1
|
Nikravesh M, Ghanbari S, Badiee M, Zarea K, Moosavi M, Matin M. Relationship Between Arsenic in Biological Media and Breast Cancer: A Systematic Review and Meta-Analysis. Biol Trace Elem Res 2025; 203:61-68. [PMID: 38619678 DOI: 10.1007/s12011-024-04157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Arsenic (As) is an environmental pollutant with carcinogenic effects and breast cancer (BC) is a prevalent malignant tumor in women. The goal of this meta-analysis was to establish a connection between biological sample As levels and the risk of developing BC. Pub Med, Web of Science, Scopus, and Elsevier were used to systematically screen the literature published between 1990 and 2023. The Newcastle-Ottawa scale was also used in assessing the quality of publications. A random-effects model was used to assess the pertinent data that was gleaned from these articles. Using the I2 index the heterogeneity of studies was performed. Egger's test and funnel plots were used to look at publication bias. We identified 16 epidemiologic studies that included 2713 women with BC and 5347 healthy individuals. The results showed that the difference between the case group and the control group was 0.72 [95% confidence interval (CI) 0.30 to 1.14]. According to subgroup analysis, the value for blood was 0.18 [95% CI 0.01 to 0.35], whereas the value for hair was 3.08 [95% CI 0.19 to 5.97]. The present meta-analysis suggested that As levels were significantly higher in BC patients than in controls. This systematic review and meta-analysis provide evidence supporting a positive relationship between arsenic levels in biological media and BC risk. These findings highlight the importance of further research to investigate the mechanisms of this association and explore potential preventive strategies to reduce the adverse effects of arsenic exposure on BC.
Collapse
Affiliation(s)
- Mehrad Nikravesh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghanbari
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdiehsadat Badiee
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kourosh Zarea
- Nursing Care Research Center in Chronic Diseases, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoush Matin
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Tomlinson MM, Pugh F, Nail AN, Newton JD, Udoh K, Abraham S, Kavalukas S, Guinn B, Tamimi RM, Laden F, Iyer HS, States JC, Ruther M, Ellis CT, DuPré NC. Heavy-metal associated breast cancer and colorectal cancer hot spots and their demographic and socioeconomic characteristics. Cancer Causes Control 2024; 35:1367-1381. [PMID: 38916703 PMCID: PMC11461597 DOI: 10.1007/s10552-024-01894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Cancer registries offer an avenue to identify cancer clusters across large populations and efficiently examine potential environmental harms affecting cancer. The role of known metal carcinogens (i.e., cadmium, arsenic, nickel, chromium(VI)) in breast and colorectal carcinogenesis is largely unknown. Historically marginalized communities are disproportionately exposed to metals, which could explain cancer disparities. We examined area-based metal exposures and odds of residing in breast and colorectal cancer hotspots utilizing state tumor registry data and described the characteristics of those living in heavy metal-associated cancer hotspots. METHODS Breast and colorectal cancer hotspots were mapped across Kentucky, and area-based ambient metal exposure to cadmium, arsenic, nickel, and chromium(VI) were extracted from the 2014 National Air Toxics Assessment for Kentucky census tracts. Among colorectal cancer (n = 56,598) and female breast cancer (n = 77,637) diagnoses in Kentucky, we used logistic regression models to estimate Odds Ratios (ORs) and 95% Confidence Intervals to examine the association between ambient metal concentrations and odds of residing in cancer hotspots, independent of individual-level and neighborhood risk factors. RESULTS Higher ambient metal exposures were associated with higher odds of residing in breast and colorectal cancer hotspots. Populations in breast and colorectal cancer hotspots were disproportionately Black and had markers of lower socioeconomic status. Furthermore, adjusting for age, race, tobacco and neighborhood factors did not significantly change cancer hotspot ORs for ambient metal exposures analyzed. CONCLUSION Ambient metal exposures contribute to higher cancer rates in certain geographic areas that are largely composed of marginalized populations. Individual-level assessments of metal exposures and cancer disparities are needed.
Collapse
Affiliation(s)
- Madeline M Tomlinson
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Felicia Pugh
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
- Louisville Metro Department of Public Health and Wellness, Center for Health Equity, Louisville, KY, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Johnnie D Newton
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Karen Udoh
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Stephie Abraham
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Sandy Kavalukas
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Brian Guinn
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medical, New York, NY, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology and Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hari S Iyer
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Matthew Ruther
- Department of Urban and Public Affairs, College of Arts and Sciences, University of Louisville, Louisville, KY, USA
| | - C Tyler Ellis
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Natalie C DuPré
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E Gray St, Louisville, KY, 40202, USA.
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Dennis LK, Langston ME, Beane Freeman L, Canales RA, Lynch CF. Trace Element Concentrations of Arsenic and Selenium in Toenails and Risk of Prostate Cancer among Pesticide Applicators. Curr Oncol 2024; 31:5472-5483. [PMID: 39330033 PMCID: PMC11430890 DOI: 10.3390/curroncol31090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer is a common cancer among males in the US, but little is known about its risk factors, including trace elements. The primary aim of this study was to examine prostate cancer and its association with arsenic and selenium in toenails. We conducted a small, nested case-control study of men residing in Iowa within the Agricultural Health Study cohort, where we also collected toenail samples to test for arsenic and other trace elements. Toenail samples were sent for neutron activation analysis aimed at long-lived trace elements, including arsenic. Logistic regression was used to estimate odds ratios (ORs) for trace element exposures and prostate cancer. A total of 66 prostate cancer cases and 173 healthy controls returned questionnaires, over 99% of which included toenail samples. An increased risk was seen for the highest levels of arsenic (OR = 3.4 confidence interval (CI) of 1.3-8.6 and OR = 2.2, 95% CI of 0.9-5.6) and the highest level of selenium (2.0, 95% CI of 1.0-4.0). These data also show detectable levels of over 50% for 14 of 22 elements detected in the toenails. The association seen here with arsenic and prostate cancer further supports ecological studies finding an association with community levels of arsenic and prostate cancer incidence and mortality.
Collapse
Affiliation(s)
- Leslie K. Dennis
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA;
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| | - Marvin E. Langston
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA;
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laura Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA;
| | - Robert A. Canales
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- Department of Community and Environmental Health, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85721, USA
| | - Charles F. Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
5
|
Shuai W, Huang Q, Xu L, Mu Y. Association between arsenic exposure and melanoma: a meta-analysis. Int J Dermatol 2024; 63:1155-1163. [PMID: 38703130 DOI: 10.1111/ijd.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Melanoma is a highly malignant tumor. Moreover, its prevalence is increasing at a rapid rate year after year. Currently, UV light is the leading cause of melanoma, although numerous other risk factors exist, including arsenic. The link between arsenic and the likelihood of developing melanoma has long been debated. As a result, we conducted a meta-analysis of the available data to investigate the association between arsenic exposure and melanoma. METHODS We identified seven non-randomized controlled studies with 41,949 participants by searching the Chinese CNKI, Embase, PubMed, and Cochrane Library databases. We then used random-effects or fixed-effects models to evaluate the pooled odds ratios (OR) and their 95% confidence intervals (CI). Subgroup analyses were also carried out with different included regions. RESULTS Participants in the study who were exposed to arsenic had a somewhat higher chance of developing melanoma than those who were not (OR = 1.47, 95% CI 1.01-2.13). A subgroup analysis was also carried out for the US region, and the findings were not statistically significant (OR = 1.40, 95% CI 0.94-2.07). CONCLUSION This meta-analysis shows that arsenic exposure relates to an increased risk of melanoma.
Collapse
Affiliation(s)
| | - Qing Huang
- North Sichuan Medical College, Nanchong, P.R. China
| | - Liuli Xu
- North Sichuan Medical College, Nanchong, P.R. China
| | - Yunzhu Mu
- Department of Dermatology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, P.R. China
| |
Collapse
|
6
|
Horsdal HT, Pedersen MG, Schullehner J, Østergaard CS, Mcgrath JJ, Agerbo E, Timmermann A, Closter AM, Brandt J, Christensen JH, Frohn LM, Geels C, Ketzel M, Khan J, Ørby PV, Olsen Y, Levin G, Svenning JC, Engemann K, Gyldenkærne S, Hansen B, Hertel O, Sabel CE, Erikstrup C, Sigsgaard T, Pedersen CB. Perspectives on environment and health research in Denmark. Scand J Public Health 2024; 52:741-751. [PMID: 37278162 PMCID: PMC11308320 DOI: 10.1177/14034948231178076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
AIMS We provide an overview of nationwide environmental data available for Denmark and its linkage potentials to individual-level records with the aim of promoting research on the potential impact of the local surrounding environment on human health. BACKGROUND Researchers in Denmark have unique opportunities for conducting large population-based studies treating the entire Danish population as one big, open and dynamic cohort based on nationally complete population and health registries. So far, most research in this area has utilised individual- and family-level information to study the clustering of disease in families, comorbidities, risk of, and prognosis after, disease onset, and social gradients in disease risk. Linking environmental data in time and space to individuals enables novel possibilities for studying the health effects of the social, built and physical environment. METHODS We describe the possible linkage between individuals and their local surrounding environment to establish the exposome - that is, the total environmental exposure of an individual over their life course. CONCLUSIONS The currently available nationwide longitudinal environmental data in Denmark constitutes a valuable and globally rare asset that can help explore the impact of the exposome on human health.
Collapse
Affiliation(s)
- Henriette T. Horsdal
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
| | - Marianne G. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jörg Schullehner
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
- Geological Survey of Denmark and Greenland, Denmark
| | - Cecilie S. Østergaard
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - John J. Mcgrath
- National Centre for Register-based Research, Aarhus University, Denmark
- Queensland Brain Institute, The University of Queensland, Australia
- Queensland Centre for Mental Health Research, Australia
| | - Esben Agerbo
- National Centre for Register-based Research, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Allan Timmermann
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Ane Marie Closter
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Denmark
| | | | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Denmark
- Global Centre for Clean Air Research, University of Surrey, UK
| | - Jibran Khan
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Pia V. Ørby
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Environmental Science, Aarhus University, Denmark
| | - Yulia Olsen
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Gregor Levin
- Department of Environmental Science, Aarhus University, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | - Kristine Engemann
- Center for Ecological Dynamics in a Novel Biosphere & Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Denmark
| | | | | | - Ole Hertel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Ecoscience, Aarhus University, Denmark
| | - Clive E. Sabel
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Christian Erikstrup
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Denmark
| | - Torben Sigsgaard
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Department of Public Health, Aarhus University, Denmark
| | - Carsten B. Pedersen
- National Centre for Register-based Research, Aarhus University, Denmark
- Big Data Centre for Environment and Health, Aarhus University, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Denmark
| |
Collapse
|
7
|
Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, Baskar G, Pugazhendhi A. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. ENVIRONMENTAL RESEARCH 2024; 258:119440. [PMID: 38906448 DOI: 10.1016/j.envres.2024.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - G Arnica
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
8
|
De Pretis F, Zhou Y, Xun P, Shao K. Benchmark dose modeling for epidemiological dose-response assessment using prospective cohort studies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:743-756. [PMID: 37496455 PMCID: PMC10817999 DOI: 10.1111/risa.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Benchmark dose (BMD) methodology has been employed as a default dose-response modeling approach to determine the toxicity value of chemicals to support regulatory chemical risk assessment. Especially, a relatively standardized BMD analysis framework has been established for modeling toxicological data regarding the formats of input data, dose-response models, definitions of benchmark response, and model uncertainty consideration. However, the BMD approach has not been well developed for epidemiological data mainly because of the diverse designs of epidemiological studies and various formats of data reported in the literature. Although most of the epidemiological BMD analyses were developed to solve a particular question, the methods proposed in two recent studies are able to handle cohort and case-control studies using summary data with consideration of adjustments for confounders. Therefore, the purpose of the present study is to investigate and compare the "effective count"-based BMD modeling approach and adjusted relative risk (RR)-based BMD analysis approach to identify an appropriate BMD modeling framework that can be generalized for analyzing published data of prospective cohort studies for BMD analysis. The two methods were applied to the same set of studies that investigated the association between bladder and lung cancer and inorganic arsenic exposure for BMD estimation. The results suggest that estimated BMDs and BMDLs are relatively consistent; however, with the consideration of established common practice in BMD analysis, modeling adjusted RR values as continuous data for BMD estimation is a more generalizable approach harmonized with the BMD approach using toxicological data.
Collapse
Affiliation(s)
- Francesco De Pretis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Communication and Economics, University of Modena and Reggio Emilia, Reggio Emilia, RE 42124, Italy
| | - Yun Zhou
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Pengcheng Xun
- Department of Global Value Access and Outcomes, Atara Biotherapeutics Inc., Thousand Oaks, CA 91320, USA
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Gettings SM, Timbury W, Dmochowska A, Sharma R, McGonigle R, MacKenzie LE, Miquelard-Garnier G, Bourbia N. Polyethylene terephthalate (PET) micro- and nanoplastic particles affect the mitochondrial efficiency of human brain vascular pericytes without inducing oxidative stress. NANOIMPACT 2024; 34:100508. [PMID: 38663501 DOI: 10.1016/j.impact.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The objective of this investigation was to evaluate the influence of micro- and nanoplastic particles composed of polyethylene terephthalate (PET), a significant contributor to plastic pollution, on human brain vascular pericytes. Specifically, we delved into their impact on mitochondrial functionality, oxidative stress, and the expression of genes associated with oxidative stress, ferroptosis and mitochondrial functions. Our findings demonstrate that the exposure of a monoculture of human brain vascular pericytes to PET particles in vitro at a concentration of 50 μg/ml for a duration of 3, 6 and 10 days did not elicit oxidative stress. Notably, we observed a reduction in various aspects of mitochondrial respiration, including maximal respiration, spare respiratory capacity, and ATP production in pericytes subjected to PET particles for 3 days, with a mitochondrial function recovery at 6 and 10 days. Furthermore, there were no statistically significant alterations in mitochondrial DNA copy number, or in the expression of genes linked to oxidative stress and ferroptosis, but an increase of the expression of the gene mitochondrial transcription factor A (TFAM) was noted at 3 days exposure. These outcomes suggest that, at a concentration of 50 μg/ml, PET particles do not induce oxidative stress in human brain vascular pericytes. Instead, at 3 days exposure, PET exposure impairs mitochondrial functions, but this is recovered at 6-day exposure. This seems to indicate a potential mitochondrial hormesis response (mitohormesis) is incited, involving the gene TFAM. Further investigations are warranted to explore the stages of mitohormesis and the potential consequences of plastics on the integrity of the blood-brain barrier and intercellular interactions. This research contributes to our comprehension of the potential repercussions of nanoplastic pollution on human health and underscores the imperative need for ongoing examinations into the exposure to plastic particles.
Collapse
Affiliation(s)
- Sean M Gettings
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - William Timbury
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Anna Dmochowska
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Riddhi Sharma
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Rebecca McGonigle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Lewis E MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Nora Bourbia
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
10
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
11
|
Issanov A, Adewusi B, Saint-Jacques N, Dummer TJB. Arsenic in drinking water and lung cancer: A systematic review of 35 years of evidence. Toxicol Appl Pharmacol 2024; 483:116808. [PMID: 38218206 DOI: 10.1016/j.taap.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The association between higher arsenic concentrations in drinking water and lung cancer is well-established. However, the risk associated with lower levels of arsenic exposure remains uncertain. This systematic review and meta-analysis summarizes the evidence on the relationship between exposure to arsenic in drinking water and lung cancer outcomes as measured over a broad range of exposures, including lower levels. A total of 51 studies were included in the review and 15 met criteria for inclusion in meta-analysis. Risk estimates for lung cancer incidence and mortality were pooled and analyzed separately using Bayesian hierarchical random-effects models with a Gaussian observation submodel for log(Risk), computed using the "brms" R package. For lung cancer incidence, the predicted posterior mean relative risks (RRs) at arsenic concentrations of 10, 50 and 150 μg/L were 1.11 (0.86-1.43), 1.67 (1.27-2.17) and 2.21 (1.61-3.02), respectively, with posterior probabilities of 79%, 100% and 100%, respectively, for the RRs to be >1. The posterior mean mortality ratios at 20, 50 and 150 μg/L were 1.22 (0.83-1.78), 2.10 (1.62-2.71) and 2.41 (1.88-3.08), respectively, with posterior probabilities being above 80%. In addition to observing the dose-response relationship, these findings demonstrate that individuals exposed to low to moderate levels of arsenic (<150 μg/L) were at an elevated risk of developing or dying from lung cancer. Given the widespread exposure to lower levels of arsenic, there is an urgent need for vigilance and potential revisions to regulatory guidelines to protect people from the cancer risks associated with arsenic exposure.
Collapse
Affiliation(s)
- Alpamys Issanov
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Betty Adewusi
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Nathalie Saint-Jacques
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Department of Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Trevor J B Dummer
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
12
|
Mukherjee AG, Gopalakrishnan AV. Arsenic-induced prostate cancer: an enigma. Med Oncol 2024; 41:50. [PMID: 38184511 DOI: 10.1007/s12032-023-02266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 01/08/2024]
Abstract
Arsenic exhibits varying degrees of toxicity depending on its many chemical forms. The carcinogenic properties of arsenic have already been established. However, the precise processes underlying the development of diseases following acute or chronic exposure to arsenic remain poorly known. Most of the existing investigation has focused on studying the occurrence of cancer following significant exposure to elevated levels of arsenic. Nevertheless, multiple investigations have documented diverse health consequences from prolonged exposure to low levels of arsenic. Inorganic arsenic commonly causes lung, bladder, and skin cancer. Some investigations have shown an association between arsenic in drinking water and prostate cancer, but few investigations have focused on exploring this connection. There is currently a lack of relevant animal models demonstrating a clear link between inorganic arsenic exposure and the development of prostate cancer. Nevertheless, studies using cellular model systems have demonstrated that arsenic can potentially promote the malignant transformation of human prostate epithelial cells in vitro. The administration of elevated levels of arsenic has been demonstrated to elicit cell death in instances of acute experimental exposure. Conversely, in cases of chronic exposure, arsenic prompts cellular proliferation and sustains cellular viability, thereby circumventing the constraints imposed by telomere shortening and apoptosis. Furthermore, cells consistently exposed to the stimulus exhibit an augmented ability to invade surrounding tissues and an enhanced potential to form tumors. This review aims to portray mechanistic insights into arsenic-induced prostate cancer.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
14
|
Rahman HH, Toohey W, Munson-McGee SH. Exposure to arsenic, polycyclic aromatic hydrocarbons, metals, and association with skin cancers in the US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101681-101708. [PMID: 37653200 DOI: 10.1007/s11356-023-29422-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Worldwide, skin cancer affects millions of people yearly and is broadly classified into melanoma and nonmelanoma types of skin cancer. The toxicity of metals to human health is a public and clinical health problem due to their widespread use in tools, machinery, and appliances as well as their widespread distribution in the air, water, and soil. Arsenic is a carcinogenic metalloid and available in the Earth's crust. Polycyclic aromatic hydrocarbons (PAHs) are toxic to humans, and incomplete combustion of fossil fuels is the main source of PAHs. Human populations exposed to metals from various sources can lead to various diseases including cancer. Limited studies are conducted to simultaneously assess the correlation of multiple arsenic, PAHs, metals with the occurrence of skin cancer. This study aimed to analyze the association between six PAHs compounds, seven types of arsenic, and fourteen metals from urine specimen with skin cancer in US adults. We performed a cross-sectional analysis using data from a total of 14,716 adults from the National Health Examination and Nutrition Survey (NHANES) database for three cycles ranging from 2011-2012 to 2015-2016. Specialized weighted complex survey logit regressions were conducted. Linear logit regression models using only main effects were performed first to identify the correlation between the selected demographic and lifestyle variables and melanoma, nonmelanoma, and unknown types of skin cancer. A second set of linear, main-effects logit regression models were constructed to examine the correlation between melanoma, nonmelanoma, and other types of skin cancers and seven types of arsenic (arsenous acid, arsenic acid, arsenobetaine, arsenocholine, dimethylarsinic acid, monomethylacrsonic acid, and total arsenic), six PAHs (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenathrene, and 1-hydroxypyrene), and fourteen metals (barium, cadmium, cobalt, cesium, molybdenum, manganese, lead, antimony, tin, strontium, thallium, tungsten, uranium, and mercury) when adjusted for the selected covariates. The statistical analysis was conducted using R software, version 4.0.4. A marginal positive significant correlation between total arsenic and nonmelanoma was observed. This study identified a significant positive association between barium, cadmium, cesium, mercury, tin, and melanoma development. Cesium showed a significant positive statistical association for nonmelanoma, and thallium showed a borderline significant statistical association for nonmelanoma. A statistically significant positive association was found between cadmium and an unknown type of skin cancer. The findings of this study indicated a statistically significant positive association between skin cancer and barium, cadmium, cesium, tin, mercury, and thallium. Further studies are recommended in humans to refute or confirm these findings.
Collapse
Affiliation(s)
| | - Walker Toohey
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
15
|
Baghery F, Lau LDW, Mohamadi M, Vazirinejad R, Ahmadi Z, Javedani H, Eslami H, Nazari A. Risk of urinary tract cancers following arsenic exposure and tobacco smoking: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5579-5598. [PMID: 37248359 DOI: 10.1007/s10653-023-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Bladder cancer, prostate cancer, and kidney cancer, due to their high morbidity and mortality rates, result in significant economic and health care costs. Arsenic exposure affects the drinking water of millions of people worldwide. Long-term exposure to arsenic, even in low concentrations, increases the risk of developing various cancers. Smoking is also one of the leading causes of bladder, prostate and kidney cancers. Accordingly, this research reviews the relationship between arsenic exposure and smoking with three kinds of urinary tract cancers (bladder cancer, prostate cancer, and kidney cancer) due to their widespread concern for their negative impact on public health globally. In this review, we have gathered the most current information from scientific databases [PubMed, Scopus, Google Scholar, ISI web of science] regarding the relationship between arsenic exposure and tobacco smoking with the risk of bladder, prostate, and kidney cancer. In several studies, a significant relationship was determined between the incidence and mortality rate of the above-mentioned cancers in humans with arsenic exposure and tobacco smoking. The decrease or cessation of smoking and consumption of arsenic-free water significantly declined the incidence of bladder, prostate, and kidney cancers.
Collapse
Affiliation(s)
- Fatemeh Baghery
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Maryam Mohamadi
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Vazirinejad
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javedani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hadi Eslami
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
16
|
Kasmi S, Moser L, Gonvers S, Dormond O, Demartines N, Labgaa I. Carcinogenic effect of arsenic in digestive cancers: a systematic review. Environ Health 2023; 22:36. [PMID: 37069631 PMCID: PMC10108502 DOI: 10.1186/s12940-023-00988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The carcinogenic effect of arsenic (As) has been documented in lung, bladder and skin cancers but remains unclear for digestive cancers, although metabolic pathways of As and recent data suggest that it may be an important determinant in these malignancies as well. OBJECTIVE This study aimed to systematically review the available literature investigating the potential association between As and digestive cancers. METHODS An extensive search was conducted in Medline Ovid SP, Cochrane, PubMed, Embase.com, Cochrane Library Wiley, Web of Science and Google Scholar. Studies providing original data in humans, with As measurement and analysis of association with digestive cancers including esogastric cancers (esophagus and stomach), hepato-pancreatico-biliary (HPB) cancers (including biliary tract, liver and pancreas) and colorectal cancers were eligible. RESULTS A total of 35 studies were identified, 17 ecological, 13 case-control and 5 cohort studies. Associations between As and digestive cancers were reported for both risks of incidence and cancer-related mortality. Overall, 43% (3/7) and 48% (10/21) studies highlighted an association between As and the incidence or the mortality of digestive cancers, respectively. CONCLUSIONS A substantial proportion of studies exploring the potential link between As and digestive cancers suggested an association, particularly in HPB malignancies. These findings emphasize the need to further investigate this topic with dedicated and high-quality studies, as it may have an important impact, including for prevention strategies.
Collapse
Affiliation(s)
- Sophie Kasmi
- Division of Internal Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Laureline Moser
- Division of Gynecology, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stéphanie Gonvers
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Dormond
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Nicolas Demartines
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Ismail Labgaa
- Division of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
17
|
Collatuzzo G, Boffetta P, Dika E, Visci G, Zunarelli C, Mastroeni S, Antonelli G, Fortes C. Occupational exposure to arsenic, mercury and UV radiation and risk of melanoma: a case-control study from Italy. Int Arch Occup Environ Health 2023; 96:443-449. [PMID: 36378322 DOI: 10.1007/s00420-022-01935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Melanoma is mainly caused by sunlight radiation, but other environmental risk factors are not well known. We investigated the association between cutaneous melanoma and occupational exposure to arsenic, mercury and UV radiation. METHODS A hospital-based case-control study was conducted in the inpatient wards of IDI-San Carlo Rome, Italy, including 304 incident cases of cutaneous melanoma and 305 frequency-matched controls. Detailed sociodemographic, clinical and host-related factors were collected, and all participants were physically examined using dermoscopy and following standard protocol for recording pigmented lesions. Four experts assessed exposure to arsenic, mercury and UV radiation based on occupational history. A multidimensional variable was created for each risk factor, by combining intensity and probability of exposure. Multivariable logistic regression models were run to calculate odds ratios (OR) and 95% confidence intervals (CI) of the association between exposure to these agents and melanoma. RESULTS A total of 5.4% of the cases vs 2.4% of the controls were exposed to arsenic (OR = 3.12; 95% CI = 1.10-8.86 for high probability and high exposure to arsenic) after controlling for sex, age, smoking status, number of nevi, phototype and history of sunburns in childhood/adolescence. Occupational exposure to mercury and UV radiation was not associated with the risk of melanoma. CONCLUSIONS Subjects exposed to arsenic at the workplace may be at increased risk of developing cutaneous melanoma in comparison to subjects not exposed to this agent. Further studies should be designed to investigate occupational exposure to arsenic and mercury and melanoma and confirm the findings are warranted.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy. .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giovanni Visci
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carlotta Zunarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Mastroeni
- Epidemiology Unit, Istituto Dermopatico dell'Immacolata Concezione, IDI-IRCCS, Rome, Italy
| | - Gianluca Antonelli
- Dermatology Department, Istituto Dermopatico dell'Immacolata Concezione, IDI-IRCCS, Rome, Italy
| | - Cristina Fortes
- Epidemiology Unit, Istituto Dermopatico dell'Immacolata Concezione, IDI-IRCCS, Rome, Italy
| |
Collapse
|
18
|
Folorunso OM, Bocca B, Ruggieri F, Frazzoli C, Chijioke-Nwauche I, Orisakwe OE. Heavy metals and inflammatory, oxidative/antioxidant and DNA damage biomarkers among people living with HIV/AIDS (PLWHA) in Niger Delta, Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:295-313. [PMID: 36876887 DOI: 10.1080/10934529.2023.2185004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the association of heavy metals (HMs) and effect biomarkers (inflammation, oxidative stress/antioxidant capacity and DNA damage) among people living with HIV/AIDS (PHWHA) in Niger Delta area, Nigeria. Blood levels of lead (BPb), cadmium (BCd), copper (BCu), zinc (BZn), iron (BFe), C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), Malondialdehyde (MDA), Glutathione (GSH) and 8-hydroxy-2-deoxyguanosine (8-OHdG) were determined in a total of 185 participants, 104 HIV-positive and 81 HIV-negative sampled in both Niger Delta and non-Niger Delta regions. BCd (p < 0.001) and BPb (p = 0.139) were higher in HIV-positive subjects compared to HIV-negative controls; on the contrary, BCu, BZn and BFe levels were lower (p < 0.001) in HIV-positive subjects compared to HIV-negative controls. The Niger Delta population had higher levels of heavy metals (p < 0.01) compared to non-Niger Delta residents. CRP and 8-OHdG were higher (p < 0.001) in HIV-positive than in HIV-negative subjects and in Niger-Delta than in non-Niger Delta residents. BCu had significant positive dose-response relationship with CRP (61.9%, p = 0.063) and GSH (1.64%, p = 0.035) levels in HIV-positive subjects, and negative response with MDA levels (26.6%, p < 0.001). Periodic assessment of HMs levels among PLWHA is recommended.
Collapse
Affiliation(s)
- Opeyemi M Folorunso
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseas, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Ifeyinwa Chijioke-Nwauche
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Rivers State, Nigeria
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
19
|
Nuvolone D, Stoppa G, Petri D, Voller F. Long-term exposure to low-level arsenic in drinking water is associated with cause-specific mortality and hospitalization in the Mt. Amiata area (Tuscany, Italy). BMC Public Health 2023; 23:71. [PMID: 36627610 PMCID: PMC9832768 DOI: 10.1186/s12889-022-14818-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Arsenic in drinking water is a global public health concern. This study aims to investigate the association between chronic low-level exposure to arsenic in drinking water and health outcomes in the volcanic area of Mt. Amiata in Italy, using a residential cohort study design. METHODS Chronic exposure to arsenic in drinking water was evaluated using monitoring data collected by the water supplier. A time-weighted average arsenic exposure was estimated for the period 2005-2010. The population-based cohort included people living in five municipalities in the Mt. Amiata area between 01/01/1998 and 31/12/2019. Residence addresses were georeferenced and each subject was matched with arsenic exposure and socio-economic status. Mortality and hospital discharge data were selected from administrative health databases. Cox proportional hazard models were used to test the associations between arsenic exposure and outcomes, with age as the temporal axis and adjusting for gender, socio-economic status and calendar period. RESULTS The residential cohort was composed of 30,910 subjects for a total of 407,213 person-years. Analyses reported risk increases associated with exposure to arsenic concentrations in drinking water > 10 µg/l for non-accidental mortality (HR = 1.07 95%CI:1.01-1.13) and malignant neoplasms in women (HR = 1.14 95%CI:0.97-1.35). Long-term exposure to arsenic concentrations > 10 µg/l resulted positively associated with several hospitalization outcomes: non-accidental causes (HR = 1.06 95%CI:1.03-1.09), malignant neoplasms (HR = 1.10 95%CI:1.02-1.19), lung cancer (HR = 1.85 95%CI:1.14-3.02) and breast cancer (HR = 1.23 95%CI:0.99-1.51), endocrine disorders (HR = 1.13 95%CI:1.02-1.26), cardiovascular (HR = 1.12 95%CI:1.06-1.18) and respiratory diseases (HR = 1.10 95%CI:1.03-1.18). Some risk excesses were also observed for an exposure to arsenic levels below the regulatory standard, with evidence of exposure-related trends. CONCLUSIONS Our population-based cohort study in the volcanic area of Mt. Amiata showed that chronic exposure to arsenic concentrations in drinking water above the current regulatory limit was associated with a plurality of outcomes, in terms of both mortality and hospitalization. Moreover, some signs of associations emerge even at very low levels of exposure, below the current regulatory limit, highlighting the need to monitor arsenic concentrations continuously and implement policies to reduce concentrations in the environment as far as possible.
Collapse
Affiliation(s)
- Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy.
| | - Giorgia Stoppa
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Unit of Biostatistics, Epidemiology and Public Health, DCTVPH, University of Padua, 35131, Padua, Italy
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50124, Florence, Italy
| |
Collapse
|
20
|
Alshana U, Altun B, Ertaş N, Çakmak G, Kadioglu E, Hisarlı D, Aşık E, Atabey E, Çelebi CR, Bilir N, Serçe H, Tuncer AM, Burgaz S. Evaluation of low-to-moderate arsenic exposure, metabolism and skin lesions in a Turkish rural population exposed through drinking water. CHEMOSPHERE 2022; 304:135277. [PMID: 35688195 DOI: 10.1016/j.chemosphere.2022.135277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND There is no human data regarding the exposure, metabolism and potential health effects of arsenic (As) contamination in drinking water in the Central Anatolian region of Turkey. METHODS Residents in ten villages with drinking water of total As (T-As) level >50 μg L-1 and 10-50 μg L-1 were selected as an exposed group (n = 420) and <10 μg L-1 as an unexposed group (n = 185). Time-weighted average-As (TWA-As) intake was calculated from T-As analysis of drinking water samples. Concentrations of T-As in urine and hair samples, urinary As species [i.e., As(III), As(V), MMA(V) and DMA(V], and some micronutrients in serum samples of residents of the study area were determined. Primary and secondary methylation indices (PMI and SMI, respectively) were assessed from urinary As species concentrations and the presence of skin lesion was examined. RESULTS TWA-As intake was found as 75 μg L-1 in the exposed group. Urinary and hair T-As and urinary As species concentrations were significantly higher in the exposed group (P < 0.05). The PMI and SMI values revealed that methylation capacities of the residents were efficient and that there was no saturation in As metabolism. No significant increase was observed in the frequency of skin lesions (hyperpigmentation, hypopigmentation, keratosis) of the exposed group (P > 0.05). Only frequency of keratosis either at the hand or foot was higher in individuals with hair As concentration >1 μg g-1 (P < 0.05). CONCLUSIONS Individuals living in the study area were chronically exposed to low-to-moderate As due to geological contamination in drinking water. No significant increase was observed in the frequency of skin lesions. Because of the controversy surrounding the health risks of low-to-moderate As exposure, it is critical to initiate long-term follow-up studies on health effects in this region.
Collapse
Affiliation(s)
- Usama Alshana
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Beril Altun
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Nusret Ertaş
- Gazi University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Gonca Çakmak
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Ela Kadioglu
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Deniz Hisarlı
- Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| | - Elif Aşık
- Middle East Technical University, Department of Biotechnology, Ankara, Turkey
| | - Eşref Atabey
- General Directorate of Mineral Research and Exploration, Ankara, Turkey
| | | | - Nazmi Bilir
- Hacettepe University, Faculty of Medicine, Department of Public Health, Ankara, Turkey
| | - Hakan Serçe
- Ürgüp State Hospital, Turkish Ministry of Health, Nevşehir, Turkey
| | - A Murat Tuncer
- Turkish Ministry of Health, Cancer Control Department, Ankara, Turkey
| | - Sema Burgaz
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| |
Collapse
|
21
|
Bolan S, Seshadri B, Kunhikrishnan A, Grainge I, Talley NJ, Bolan N, Naidu R. Differential toxicity of potentially toxic elements to human gut microbes. CHEMOSPHERE 2022; 303:134958. [PMID: 35595114 DOI: 10.1016/j.chemosphere.2022.134958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Specific microorganisms in the human gut (i.e., gut microbes) provide mutually beneficial outcomes such as microbial balance by inhibiting the growth of pathogenic organisms, immune system modulation, fermentation of ingested products, and vitamin production. The intake of contaminants including potenially toxic elements (PTEs) can occur through food, air, water and some medicines. The gut microbes not only can be affected by environmental contaminants but they themselves can alter the speciation and bioavailability of these contaminants. This research work was designed to demonstrate the relationship between increasing level of selected PTEs including As, Cd, Pb and Hg on the growth of selected gut microbes. The toxicity of above mentioned PTEs to three gut bacteria (Lactobacillus rhamnosus, Lactobacillus acidophilus and Escherichia coli) was examined. While the toxicity of all the cationic PTEs including Cd, Pb and Hg towards gut bacteria decreased with increasing pH, the anionic As species exhibited an opposite effect. The order of toxicity was Hg > Cd > Pb > As(III)>As(V) for E. coli; and Hg > Cd > As(III)>Pb > As(V) for the two Lactobacillus sp. Arsenite (AsIII) showed higher toxicity than arsenate (AsV) to gut bacteria. While As is an anion, Cd, Pb and Hg are cations and hence their binding capacity to the bacterial cell wall varied based on the charge dependent functional groups. However, the toxic effects of PTEs for a bacteria are controlled by their speciation and bioavailability.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
22
|
Yang Y, McDonald AC, Wang X, Pan Y, Wang M. Arsenic exposures and prostate cancer risk: A multilevel meta-analysis. J Trace Elem Med Biol 2022; 72:126992. [PMID: 35550984 DOI: 10.1016/j.jtemb.2022.126992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Previous studies found that arsenic exposures have been linked to prostate cancer risk. However, this finding has been inconsistent. The purpose of this paper was to estimate the effects of arsenic exposures on prostate cancer risk. METHOD We conducted a meta-analysis of epidemiologic studies of arsenic exposures and prostate cancer risk. We searched for both arsenic exposure and prostate cancer studies published until January 2021 from the following electronic databases: PubMed, Scopus, and Web of Science. Multilevel meta-analysis via random-effects modeling was used to examine the association between arsenic exposures and prostate cancer risk. RESULTS There were 12 studies included with an effect size of 23. Arsenic exposure was determined from water and soil (n = 8), urinary measurements (n = 2), or self-reported questionnaire (n = 2). Overall, arsenic exposure was found to be statistically significantly associated with prostate cancer risk (Relative risk [RR] = 1.18, 95% confidence interval [CI]: 1.06 - 1.30). In the sub-analysis, arsenic exposure from water and soil was found to be statistically significantly associated with prostate cancer risk (RR= 1.22, 95% CI: 1.05 - 1.41). CONCLUSION Data suggest that arsenic exposures may play a role in increasing prostate cancer risk. Further prospective studies are warranted to verify the association between arsenic exposure and prostate cancer risk.
Collapse
Affiliation(s)
- Yanxu Yang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Alicia C McDonald
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; Penn State Cancer Institute, Hershey, PA, United States
| | - Xingyan Wang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yunqi Pan
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Ming Wang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; Penn State Cancer Institute, Hershey, PA, United States.
| |
Collapse
|
23
|
Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front Microbiol 2022; 13:900740. [PMID: 35711754 PMCID: PMC9197589 DOI: 10.3389/fmicb.2022.900740] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc (Zn) is one of the most abundantly found heavy metals in the Earth's crust and is reported to be an essential trace metal required for the growth of living beings, with it being a cofactor of major proteins, and mediating the regulation of several immunomodulatory functions. However, its essentiality also runs parallel to its toxicity, which is induced through various anthropogenic sources, constant exposure to polluted sites, and other natural phenomena. The bioavailability of Zn is attributable to various vegetables, beef, and dairy products, which are a good source of Zn for safe consumption by humans. However, conditions of Zn toxicity can also occur through the overdosage of Zn supplements, which is increasing at an alarming rate attributing to lack of awareness. Though Zn toxicity in humans is a treatable and non-life-threatening condition, several symptoms cause distress to human activities and lifestyle, including fever, breathing difficulty, nausea, chest pain, and cough. In the environment, Zn is generally found in soil and water bodies, where it is introduced through the action of weathering, and release of industrial effluents, respectively. Excessive levels of Zn in these sources can alter soil and aquatic microbial diversity, and can thus affect the bioavailability and absorption of other metals as well. Several Gram-positive and -negative species, such as Bacillus sp., Staphylococcus sp., Streptococcus sp., and Escherichia coli, Pseudomonas sp., Klebsiella sp., and Enterobacter sp., respectively, have been reported to be promising agents of Zn bioremediation. This review intends to present an overview of Zn and its properties, uses, bioavailability, toxicity, as well as the major mechanisms involved in its bioremediation from polluted soil and wastewaters.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Taha Majid Mahmood Sheikh
- Institute of Plant Protection, Jiangsu Academy of Agriculture Sciences, Nanjing, China,*Correspondence: Taha Majid Mahmood Sheikh,
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan,Saba Shamim,
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China,Yuhong Liu,
| |
Collapse
|
24
|
Sharma V, Gangopadhyay S, Shukla S, Chauhan A, Singh S, Singh RD, Tiwari R, Singh D, Srivastava V. Prenatal exposure to arsenic promotes sterile inflammation through the Polycomb repressive element EZH2 and accelerates skin tumorigenesis in mouse. Toxicol Appl Pharmacol 2022; 443:116004. [DOI: 10.1016/j.taap.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
|
25
|
Langston ME, Brown HE, Lynch CF, Roe DJ, Dennis LK. Ambient UVR and Environmental Arsenic Exposure in Relation to Cutaneous Melanoma in Iowa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031742. [PMID: 35162766 PMCID: PMC8835255 DOI: 10.3390/ijerph19031742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Intermittent sun exposure is the major environmental risk factor for cutaneous melanoma (CM). Cumulative sun exposure and other environmental agents, such as environmental arsenic exposure, have not shown consistent associations. Ambient ultraviolet radiation (UVR) was used to measure individual total sun exposure as this is thought to be less prone to misclassification and recall bias. Data were analyzed from 1096 CM cases and 1033 controls in the Iowa Study of Skin Cancer and Its Causes, a population-based, case-control study. Self-reported residential histories were linked to satellite-derived ambient UVR, spatially derived environmental soil arsenic concentration, and drinking water arsenic concentrations. In men and women, ambient UVR during childhood and adolescence was not associated with CM but was positively associated during adulthood. Lifetime ambient UVR was positively associated with CM in men (OR for highest vs. lowest quartile: 6.09, 95% confidence interval (CI) 2.21–16.8), but this association was not as strong among women (OR for highest vs. lowest quartile: 2.15, 95% CI 0.84–5.54). No association was detected for environmental soil or drinking water arsenic concentrations and CM. Our findings suggest that lifetime and adulthood sun exposures may be important risk factors for CM.
Collapse
Affiliation(s)
- Marvin E. Langston
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA; (H.E.B.); (D.J.R.); (L.K.D.)
- Correspondence:
| | - Heidi E. Brown
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA; (H.E.B.); (D.J.R.); (L.K.D.)
| | - Charles F. Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| | - Denise J. Roe
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA; (H.E.B.); (D.J.R.); (L.K.D.)
| | - Leslie K. Dennis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA; (H.E.B.); (D.J.R.); (L.K.D.)
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
26
|
Nguyen VT, Vo TDH, Tran TD, Nguyen TNK, Nguyen TB, Dang BT, Bui XT. Arsenic-contaminated groundwater and its potential health risk: A case study in Long An and Tien Giang provinces of the Mekong Delta, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63558-63571. [PMID: 32954450 DOI: 10.1007/s11356-020-10837-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of arsenic (As) in groundwater (drilled well water) that were used for drinking, cooking, and personal hygiene and its risks to human health in Long An and Tien Giang provinces (Mekong delta, Vietnam) were evaluated in this study. The average As concentrations were 15.92 ± 11.4 μg/L (n = 24, Long An) and 4.95 ± 4.7 μg/L (n = 24, Tien Giang). The average concentrations of As in Long An had not reached the WHO and QCVN 01: 2009/BYT healthy drinking water standard (10 μg/L). When used as a source of water for drinking and daily activities, arsenic-contaminated groundwater may have a direct impact on human health. The risk assessment from groundwater established by the US Environmental Protection Agency (USEPA) was conducted. The risk assessment showed that the average cancer risk (CR) values were 8.68 × 10-4 (adults) and 2.39 × 10-3 (children) for Long An, and 2.70 × 10-4 (adults) and 7.43 × 10-4 (children) for Tien Giang. These results were significantly higher than the CR (1 × 10-4) proposed by the USEPA. The adverse health effect was therefore specifically warned by the use of arsenic-contaminated groundwater. This research offers valuable knowledge for efficient water management approaches to guarantee local communities' health protection.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - Thanh-Dai Tran
- Faculty of Applied Sciences-Health, Dong Nai Technology University, Bien Hoa, Dong Nai, Vietnam
| | - Thi-Nhu-Khanh Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology - HUTECH, 475 A Dien Bien Phu, Binh Thanh district, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam.
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
27
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
28
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
29
|
Lu H, Zhao H, Wang Y, Guo M, Mu M, Liu Y, Nie X, Huang P, Xing M. Arsenic (III) induces oxidative stress and inflammation in the gills of common carp, which is ameliorated by zinc (II). J Inorg Biochem 2021; 225:111617. [PMID: 34571403 DOI: 10.1016/j.jinorgbio.2021.111617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Arsenic (As) is widely present in the environment in form of arsenite (AsIII) and arsenate (AsV). Oxidative stress and inflammation are believed to be the dominant mechanisms of AsIII toxicity in vivo and in vitro. The aim of this study was to investigate whether zinc (Zn2+) alleviates exogenous gill toxicity in carp induced by AsIII and to gain insight into the underlying mechanisms. Exposure of carp to 2.83 mg As2O3/L for 30 days reduced superoxide dismutase activity by 4.0%, catalase by 41.0% and glutathione by 19.8%, while the concentration of malondialdehyde was increased by 16.4% compared to the control group, indicating oxidative stress. After the exposure of carp to AsIII the expression of inflammatory markers, such as interleukin-6, interleukin-8, tumor necrosis factor α and inducible nitric oxide synthase in gill tissue were significantly increased. In addition, the phosphorylation of nuclear factor kappa-B (NF-κB) was increased by 225%. 1 mg ZnCl2/L can relieve the toxicity of AsIII based on histopathology, antioxidase activity, qRT-PCR and western results. Zn2+ attenuated AsIII-induced gill toxicity that suppressed intracellular oxidative stress and NF-κB pathway by an upregulation of metallothionein. Therefore, the toxic effect of AsIII on the gill cells of carp was reduced. This study provides a theoretical basis for exploring the alleviation of the toxic effects of metalloids on organisms by heavy metals and the biological assessment of the effects.
Collapse
Affiliation(s)
- Hongmin Lu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of wildlife and protected area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
30
|
Bedaiwi A, Wysong A, Rogan EG, Clarey D, Arcari CM. Arsenic Exposure and Melanoma Among US Adults Aged 20 or Older, 2003-2016. Public Health Rep 2021; 137:548-556. [PMID: 33971104 PMCID: PMC9109530 DOI: 10.1177/00333549211008886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Chronic exposure to arsenic has been reported as a risk factor for nonmelanoma skin cancer, notably squamous cell carcinoma. However, current knowledge is limited about the association between arsenic exposure and melanoma. Our objectives were to (1) measure the association between total urinary arsenic levels and melanoma compared with nonmelanoma skin cancer and no cancer and (2) analyze the association between water source and melanoma and nonmelanoma skin cancer. METHODS We collected cross-sectional data from the 2003-2016 cycles of the National Health and Nutrition Examination Survey. We conducted univariate and multivariate logistic regressions. To evaluate the possible association of skin cancer with source of tap water, we calculated odds ratios for participants with melanoma and nonmelanoma skin cancer, compared with participants with no cancer. RESULTS White race, higher education, higher socioeconomic status, and smoking history were associated with melanoma and nonmelanoma skin cancer in the full study population. After adjusting for age and race/ethnicity, the adjusted odds ratio of participants with >50 μg/L of total urinary arsenic for melanoma or nonmelanoma skin cancer was 1.87 (95% CI, 0.58-6.05) and 2.23 (95% CI, 1.12-4.45) times higher compared with no cancer, respectively. Participants with nonmelanoma skin cancer had 2.06 increased odds of reporting a nonmunicipal water source compared with participants without cancer. CONCLUSIONS We did not find a relationship between the incidence of melanoma and exposure to arsenic among US adults. Nonmunicipal water sources were associated with nonmelanoma skin cancer and should be further investigated.
Collapse
Affiliation(s)
- Ahmed Bedaiwi
- Department of Epidemiology, College of Public Health, University
of Nebraska Medical Center, Omaha, NE, USA
| | - Ashley Wysong
- Department of Dermatology, University of Nebraska Medical Center,
Omaha, NE, USA
| | - Eleanor G. Rogan
- Department of Environmental, Agricultural & Occupational Health,
College of Public Health, University of Nebraska Medical Center, Omaha, NE,
USA
| | - Dillon Clarey
- Department of Dermatology, University of Nebraska Medical Center,
Omaha, NE, USA
| | - Christine M. Arcari
- Department of Epidemiology, College of Public Health, University
of Nebraska Medical Center, Omaha, NE, USA,Christine M. Arcari, PhD, MPH, University
of Nebraska Medical Center, College of Public Health, Department of
Epidemiology, 984355 Nebraska Medical Center, Omaha, NE 68198-4355, USA;
| |
Collapse
|
31
|
Wu H, Wang M, Raman JD, McDonald AC. Association between urinary arsenic, blood cadmium, blood lead, and blood mercury levels and serum prostate-specific antigen in a population-based cohort of men in the United States. PLoS One 2021; 16:e0250744. [PMID: 33891655 PMCID: PMC8064543 DOI: 10.1371/journal.pone.0250744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Exposures to heavy metals have been linked to prostate cancer risk. The relationship of these exposures with serum prostate-specific antigen (PSA), a marker used for prostate cancer screening, is unknown. We examined whether total urinary arsenic, urinary dimethylarsonic acid, blood cadmium, blood lead, and total blood mercury levels are associated with elevated PSA among presumably healthy U.S. men. Prostate cancer-free men, aged ≥40 years, were identified from the 2003-2010 National Health and Nutrition Examination Survey. Logistic regression analyses with survey sample weights were used to examine the association between heavy metal levels and elevated PSA for the total population and stratified by black and white race, after adjusting for confounders. There were 5,477 men included. Approximately 7% had elevated PSA. Men with an elevated PSA had statistically significantly higher levels of blood cadmium and blood lead compared to men with a normal PSA (p-values ≤ 0.02), with black men having higher levels. After adjusting for age, race/ethnicity, body mass index, smoking, and education, there was no association found between any of the heavy metal levels and elevated PSA for the total population. In addition, there was no association found when stratified by black and white race. Further investigation is warranted in a larger cohort of men who persistently are exposed to these heavy metals.
Collapse
Affiliation(s)
- Hongke Wu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ming Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Jay D. Raman
- Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
- Department of Surgery, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Alicia C. McDonald
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| |
Collapse
|
32
|
Pullella K, Kotsopoulos J. Arsenic Exposure and Breast Cancer Risk: A Re-Evaluation of the Literature. Nutrients 2020; 12:nu12113305. [PMID: 33126678 PMCID: PMC7694128 DOI: 10.3390/nu12113305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a widespread environmental contaminant and recognized carcinogen for the skin, bladder and lungs. In recent years, there has been an increasing number of studies that have investigated the effects of arsenic exposure and cancer risk at other sites, including the breast. However, to date, the association between arsenic exposure and breast cancer risk remains unclear. This article will provide an overview of arsenic metabolism, the clinically important biomarkers commonly used to assess arsenic exposure, and review the epidemiologic studies examining the role of arsenic exposure on breast cancer risk. Given the large burden of disease associated with breast cancer, it is of the upmost importance to identify risk factors and preventative strategies that could reduce cancer incidence. Limiting exposure to endemic environmental toxins, such as arsenic, represents one such strategy. More studies are required to better ascertain this relationship and to develop the public policy necessary to significantly reduce breast cancer incidence.
Collapse
Affiliation(s)
- Katherine Pullella
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5S 1B2, Canada
| | - Joanne Kotsopoulos
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Correspondence: ; Tel.: +416-351-3732 x 2126
| |
Collapse
|
33
|
Reyes-Vázquez L, Hernández AJA, Calderón-Aranda ES. Role of aromatase activation on sodium arsenite-induced proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-453 breast cancer cell lines. Toxicology 2020; 437:152440. [PMID: 32197950 DOI: 10.1016/j.tox.2020.152440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
Arsenic is an endocrine disruptor that promotes breast cancer (BCa) development. Estrogen synthesis, through aromatase activation, is essential for BCa promotion and progression through activating the G-coupled estrogen receptor 1 (GPER1), regulating rapid nongenomic effects involved in cell proliferation and migration of BCa cells. Herein, was studied the role of aromatase activation and the GPER1 pathway on sodium arsenite-induced promotion and progression of MDA-MB-231 and MDA-MB-453 BCa cell lines. Our results demonstrated that 0.1 μM of sodium arsenite induces cell proliferation, migration, invasion, and stimulates aromatase activity of BCa cell lines MDA-MB-231, MDA-MB-453, MCF-7, but not in a nontumorigenic breast epithelial cell line (MCF-12A). Using letrozole (an aromatase inhibitor) and G-15 (a GPER1-selective antagonist), we demonstrated that sodium arsenite-induced proliferation and migration is mediated by induction of aromatase enzyme and, at least in part, by GPER1 activation in MDA-MB-231 and MDA-MB-453 cells. Sodium arsenite induced phosphorylation of Src that participated in sodium arsenite-induced aromatase activity, and -cell proliferation of MDA-MB-231 cell line. Overall, data suggests that sodium arsenite induces a positive-feedback loop, resulting in the promotion and progression of BCa cells, through induction of aromatase activity, E2 production, GPER1 stimulation, and Src activation.
Collapse
Affiliation(s)
- Liliana Reyes-Vázquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico
| | - A José Alberto Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico
| | - Emma S Calderón-Aranda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados, Cinvestav, IPN, Ciudad de México, Mexico..
| |
Collapse
|
34
|
López JF, Fernández MI, Coz LF. Arsenic exposure is associated with significant upper tract urothelial carcinoma health care needs and elevated mortality rates. Urol Oncol 2020; 38:638.e7-638.e13. [PMID: 32088105 DOI: 10.1016/j.urolonc.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The aim of the study was to assess upper tract urothelial carcinoma (UTUC) health care needs and specific mortality rates in an arsenic-exposed region in Northern Chile and compare them to those of the rest of the country. MATERIAL AND METHODS Arsenic levels of drinking water were correlated with UTUC hospital discharges and cancer-specific mortality rates. Mortality and hospital admission rate ratios were estimated using a Poisson regression model. RESULTS There were 257 UTUC-specific deaths in Chile between 1990 and 2016; 81 (34%) of them occurred in Antofagasta, where only 3.5% of the population lives. The peak mortality rate observed in Antofagasta was 2.15/100,000 compared to 0.07/100,000 in the rest of the country. Mortality in the exposed region was significantly higher when compared to the rest of the country (MRR 17.6; 95%CI: 13.5-22.9). The same trend was observed for UTUC hospital discharges (RR 14.8; 95%CI: 11.5-19.1). CONCLUSION Even stronger than for bladder cancer, exposure to arsenic is related to a significant need for UTUC health care and high mortality rates, even 25 years after having controlled arsenic levels in drinking-water. Awareness of this ecologic factor in these affected regions is therefore mandatory.
Collapse
Affiliation(s)
| | - Mario I Fernández
- Department of Urology, Clínica Alemana de Santiago,Santiago, Chile; Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Luis Fernando Coz
- Department of Urology, Hospital Militar de Santiago, Santiago, Chile; Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
35
|
Ahn J, Boroje IJ, Ferdosi H, Kramer ZJ, Lamm SH. Prostate Cancer Incidence in U.S. Counties and Low Levels of Arsenic in Drinking Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030960. [PMID: 32033184 PMCID: PMC7036874 DOI: 10.3390/ijerph17030960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022]
Abstract
Background: Although inorganic arsenic in drinking water at high levels (100s–1000s μg/L [ppb]) increases cancer risk (skin, bladder, lung, and possibly prostate), the evidence at lower levels is limited. Methods: We conducted an ecologic analysis of the dose-response relationship between prostate cancer incidence and low arsenic levels in drinking water in a large study of U.S. counties (N = 710). County arsenic levels were <200 ug/L with median <100 ug/L and dependency greater than 10%. Groundwater well usage, water arsenic levels, prostate cancer incidence rates (2009–2013), and co-variate data were obtained from various U.S. governmental agencies. Poisson and negative-binomial regression analyses and stratified analysis were performed. Results: The best fitting polynomial analysis yielded a J-shaped linear-quadratic model. Linear and quadratic terms were significant (p < 0.001) in the Poisson model, and the quadratic term was significant (p < 0.05) in the negative binomial model. This model indicated a decreasing risk of prostate cancer with increasing arsenic level in the low range and increasing risk above. Conclusions: This study of prostate cancer incidence in US counties with low levels of arsenic in their well-water arsenic levels finds a j-shaped model with decreasing risk at very low levels and increasing risk at higher levels.
Collapse
Affiliation(s)
- Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Isabella J. Boroje
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA; (I.J.B.); (H.F.); (Z.J.K.)
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Hamid Ferdosi
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA; (I.J.B.); (H.F.); (Z.J.K.)
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Zachary J. Kramer
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA; (I.J.B.); (H.F.); (Z.J.K.)
| | - Steven H. Lamm
- Center for Epidemiology and Environmental Health (CEOH, LLC), Washington, DC 20016, USA; (I.J.B.); (H.F.); (Z.J.K.)
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Pediatrics, Georgetown University School of Medicine, Washington, DC 20007, USA
- Correspondence:
| |
Collapse
|
36
|
Roubicek DA, Rech CM, Umbuzeiro GA. Mutagenicity as a parameter in surface water monitoring programs-opportunity for water quality improvement. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:200-211. [PMID: 31294883 DOI: 10.1002/em.22316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Effect-based analyses are being recognized as excellent tools to a comprehensive and reliable water quality evaluation to complement physical and chemical parameters. The Salmonella/microsome mutagenicity test was introduced in the São Paulo State water quality-monitoring program in 1999 and waters from 104 sites used to the production of drinking water were analyzed. Samples were tested after organic extraction, using the microsuspension version of the Salmonella/microsome assay with strains TA98 and TA100 with and without S9-mammalian metabolic system. Of the 1720 water samples analyzed in 20 years, 20% were positive; TA98 was the most sensitive strain, detecting alone 99%. Results were presented in hazard categories to facilitate water managers' understanding and general public communication. Hot spots of mutagenicity were identified, and pollution sources investigated. A flow scheme with instructions of how to proceed in case of mutagenic samples was developed and implemented in the monitoring program. Enforcement actions were taken to reduce exposure of humans and aquatic biota to mutagenic compounds. The results presented provide scientific basis for the incorporation of the Salmonella/microsome assay in a regulatory framework, and to guide water-quality managers. The inclusion of a mutagenicity assay using standardized conditions proved to be an opportunity to improve the quality of water, and the strategy presented here could be applied by any environmental agency around the world. Environ. Mol. Mutagen. 61:200-211, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Célia M Rech
- São Paulo State Environmental Agency, CETESB, São Paulo, SP, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil
| |
Collapse
|
37
|
Zhao H, Wang Y, Yang X, Fei D, Mu M, Guo M, Yu H, Xing M. Zinc alleviates arsenism in common carp: Varied change profiles of cytokines and tight junction proteins among two intestinal segments. FISH & SHELLFISH IMMUNOLOGY 2019; 94:761-768. [PMID: 31585240 DOI: 10.1016/j.fsi.2019.09.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/10/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
This study was designed to evaluate the effects of zinc on inflammation and tight junction (TJ) in different intestinal regions of common carp under sub-chronic arsenic insult. Fish were exposed to zinc (0, 1 mg/L) and arsenic trioxide (0, 2.83 mg/L) in individual or combination for a month. Inflammatory infiltration and TJ structure changes were displayed by H&E staining and transmission electron microscope. To further explore these changes, biochemical indicator (SOD), gene or protein expressions of inflammatory responses (NF-κB, IL-1β, IL-6 and IL-8) and TJ proteins (Occludin, Claudins and ZOs) were determined. In the anterior intestine, arsenic decreased activity of SOD, mRNA levels of Occludin, Claudins and ZOs, increased mRNA levels of ILs. However, unlike the anterior intestine, arsenic has an upregulation effects of Occludin and Claudin-4 in the mid intestine. These anomalies induced by arsenic, except IL-8, were completely or partially recovered by zinc co-administration. Furthermore, transcription factor (NF-κB) nuclear translocation paralleled with its downstream genes in both intestinal regions. In conclusion, our results unambiguously suggested that under arsenic stress, zinc can partly relieve intestinal inflammation and disruption of tight junction segment-dependently.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
38
|
Marciniak W, Derkacz R, Muszyńska M, Baszuk P, Gronwald J, Huzarski T, Cybulski C, Jakubowska A, Falco M, Dębniak T, Lener M, Oszurek O, Pullella K, Kotsopoulos J, Sun P, Narod SA, Lubiński J. Blood arsenic levels and the risk of familial breast cancer in Poland. Int J Cancer 2019; 146:2721-2727. [PMID: 31348523 PMCID: PMC7154768 DOI: 10.1002/ijc.32595] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Arsenic is recognized as a potent carcinogen at high concentrations, but the relationship between environmental arsenic and breast cancer risk has not well been studied. Most research has focused on the effect of arsenic in populations with high endemic exposure, and not in populations with arsenic levels within normal limits. We sought to determine if blood arsenic levels predict the risk of breast and other cancers risk among women in northern Poland. The cohort consisted of 1,702 healthy women, aged 40 and above, identified between 2010 and 2017. Blood arsenic level was determined by inductively coupled plasma mass spectrometry. After an average of 4.5 years of follow‐up (range 0.7–7.3 years), there were 110 incident cases of cancer diagnosed in the cohort, including 68 cases of breast cancer. Women in the highest quartile of arsenic had a highly significant 13‐fold increased risk of developing breast cancer, compared to women in the lowest quartile (hazard ratio [HR] = 13.2; 95% confidence interval [CI] 4.02–43.0). Results were similar for arsenic and all incident cancers (HR quartile 4 vs. quartile 1 = 13.3; 95% CI 4.78–37.0). If confirmed, our study suggests that the blood arsenic level may be a useful predictive marker of cancer risk in women. What's new? Arsenic has long been recognized as a potent carcinogen at high concentrations. But can it affect cancer risk at “normal,” environmental concentrations? In this Polish study, the authors found that women whose blood levels of arsenic were in the highest quartile had a 13‐fold increased risk of developing breast cancer, compared to women in the lowest quartile. If confirmed in further studies, these results suggests that blood arsenic level may be a useful predictive marker of cancer risk in women.
Collapse
Affiliation(s)
- Wojciech Marciniak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Róża Derkacz
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Magdalena Muszyńska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Michał Falco
- Radiation Oncology Department, West Pomeranian Oncology Center, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| | - Marcin Lener
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Joanne Kotsopoulos
- Women's College Research Institute, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ping Sun
- Women's College Research Institute, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.,Read-Gene SA, Grzepnica, Poland
| |
Collapse
|
39
|
Mingxing S, Haiying W, Congsong S, Chunyu Y, Liu C, Wang Q. Acute toxicity of intratracheal arsenic trioxide instillation in rat lungs. J Appl Toxicol 2019; 39:1578-1585. [PMID: 31319442 PMCID: PMC6852324 DOI: 10.1002/jat.3841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
This study investigated the acute toxicity of different concentrations of arsenic trioxide (As2O3; ATO) on rat lungs. In total, 160 Wistar rats were randomly divided into the control, low‐, medium‐ and high‐dose groups, which were exposed to 0, 0.16, 1.60 and 16 μg/kg of ATO by intratracheal instillation, respectively. Samples were collected at 6, 12, 24, 48 and 72 hours after exposure and the dynamic changes indicative of acute lung toxicity were monitored. Compared with the control group, the exposure groups exhibited significant changes such as increased lung water content ratio and protein concentration in the bronchoalveolar lavage fluid, pulmonary interstitial thickening, cell membrane edema, increased inflammatory factor concentration, JNK and P38 were significantly activated, and the degree of phosphorylation was increased. Furthermore, all the changes in the exposure groups were exposure concentration‐dependent. ATO respiratory tract exposure can cause restrictive ventilatory disturbance in rats, and the degree of injury is exposure concentration‐dependent. To investigate the acute toxicity of arsenic trioxide on lungs, 160 Wistar rats were randomly divided into the control group, low‐, medium‐ and high‐dose groups. The results showed that there were significant changes in lung water content ratio, bronchoalveolar lavage fluid protein concentration, pulmonary interstitial thickening, cell membrane edema, inflammatory factor concentration, JNK and p38 phosphorylation in the exposed group. Collectively, acute atmospheric arsenic exposure may be associated with a risk of inflammatory lung injury, which is a health concern that deserves more attention.
Collapse
Affiliation(s)
- Su Mingxing
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Wang Haiying
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Sun Congsong
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Yuan Chunyu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Chao Liu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| |
Collapse
|
40
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
41
|
Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 2019; 49:36-84. [DOI: 10.1080/10408444.2019.1573804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ellen T. Chang
- Exponent, Inc., Menlo Park, CA and Stanford Cancer Institute, Stanford, CA, USA
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
42
|
Abstract
Mild environmental stress might have beneficial effects in aging by activating maintenance and repair processes in cells and organs. These beneficial stress effects fit to the concept of hormesis. Prominent stressors acting in a hormetic way are physical exercises, fasting, cold and heat. This review will introduce some toxins, which have been found to induce hormetic responses in animal models of aging research. To highlight the molecular signature of these hormetic effects we will depict signaling pathways affected by low doses of toxins on cellular and organismic level. As prominent examples for signaling pathways involved in both aging processes as well as toxin responses, PI3K/Akt/mTOR- and AMPK-signal transduction will be described in more detail. Due to the striking overlap of signaling pathways mediating toxin induced responses and aging processes we propose considering the ability of low doses of toxins to slow down the rate of aging.
Collapse
|
43
|
Soza-Ried C, Bustamante E, Caglevic C, Rolfo C, Sirera R, Marsiglia H. Oncogenic role of arsenic exposure in lung cancer: A forgotten risk factor. Crit Rev Oncol Hematol 2019; 139:128-133. [PMID: 30878179 DOI: 10.1016/j.critrevonc.2019.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Several drinkable water sources worldwide have been highly contaminated with arsenic, which means that an estimated 160 million people have been exposed to this chemical agent. If we analyse exposure by region, we will find a high correlation between arsenic contamination and the incidence of lung cancer (among other malignancies). In order to determine what the risks of these exposures are, we need to understand how this chemical is processed in our body and how it is linked to cancer. In this article we reviewed how biotransformation of ingested arsenic may lead to cancer by modulating the activation of several essential signalling pathways such as EGFR, PI3K/AKT, RTK/Ras/PI3K, JNK/STAT3 and Nrf2-KEAP1; by producing epigenetics modifications and by disrupting normal expression of miRNAs. In order to design effective health policies, educational strategies, decontaminations plans and effective medical treatments are necessary to understand the impact of arsenic pollution and the relevance of the environment in our health.
Collapse
Affiliation(s)
- Cristian Soza-Ried
- Escuela de Bioquímica, Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile; Fundación Oncoloop, Santiago, Chile
| | - Eva Bustamante
- Instituto Oncológico Fundación Arturo López, Santiago, Chile.
| | - Christian Caglevic
- Departamento Oncología Médica, Clínica Alemana, Santiago, Chile; Instituto Oncológico Fundación Arturo López, Santiago, Chile
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, USA
| | - Rafael Sirera
- Departamento de Biotecnología, Universitat Politenica de Valencia, España
| | - Hugo Marsiglia
- Instituto Oncológico Fundación Arturo López, Santiago, Chile
| |
Collapse
|
44
|
Matthews NH, Fitch K, Li WQ, Morris JS, Christiani DC, Qureshi AA, Cho E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:3-21. [PMID: 30297516 PMCID: PMC6324965 DOI: 10.1158/1055-9965.epi-18-0286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to environmental trace elements has been studied in relation to many cancers. However, an association between exposure to trace elements and skin cancer remains less understood. Therefore, we conducted a systematic review of published epidemiologic literature examining the association between exposure to trace elements, and risk of melanoma and keratinocyte carcinoma in humans. We identified epidemiologic studies investigating exposure to arsenic, cadmium, chromium, copper, iron, selenium, and zinc and risk of skin cancer in humans. Among the minerals, arsenic, selenium, and zinc had more than five studies available. Exposure to arsenic was associated with increased risk of keratinocyte carcinoma, while too few studies existed on melanoma to draw conclusions. Exposure to selenium was associated with possible increased risk of keratinocyte carcinoma. Studies of zinc and skin cancer were case-control in design and were found to have inconsistent associations. The data on the association between cadmium, chromium, copper, and iron and risk of skin cancer remain too sparse to draw any conclusions. In summary, epidemiologic studies on exposure to trace elements and cutaneous malignancies are limited. Studies with larger sample sizes and prospective designs are warranted to improve our knowledge of trace elements and skin cancer.
Collapse
Affiliation(s)
- Natalie H Matthews
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katherine Fitch
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wen-Qing Li
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - J Steven Morris
- Research Reactor Center, University of Missouri-Columbia and Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island.
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Zhang H, Chang S, Wang L, Wang W. Estimating and comparing the cancer risks from THMs and low-level arsenic in drinking water based on disability-adjusted life years. WATER RESEARCH 2018; 145:83-93. [PMID: 30121435 DOI: 10.1016/j.watres.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
To determine the priority hazard in drinking water, disability-adjusted life years (DALYs) method was used to evaluate the disease burden induced by trihalomethanes (THMs) and low-level arsenic through multiple exposure routes based on the two-year sampling from drinking water in Xi'an city, Northwest China. The average concentrations of chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), bromoform (TBM) and arsenic were 12.67 μg/L, 1.42 μg/L, 0.60 μg/L, 0.13 μg/L and 1.00 μg/L, respectively, and the total lifetime cancer risks for all THMs and arsenic were 8.54 × 10-6 and 4.02 × 10-5, which were 8.54 and 40.2 times of the negligible risk level (1.00 × 10-6), respectively. The DALYs estimation showed that the total DALYs lost for all age groups was 32.62 person-year, and the average individual DALYs lost was 4.77 × 10-6 per person-year (ppy), which was 4.77 times of the reference level (1.00 × 10-6 ppy). About 72.07% of the total disease burden was due to arsenic, which was considered to be the priority hazard in Xi'an drinking water. The age group of 75-80 years was found to be most vulnerable to the induced cancer risk, and skin cancer had the highest disease burden (2.24 × 10-6 ppy). Due to the relatively high incidence rates of lung cancer and skin cancer, most DALYs lost for males were 2-4 times to that for females in the same age group. Oral ingestion made the most contribution (88.58%) to the total disease burden, followed by inhalation of THMs (11.30%), whereas dermal absorption showed negligible risk (0.12%). As the first to compare the cancer risks of arsenic and THMs to the public in DALYs in China, this study might be useful for potential strategies of risk control and management of hazardous agents in drinking water.
Collapse
Affiliation(s)
- Hui Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shan Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Luobin Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
46
|
Ersbøll AK, Monrad M, Sørensen M, Baastrup R, Hansen B, Bach FW, Tjønneland A, Overvad K, Raaschou-Nielsen O. Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. ENVIRONMENT INTERNATIONAL 2018; 120:72-80. [PMID: 30071456 DOI: 10.1016/j.envint.2018.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 05/12/2023]
Abstract
INTRODUCTION High arsenic concentration in drinking water is associated with a higher incidence rate of stroke, but only few studies have investigated an association with arsenic in drinking water at low concentration (<50 μg/L). OBJECTIVE To examine if arsenic in drinking water at low concentration was associated with higher incidence rate of stroke in Denmark. METHODS A total of 57,053 individuals from the Danish Diet, Cancer, and Health cohort was included in the study (enrolment in 1993-1997, age 50-64 years), of which 2195 individuals had incident stroke between enrolment and November 2009. Individuals were enrolled in two major cities (Copenhagen and Aarhus). Residential addresses in the period 1973-2009 were geocoded and arsenic concentration in drinking water at each address was estimated by linking addresses with water supply areas. Associations between arsenic concentration and incidence rate of stroke were analysed using a generalized linear model with a Poisson distribution. Incidence rate ratios (IRR) were adjusted for differences in age, sex, calendar-year, lifestyle factors, and educational level. RESULTS Median arsenic concentration in drinking water was 0.7 μg/L at enrolment addresses (range: 0.03 to 25 μg/L), with highest concentrations in the Aarhus area. The adjusted IRRs were 1.17 (95% CI: 1.04-1.32) for the highest arsenic quartile (1.93-25.3 μg/L) when compared with the lowest quartile (0.049-0.57 μg/L), but the highest IRR was seen in the second quartile (0.57-0.76 μg/L) (IRR = 1.21; 95% CI: 1.07-1.36). The highest IRR in the upper quartile was seen in the Aarhus area (IRR = 1.79; 95% CI: 1.41-2.26). Having ever been exposed to10 μg/L or more arsenic in drinking water resulted in an IRR at 1.44 (95% CI: 1.00-2.08) for all strokes and 1.63 (95% CI: 1.11-2.39) for ischemic strokes. CONCLUSION The results indicate that arsenic in drinking water even at low concentration is associated with higher incidence rate of stroke.
Collapse
Affiliation(s)
- Annette Kjær Ersbøll
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.
| | - Maria Monrad
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Rikke Baastrup
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Birgitte Hansen
- Danish Ministry for Energy, Utilities and Climate, Geological Survey of Denmark and Greenland, GEUS Department of Groundwater and Quaternary Geology Mapping C.F. Aarhus, Denmark
| | | | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
47
|
Yuan T, Zhang H, Chen B, Zhang H, Tao S. Association between lung cancer risk and inorganic arsenic concentration in drinking water: a dose-response meta-analysis. Toxicol Res (Camb) 2018; 7:1257-1266. [PMID: 30542608 DOI: 10.1039/c8tx00177d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
High dose arsenic in drinking water (≥100 μg L-1) is known to induce lung cancer, but lung cancer risks at low to moderate arsenic levels and its dose-response relationship remains inconclusive. We conducted a systematic review of cohort and case-control studies that quantitatively reported the association between arsenic concentrations in drinking water and lung cancer risks by searching the PubMed database till June 14, 2018. Pooled relative risks (RRs) of lung cancer associated with full range (10 μg L-1-1000 μg L-1) and low to moderate range (<100 μg L-1) of water arsenic concentrations were calculated using random-effects models. A dose-response meta-analysis was performed to estimate the pooled associations between restricted cubic splines of log-transformed water arsenic and the lung cancer risks. Fifteen studies (9 case-control and 6 cohort studies) involving a total of 218 481 participants met the inclusion criteria. Meta-analysis identified significantly increased risks of lung cancer on exposure to both full range (RR = 1.21; 95% confidence interval [CI] = 1.05-1.37; heterogeneity I 2 = 54.3%) and low to moderate range (RR = 1.18; 95%CI = 1.00-1.35; I 2 = 56.3%) of arsenic-containing water. In the dose-response meta-analysis of eight case-control studies, we found no evidence of non-linearity, although statistical power was limited. The corresponding pooled RRs and their 95%CIs for exposure to 10 μg L-1, 50 μg L-1, and 100 μg L-1 water arsenic were 1.02 (1.00-1.03), 1.10 (1.04-1.15), and 1.20 (1.08-1.32), respectively. We provide evidence on the association between increased lung cancer risks and inorganic arsenic in drinking water across low, moderate and high levels. Minimizing arsenic levels in drinking water may be of public health importance.
Collapse
Affiliation(s)
- Tanwei Yuan
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Hongbo Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Bin Chen
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Hong Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China.,School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| |
Collapse
|
48
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
49
|
Profili F, Nuvolone D, Barbone F, Aprea C, Centi L, Frazzetta R, Belli S, Voller F. Health effects among a cohort exposed to low-level arsenic in a geothermal area of Tuscany, Italy. Int Arch Occup Environ Health 2018; 91:971-979. [PMID: 30006749 DOI: 10.1007/s00420-018-1340-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on low-level As exposure have not found an association with cancer, while increased risks were reported for skin lesions, respiratory and cardiovascular diseases and reproductive outcomes. Prospective observational studies with individual exposure measures are needed to study low-level As exposure effects. In a geothermal area in Southern Tuscany (Italy), characterized by a natural presence of As in drinking water (< 50 µg/l), As urinary concentrations were measured in a survey in 1998 and cohort members were followed to evaluate the effects on health. METHODS Around 900 subjects (20-55 years old) randomly sampled in 4 municipalities of the area (Monte Amiata), have been followed from 1999 to 2015, by hospitalisation and mortality registries. Standardized Hospitalisation Ratios (SHRs) were performed, compared to a reference area. Competing-risks regression models were performed to test the association between As urinary concentration and risk of first hospitalisation. RESULTS SHRs show various increased risks, more frequently among males. Internal analyses show a positive association between As and skin diseases in the general population, the Hazard Ratio (HR) for 1 µg/l increase of As urinary concentration is 1.06 (90%CI 1.01-1.11) and in males, HR 1.08 (90%CI 1.02-1.14), between As and circulatory system diseases in males, HR 1.03 (90%CI 1.01-1.05). CONCLUSIONS The results suggest an effect on skin diseases and circulatory system diseases and, considering the relative young age of cohort members, they could be considered also as predictive of future severer diseases.
Collapse
Affiliation(s)
- Francesco Profili
- Regional Health Agency of Tuscany, via Pietro Dazzi 1, 50141, Florence, Italy.
| | - Daniela Nuvolone
- Regional Health Agency of Tuscany, via Pietro Dazzi 1, 50141, Florence, Italy
| | - Fabio Barbone
- Department of medicine, DAME Udine University, Udine, Italy
| | | | | | | | | | - Fabio Voller
- Regional Health Agency of Tuscany, via Pietro Dazzi 1, 50141, Florence, Italy
| |
Collapse
|
50
|
Roswall N, Hvidtfeldt UA, Harrington J, Levine KE, Sørensen M, Tjønneland A, Meliker JR, Raaschou-Nielsen O. Predictors of Urinary Arsenic Levels among Postmenopausal Danish Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071340. [PMID: 29949863 PMCID: PMC6068487 DOI: 10.3390/ijerph15071340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 11/16/2022]
Abstract
Arsenic is a risk factor for several noncommunicable diseases, even at low doses. Urinary arsenic (UAs) concentration is a good biomarker for internal dose, and demographic, dietary, and lifestyle factors are proposed predictors in nonoccupationally exposed populations. However, most predictor studies are limited in terms of size and number of predictors. We investigated demographic, dietary, and lifestyle determinants of UAs concentrations in 744 postmenopausal Danish women who had UAs measurements and questionnaire data on potential predictors. UAs concentrations were determined using mass spectrometry (ICP-MS), and determinants of the concentration were investigated using univariate and multivariate regression models. We used a forward selection procedure for model optimization. In all models, fish, alcohol, and poultry intake were associated with higher UAs concentration, and tap water, fruit, potato, and dairy intake with lower concentration. A forward regression model explained 35% (R2) of the variation in concentrations. Age, smoking, education, and area of residence did not predict concentration. The results were relatively robust across sensitivity analyses. The study suggested that UAs concentration in postmenopausal women was primarily determined by dietary factors, with fish consumption showing the strongest direct association. However, the majority of variation in UAs concentration in this study population is still unexplained.
Collapse
Affiliation(s)
- Nina Roswall
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - Ulla A Hvidtfeldt
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - James Harrington
- Analytical Sciences Division, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709-2194, USA.
| | - Keith E Levine
- Analytical Sciences Division, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709-2194, USA.
| | - Mette Sørensen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
- Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - Jaymie R Meliker
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA.
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|