral features in preterm fetuses and developing pups after maternal administration of the NTT acetamiprid (ACP) dissolved in the drinking water during gestational days (GD) 2-19. The exploratory evaluation included monitoring maternal body weight gain, fetal viability, body weight and sex ratio, cephalic length, neonatal body weight and sex ratio, metabolic enzymes in the placenta, maternal blood and fetal liver, and anogenital distance and surface righting response during infancy. We also used the circling training test to study the integrity of the associative-spatial-motor response in adolescence. Results showed no consistent findings indicating maternal, reproductive or developmental toxicity. However, we found ACP effects on maternal body weight gain, placental butyrylcholinesterase activity, and neurobehavioral responses, suggestive of a mild toxic action. Thus, our study showed a trend for developmental susceptibility at a dose so far considered subtoxic. Although the ACP concentration in environmental samples of surface water and groundwater has been mostly reported to be much lower than that used in our study, our results suggest that the ACP point of departure used in current guidelines aimed to prevent developmental effects may need to be verified by complementary sensitive multiple-endpoint testing in the offspring.
Collapse
Affiliation(s)
- Victoria Longoni
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Paula Cristina Kandel Gambarte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET) and FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Lis Rueda
- FCEyN, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Julio Silvio Fuchs
- Instituto IQUIBICEN-CONICET and Departamento Química Biológica, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - María Gabriela Rovedatti
- Departamentos Química Biológica and Biodiversidad y Biología Experimental, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Marcelo Javier Wolansky
- Departamento Química Biológica, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
12
|
Sang C, Niu Y, Gao Q, Zhang J, An W, Shao B, Yang M. Characterizing the cumulative health risks of 19 kinds of pesticides in Chinese food from the cancer and non-cancer perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119813. [PMID: 38128207 DOI: 10.1016/j.jenvman.2023.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Food safety is an important issue of most concern for health, while pesticides are one of the main threats to food safety. In view of the potential health hazard of pesticides in food, the cancer and non-cancer risks were assessed for 19 kinds of pesticides in Chinese food in this study. Furthermore, the health risks of different types of pesticides were compared to uncover the most polluted pesticide types in this study. Results show that methyl parathion, dichlorvos and 2,4-D residues in some food groups exceed the Chinese food standards. The cumulative disease burden of six carcinogenic pesticides for people older than 40 years ranges from 1.03 × 10-6 to 2.27 × 10-6, which exceeds the WHO recommended limit of 10-6. The non-cancer risks of 13 kinds of pesticides are all lower than 1 and will not pose appreciable health risk to the consumers. Livestock and poultry (contribution rate = 38.93%) and Milk and dairy products (contribution rate = 22.38%) are the dominate risk exposure sources for carcinogenic pesticides while staple foods (contribution rate = 31.62%) and vegetables (contribution rate = 21.5%) are the main risk exposure sources for non-carcinogenic pesticides. Comparing the risks of different pesticide types, insecticide is the most harmful category in this study, followed by herbicide and acaricide. This study characterized the health risks of pesticides in Chinese food and provided a scientific basis for pesticide management.
Collapse
Affiliation(s)
- Chenhui Sang
- National Engineering Reaserch Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Wei An
- National Engineering Reaserch Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Min Yang
- National Engineering Reaserch Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
13
|
Sagiv SK, Baker JM, Rauch S, Gao Y, Gunier RB, Mora AM, Kogut K, Bradman A, Eskenazi B, Reiss AL. Prenatal and childhood exposure to organophosphate pesticides and functional brain imaging in young adults. ENVIRONMENTAL RESEARCH 2024; 242:117756. [PMID: 38016496 PMCID: PMC11298288 DOI: 10.1016/j.envres.2023.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (β per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and β = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (β = -3.10; 95% CI: -6.43, 0.22 and β = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Yuanyuan Gao
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA; Department of Public Health, University of California, Merced, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA; Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA; Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
15
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Rannaud-Bartaire P, Fini JB. [Disruptors of thyroid hormones: Which consequences for human health and environment?]. Biol Aujourdhui 2023; 217:219-231. [PMID: 38018950 DOI: 10.1051/jbio/2023036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Endocrine disruptors (EDs) of chemical origin are the subject of numerous studies, some of which have led to measures aimed at limiting their use and their impact on the environment and human health. Dozens of hormones have been described and are common to all vertebrates (some chemically related messengers have also been identified in invertebrates), with variable roles that are not always known. The effects of endocrine disruptors therefore potentially concern all animal species via all endocrine axes. These effects are added to the other parameters of the exposome, leading to strong, multiple and complex adaptive pressures. The effects of EDs on reproductive and thyroid pathways have been among the most extensively studied over the last 30 years, in a large number of species. The study of the effects of EDs on thyroid pathways and brain development goes hand in hand with increasing knowledge of 1) the different roles of thyroid hormones at cellular or tissue level (particularly developing brain tissue) in many species, 2) other hormonal pathways and 3) epigenetic interactions. If we want to understand how EDs affect living organisms, we need to integrate results from complementary scientific fields within an integrated, multi-model approach (the so-called translational approach). In the present review article, we aim at reporting recent discoveries and discuss prospects for action in the fields of medicine and research. We also want to highlight the need for an integrated, multi-disciplinary approach to studying impacts and taking appropriate action.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- Laboratoire PHYMA, MNHN, UMR 7221, 7 rue Cuvier, 75005 Paris, France - Hôpital Saint-Vincent-De-Paul, GHICL, boulevard de Belfort, 59000 Lille, France
| | | |
Collapse
|
17
|
Freisthler M, Winchester PW, Young HA, Haas DM. Perinatal health effects of herbicides exposures in the United States: the Heartland Study, a Midwestern birth cohort study. BMC Public Health 2023; 23:2308. [PMID: 37993831 PMCID: PMC10664386 DOI: 10.1186/s12889-023-17171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The objective of the Heartland Study is to address major knowledge gaps concerning the health effects of herbicides on maternal and infant health. To achieve this goal, a two-phased, prospective longitudinal cohort study is being conducted. Phase 1 is designed to evaluate associations between biomarkers of herbicide concentration and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. METHODS People (target enrollment of 2,000) who are seeking prenatal care, are ages 18 or older, and are ≤ 20 + 6 weeks gestation will be eligible for recruitment. The Heartland Study will utilize a combination of questionnaire data and biospecimen collections to meet the study objectives. One prenatal urine and buccal sample will be collected per trimester to assess the impact of herbicide concentration levels on pregnancy outcomes. Infant buccal specimens will be collected post-delivery. All questionnaires will be collected by trained study staff and clinic staff will remain blinded to all individual level research data. All data will be stored in a secure REDCap database. Hospitals in the agriculturally intensive states in the Midwestern region will be recruited as study sites. Currently participating clinical sites include Indiana University School of Medicine- affiliated Hospitals in Indianapolis, Indiana; Franciscan Health Center in Indianapolis, Indiana; Gundersen Lutheran Medical Center in La Crosse, Wisconsin, and University of Iowa in Iowa City, Iowa. An anticipated 30% of the total enrollment will be recruited from rural areas to evaluate herbicide concentrations among those pregnant people residing in the rural Midwest. Perinatal outcomes (e.g. birth outcomes, preterm birth, preeclampsia, etc.) will be extracted by trained study teams and analyzed for their relationship to herbicide concentration levels using appropriate multivariable models. DISCUSSION Though decades of study have shown that environmental chemicals may have important impacts on the health of parents and infants, there is a paucity of prospective longitudinal data on reproductive impacts of herbicides. The recent, rapid increases in herbicide use across agricultural regions of the United States necessitate further research into the human health effects of these chemicals, particularly in pregnant people. The Heartland Study provides an invaluable opportunity to evaluate health impacts of herbicides during pregnancy and beyond. TRIAL REGISTRATION The study is registered at clinicaltrials.gov, NCT05492708 with initial registration and release 05 August, 2022.
Collapse
Affiliation(s)
- Marlaina Freisthler
- Department of Environmental and Occupational Health, Milken Institute of Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - Paul W Winchester
- Neonatal-Perinatal Medicine, Riley Children's Hospital, Indiana University School of Medicine, 699 Riley Hospital Dr RR 208, Indianapolis, IN, 46202, USA
- Franciscan Health, Indianapolis, 8111 South Emerson Avenue, Indianapolis, IN, 46237, USA
| | - Heather A Young
- Department of Epidemiology, Milken Institute for Public Health, George Washington University, 950 New Hampshire Ave NW #2, Washington, DC, 20052, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, IN, UH2440, USA.
| |
Collapse
|
18
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
19
|
Goodman CV, Green R, DaCosta A, Flora D, Lanphear B, Till C. Sex difference of pre- and post-natal exposure to six developmental neurotoxicants on intellectual abilities: a systematic review and meta-analysis of human studies. Environ Health 2023; 22:80. [PMID: 37978510 PMCID: PMC10655280 DOI: 10.1186/s12940-023-01029-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Early life exposure to lead, mercury, polychlorinated biphenyls (PCBs), polybromide diphenyl ethers (PBDEs), organophosphate pesticides (OPPs), and phthalates have been associated with lowered IQ in children. In some studies, these neurotoxicants impact males and females differently. We aimed to examine the sex-specific effects of exposure to developmental neurotoxicants on intelligence (IQ) in a systematic review and meta-analysis. METHOD We screened abstracts published in PsychINFO and PubMed before December 31st, 2021, for empirical studies of six neurotoxicants (lead, mercury, PCBs, PBDEs, OPPs, and phthalates) that (1) used an individualized biomarker; (2) measured exposure during the prenatal period or before age six; and (3) provided effect estimates on general, nonverbal, and/or verbal IQ by sex. We assessed each study for risk of bias and evaluated the certainty of the evidence using Navigation Guide. We performed separate random effect meta-analyses by sex and timing of exposure with subgroup analyses by neurotoxicant. RESULTS Fifty-one studies were included in the systematic review and 20 in the meta-analysis. Prenatal exposure to developmental neurotoxicants was associated with decreased general and nonverbal IQ in males, especially for lead. No significant effects were found for verbal IQ, or postnatal lead exposure and general IQ. Due to the limited number of studies, we were unable to analyze postnatal effects of any of the other neurotoxicants. CONCLUSION During fetal development, males may be more vulnerable than females to general and nonverbal intellectual deficits from neurotoxic exposures, especially from lead. More research is needed to examine the nuanced sex-specific effects found for postnatal exposure to toxic chemicals.
Collapse
Affiliation(s)
- Carly V Goodman
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada.
| | - Rivka Green
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Allya DaCosta
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - David Flora
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Christine Till
- Faculty of Health, York University, Toronto, M3J 1P3, ON, Canada
| |
Collapse
|
20
|
Khodaei M, Dobbins DL, Laurienti PJ, Simpson SL, Arcury TA, Quandt SA, Anderson KA, Scott RP, Burdette JH. Neuroanatomical differences in Latinx children from rural farmworker families and urban non-farmworker families and related associations with pesticide exposure. Heliyon 2023; 9:e21929. [PMID: 38027758 PMCID: PMC10656267 DOI: 10.1016/j.heliyon.2023.e21929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Exposure to pesticides in humans may lead to changes in brain structure and function and increase the likelihood of experiencing neurodevelopmental disorders. Despite the potential risks, there is limited neuroimaging research on the effects of pesticide exposure on children, particularly during the critical period of brain development. Here we used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) from magnetic resonance images (MRI) to investigate neuroanatomical differences between Latinx children (n = 71) from rural, farmworker families (FW; n = 48) and urban, non-farmworker families (NFW; n = 23). Data presented here serves as a baseline for our ongoing study examining the longitudinal effects of living in a rural environment on neurodevelopment and cognition in children. The VBM analysis revealed that NFW children had higher volume in several distinct regions of white matter compared to FW children. Tract-based spatial statistics (TBSS) of DTI data also indicated NFW children had higher fractional anisotropy (FA) in several key white matter tracts. Although the difference was not as pronounced as white matter, the VBM analysis also found higher gray matter volume in selected regions of the frontal lobe in NFW children. Notably, white matter and gray matter findings demonstrated a high degree of overlap in the medial frontal lobe, a brain region predominantly linked to decision-making, error processing, and attention functions. To gain further insights into the underlying causes of the observed differences in brain structure between the two groups, we examined the association of organochlorine (OC) and organophosphate (OP) exposure collected from passive dosimeter wristbands with brain structure. Based on our previous findings within this data set, demonstrating higher OC exposure in children from non-farmworker families, we hypothesized OC might play a critical role in structural differences between NFW and FW children. We discovered a significant positive correlation between the number of types of OC exposure and the structure of white matter. The regions with significant association with OC exposure were in agreement with the findings from the FW-NFW groups comparison analysis. In contrast, OPs did not have a statistically significant association with brain structure. This study is among the first multimodal neuroimaging studies examining the brain structure of children exposed to agricultural pesticides, specifically OC. These findings suggest OC pesticide exposure may disrupt normal brain development in children, highlighting the need for further neuroimaging studies within this vulnerable population.
Collapse
Affiliation(s)
- Mohammadreza Khodaei
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dorothy L. Dobbins
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paul J. Laurienti
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sean L. Simpson
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Jonathan H. Burdette
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
21
|
Wang A, Wan Y, Mahai G, Qian X, Li Y, Xu S, Xia W. Association of Prenatal Exposure to Organophosphate, Pyrethroid, and Neonicotinoid Insecticides with Child Neurodevelopment at 2 Years of Age: A Prospective Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107011. [PMID: 37856202 PMCID: PMC10586492 DOI: 10.1289/ehp12097] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Widespread insecticide exposure might be a risk factor for neurodevelopment of our children, but few studies examined the mixture effect of maternal coexposure to organophosphate insecticides (OPPs), pyrethroids (PYRs), and neonicotinoid insecticides (NNIs) during pregnancy on child neurodevelopment, and critical windows of exposure are unknown. OBJECTIVES We aimed to evaluate the association of prenatal exposure to multiple insecticides with children's neurodevelopment and to identify critical windows of the exposure. METHODS Pregnant women were recruited into a prospective birth cohort study in Wuhan, China, from 2014-2017. Eight metabolites of OPPs (mOPPs), three metabolites of PYRs (mPYRs), and nine metabolites of NNIs (mNNIs) were measured in 3,123 urine samples collected at their first, second, and third trimesters. Children's neurodevelopment [mental development index (MDI) and psychomotor development index (PDI)] was assessed using the Bayley Scales of Infant Development at 2 years of age (N = 1,041 ). Multivariate linear regression models, generalized estimating equation models, and weighted quantile sum (WQS) regression were used to estimate the association between the insecticide metabolites and Bayley scores. Potential sex-specific associations were also examined. RESULTS Single chemical analysis suggested higher urinary concentrations of some insecticide metabolites at the first trimester were significantly associated with lower MDI and PDI scores, and the associations were more prominent among boys. Each 1-unit increase in ln-transformed urinary concentrations of two mOPPs, 3,5,6-trichloro-2-pyridinol and 4-nitrophenol, was associated with a decrease of 3.16 points [95% confidence interval (CI): - 5.59 , - 0.74 ] and 3.06 points (95% CI: - 5.45 , - 0.68 ) respectively in boys' MDI scores. Each 1-unit increase in that of trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid (trans-DCCA; an mPYR) was significantly associated with a decrease of 2.24 points (95% CI: - 3.89 , - 0.58 ) in boys' MDI scores and 1.90 points (95% CI: - 3.16 , - 0.64 ) in boys' PDI scores, respectively. Significantly positive associations of maternal urinary biomarker concentrations [e.g., dimethyl phosphate (a nonspecific mOPP) and desmethyl-clothianidin (a relatively specific mNNI)] with child neurodevelopment were also observed. Using repeated holdout validation, a 1-quartile increase in the WQS index of the insecticide mixture (in the negative direction) at the first trimester was significantly associated with a decrease of 3.02 points (95% CI: - 5.47 , - 0.57 ) in MDI scores among the boys, and trans-DCCA contributed the most to the association (18%). CONCLUSIONS Prenatal exposure to higher levels of certain insecticides and their mixture were associated with lower Bayley scores in children, particularly in boys. Early pregnancy may be a sensitive window for such an effect. Future studies are needed to confirm our findings. https://doi.org/10.1289/EHP12097.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
22
|
Horgan FG, Mundaca EA, Hadi BAR, Crisol-Martínez E. Diversified Rice Farms with Vegetable Plots and Flower Strips Are Associated with Fewer Pesticide Applications in the Philippines. INSECTS 2023; 14:778. [PMID: 37887790 PMCID: PMC10607731 DOI: 10.3390/insects14100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Ecological engineering is defined as the design of sustainable ecosystems for the benefit of both human society and the environment. In Southeast Asia, researchers have applied ecological engineering by diversifying farms using flower strips to restore regulatory services to rice ecosystems and thereby reduce herbivore-related yield losses and overall pesticide use. We conducted a survey of 302 rice farmers across four regions of the Philippines to assess their farm diversification practices and determine possible associations with pesticide use. Rice was the main product on all farms; however, the farmers also produced fruits and vegetables, either rotated with rice (47% of the farmers) or in small plots in adjacent farmland. In addition, 64% of the farmers produced flowers, herbs, and/or vegetables on rice bunds. Vegetables were cultivated mainly to supplement household food or incomes, but 30% of the farmers also believed that the vegetables reduced pest and weed damage to their rice. We found that 16% of the farmers grew flowers on their bunds to reduce pest damage to rice and vegetables, and many farmers applied botanical extracts, growth stimulants, and insect traps to reduce damage to the vegetables. Some farmers avoided insecticides on rice by using Trichogramma cards. Planting flowers on rice bunds, rearing ducks in the rice fields, and farmers' recognition of beneficial rice arthropods were statistically significantly associated with lower pesticide (particularly, insecticide) applications to rice. Our results indicate that farm diversification to produce supplementary foods for rural households and access to alternative pest management options can reduce pesticide use on rice farms in tropical Asia.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland;
- Centre for Pesticide Suicide Prevention, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- School of Agronomy, Faculty of Agrarian and Forest Sciences, Catholic University of Maule, Casilla 7-D, Curicó 3349001, Chile;
- International Rice Research Institute, Makati 1226, Metro Manila, Philippines;
| | - Enrique A. Mundaca
- School of Agronomy, Faculty of Agrarian and Forest Sciences, Catholic University of Maule, Casilla 7-D, Curicó 3349001, Chile;
| | - Buyung A. R. Hadi
- International Rice Research Institute, Makati 1226, Metro Manila, Philippines;
- Plant Production and Protection Division, Food and Agriculture Organization of the United Nations, Vialle delle Terme di Caracalla, 00153 Rome, Italy
| | - Eduardo Crisol-Martínez
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland;
- International Rice Research Institute, Makati 1226, Metro Manila, Philippines;
- COEXPHAL (Association of Vegetable and Fruit Growers of Almeria), Carretera de Ronda 11, 04004 Almeria, Spain
| |
Collapse
|
23
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
24
|
Sagiv SK, Mora AM, Rauch S, Kogut KR, Hyland C, Gunier RB, Bradman A, Deardorff J, Eskenazi B. Prenatal and Childhood Exposure to Organophosphate Pesticides and Behavior Problems in Adolescents and Young Adults in the CHAMACOS Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67008. [PMID: 37307167 PMCID: PMC10259762 DOI: 10.1289/ehp11380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND We previously reported associations of prenatal exposure to organophosphate (OP) pesticides with poorer neurodevelopment in early childhood and at school age, including poorer cognitive function and more behavioral problems, in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a birth cohort study in an agriculture community. OBJECTIVE We investigated the extent to which early-life exposure to OP pesticides is associated with behavioral problems, including mental health, in youth during adolescence and early adulthood. METHODS We measured urinary dialkylphosphates (DAPs), nonspecific OP metabolites, in urine samples collected from mothers twice during pregnancy (13 and 26 wk) and at five different times in their children (ages 6 months to 5 y). We assessed maternal report and youth report of externalizing and internalizing behavior problems using the Behavior Assessment System for Children, 2nd edition (BASC-2), when the youth were ages 14, 16, and 18 y. Because there was evidence of nonlinearity, we estimated associations across quartiles of DAPs and modeled repeated outcome measures using generalized estimating equations. RESULTS There were 335 youths with prenatal maternal DAP measures and 14-. 16-, or 18-y BASC-2 scores. Prenatal maternal DAP concentrations (specific gravity-adjusted median, Q 1 - Q 3 = 159.4 , 78.7 - 350.4 nmol / L ) were associated with higher T-scores (more behavior problems) from maternal report, including more hyperactivity [fourth vs. first quartile of exposure β = 2.32 ; 95% confidence interval (CI): 0.18, 4.45], aggression (β = 1.90 ; 95% CI: 0.15, 3.66), attention problems (β = 2.78 ; 95% CI: 0.26, 5.30), and depression (β = 2.66 ; 95% CI: 0.08, 5.24). Associations with youth report of externalizing problems were null, and associations with depression were suggestive (fourth vs. first quartile of exposure β = 2.15 ; 95% CI: - 0.36 , 4.67). Childhood DAP metabolites were not associated with behavioral problems. DISCUSSION We found associations of prenatal, but not childhood, urinary DAP concentrations with adolescent/young adult externalizing and internalizing behavior problems. These findings are consistent with prior associations we have reported with neurodevelopmental outcomes measured earlier in childhood in CHAMACOS participants and suggests that prenatal exposure to OP pesticides may have lasting effects on the behavioral health of youth as they mature into adulthood, including their mental health. https://doi.org/10.1289/EHP11380.
Collapse
Affiliation(s)
- Sharon K. Sagiv
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Katherine R. Kogut
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
- Department of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - Robert B. Gunier
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
- Department of Public Health, University of California, Merced, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
25
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
26
|
Rodriguez PM, Ondarza PM, Miglioranza KSB, Ramirez CL, Vera B, Muntaner C, Guiñazú NL. Pesticides exposure in pregnant Argentinian women: Potential relations with the residence areas and the anthropometric neonate parameters. CHEMOSPHERE 2023; 332:138790. [PMID: 37142107 DOI: 10.1016/j.chemosphere.2023.138790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Intrauterine environment is the first chemical exposure scenario in life, through transplacental transfer. In this study, the aim was to determine concentrations of organochlorine pesticides (OCPs) and selected current use pesticides in the placentas of pregnant women from Argentina. Socio-demographic information, the mother's lifestyle and neonatal characteristics were also analysed and related to pesticides residue concentrations. Thus, 85 placentas were collected at birth, from an area of intensive fruit production for the international market, in Patagonia Argentina. Concentrations of 23 pesticides including, trifluralin (herbicide), the fungicides chlorothalonil and HCB, and the insecticides chlorpyrifos, HCHs, endosulfans, DDTs, chlordanes, heptachlors, drins and metoxichlor, were determined by GC-ECD and GC-MS. Results were first analysed all together and then grouped by their residential settings, in urban and rural groups. Total mean pesticide concentration was 582.6 ± 1034.4 ng/g lw, where DDTs (325.9 ± 950.3 ng/g lw) and chlorpyrifos (188.4 ± 365.4 ng/g lw) showed a high contribution. Pesticide levels found exceeded those reported in low, middle and high income countries from Europe, Asia and Africa. In general, pesticides concentrations were not associated with neonatal anthropometric parameters. When the results were analysed by residence place, significantly higher concentrations of total pesticides and chlorpyrifos (Mann Whitney test p = 0.0003 and p = 0.032, respectively) were observed in placentas collected from mothers living in rural settings compared to urban areas. Rural pregnant women presented the highest pesticide burden (5.9 μg), where DDTs and chlorpyrifos were the major constituents. These results suggested that all pregnant women are highly exposed to complex pesticide mixtures, including banned OCPs and the widely used chlorpyrifos. Based on the pesticide concentrations found, our results warn of possible health impacts from prenatal exposure through transplacental transfer. This is one of the first reports of both chlorpyrifos and chlorothalonil concentrations in placental tissue, and contributes to the knowledge of current pesticide exposure in Argentina.
Collapse
Affiliation(s)
- Piuque M Rodriguez
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Critina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata-CONICET, Dean Funes 3350, Mar Del Plata, 7600, Argentina
| | - Berta Vera
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Celeste Muntaner
- Facultad de Medicina, Universidad Nacional Del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, 8324, Río Negro, Argentina
| | - Natalia L Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología Del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina; Departamento de Ciencias Del Ambiente, Facultad de Ciencias Del Ambiente y la Salud, Universidad Nacional Del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
| |
Collapse
|
27
|
de Andrade JC, Galvan D, Kato LS, Conte-Junior CA. Consumption of fruits and vegetables contaminated with pesticide residues in Brazil: A systematic review with health risk assessment. CHEMOSPHERE 2023; 322:138244. [PMID: 36841459 DOI: 10.1016/j.chemosphere.2023.138244] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Brazil is the third largest exporter of fruits and vegetables in the world and, consequently, uses large amounts of pesticides. Food contamination with pesticide residues (PRs) is a serious concern, especially in developing countries. Several research reports revealed that some Brazilian farmers spray pesticides on fruits and vegetables in large quantities, generating PRs after harvest. Thus, ingestion of food contaminated with PRs can cause adverse health effects. Based on information obtained through a systematic review of essential information from 33 articles, we studied the assessment of potential health risks associated with fruit and vegetable consumption in children and adults from Brazilian states. This study identified 111 PRs belonging to different chemical groups, mainly organophosphates and organochlorines, in 26 fruit and vegetable samples consumed and exported by Brazil. Sixteen of these PRs were above the Maximum Residue Limit (MRL) established by local and international legislation. We did not identify severe acute and chronic dietary risks, but the highest risk values were observed in São Paulo and Santa Catarina, associated with the consumption of tomatoes and sweet peppers due to the high concentrations of organophosphates. A high long-term health risk is associated with the consumption of oranges in São Paulo and grapes in Bahia due to chlorothalonil and procymidone. We also identified that 26 PRs are considered carcinogenic by the United States Environmental Protection Agency (US EPA), and the carcinogenic risk analysis revealed no severe risk in any Brazilian state investigated due to the cumulative hazard index (HI) < 1. However, the highest HI values were in São Paulo due to acephate and carbaryl in sweet pepper and in Bahia due to dichlorvos. This information can help regulatory authorities define new guidelines for pesticide residue limits in fruits and vegetables commonly consumed and exported from Brazil and monitor the quality of commercial formulations.
Collapse
Affiliation(s)
- Jelmir Craveiro de Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil.
| | - Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
28
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
29
|
Rodríguez D, Barg G, Queirolo EI, Olson JR, Mañay N, Kordas K. Pyrethroid and Chlorpyrifos Pesticide Exposure, General Intellectual Abilities, and Executive Functions of School Children from Montevideo, Uruguay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5288. [PMID: 37047904 PMCID: PMC10093823 DOI: 10.3390/ijerph20075288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/01/2023]
Abstract
Children's developing brains are susceptible to pesticides. Less is known about the effect of exposure to chlorpyrifos and pyrethroids on executive functions (EF). We measured urinary 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of chlorpyrifos, and urinary 3-phenoxybenzoic acid (3-PBA), a general, nonspecific metabolite of pyrethroids in first-grade children from Montevideo, Uruguay (n = 241, age 80.6 ± 6.4 months, 58.1% boys). EFs were assessed with the Intra-dimensional/Extra-dimensional shift (IED), Spatial Span (SSP), and Stockings of Cambridge (SOC) tests from the Cambridge Neuropsychological Test Automated (CANTAB) Battery. General intellectual ability (GIA) was assessed using the Woodcock-Muñoz Cognitive battery. Median (range) urinary TCPy and 3-PBA levels were 16.7 (1.9, 356.9) ng/mg of creatinine and 3.3 (0.3, 110.6) ng/mg of creatinine, respectively. In multivariable generalized linear models, urinary TCPy was inversely associated with postdimensional errors on the IED task β [95% CI]: -0.11 [-0.17, -0.06]. Urinary 3-PBA was inversely associated with the total number of trials -0.07 [-0.10, -0.04], and the total number of errors -0.12 [-0.18, -0.07] on the IED task. When TCPy and 3-PBA were modeled together, the associations did not differ from single-metabolite models. We found no evidence of effect modification by blood lead level (BLL). Pesticide exposure may affect EF performance in urban children.
Collapse
Affiliation(s)
- Danelly Rodríguez
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
| | - Gabriel Barg
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - Elena I. Queirolo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - James R. Olson
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14214, USA
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo 11200, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA; (D.R.)
| |
Collapse
|
30
|
Wei H, Zhang X, Yang X, Yu Q, Deng S, Guan Q, Chen D, Zhang M, Gao B, Xu S, Xia Y. Prenatal exposure to pesticides and domain-specific neurodevelopment at age 12 and 18 months in Nanjing, China. ENVIRONMENT INTERNATIONAL 2023; 173:107814. [PMID: 36809709 DOI: 10.1016/j.envint.2023.107814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The extensive usage of pesticides has led to a ubiquitous exposure in the Chinese general population. Previous studies have demonstrated developmental neurotoxicity associated with prenatal exposure to pesticides. OBJECTIVES We aimed to delineate the landscape of internal pesticides exposure levels from pregnant women's blood serum samples, and to identify the specific pesticides associated with the domain-specific neuropsychological development. METHODS Participants included 710 mother-child pairs in a prospective cohort study initiated and maintained in Nanjing Maternity and Child Health Care Hospital. Maternal spot blood samples were collected at enrollment. Leveraging on an accurate, sensitive and reproducible analysis method for 88 pesticides, a total of 49 pesticides were measured simultaneously using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). After implementing a strict quality control (QC) management, 29 pesticides were reported. We assessed neuropsychological development in 12-month-old (n = 172) and 18-month-old (n = 138) children using the Ages and Stages Questionnaire (ASQ), Third Edition. Negative binomial regression models were used to investigate the associations between prenatal exposure to pesticides and ASQ domain-specific scores at age 12 and 18 months. Restricted cubic spline (RCS) analysis and generalized additive models (GAMs) were fitted to evaluate non-linear patterns. Longitudinal models with generalized estimating equations (GEE) were conducted to account for correlations among repeated observations. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were applied to examining the joint effect of the mixture of pesticides. Several sensitivity analyses were performed to assess the robustness of the results. RESULTS We observed that prenatal exposure to chlorpyrifos was significantly associated with a 4 % decrease in the ASQ communication scores both at age 12 months (RR, 0.96; 95 % CI, 0.94-0.98; P < 0.001) and 18 months (RR, 0.96; 95 % CI, 0.93-0.99; P < 0.01). In the ASQ gross motor domain, higher concentrations of mirex (RR, 0.96; 95 % CI, 0.94-0.99, P < 0.01 for 12-month-old children; RR, 0.98; 95 % CI, 0.97-1.00, P = 0.01 for 18-month-old children), and atrazine (RR, 0.97; 95 % CI, 0.95-0.99, P < 0.01 for 12-month-old children; RR, 0.99; 95 % CI, 0.97-1.00, P = 0.03 for 18-month-old children) were associated with decreased scores. In the ASQ fine motor domain, higher concentrations of mirex (RR, 0.98; 95 % CI, 0.96-1.00, P = 0.04 for 12-month-old children; RR, 0.98; 95 % CI, 0.96-0.99, P < 0.01 for 18-month-old children), atrazine (RR, 0.97; 95 % CI, 0.95-0.99, P < 0.001 for 12-month-old children; RR, 0.98; 95 % CI, 0.97-1.00, P = 0.01 for 18-month-old children), and dimethipin (RR, 0.94; 95 % CI, 0.89-1.00, P = 0.04 for 12-month-old children; RR, 0.93; 95 % CI, 0.88-0.98, P < 0.01 for 18-month-old children) were associated with decreased scores. The associations were not modified by child sex. There was no evidence of statistically significant nonlinear relationships between pesticides exposure and RRs of delayed neurodevelopment (Pnonlinearity > 0.05). Longitudinal analyses implicated the consistent findings. CONCLUSION This study gave an integrated picture of pesticides exposure in Chinese pregnant women. We found significant inverse associations between prenatal exposure to chlorpyrifos, mirex, atrazine, dimethipin and the domain-specific neuropsychological development (i.e., communication, gross motor and fine motor) of children at 12 and 18 months of age. These findings identified specific pesticides with high risk of neurotoxicity, and highlighted the need for priority regulation of them.
Collapse
Affiliation(s)
- Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaochen Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiurun Yu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Siting Deng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beibei Gao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shangcheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Stanaway IB, Wallace JC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, Smith MN, Griffith WC, Thompson B, Shojaie A, Faustman EM. Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. Int J Hyg Environ Health 2023; 248:114090. [PMID: 36516690 PMCID: PMC9898171 DOI: 10.1016/j.ijheh.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Marissa N Smith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Zhou W, Zhang C, Wang P, Deng Y, Dai H, Tian J, Wu G, Zhao L. Chlorpyrifos-induced dysregulation of synaptic plasticity in rat hippocampal neurons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:100-109. [PMID: 36722685 DOI: 10.1080/03601234.2023.2171236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphorus pesticide. Increasing evidence has shown that exposure to CPF in early life might induce neurodevelopmental disorders, but the pathogenesis remains uncertain. Synaptic plasticity plays a crucial role in neurodevelopment. This study aimed to investigate the effect of CPF on synaptic plasticity in hippocampal neurons and establish the cellular mechanism underlying these effects. Using CPF-exposed rat and primary hippocampal neurons model, we analyzed the impact of CPF on the synaptic morphology, the expression level of a presynaptic protein, a postsynaptic protein and ionotropic glutamate receptors (iGluRs), as well as the effects on the Wnt/β-catenin pathway. We found that the synapses were shortened, the spines were decreased, and the expression of synaptophysin (Syp), postsynaptic density-95 (PSD-95), GluN1, GluA1 and Wnt7a, as well as active β-catenin in primary hippocampal neurons was decreased. Our study suggests that CPF exposure induced dysregulation of synaptic plasticity in rat hippocampal neurons, which might provide novel information regarding the mechanism of CPF-induced neurodevelopmental disorders.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Chen Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Peipei Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuanying Deng
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Hongmei Dai
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Jing Tian
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Guojiao Wu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lingling Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
33
|
Trasande L, Kassotis CD. The Pediatrician's Role in Protecting Children from Environmental Hazards. Pediatr Clin North Am 2023; 70:137-150. [PMID: 36402464 PMCID: PMC10591514 DOI: 10.1016/j.pcl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Children suffer disproportionately from disease and disability due to environmental hazards, for reasons rooted in their biology. The contribution is substantial and increasingly recognized, particularly due to ever-increasing awareness of endocrine disruption. Regulatory actions can be traced directly to reductions in toxic exposures, with tangible benefits to society. Deep flaws remain in the policy framework in industrialized countries, failing to offer sufficient protection, but are even more limited in industrializing nations where the majority of chemical production and use will occur by 2030. Evidence-based steps for reducing chemical exposures associated with adverse health outcomes exist and should be incorporated into anticipatory guidance.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU School of Global Public Health, New York, NY, USA.
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
34
|
Jokanović M, Oleksak P, Kuca K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 2023; 484:153407. [PMID: 36543276 DOI: 10.1016/j.tox.2022.153407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
This article reviews available data regarding the possible association of organophosphorus (OP) pesticides with neurological disorders such as dementia, attention deficit hyperactivity disorder, neurodevelopment, autism, cognitive development, Parkinson's disease and chronic organophosphate-induced neuropsychiatric disorder. These effects mainly develop after repeated (chronic) human exposure to low doses of OP. In addition, three well defined neurotoxic effects in humans caused by single doses of OP compounds are discussed. Those effects are the cholinergic syndrome, the intermediate syndrome and organophosphate-induced delayed polyneuropathy. Usually, the poisoning can be avoided by an improved administrative control, limited access to OP pesticides, efficient measures of personal protection and education of OP pesticide applicators and medical staff.
Collapse
Affiliation(s)
- Milan Jokanović
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech republic.
| |
Collapse
|
35
|
Gallegos CE, Bartos M, Gumilar F, Minetti A, Baier CJ. Behavioral and neurochemical impairments after intranasal administration of chlorpyrifos formulation in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105315. [PMID: 36549818 DOI: 10.1016/j.pestbp.2022.105315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Among the most relevant environmental factors associated with the etiology of neurodegenerative disorders are pesticides. Spray drift or volatilization generates pesticide dispersion after its application. In addition, inhalation or intranasal (IN) administration of xenobiotics constitutes a feasible route for substance delivery to the brain. This study investigates the behavioral and neurochemical effects of IN exposure to a commercial formulation of chlorpyrifos (fCPF). Adult male CF-1 mice were intranasally administered with fCPF (3-10 mg/kg/day) three days a week, for 2 weeks. Behavioral and biochemical analyses were conducted 20 and 30 days after the last IN fCPF administration, respectively. No significant behavioral or biochemical effects were observed in the 3 mg/kg fCPF IN exposure group. However, animals exposed to 10 mg/kg fCPF showed anxiogenic behavior and recognition memory impairment, with no effects on locomotor activity. In addition, the IN administration of 10 mg/kg fCPF altered the redox balance, modified the activity of enzymes belonging to the cholinergic and glutamatergic pathways, and affected glucose metabolism, and cholesterol levels in different brain areas. Taken together, these observations suggest that these biochemical imbalances could be responsible for the neurobehavioral disturbances observed after IN administration of fCPF in mice.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina
| | - Carlos Javier Baier
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia (DBByF), San Juan 670, B8000ICN Bahía Blanca, Argentina.
| |
Collapse
|
36
|
Algharably EA, Di Consiglio E, Testai E, Pistollato F, Bal-Price A, Najjar A, Kreutz R, Gundert-Remy U. Prediction of in vivo prenatal chlorpyrifos exposure leading to developmental neurotoxicity in humans based on in vitro toxicity data by quantitative in vitro-in vivo extrapolation. Front Pharmacol 2023; 14:1136174. [PMID: 36959852 PMCID: PMC10027916 DOI: 10.3389/fphar.2023.1136174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Epidemiological studies in children suggested that in utero exposure to chlorpyrifos (CPF), an organophosphate insecticide, may cause developmental neurotoxicity (DNT). We applied quantitative in vitro-in vivo extrapolation (QIVIVE) based on in vitro concentration and non-choline esterase-dependent effects data combined with Benchmark dose (BMD) modelling to predict oral maternal CPF exposure during pregnancy leading to fetal brain effect concentration. By comparing the results with data from epidemiological studies, we evaluated the contribution of the in vitro endpoints to the mode of action (MoA) for CPF-induced DNT. Methods: A maternal-fetal PBK model built in PK-Sim® was used to perform QIVIVE predicting CPF concentrations in a pregnant women population at 15 weeks of gestation from cell lysate concentrations obtained in human induced pluripotent stem cell-derived neural stem cells undergoing differentiation towards neurons and glia exposed to CPF for 14 days. The in vitro concentration and effect data were used to perform BMD modelling. Results: The upper BMD was converted into maternal doses which ranged from 3.21 to 271 mg/kg bw/day. Maternal CPF blood levels from epidemiological studies reporting DNT findings in their children were used to estimate oral CPF exposure during pregnancy using the PBK model. It ranged from 0.11 to 140 μg/kg bw/day. Discussion: The effective daily intake doses predicted from the in vitro model were several orders of magnitude higher than exposures estimated from epidemiological studies to induce developmental non-cholinergic neurotoxic responses, which were captured by the analyzed in vitro test battery. These were also higher than the in vivo LOEC for cholinergic effects. Therefore, the quantitative predictive value of the investigated non-choline esterase-dependent effects, although possibly relevant for other chemicals, may not adequately represent potential key events in the MoA for CPF-associated DNT.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Engi Abdelhady Algharably,
| | - Emma Di Consiglio
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Sittiwang S, Nimmapirat P, Suttiwan P, Promduang W, Chaikittipornlert N, Wouldes T, Prapamontol T, Naksen W, Promkam N, Pingwong S, Breckheimer A, Cadorett V, Panuwet P, Barr DB, Baumert BO, Ohman-Strickland P, Fiedler N. The relationship between prenatal exposure to organophosphate insecticides and neurodevelopmental integrity of infants at 5-weeks of age. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1039922. [PMID: 36925965 PMCID: PMC10016628 DOI: 10.3389/fepid.2022.1039922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Introduction Organophosphate (OP) insecticides are among the most abundantly used insecticides worldwide. Thailand ranked third among 15 Asian countries in its use of pesticides per unit hectare and fourth in annual pesticide use. More than 40% of Thai women of childbearing age work on farms where pesticides are applied. Thus, the potential for pregnant women and their fetuses to be exposed to pesticides is significant. This study investigated the relationship between early, mid, and late pregnancy maternal urine concentrations of OP metabolites and infant neural integrity at 5 weeks of age. Method We enrolled women employed on farms from two antenatal clinics in the Chiang Mai province of northern Thailand. We collected urine samples monthly during pregnancy, composited them by early, mid and late pregnancy and analyzed the composited samples for dialkylphosphate (DAP) metabolites of OP insecticides. At 5 weeks after birth, nurses certified in use of the NICU Network Neurobehavioral Scale (NNNS) completed the evaluation of 320 healthy infants. We employed generalized linear regression, logistic and Poisson models to determine the association between NNNS outcomes and DAP concentrations. All analyses were adjusted for confounders and included creatinine as an independent variable. Results We did not observe trimester specific associations between DAP concentrations and NNNS outcomes. Instead, we observed statistically significant inverse associations between NNNS arousal (β = -0.10; CI: -0.17, -0.002; p = 0.0091) and excitability [0.79 (0.68, 0.92; p = 0.0026)] among participants with higher average prenatal DAP concentrations across pregnancy. We identified 3 NNNS profiles by latent profile analysis. Higher prenatal maternal DAP concentrations were associated with higher odds of being classified in a profile indicative of greater self-regulation and attention, but arousal and excitability scores below the 50th percentile relative to US normative samples [OR = 1.47 (CI: 1.05, 2.06; p = 0.03)]. Similar findings are also observed among infants with prenatal exposure to substances of abuse (e.g., methamphetamine). Discussion Overall, the associations between prenatal DAP concentrations and NNNS summary scores were not significant. Further evaluations are warranted to determine the implications of low arousal and excitability for neurodevelopmental outcomes of attention and memory and whether these results are transitory or imply inadequate responsivity to stimulation among children as they develop.
Collapse
Affiliation(s)
- Supattra Sittiwang
- LIFE Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjuta Nimmapirat
- LIFE Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Panrapee Suttiwan
- LIFE Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Wathoosiri Promduang
- LIFE Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | | | - Trecia Wouldes
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawadee Promkam
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sureewan Pingwong
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Adrian Breckheimer
- School of Public Health, Rutgers University, Piscataway, NJ, United States
| | - Valerie Cadorett
- School of Public Health, Rutgers University, Piscataway, NJ, United States
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Brittney O. Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pamela Ohman-Strickland
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, United States
| | - Nancy Fiedler
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
38
|
Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2718-2755. [PMID: 34663153 DOI: 10.1080/09603123.2021.1987396] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Following the introduction and application of pesticides in human life, they have always been along with health concerns both in acute poisoning and chronic toxicities. Neurotoxicity of pesticides in chronic exposures has been known as one of the most important human health problems, as most of these chemicals act through interacting with some elements of nervous system. Pesticide-induced neurotoxicity can be defined in different categories of neurological disorders including neurodegenerative (Alzheimer, Parkinson, amyotrophic lateral sclerosis, multiple sclerosis), neurodevelopmental (attention deficit hyperactivity disorder, autism spectrum disorders, developmental delay, and intellectual disability), neurobehavioral and neuropsychiatric (depression/suicide attempt, anxiety/insomnia, and cognitive impairment) disorders some of which are among the most debilitating human health problems. In this review, neurotoxicity of pesticides in the mentioned categories and sub-categories of neurological diseases have been systematically presented in relation to different route of exposures including general, occupational, environmental, prenatal, postnatal, and paternal.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
39
|
Liang D, Batross J, Fiedler N, Prapamontol T, Suttiwan P, Panuwet P, Naksen W, Baumert BO, Yakimavets V, Tan Y, D'Souza P, Mangklabruks A, Sittiwang S, Kaewthit K, Kohsuwan K, Promkam N, Pingwong S, Ryan PB, Barr DB. Metabolome-wide association study of the relationship between chlorpyrifos exposure and first trimester serum metabolite levels in pregnant Thai farmworkers. ENVIRONMENTAL RESEARCH 2022; 215:114319. [PMID: 36108722 PMCID: PMC9909724 DOI: 10.1016/j.envres.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Organophosphate (OP) insecticides, including chlorpyrifos, have been linked with numerous harmful health effects on maternal and child health. Limited data are available on the biological mechanisms and endogenous pathways underlying the toxicity of chlorpyrifos exposures on pregnancy and birth outcomes. In this study, we measured a urinary chlorpyrifos metabolite and used high-resolution metabolomics (HRM) to identify biological perturbations associated with chlorpyrifos exposure among pregnant women in Thailand, who are disparately exposed to high levels of OP insecticides. METHODS This study included 50 participants from the Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE). We used liquid chromatography-high resolution mass spectrometry to conduct metabolic profiling on first trimester serum samples collected from participants to evaluate metabolic perturbations in relation to chlorpyrifos exposures. We measured 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of chlorpyrifos and chlorpyrifos-methyl, in first trimester urine samples to assess the levels of exposures. Following an untargeted metabolome-wide association study workflow, we used generalized linear models, pathway enrichment analyses, and chemical annotation to identify significant metabolites and pathways associated with urinary TCPy levels. RESULTS In the 50 SAWASDEE participants, the median urinary TCPy level was 4.36 μg TCPy/g creatinine. In total, 691 unique metabolic features were found significantly associated with TCPy levels (p < 0.05) after controlling for confounding factors. Pathway analysis of metabolic features associated with TCPy indicated perturbations in 24 metabolic pathways, most closely linked to the production of reactive oxygen species and cellular damage. These pathways include tryptophan metabolism, fatty acid oxidation and peroxisome metabolism, cytochromes P450 metabolism, glutathione metabolism, and vitamin B3 metabolism. We confirmed the chemical identities of 25 metabolites associated with TCPy levels, including glutathione, cystine, arachidic acid, itaconate, and nicotinamide adenine dinucleotide. DISCUSSION The metabolic perturbations associated with TCPy levels were related to oxidative stress, cellular damage and repair, and systemic inflammation, which could ultimately contribute to health outcomes, including neurodevelopmental deficits in the child. These findings support the future development of sensitive biomarkers to investigate the metabolic underpinnings related to pesticide exposure during pregnancy and to understand its link to adverse outcomes in children.
Collapse
Affiliation(s)
- Donghai Liang
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| | - Jonathan Batross
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University, Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand
| | - Parinya Panuwet
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Warangkana Naksen
- Chiang Mai University, Faculty of Public Health, Chiang Mai, Thailand
| | - Brittney O Baumert
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Volha Yakimavets
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Youran Tan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Priya D'Souza
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Ampica Mangklabruks
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Supattra Sittiwang
- Chulalongkorn University, Faculty of Psychology, LIFE Di Center, Bangkok, Thailand
| | | | - Kanyapak Kohsuwan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nattawadee Promkam
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - Sureewan Pingwong
- Chiang Mai University, Research Institute for Health Sciences, Chiang Mai, Thailand
| | - P Barry Ryan
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Emory University, Rollins School of Public Health, Gangarosa Department of Environmental Health, Atlanta, GA, USA.
| |
Collapse
|
40
|
Ireland D, Rabeler C, Gong T, Collins EMS. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans. Arch Toxicol 2022; 96:3233-3243. [PMID: 36173421 PMCID: PMC10729609 DOI: 10.1007/s00204-022-03387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.
Collapse
Affiliation(s)
| | | | - TaiXi Gong
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Ireland D, Zhang S, Bochenek V, Hsieh JH, Rabeler C, Meyer Z, Collins EMS. Differences in neurotoxic outcomes of organophosphorus pesticides revealed via multi-dimensional screening in adult and regenerating planarians. FRONTIERS IN TOXICOLOGY 2022; 4:948455. [PMID: 36267428 PMCID: PMC9578561 DOI: 10.3389/ftox.2022.948455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022] Open
Abstract
Organophosphorus pesticides (OPs) are a chemically diverse class of commonly used insecticides. Epidemiological studies suggest that low dose chronic prenatal and infant exposures can lead to life-long neurological damage and behavioral disorders. While inhibition of acetylcholinesterase (AChE) is the shared mechanism of acute OP neurotoxicity, OP-induced developmental neurotoxicity (DNT) can occur independently and/or in the absence of significant AChE inhibition, implying that OPs affect alternative targets. Moreover, different OPs can cause different adverse outcomes, suggesting that different OPs act through different mechanisms. These findings emphasize the importance of comparative studies of OP toxicity. Freshwater planarians are an invertebrate system that uniquely allows for automated, rapid and inexpensive testing of adult and developing organisms in parallel to differentiate neurotoxicity from DNT. Effects found only in regenerating planarians would be indicative of DNT, whereas shared effects may represent neurotoxicity. We leverage this unique feature of planarians to investigate potential differential effects of OPs on the adult and developing brain by performing a comparative screen to test 7 OPs (acephate, chlorpyrifos, dichlorvos, diazinon, malathion, parathion and profenofos) across 10 concentrations in quarter-log steps. Neurotoxicity was evaluated using a wide range of quantitative morphological and behavioral readouts. AChE activity was measured using an Ellman assay. The toxicological profiles of the 7 OPs differed across the OPs and between adult and regenerating planarians. Toxicological profiles were not correlated with levels of AChE inhibition. Twenty-two "mechanistic control compounds" known to target pathways suggested in the literature to be affected by OPs (cholinergic neurotransmission, serotonin neurotransmission, endocannabinoid system, cytoskeleton, adenyl cyclase and oxidative stress) and 2 negative controls were also screened. When compared with the mechanistic control compounds, the phenotypic profiles of the different OPs separated into distinct clusters. The phenotypic profiles of adult vs. regenerating planarians exposed to the OPs clustered differently, suggesting some developmental-specific mechanisms. These results further support findings in other systems that OPs cause different adverse outcomes in the (developing) brain and build the foundation for future comparative studies focused on delineating the mechanisms of OP neurotoxicity in planarians.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Siqi Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Veronica Bochenek
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Zane Meyer
- Department of Engineering, Swarthmore College, Swarthmore, PA, United States
- Department of Computer Science, Swarthmore College, Swarthmore, PA, United States
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Sette KN, Alugubelly N, Glenn LB, Guo-Ross SX, Parkes MK, Wilson JR, Seay CN, Carr RL. The mechanistic basis for the toxicity difference between juvenile rats and mice following exposure to the agricultural insecticide chlorpyrifos. Toxicology 2022; 480:153317. [PMID: 36096317 DOI: 10.1016/j.tox.2022.153317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.
Collapse
Affiliation(s)
- Katelyn N Sette
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Navatha Alugubelly
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Lauren B Glenn
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Shirley X Guo-Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - M Katherine Parkes
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Caitlin N Seay
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
43
|
Saraji M, Talebi K, Balali-Mood M, Imani S. Urinary metabolites of diazinon and chlorpyrifos in sprayer operators and farm workers of a potato farm. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:745-755. [PMID: 36048024 DOI: 10.1080/03601234.2022.2111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to investigate the effect of diazinon and chlorpyrifos on agricultural workers exposed to pesticides, urinary metabolites 2-Isopropyl-6-methyl-4-pyrimidinol (IMPy) and 3,5,6-Trichloro-2-pyridinol (TPCy) in farm workers, sprayer operators, and non-exposed people as a control group were measured. The modified QuEChERS method was applied to extract samples and was measured using a gas chromatograph/nitrogen-phosphorus detector. The obtained results showed that the median concentrations of TCPy were 36.92-547.7 and 7.7-49.58 ng/mL for sprayer operators and farm workers, respectively. Moreover, the median concentrations of IMPy were 81.66-593.1 ng/mL for sprayer operators and 40.6-66.1 ng/mL for farm workers. The control group had no measurable metabolites. The IMPy level of 60% of sprayer operators was significantly higher (P ˂ 0.05) than the TCPy level. The analysis of variance highlighted the significant relationship (P ˂ 0.05) between the levels of each metabolite and the use of safety gloves, respiratory masks, safety goggles, working time per week, and type of insecticide exposure. Our findings revealed the need to measure the urinary metabolites of these insecticides in other exposed workers. Also, workers should be taught the impact of using personal protective equipment.
Collapse
Affiliation(s)
- Mahdiyar Saraji
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khalil Talebi
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sohrab Imani
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
44
|
Thistle JE, Ramos A, Roell KR, Choi G, Manley CK, Hall AM, Villanger GD, Cequier E, Sakhi AK, Thomsen C, Zeiner P, Reichborn-Kjennerud T, Øvergaard KR, Herring A, Aase H, Engel SM. Prenatal organophosphorus pesticide exposure and executive function in preschool-aged children in the Norwegian Mother, Father and Child Cohort Study (MoBa). ENVIRONMENTAL RESEARCH 2022; 212:113555. [PMID: 35613628 PMCID: PMC9484279 DOI: 10.1016/j.envres.2022.113555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Prenatal exposure to organophosphorus pesticides (OPPs) has been associated with neurodevelopmental deficits in children, however evidence linking OPPs with specific cognitive mechanisms, such as executive function (EF), is limited. OBJECTIVE This study aims to evaluate the association between prenatal exposure to OPPs with multiple measures of EF in preschool-aged children, while considering the role of variant alleles in OPP metabolism genes. METHODS We included 262 children with preschool attention-deficit/hyperactivity disorder (ADHD), and 78 typically developing children, from the Preschool ADHD substudy of the Norwegian, Mother, Father, and Child Cohort Study. Participants who gave birth between 2004 and 2008 were invited to participate in an on-site clinical assessment when the child was approximately 3.5 years; measurements of EF included parent and teacher rating on Behavior Rating Inventory of Executive Function-Preschool (BRIEF-P), and three performance-based assessments. We measured OPP metabolites in maternal urines collected at ∼17 weeks' gestation to calculate total dimethyl- (ΣDMP) and diethyl phosphate (ΣDEP) metabolite concentrations. We estimated multivariable adjusted β's and 95% confidence intervals (CIs) corresponding to a change in z-score per unit increase in log-ΣDMP/DEP. We further characterized gene-OPP interactions for maternal variants in PON1 (Q192R, M55L), CYP1A2 (1548T > C), CYP1A1 (IntG > A) and CYP2A6 (-47A > C). RESULTS Prenatal OPP metabolite concentrations were associated with worse parent and teacher ratings of emotional control, inhibition, and working memory. A one log-∑DMP increase was associated with poorer teacher ratings of EF on the BRIEF-P (e.g. emotional control domain: β = 0.55, 95% CI: 0.35, 0.74), when weighted to account for sampling procedures. We found less consistent associations with performance-based EF assessments. We found some evidence of modification for PON1 Q192R and CYP2A6 -47A > C. Association with other variants were inconsistent. CONCLUSIONS Biomarkers of prenatal OPP exposure were associated with more adverse teacher and parent ratings of EF in preschool-aged children.
Collapse
Affiliation(s)
- Jake E Thistle
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Amanda Ramos
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle R Roell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cherrel K Manley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber M Hall
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gro D Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Enrique Cequier
- Department of Environmental Health, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Environmental Health, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Department of Environmental Health, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristin R Øvergaard
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Amy Herring
- Department of Statistical Science, Global Health Institute, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Rodríguez-Carrillo A, D'Cruz SC, Mustieles V, Suárez B, Smagulova F, David A, Peinado F, Artacho-Cordón F, López LC, Arrebola JP, Olea N, Fernández MF, Freire C. Exposure to non-persistent pesticides, BDNF, and behavioral function in adolescent males: Exploring a novel effect biomarker approach. ENVIRONMENTAL RESEARCH 2022; 211:113115. [PMID: 35292247 DOI: 10.1016/j.envres.2022.113115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Numerous contemporary non-persistent pesticides may elicit neurodevelopmental impairments. Brain-derived neurotrophic factor (BDNF) has been proposed as a novel effect biomarker of neurological function that could help to understand the biological responses of some environmental exposures. OBJECTIVES To investigate the relationship between exposure to various non-persistent pesticides, BDNF, and behavioral functioning among adolescents. METHODS The concentrations of organophosphate (OP) insecticide metabolites 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), malathion diacid (MDA), and diethyl thiophosphate (DETP); metabolites of pyrethroids 3-phenoxybenzoic acid (3-PBA) and dimethylcyclopropane carboxylic acid (DCCA), the metabolite of insecticide carbaryl 1-naphthol (1-N), and the metabolite of ethylene-bis-dithiocarbamate fungicides ethylene thiourea (ETU) were measured in spot urine samples, as well as serum BDNF protein levels and blood DNA methylation of Exon IV of BDNF gene in 15-17-year-old boys from the INMA-Granada cohort in Spain. Adolescents' behavior was reported by parents using the Child Behavior Check List (CBCL/6-18). This study included 140 adolescents of whom 118 had data on BDNF gene DNA methylation. Multivariable linear regression, weighted quantile sum (WQS) for mixture effects, and mediation models were fit. RESULTS IMPy, MDA, DCCA, and ETU were detected in more than 70% of urine samples, DETP in 53%, and TCPy, 3-PBA, and 1-N in less than 50% of samples. Higher levels of IMPy, TCPy, and ETU were significantly associated with more behavioral problems as social, thought problems, and rule-breaking symptoms. IMPy, MDA, DETP, and 1-N were significantly associated with decreased serum BDNF levels, while MDA, 3-PBA, and ETU were associated with higher DNA methylation percentages at several CpGs. WQS models suggest a mixture effect on more behavioral problems and BDNF DNA methylation at several CpGs. A mediated effect of serum BDNF within IMPy-thought and IMPy-rule breaking associations was suggested. CONCLUSION BDNF biomarkers measured at different levels of biological complexity provided novel information regarding the potential disruption of behavioral function due to contemporary pesticides, highlighting exposure to diazinon (IMPy) and the combined effect of IMPy, MDA, DCCA, and ETU. However, further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Shereen C D'Cruz
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Fátima Smagulova
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Francisco Peinado
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Luis C López
- University of Granada, Department of Physiology, 18016, Granada, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; University of Granada, Department of Preventive Medicine and Public Health, 18016, Granada, Spain
| | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
46
|
Nascimento S, Brucker N, Göethel G, Sauer E, Peruzzi C, Gauer B, Tureta E, Flesch I, Cestonaro L, Pierre TS, Gioda A, Garcia SC. Children Environmentally Exposed to Agrochemicals in Rural Areas Present Changes in Oxidative Status and DNA Damage. Biol Trace Elem Res 2022; 200:3511-3518. [PMID: 34668114 DOI: 10.1007/s12011-021-02950-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Rural children are exposed to several chemicals. This study evaluated the environmental co-exposure of rural children to cholinesterase inhibitor insecticides and metals/metalloids, and the resulting oxidative stress and DNA damage. Seventy-two children (5 to 16 years old) were studied at two different moments: period 1, when agrochemicals were less used, and period 2, when agrochemicals were extensively used in agriculture. Biomonitoring was performed by evaluating butyrylcholinesterase (BuChE) activity in serum; arsenic (As), chromium (Cr), lead (Pb), and nickel (Ni) levels in blood; malondialdehyde (MDA) in plasma; glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) activities in whole blood; non-protein thiol levels in erythrocytes; and micronuclei (MN) assay in exfoliated buccal cells. Cr and As levels were higher than the reference values in both periods, and Ni levels were higher than the reference values in period 2 alone. BuChE activity was inhibited in period 2 compared with period 1. In period 2, there was an increase in endogenous antioxidants and a decrease in MDA, probably demonstrating a compensatory mechanism as a response to increasing xenobiotics. Also in period 2, the MN frequency increased and BuChE and As were positively associated, suggesting co-exposure. On the other hand, in period 1, it was observed that Cr, Ni, and Pb blood levels were negatively associated with GSH-Px and GST, while MDA was positively associated with As levels. Our findings demonstrated an imbalance in endogenous antioxidants, contributing to genotoxicity and lipoperoxidation, probably in response to exposure to xenobiotics, especially carcinogenic elements (Cr, As, and Ni).
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
| | - Caroline Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
| | - Emanuela Tureta
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
| | - Ingrid Flesch
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Department of Chemistry, Pontifícia Universidade Católica Do Rio de Janeiro, (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifícia Universidade Católica Do Rio de Janeiro, (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande Do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP, 90610-000, Brazil.
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
47
|
Cabrita A, Medeiros AM, Pereira T, Rodrigues AS, Kranendonk M, Mendes CS. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience 2022; 25:104541. [PMID: 35769875 PMCID: PMC9234254 DOI: 10.1016/j.isci.2022.104541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chlorpyrifos (CPS)) and putative (β-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds. Alternatives to mammalian testing are needed to detect developmental neurotoxicity The pesticide chlorpyrifos causes partial lethality and motor dysfunction Non-lethal levels of BMAA induce motor dysfunction in a dose-dependent manner Kinematic profiling of adult Drosophila can identify developmental neurotoxicity
Collapse
Affiliation(s)
- Ana Cabrita
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandra M. Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Telmo Pereira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| | - César S. Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| |
Collapse
|
48
|
McClelland SJ, Woodley SK. Developmental Exposure to Trace Concentrations of Chlorpyrifos Results in Nonmonotonic Changes in Brain Shape and Behavior in Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9379-9386. [PMID: 35704902 DOI: 10.1021/acs.est.2c01039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite regulations and improved design, pesticides remain ubiquitous in the environment at relatively low, trace concentrations. To understand how prolonged exposure to trace pesticide concentrations impacts vertebrate brain development and behavior, we raised larval amphibians (northern leopard frogs, Lithobates pipiens) in 0, 1, or 10 μg/L of the organophosphorus pesticide chlorpyrifos (CPF) from hatching to metamorphosis. Tadpoles exposed to 1 μg/L CPF, but not 10 μg/L CPF, had changes in relative brain mass, relative telencephalon shape, and behavioral responses to a novel visual cue. Tadpoles exposed to 10 μg/L CPF had altered behavioral responses to predator-associated olfactory cues. After metamorphosis, frogs raised in 1 μg/L CPF, but not 10 μg/L CPF, had changes in the shape of their optic tectum and medulla. Thus, we provide robust evidence that even trace, yet ecologically realistic, concentrations of CPF have neurodevelopmental and behavioral effects that carry over to later life-history stages, further emphasizing the potent effects of trace levels of CPF on vertebrate development. Also, some but not all effects were nonmonotonic, meaning that effects were evident at the lowest but not at the higher concentration of CPF.
Collapse
Affiliation(s)
- Sara J McClelland
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
- Moravian University, Bethlehem, Pennsylvania 18018, United States
| | - Sarah K Woodley
- Duquesne University, Pittsburgh, Pennsylvania 15217, United States
| |
Collapse
|
49
|
Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138148. [PMID: 35805806 PMCID: PMC9266339 DOI: 10.3390/ijerph19138148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022]
Abstract
Prenatal organophosphorus pesticide (OPP) exposure has been associated with child attention-deficit/hyperactivity disorder (ADHD) in agricultural communities and those that are exposed to residentially applied insecticides. To examine this association in populations that are exposed primarily through diet, we estimate the associations between prenatal OPP exposure and preschool ADHD in the Norwegian Mother, Father and Child Cohort Study (MoBa), and describe modification by paraoxonase 1 (PON1) gene variants. We used participants from the MoBa Preschool ADHD Sub-study (n = 259 cases) and a random sample of MoBa sub-cohort participants (n = 547) with birth years from 2004 to 2008. Prenatal urinary dialkylphosphate (DAP) metabolites (total diethylphosphate [∑DEP] and total dimethylphosphate [∑DMP]) were measured by an ultra-performance liquid chromatography-time-of-flight system and summed by molar concentration. Maternal DNA was genotyped for coding variants of PON1 (Q192R and L55M). We used a multivariable logistic regression to calculate the odds ratios (OR) and 95% confidence intervals, adjusted for maternal education, parity, income dependency, age, marital status, ADHD-like symptoms, pesticide use, produce consumption, and season. We found no associations between DAP metabolite concentrations and preschool ADHD. The adjusted ORs for exposure quartiles 2-4 relative to 1 were slightly inverse. No monotonic trends were observed, and the estimates lacked precision, likely due to the small sample size and variation in the population. We found no evidence of modification by PON1 SNP variation or child sex. Maternal urinary DAP concentrations were not associated with preschool ADHD.
Collapse
|
50
|
Iglesias-González A, Schweitzer M, Palazzi P, Peng F, Haan S, Letellier E, Appenzeller BMR. Investigating children's chemical exposome - Description and possible determinants of exposure in the region of Luxembourg based on hair analysis. ENVIRONMENT INTERNATIONAL 2022; 165:107342. [PMID: 35714525 DOI: 10.1016/j.envint.2022.107342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The specific physiology and behaviour of children makes them particularly vulnerable to chemical exposure. Specific studies must therefore be conducted to understand the impact of pollution on children's health. Human biomonitoring is a reliable approach for exposure assessment, and hair, allowing the detection of parent chemicals and metabolites, and covering wider time windows than urine and blood is particularly adapted to study chronic exposure. The present study aims at assessing chemical exposure and investigating possible determinants of exposure in children living in Luxembourg. Hair samples were collected from 256 children below 13 y/o and tested for 153 compounds (140 pesticides, 4 PCBs, 7 BDEs and 2 bisphenols). Moreover, anthropometric parameters, information on diet, residence, and presence of pets at home was collected through questionnaires. Correlations, regressions, t-tests, PLS-DA and MANOVAs, were used to investigate exposure patterns. Twenty-nine to 88 (median = 61) compounds were detected per sample. The highest median concentration was observed for BPA (133.6 pg/mg). Twenty-three biomarkers were detected in ≥ 95% of the samples, including 13 in all samples (11 pesticides, BPA and BPS). Exposure was higher at younger ages (R2 = 0.57), and boys were more exposed to non-persistent pesticides than girls. Presence of persistent organic pollutants in most children suggests that exposure is still ongoing. Moreover, diet (e.g. imazalil: 0.33 pg/mg in organic, 1.15 pg/mg in conventional, p-value < 0.001), residence area (e.g. imidacloprid: 0.29 pg/mg in urban, 0.47 pg/mg in countryside, p-value = 0.03), and having pets (e.g. fipronil: 0.32 pg/mg in pets, 0.09 pg/mg in no pets, p-value < 0.001) were identified as determinants of exposure. The present study demonstrates that children are simultaneously exposed to multiple pollutants from different chemical classes, and confirms the suitability of hair to investigate exposure. These results set the basis for further investigations to better understand the determinants of chemical exposure in children.
Collapse
Affiliation(s)
- Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, L-1445 Strassen, Luxembourg; University of Luxembourg, 2 Avenue de l'Universite, L- 4365 Esch-sur-Alzette, Luxembourg.
| | - Mylène Schweitzer
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Fengjiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing L-4367 Belvaux, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing L-4367 Belvaux, Luxembourg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B Rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|