1
|
Zhang W, Gao L, Zhang S, Luo J, Yu R, Li X, Lu Z, Chi B, Guo Y, Tuo X. Structural and functional alterations of human serum albumin (HSA) induced by TBBPS-BME: A spectroscopic, computational, and molecular dynamics study. Chem Biol Interact 2025; 413:111498. [PMID: 40174686 DOI: 10.1016/j.cbi.2025.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Tetrabromobisphenol S Dimethyl Ether (TBBPS-BME) serves as a substitute for Tetrabromobisphenol A (TBBPA). It exhibits a greater potential for bioaccumulation, potentially posing substantial risks to environmental health and human safety. This research utilized a variety of spectroscopic and computational modeling methods to investigate structural and functional alterations of human serum albumin (HSA) induced by TBBPS-BME. The findings revealed that TBBPS-BME induces fluorescence quenching in HSA by binding to site I. The predominant force in this binding process is hydrophobic interaction. The binding constant for this complex is 2.394 ± 0.032 × 104 M-1 at 298 K, suggesting that they can form complex in vivo. The interaction with TBBPS-BME causes structural alterations in HSA, leading to a decrease in α-helix proportion and an overall enhancement of protein structural flexibility. The esterase-like function of HSA was also impacted by the presence of TBBPS-BME. Computational simulation tests indicate that this may be through interactions with residues Lys199 and Lys195. Molecular dynamics simulations further validated the formation of stable TBBPS-BME-HSA binary complexes, highlighting the critical role of hydrogen bonds in this steadiness. Alanine scanning mutation analysis revealed that Trp214, Phe211, Arg218, Lys199, and His242 are necessary for the assembly of the TBBPS-BME-HSA complex. Overall, this study provides an exhaustive examination of the binding mechanisms between TBBPS-BME and HSA, elucidating the underlying health hazards that may arise from exposure to TBBPS-BME.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangxi Key Laboratory of Flood and Drought Disaster Defense, Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China; Jiangxi Provincial Eco-hydraulic Technology Innovation Center of Poyang Lake Basin, Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China; Research Center for Water Resources and Ecological Environment of Poyang Lake, The Ministry of Water Resources of the People's Republic of China, Nanchang, 330029, China
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shuyuan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Ruoxuan Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiting Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhili Lu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Ying Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
2
|
Kong Y, Wu D, Wang G, Zhang M, Zhang R, Deng H, Li J, Lan H. Tetrabromobisphenol S (TBBPS) exposure induced the testicular aging through NLRP3-mediated inflammatory signaling pathway in vitro and in vivo. Int Immunopharmacol 2025; 152:114476. [PMID: 40090078 DOI: 10.1016/j.intimp.2025.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is an extensively employed Brominated flame retardant (BFR), but studies have shown that it has a range of toxicities, and it has been banned from use at present. Tetrabromobisphenol S (TBBPS) is increasingly used in industrial production as a substitute for TBBPA. However, up to now, the toxicity and molecular mechanism of TBBPS in the reproductive system have not been fully revealed. Therefore, we investigated the effects of TBBPS on testicular. In vitro, GC-1 cells and TM4 cells were used as models to perform an array of biochemical tests, and the toxicological impacts of TBBPS on testicular cells were evaluated. It was found that TBBPS could induce testicular cells senescence. Additionally, p16, p21, and p53 expression were also increased after TBBPS treatment. TBBPS also induced oxidative stress and inflammation response. Mechanistic studies have revealed that TBBPS causes mitochondrial damage, which leads to mitochondrial ds-DNA leakage into the cytoplasm, the NLRP3 inflammasome was then activated, in turn leading to inflammatory and senescence responses in testicular cells. In vivo, we found that TBBPS caused testicular tissue aging and inflammatory responses by detecting a series of molecular markers. In summary, the current study demonstrates that TBBPS can induce aging damage and inflammatory responses in testis, and this study lays a foundation for further exploring the reproductive toxicity of TBBPS.
Collapse
Affiliation(s)
- Yuebing Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Meng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ruoting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haochu Deng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiawen Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Su H, Xi J, Miao M, Liang H, Chen Y, Wang Z, Zhou Y, Jin Y, Ji H, Yuan W. Bisphenol analogs exposure in 4-year-old children and their intelligence quotient at 6 years: A prospective cohort study. ENVIRONMENTAL RESEARCH 2025; 276:121528. [PMID: 40185270 DOI: 10.1016/j.envres.2025.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Prenatal exposure to bisphenol A (BPA) has been shown to impact offspring cognition, behavior, and intelligence. However, whether co-exposure to bisphenol analogs (BPs) during childhood affects children's intelligence remains unclear. We included 465 mother-child pairs from the Shanghai Minhang Birth Cohort Study to examine the impact of children's exposure to BPs at 4 years of age on the intelligence quotient (IQ) measured at 6 years. BPs concentrations were measured in single-spot urine samples collected from 4-year-old children. The Wechsler Intelligence Scale for Children was used to evaluate IQ at 6 years. Multiple linear regression models were used to examine the associations between BPs and IQ. Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the joint and single-exposure effects of BPs mixture. In girls, exposure to bisphenol F (BPF) was inversely associated with Full-Scale IQ (FSIQ) and Perceptual Reasoning Index (PRI) (βFSIQ = -5.46, 95 % confidence interval [CI]: -9.97, -0.94; βPRI = -5.14, 95 % CI: -9.95, -0.32). By BKMR, BPF contributed the most to the joint effect of BPs in girls. The association remained robust after adjusting for maternal IQ. In boys, exposure to tetrachlorobisphenol A seemed to be associated with an increase in FSIQ and PRI; however, the number of exposed boys was small. Our study suggests that BPs exposure at 4 years of age may be associated with a lower IQ at 6 years in girls. BPF may not be a safe substitute for BPA. Further epidemiological studies are required to confirm these findings.
Collapse
Affiliation(s)
- Huijia Su
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Yinliu Jin
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Health Commission Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
4
|
Wang Y, Zhang Z, Shen N, Qi X, Li H, Wu F, Zhu Z, Liu J, Xiang H. Association between exposure to brominated flame retardants (BFRs) and blood lipid profiles in American adults: a cross-sectional study. Lipids Health Dis 2025; 24:120. [PMID: 40148862 PMCID: PMC11948727 DOI: 10.1186/s12944-025-02527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Exposure to brominated flame retardants (BFRs) has been linked to alterations in human metabolism and disease processes. However, the relationship between BFR exposure and blood lipid levels remains unclear. This study aimed to investigate the potential association between BFR exposure and blood lipid profiles in American adults. METHODS A cross-sectional study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2016. Serum concentrations of twelve BFRs, PBB153 and eleven polybrominated diphenyl ethers (PBDEs), were quantified using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). Blood lipid levels, including total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) were measured enzymatically. The Friedewald equation was used to determine low-density lipoprotein cholesterol (LDL-C): [LDL-C] = [TC] - [HDL-C] - [TG/5]. Remnant cholesterol (RC) was calculated using the formula: [RC] = [TC] - [HDL-C] - [LDL-C]. Multivariable regression analyses were applied to examine the associations between individual BFRs and TC, HDL-C, LDL-C, and RC. The overall associations of BFR mixtures with blood lipids were evaluated using quantile g-computation (QGC) analyses and weighted quantile sum (WQS) regression. In order to identify potential gender-specific differences, stratified mixture analyses were performed by gender. RESULTS A total of 3,154 eligible participants were included. Nine BFRs with a detection rate greater than 70% were included in the analysis. Individually, PBB153, PBDE209, PBDE153, and PBDE28 were positively associated with TC and RC after adjusted all covariates. Furthermore, PBB153, PBDE209, and PBDE153 were positively associated with LDL-C. No association was found between individual BFR and HDL-C. WQS and QGC analyses confirmed that BFR mixtures were positively associated with TC, LDL-C, and RC. CONCLUSION This study demonstrates that BFR exposure is associated with increased levels of TC, LDL-C, and RC, indicating an elevated risk of dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhihao Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Nana Shen
- Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaoying Qi
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Hao Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Futong Wu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhongze Zhu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jiarui Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Hongfei Xiang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
5
|
Ding Y, Zhang T, Ma HB, Han J, Zhu W, Zhao X, Lu XY, Zhou B, Shi XJ. Chronic Exposure to Environmental Concentrations of Tetrabromobisphenol A Disrupts Insulin and Lipid Homeostasis in Diet-Induced Obese Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4330-4343. [PMID: 39998957 PMCID: PMC11912329 DOI: 10.1021/acs.est.4c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in consumer products, has raised significant health concerns. However, the long-term metabolic effects of chronic exposure to environmentally relevant TBBPA concentrations, particularly in the context of modern high-calorie diets, remain poorly understood. Here, we show that C57BL/6J mice fed a high-fat diet and exposed to 20 or 50 nmol/kg/day TBBPA for 120 days exhibited increased body weight, aggravated fat accumulation, impaired glucose tolerance, insulin resistance, and dyslipidemia. Mechanistic investigations revealed that TBBPA exposure led to decreased norepinephrine levels, consequently reducing energy expenditure. It disrupts hepatic insulin signaling and upregulates G6Pase, thereby increasing the level of liver glucose production. Furthermore, TBBPA enhances hepatic cholesterol synthesis by elevating protein levels of HMGCR, which is the rate-limiting enzyme in cholesterol biosynthesis. This effect is mediated through increased expression of USP20, a specific deubiquitinating enzyme for HMGCR. Additionally, TBBPA modestly enhances fatty acid biosynthesis without significantly affecting lipolysis or fatty acid oxidation. Our research reveals novel molecular pathways through which environmental TBBPA exposure disrupts metabolic balance, potentially exacerbating obesity-related health issues. These findings highlight the synergistic effects between environmental pollutants and modern calorie-dense diets on metabolic health, emphasizing the importance of considering multiple factors in obesity-related disorders.
Collapse
Affiliation(s)
- Yi Ding
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingfu Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui-Bing Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenzhuo Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Yi Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Emond C, DeVito MJ, Birnbaum LS. A physiologically based pharmacokinetic (PBPK) model describing the kinetics of a commercial mixture α-, β-, and γ-hexabromocyclododecane exposure in mice. Arch Toxicol 2025; 99:1043-1058. [PMID: 39847078 DOI: 10.1007/s00204-024-03939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices. The toxicological effects of its exposure in humans are not clearly understood. A recent reassessment pointed out potential thyroid disruption as a primary effect. This current work aims to update a physiologically based pharmacokinetic (PBPK) model for γ-HBCD in C57BL/6 mice and incorporate equations and codes for α-HBCD and β-HBCD isomers and simulate them as a mixture. Physiological parameters were taken from the literature, calculated based on the log Kow or optimized with the dataset. The elimination of HBCDs in urine and feces was optimized to reflect the percent dose excreted, as published in the literature. Compared with data from the literature for α-HBCD, β-HBCD, and γ-HBCD in multiple tissues, the model simulations accurately described the pharmacokinetics of HBCDs in the mouse. The utility of the model was demonstrated by predicting blood concentrations from three studies in adult mice evaluating dopaminergic changes in the brain. Although this PBPK model for the mixture explicitly describes α-HBCD, β-HBCD, and γ-HBCD as individual exposures, but also as a mixture, more experimental data with commercial HBCD mixtures is still needed to improve the model.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Crabtree, QC, Canada.
- School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada.
| | - Michael J DeVito
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- Scientist Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Liu JM, Liu SH, Fu SC, Lai WC, Fang KM, Lin KA, Ke JA, Kuo CY, Su CC, Chen YW. Tetrabromobisphenol A induced p38-MAPK/AMPKα activation downstream-triggered CHOP signal contributing to neuronal apoptosis and death. Toxicology 2025; 510:154014. [PMID: 39586487 DOI: 10.1016/j.tox.2024.154014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR), has been implicated as the neurotoxic effects in mammalian. However, the exact mechanisms underlying TBBPA-induced neurotoxicity remain unclear. In the present study, Neuro-2a cells, a mouse neural crest-derived cell line, were used to examine the mechanism of TBBPA-induced neuronal cytotoxicity. TBBPA exposure caused alterations in cell viability and mitochondrial membrane potential (MMP) and induction of apoptotic events, such as increased apoptotic cell population and cleaved caspase-3, -7, -9, and poly (ADP-ribose) polymerase (PARP) protein expression). TBBPA exposure triggered CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) activation. Transfection with CHOP-specific small interfering RNA (siRNA) obviously prevented the expression of CHOP protein and markedly attenuated MMP loss, and caspase-3 and -7 activation in TBBPA-exposed Neuro-2a cells. In addition, TBBPA exposure significantly evoked the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular-signal regulated kinase1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38-MAPK), and AMP-activated protein kinase (AMPK)α proteins. Pretreatment of cells with pharmacological inhibitors of p38-MAPK (SB203580) and AMPK (compound C), but not inhibitors of JNK (SP600125) or ERK1/2 (PD98059), effectively prevented the increase in caspase-3 activity, MMP loss, and activated CHOP and cleaved caspase-3 and -7 protein expression in TBBPA-treated cells. Notably, transfection with either p38α-MAPK- or AMPKα1/2-specific siRNAs markedly attenuated the expression of CHOP, and cleaved caspase-3 and -7. Interestingly, transfection with each siRNA significantly reduced the TBBPA-induced phosphorylation of p38-MAPK and AMPKα proteins. Collectively, these findings suggest that CHOP activation-mediated mitochondria-dependent apoptosis contributes to TBBPA-induced neurotoxicity. An interdependent p38-MAPK and AMPKα signaling-regulated apoptotic pathway may provide new insights into the mechanism understanding TBBPA-elicited neurotoxicity.
Collapse
Affiliation(s)
- Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Wei-Cheng Lai
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Ken-An Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jun-An Ke
- Department of Medical Education, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua City 500, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
8
|
Cheng Y, Fei Y, Xu Z, Huang R, Jiang Y, Sun L, Wang X, Yu S, Luo Y, Mao X, Zhao X. Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study. TOXICS 2024; 12:918. [PMID: 39771133 PMCID: PMC11728815 DOI: 10.3390/toxics12120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population. METHODS To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005-2016) were used. In the final analysis, a total of 8138 adults aged 20 years and older were included. To investigate the potential relationship between BFRs and outcomes, we used binary logistic regression, restricted cubic spline (RCS), quantile-based g computation (QGC), and weighted quantile sum (WQS) regression. RESULTS The findings showed that serum BFR concentrations were associated with depressive symptoms over a broad spectrum. Binary logistic regression and RCS analysis showed that certain BFRs, particularly PBB153, were significantly and positively associated with the incidence of depression, even after adjustment for various confounders (p < 0.05). Mixed exposure to BFRs was also found to be associated with depression in the population, with a stronger association in men. The two most influential BFRs, PBB153 and PBDE85, were identified in both mixed exposure models and are potential risk factors of concern. CONCLUSION Our study identified new insights into the relationship between BFRs and depression, but sizable population-based cohort studies and toxicology mechanism studies will be needed to establish causality.
Collapse
Affiliation(s)
- Yulan Cheng
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yue Fei
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Zemin Xu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Lihan Sun
- School of Medicine, Nantong University, Nantong 226001, China;
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Shali Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yonghua Luo
- Nantong Fourth People’s Hospital, Nantong 226019, China;
| | - Xiaobo Mao
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| |
Collapse
|
9
|
Tian L, Zhou N, Zhao N, Qiao M, He M, Mao Z, Xu W, Xu D, Wang Y, Xu Y, Chen T. Low level exposure to BDE-47 facilitates the development of prostate cancer through TOP2A/LDHA/lactylation positive feedback circuit. ENVIRONMENTAL RESEARCH 2024; 263:120094. [PMID: 39362459 DOI: 10.1016/j.envres.2024.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
2,2',4,4'-tetra brominated diphenyl ether (BDE-47) is one of the most widely distributed congeners of polybrominated diphenyl ethers. While the relationships between BDE-47 exposure and other hormone-dependent cancers (such as breast cancer) are well established, no previous study has examined whether BDE-47 exposure is related to the development of prostate cancer (PCa). Through bulk and single-cell RNA sequencing (scRNA-seq) analyses, as well as in vitro and in vivo experiments, this study aims to investigate the effect of BDE-47 exposure on PCa progression. Herein, we found that low dose BDE-47 promoted the growth of PCa cells (PC3 and LNCaP) in a dose-dependent manner in vitro and in vivo. Based on Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA), we obtained 34 BDE-47-related and PCa-related genes through screening and overlapping. These genes were significantly enriched in fatty acid metabolism-related gene ontology (GO) terms, which were also enriched for genes targeting BDE-47 obtained from the UniProt. Through scRNA-seq data, certain cell type-specific expression was observed for CYP2E1, PIK3R1, FGF2, and TOP2A in PCa tissues from men. Molecular docking simulation showed that BDE-47 was tightly bound to the protein residues of AOX1, PIK3R1, FGF2, CAV2, CYP2E1 and TOP2A. Further screening in terms of patient overall survival, receiver operating characteristics curve (ROC) curve and Gleason score grading system narrowed the candidate genes down to TOP2A. Mechanistically, the growth-promoting effect of BDE-47 on PCa cells could be reversed by TOP2A inhibitor. RNA-seq followed by experimental verification demonstrated that TOP2A promoted PCa progression through upregulating LDHA and glycolysis. Furthermore, lactate upregulated TOP2A transcription through lactylation of H3K18la in PCa cells, which could be rescued by LDHA knockdown. Taken together, low dose BDE-47 triggered PCa progression through TOP2A/LDHA/lactylation positive feedback circuit, thus revealing epigenetic shifting and metabolic reprogramming underpinning BDE-47-induced carcinogenesis of the prostate.
Collapse
Affiliation(s)
- Linlin Tian
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Nan Zhou
- Nanjing Municipal Health Commission, Nanjing, PR China
| | - Ning Zhao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Ziqing Mao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Wenjiong Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Dandan Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Yan Wang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Yan Xu
- School of Public Health, Nanjing Medical University, Nanjing, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China; Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, PR China; Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, PR China.
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
10
|
Abdullah M, Adhikary S, Bhattacharya S, Hazra S, Ganguly A, Nanda S, Rajak P. E-waste in the environment: Unveiling the sources, carcinogenic links, and sustainable management strategies. Toxicology 2024; 509:153981. [PMID: 39490727 DOI: 10.1016/j.tox.2024.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
E-waste refers to the electrical and electronic equipment discarded without the intent of reuse or at the end of its functional lifespan. In 2022, approximately 62 billion kg of e-waste, equivalent to 7.8 kg per capita, was generated globally. With an alarming annual growth of approximately 2 million metric tonnes, e-waste production may exceed 82 billion kg by 2030. Improper disposal of e-waste can be detrimental to human health and the entire biosphere. E-waste encompasses a wide range of materials, including heavy metals, Polychlorinated Biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Dibenzo-dioxins and -furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs), and radioactive elements. E-waste, when disposed inappropriately can directly contaminate the aquatic and terrestrial environment, leading to human exposure through ingestion, inhalation, dermal absorption, and trans-placental transfer. These detrimental contaminants can directly enter the human body from the environment and may fuel carcinogenesis by modulating cell cycle proteins, redox homeostasis, and mutations. Heavy metals such as cadmium, mercury, arsenic, lead, chromium, and nickel, along with organic pollutants like PAHs, PCBs, PBDEs, PFAS, and radioactive elements, play a crucial role in inducing malignancy. Effective collection, sorting, proper recycling, and appropriate disposal techniques are essential to reduce environmental contamination with e-waste-derived chemicals. Hence, this comprehensive review aims to unravel the global environmental burden of e-waste and its links to carcinogenesis in humans. Furthermore, it provides an inclusive discussion on potential treatment approaches to minimize environmental e-waste contamination.
Collapse
Affiliation(s)
- Md Abdullah
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Sudharani Hazra
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
11
|
Juarez MN, McDermott A, Wade MG, Plante I. Exposure to brominated flame retardants in utero and through lactation delays the development of DMBA-induced mammary cancer: potential effects on subtypes? Front Endocrinol (Lausanne) 2024; 15:1429142. [PMID: 39610845 PMCID: PMC11602300 DOI: 10.3389/fendo.2024.1429142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Brominated flame retardants (BFRs) are chemical compounds used to reduce the flammability of various products; some BFRs exhibit endocrine-disrupting properties and can leach into the environment leading to human and wildlife exposure. The mammary gland has specific vulnerability windows during which it is more sensitive to the effects of endocrine disrupting compounds (EDCs), such as the in utero life, puberty and pregnancy. Our previous studies revealed precocious mammary gland development, disruptions in junctional proteins, and altered proliferation-apoptosis balance during puberty in rats exposed to BFRs in utero and through lactation. Such effects have been associated with increased mammary cancer risk. Objective The current study aimed to determine if in utero and lactational exposure to BFRs renders the mammary gland more susceptible to 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer. Methods Dams were exposed to a BFRs mixture (0. 0.06 or 60 mg/kg/day), and mammary cancer was induced in pups using DMBA at post-natal day 46. Tumors onset and growth were monitored, and tumors were characterized using histology and molecular biology. Results Although BFRs exposure did not significantly affect mammary tumor number or burden, it showed significant delay in mammary tumor onset and growth in BFR-exposed animal. These effects could potentially be due to BFRs' impact on cellular responses, DMBA metabolism, or mammary gland shift of the sensitivity window. Molecular analysis of mammary tumors showed a shift in the ratio of luminal A, luminal B, and (HER2)-enriched tumors, and an increase in triple-negative breast cancer (TNBC) subtypes in BFR-exposed animals. Additionally, BFRs exposure showed lung lesions indicative of inflammation, independent of mammary cancer development. Conclusion Our study highlights the complex relationship between BFRs exposure and mammary cancer risk, emphasizing the need for further investigation into underlying mechanisms and long-term effects of BFRs on mammary gland development and carcinogenesis.
Collapse
MESH Headings
- Animals
- Female
- Flame Retardants/toxicity
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Pregnancy
- Lactation
- Rats
- Prenatal Exposure Delayed Effects/chemically induced
- Prenatal Exposure Delayed Effects/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Rats, Sprague-Dawley
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Endocrine Disruptors/toxicity
- Carcinogens/toxicity
- Halogenated Diphenyl Ethers/toxicity
- Maternal Exposure/adverse effects
Collapse
Affiliation(s)
- Melany N. Juarez
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Michael G. Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| |
Collapse
|
12
|
Costopoulou D, Leondiadis L, Rose M. Climate change influence on the trends of BFRs in the environment and food. CHEMOSPHERE 2024; 367:143578. [PMID: 39433097 DOI: 10.1016/j.chemosphere.2024.143578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Climate change poses new challenges for environmental protection and food safety. With reported consequences including warmer temperatures, melting of Alpine glaciers, higher sea levels, droughts, extreme rainfall events and increased surface UV radiation, concerns about the impact on food contaminants have been raised. While the effects of climate change on POPs were initially expected to have the biggest impact in the arctic region, given the intensity, frequency and spread of extreme weather events, global influence on environmental pollution and food safety is currently anticipated. Warmer temperatures are expected to enhance the volatilization of POPs and influence their partitioning between soil, sediment, water and atmosphere, enhancing their mobility and their potential for long-range atmospheric transport. Floods and strong winds can cause dilution but also spread of pollutants to wider areas. Limited data are available for the impact of climate change on BFRs levels, trends and toxicity. BFRs are widely used to protect people from fire hazards. Numerous BFR containing products are disposed in landfills where climate change could possibly induce increased leaching and resulting impacts on the food chain. Heat and UV exposure can lead to degradation of novel polymeric BFRs with adverse environmental effects. Long-term monitoring data are needed for feed, food and environmental compartments in order to evaluate climate change influence, which will also enable the development of prediction models specific for legacy and novel BFRs, for various climate change scenarios. Furthermore, there is a need to promote further discussion in the scientific community for the design of risk management and remediation activities for contaminated areas, in response to potential future conditions as the climate continues to change.
Collapse
Affiliation(s)
- Danae Costopoulou
- Laboratory of Mass Spectrometry and Dioxin Analysis, NCSR "Demokritos", Athens, 153 41, Greece
| | - Leondios Leondiadis
- Laboratory of Mass Spectrometry and Dioxin Analysis, NCSR "Demokritos", Athens, 153 41, Greece.
| | - Martin Rose
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
13
|
Lv JJ, Zhang YC, Li XY, Zhang LJ, Yixi ZM, Yang CH, Wang XH. The association between brominated flame retardants exposure with Parkinson's disease in US adults: a cross-sectional study of the National Health and Nutrition Examination Survey 2009-2016. Front Public Health 2024; 12:1451686. [PMID: 39498114 PMCID: PMC11532090 DOI: 10.3389/fpubh.2024.1451686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Increasing evidence suggests that environmental factors play a crucial role in the pathogenesis of Parkinson's disease (PD). Humans are simultaneously exposed to multiple brominated flame retardants (BFRs) in the environment. However, the relationship between BFRs and PD remains unclear. This study was designed to investigate the overall association between BFRs and PD in a nationally representative US population and to further identify significant chemicals. Methods This study used data from 7,161 NHANES participants from 2009 through 2016. The serum BFRs registry included PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-153, PBDE-154, PBDE-183, PBDE-209, and PBB-153. A survey-weighted generalized logistic regression model with restricted cubic splines (RCS) was used to evaluate the association between single BFRs exposure and periodontitis. Meanwhile, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to evaluate the overall association of mixed frankincense powder with periodontitis and to identify significant chemicals. Sensitivity analysis was performed to evaluate the robustness of the results. Results Among the 7,161 participants, 65 had PD. PD patients were older (mean age 57.79 vs. 46.57 years) and had a higher proportion of females (70.86%) compared to non-PD participants. Serum levels of PBB-153 were significantly higher in those with PD. Logistic regression analyses revealed a non-linear, inverted U-shaped relationship between serum PBB-153 and PD risk. The risk of PD increased with higher PBB-153 levels up to the 3rd quartile (Q3), beyond which the risk declined (Q3 vs. Q1: OR = 4.98, 95% CI = 1.79-13.86; Q4 vs. Q1: OR = 3.23, 95% CI = 1.03-10.08). PBB-153 (43.40%), PBDE-153 (24.75%), and PBDE-85 (19.51%) contributed most to the weighted quantile sum index associated with PD risk. Bayesian kernel machine regression confirmed the inverted U-shaped dose-response pattern for PBB-153 and the overall BFR mixture. Restricted cubic spline analyses corroborated the non-linear relationship between PBB-153 and PD, which was more pronounced among women and those aged 37-58 years. Sensitivity analyses substantiated these findings. Conclusion This nationally representative cross-sectional study revealed a novel non-linear, inverted U-shaped relationship between serum levels of the brominated flame retardant PBB-153 and Parkinson's disease risk in U.S. adults. The risk increased with higher PBB-153 exposure up to a point, beyond which it declined. This complex dose-response pattern highlights the importance of considering potential hormetic mechanisms and effect modifiers when evaluating environmental exposures and neurodegenerative diseases. Further research is warranted to elucidate the underlying biological pathways and inform risk mitigation strategies.
Collapse
Affiliation(s)
- Jia-jie Lv
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-chi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-yu Li
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-jie Zhang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-ma Yixi
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-hao Yang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-hui Wang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Liu M, Brandsma SH, Schreder E. From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling. CHEMOSPHERE 2024; 365:143319. [PMID: 39271080 DOI: 10.1016/j.chemosphere.2024.143319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) are commonly used in electric and electronic products in high concentrations to prevent or retard fire. Health concerns related to flame retardants (FRs) include carcinogenicity, endocrine disruption, neurotoxicity, and reproductive and developmental toxicity. Globally, a lack of transparency related to chemicals in products and limited restrictions on use of FRs in electronics have led to widespread use and dissemination of harmful FRs. Despite the lack of transparency and restrictions, plastics from electronics are often recycled and can be incorporated in household items that do not require flame retardancy, resulting in potentially high and unnecessary exposure. This study sought to determine whether black plastic household products sold on the U.S. market contained emerging and phased-out FRs and whether polymer type was predictive of contamination. A total of 203 products were screened for bromine (Br), and products containing >50 ppm Br were analyzed for BFRs, OPFRs, and plastic polymers (e.g. acrylonitrile butadiene styrene, high impact polystyrene, polypropylene). FRs were found in 85% of analyzed products, with total FR concentrations ranging up to 22,800 mg/kg. FRs detected include the restricted compound deca-BDE, which was used widely in electronics casings, as well as its replacements decabromodiphenyl ethane (DBDPE) and 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TBPP-TAZ) along with associated compound 2,4,6-tribromophenol (2,4,6-TBP), recently detected in breast milk. Plastic typically used in electronics (styrene-based) contained significantly higher levels of ∑FRs than plastics less typically used for electronics (polypropylene and nylon). Estimation of exposure to BDE-209 from contaminated kitchen utensils indicated users would have a median intake of 34,700 ng/day, exceeding estimates for intake from dust and diet. The detection of FRs in collected household products indicates that recycling, without the necessary transparency and restrictions to ensure safety, is resulting in unexpected exposure to toxic flame retardants in household items.
Collapse
Affiliation(s)
- Megan Liu
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States.
| | - Sicco H Brandsma
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Erika Schreder
- Toxic-Free-Future, 4649 Sunnyside Ave N Suite 540, Seattle, WA 98103, United States
| |
Collapse
|
15
|
Lv JJ, Li SY, Kong XM, Zhao Y, Li XY, Guo H, Feng C, Yang CH. Associations between exposure to brominated flame retardants and periodontitis in U.S. adults. CHEMOSPHERE 2024; 364:143181. [PMID: 39209038 DOI: 10.1016/j.chemosphere.2024.143181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increasing evidence has shown that environmental factors play a crucial role in the pathogenesis of periodontitis. Humans are simultaneously exposed to a variety of environmental brominated flame retardants (BFRs). However, the relationship between BFRs in periodontitis remains unclear. This study aimed to investigate the overall association between BFRs and periodontitis in a nationally representative US population and to further identify important chemicals. METHODS Data from 3322 NHANES participants from 2009 to 2016 were used. Serum BFRs were registered, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE100, PBDE-153, PBDE-154, PBDE-183, PBDE-209 and PBB-153. Survey weighted generalized logistic regression models, restricted cubic splines (RCS) were conducted to assess single BFRs exposure with periodontitis. Meanwhile, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to evaluate the overall association of BFRs mixtures with periodontitis and to identify significant chemicals. RESULTS A total of 3322 participants were included in the study, of whom 1795 had periodontitis. After adjusting for potential confounders, multiple logistic regression analysis revealed significant positive associations between serum levels of PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, and PBB-153 and the risk of periodontitis (all P < 0.05). A dose-response relationship was observed for many of these BFRs, with higher quantiles associated with an increased risk of periodontitis. WQS regression identified PBDE-183 (38.60%), PBDE-153 (21.20%), PBDE-209 (14.40%), and PBDE-99 (11.90%) as the BFRs with the largest weights contributing to the overall mixture effect on periodontitis risk. BKMR analysis further supported the positive association between serum BFRs and periodontitis, with most individual BFRs showing a positive trend, except for PBDE-153. Restricted cubic spline analysis revealed a generally increasing probability of periodontitis with increasing concentrations of BFRs, albeit with some nonlinear patterns for certain compounds. CONCLUSION In conclusion, this study provides compelling evidence of a significant association between exposure to brominated flame retardants (BFRs) and an increased risk of periodontitis in a nationally representative sample of U.S. adults. Elevated serum levels of several BFRs, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, and PBB-153, were found to be positively associated with periodontitis, exhibiting a dose-response relationship.
Collapse
Affiliation(s)
- Jia-Jie Lv
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200060, China; Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
| | - Shu-Yue Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, No.128 Shenyang Road, Yangpu District, Shanghai, 200090, China.
| | - Xiang-Meng Kong
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
| | - Yan Zhao
- Department of Nursing, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District Shanghai, 200011, China.
| | - Xin-Yu Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Huangpu District, Shanghai, China.
| | - Hong Guo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District Shanghai, China.
| | - Chu Feng
- Department of General Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200060, China.
| | - Cheng-Hao Yang
- Department of Vascular Surgery, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, No.1291 Jiangning Road, Huangpu District, Shanghai, 200060, China; Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
16
|
Strunz S, Strachan R, Bauer M, Zenclussen AC, Leppert B, Junge KM, Polte T. Maternal Exposure to Low-Dose BDE-47 Induced Weight Gain and Impaired Insulin Sensitivity in the Offspring. Int J Mol Sci 2024; 25:8620. [PMID: 39201308 PMCID: PMC11354368 DOI: 10.3390/ijms25168620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs), commonly used as synthetic flame retardants, are present in a variety of consumer products, including electronics, polyurethane foams, textiles, and building materials. Initial evidence from epidemiological and experimental studies suggests that maternal PBDE exposure may be associated with a higher BMI in children, with disturbance of energy metabolism and an increased risk of Type 2 diabetes. However, the causality between early exposure to real-life PBDE concentrations and increased weight as well as mechanisms underlying impaired metabolic pathways in the offspring remain elusive. Here, using a mouse model we examined the effect of maternal exposure to 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), the most abundant congener in human samples, on offspring weight gain and energy homeostasis using a mouse model. Maternal exposure to BDE-47 at low dose resulted in weight gain in female offspring together with an impaired glucose and insulin tolerance in both female and male mice. In vitro and in vivo data suggest increased adipogenesis induced by BDE-47, possibly mediated by DNA hypermethylation. Furthermore, mRNA data suggest that neuronal dysregulation of energy homeostasis, driven via a disturbed leptin signaling may contribute to the observed weight gain as well as impaired insulin and glucose tolerance.
Collapse
Affiliation(s)
- Sandra Strunz
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, 04318 Leipzig, Germany
| | - Rebecca Strachan
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Mario Bauer
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Ana C. Zenclussen
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Beate Leppert
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
| | - Kristin M. Junge
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- School of Health and Social Sciences, AKAD University Stuttgart, 70191 Stuttgart, Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Immunology, 04318 Leipzig, Germany (M.B.); (A.C.Z.); (K.M.J.)
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Peña J, González-Mariño I, Pérez Pavón JL. In-situ acetylation followed by liquid-liquid extraction and gas chromatography - mass spectrometry for the determination of bromophenols in urine. Talanta 2024; 275:126146. [PMID: 38678925 DOI: 10.1016/j.talanta.2024.126146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
A novel and simple method combining in-situ acetylation, liquid-liquid extraction and gas chromatography-mass spectrometry (GC-MS) has been developed for the quantification of 10 bromophenols in urine, used as biomarkers of exposure to polybrominated diphenyl ethers. The analytical process involves an enzymatic hydrolysis of the bromophenol glucuronide fraction followed by an aqueous derivatization of the phenol group with acetic anhydride. A subsequent liquid-liquid extraction of the sample with hexane allows the injection of the organic layer, using a programmed temperature vaporizer, into a gas chromatograph coupled to a single quadrupole mass spectrometer. Quantification is performed by the standard addition method. Limits of detection are in the pg mL-1 range. Trueness, assessed in terms of percentages of recovery, varies between 100 % and 118 % in synthetic urine and between 79 % and 117 % in human urine. Precision, assessed at two different levels, 0.25 ng mL-1 and 2.5 ng mL-1, shows values of relative standard deviation below 14 % both in intra- and inter-day studies for both matrices. The method has been applied to the analysis of seven urine samples, measuring concentrations higher than the LOQ in three of them. These levels are in agreement with others found in literature, but they have been obtained by applying a much simpler and faster protocol. In addition, the replacement of silylating reagents by acetic anhydride, to derivatize the phenol moiety, provides a greener alternative to other GC-MS procedures published up to date.
Collapse
Affiliation(s)
- Javier Peña
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, 37008, Salamanca, Spain
| | - Iria González-Mariño
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, 37008, Salamanca, Spain.
| | - José Luis Pérez Pavón
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemical Sciences, 37008, Salamanca, Spain
| |
Collapse
|
18
|
Jarosiewicz M, Krześlak A. Epigenetic implications of common brominated flame retardants (PBDEs and TBBPA): Understanding the health risks of BFRs exposure. CHEMOSPHERE 2024; 361:142488. [PMID: 38821124 DOI: 10.1016/j.chemosphere.2024.142488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Brominated flame retardants (BFRs) are synthetic chemicals incorporated into a wide variety of products, both for industrial applications and everyday use, with the primary aim of reducing their flammability or reducing the material burning rate. These compounds find widespread use in plastics, textiles, and electrical/electronic devices. However, BFRs can be released from products and, thus are determined in many environmental matrices such as soil, water and air.This review discuss the potential health implications of selected BFRs (PBDEs and TBBPA) exposure arising from their impact on the epigenetic mechanisms. Epigenetic modifications, such as DNA methylation and histone acetylation or methylation, as well as changes in miRNA pattern, play significant roles in gene expression and cell function and can be influenced by environmental factors.The studies indicate that PBDEs exposure can lead to global DNA hypomethylation, disrupting normal gene regulation and contributing to genomic instability. In animal models, PBDEs have been associated with adverse effects on neurodevelopment, including impairments in memory and learning. TBBPA exposure has also been linked to changes in DNA methylation patterns, alterations in histone posttranslational modifications and non-coding RNA expression. These epigenetic changes may contribute to health issues related to growth, development, and endocrine functions.The growing evidence of epigenetic modifications induced by BFRs exposure highlights the importance of understanding their potential risks to human health. Further investigations are needed to fully elucidate the long-term consequences of altered epigenetic marks and their impact on human health.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland.
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| |
Collapse
|
19
|
Dong X, Sun Q, Shi X, Yin Z, Zeng B, Huang Z, Li X. Co-modification of engineered cellulose surfaces using antibacterial copper-thiosemicarbazone complexes and flame retardants. SURFACES AND INTERFACES 2024; 51:104688. [DOI: 10.1016/j.surfin.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
20
|
Lu Q, Liang Q, Wang S. Burning question: Rethinking organohalide degradation strategy for bioremediation applications. Microb Biotechnol 2024; 17:e14539. [PMID: 39075849 PMCID: PMC11286677 DOI: 10.1111/1751-7915.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Organohalides are widespread pollutants that pose significant environmental hazards due to their high degree of halogenation and elevated redox potentials, making them resistant to natural attenuation. Traditional bioremediation approaches, primarily relying on bioaugmentation and biostimulation, often fall short of achieving complete detoxification. Furthermore, the emergence of complex halogenated pollutants, such as per- and polyfluoroalkyl substances (PFASs), further complicates remediation efforts. Therefore, there is a pressing need to reconsider novel approaches for more efficient remediation of these recalcitrant pollutants. This review proposes novel redox-potential-mediated hybrid bioprocesses, tailored to the physicochemical properties of pollutants and their environmental contexts, to achieve complete detoxification of organohalides. The possible scenarios for the proposed bioremediation approaches are further discussed. In anaerobic environments, such as sediment and groundwater, microbial reductive dehalogenation coupled with fermentation and methanogenesis can convert organohalides into carbon dioxide and methane. In environments with anaerobic-aerobic alternation, such as paddy soil and wetlands, a synergistic process involving reduction and oxidation can facilitate the complete mineralization of highly halogenated organic compounds. Future research should focus on in-depth exploration of microbial consortia, the application of ecological principles-guided strategies, and the development of bioinspired-designed techniques. This paper contributes to the academic discourse by proposing innovative remediation strategies tailored to the complexities of organohalide pollution.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
21
|
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution's Effects on Human Immunity. Int J Mol Sci 2024; 25:7788. [PMID: 39063030 PMCID: PMC11277414 DOI: 10.3390/ijms25147788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pollution poses a significant threat to human health, with detrimental effects on various physiological systems, including the respiratory, cardiovascular, mental, and perinatal domains. While the impact of pollution on these systems has been extensively studied, the intricate relationship between chemical pollution and immunity remains a critical area of investigation. The focus of this study is to elucidate the relationship between chemical pollution and human immunity. To accomplish this task, this study presents a comprehensive review that encompasses in vitro, ex vivo, and in vivo studies, shedding light on the ways in which chemical pollution can modulate human immunity. Our aim is to unveil the complex mechanisms by which environmental contaminants compromise the delicate balance of the body's defense systems going beyond the well-established associations with defense systems and delving into the less-explored link between chemical exposure and various immune disorders, adding urgency to our understanding of the underlying mechanisms and their implications for public health.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Maria Lia Contrino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Massimo Contarino
- Azienda Sanitaria Provinciale di Siracusa, Corso Gelone 17, 96100 Siracusa, Italy; (M.L.C.); (F.M.C.)
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (G.D.); (N.A.); (S.R.); (A.L.); (F.C.); (V.L.)
| |
Collapse
|
22
|
Marti D, Hanrahan D, Sanchez-Triana E, Wells M, Corra L, Hu H, Breysse PN, Laborde A, Caravanos J, Bertollini R, Porterfield K, Fuller R. Structured expert judgement approach of the health impact of various chemicals and classes of chemicals. PLoS One 2024; 19:e0298504. [PMID: 38913645 PMCID: PMC11195936 DOI: 10.1371/journal.pone.0298504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
INTRODUCTION Chemical contamination and pollution are an ongoing threat to human health and the environment. The concern over the consequences of chemical exposures at the global level continues to grow. Because resources are constrained, there is a need to prioritize interventions focused on the greatest health impact. Data, especially related to chemical exposures, are rarely available for most substances of concern, and alternate methods to evaluate their impact are needed. STRUCTURED EXPERT JUDGMENT (SEJ) PROCESS A Structured Expert Judgment (Research Outreach, 2021) process was performed to provide plausible estimates of health impacts for 16 commonly found pollutants: asbestos, arsenic, benzene, chromium, cadmium, dioxins, fluoride, highly hazardous pesticides (HHPs), lead, mercury, polycyclic-aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Per- and Polyfluorinated Substances (PFAs), phthalates, endocrine disrupting chemicals (EDCs), and brominated flame retardants (BRFs). This process, undertaken by sector experts, weighed individual estimations of the probable global health scale health impacts of each pollutant using objective estimates of the expert opinions' statistical accuracy and informativeness. MAIN FINDINGS The foremost substances, in terms of mean projected annual total deaths, were lead, asbestos, arsenic, and HHPs. Lead surpasses the others by a large margin, with an estimated median value of 1.7 million deaths annually. The three other substances averaged between 136,000 and 274,000 deaths per year. Of the 12 other chemicals evaluated, none reached an estimated annual death count exceeding 100,000. These findings underscore the importance of prioritizing available resources on reducing and remediating the impacts of these key pollutants. RANGE OF HEALTH IMPACTS Based on the evidence available, experts concluded some of the more notorious chemical pollutants, such as PCBs and dioxin, do not result in high levels of human health impact from a global scale perspective. However, the chemical toxicity of some compounds released in recent decades, such as Endocrine Disrupters and PFAs, cannot be ignored, even if current impacts are limited. Moreover, the impact of some chemicals may be disproportionately large in some geographic areas. Continued research and monitoring are essential; and a preventative approach is needed for chemicals. FUTURE DIRECTIONS These results, and potential similar analyses of other chemicals, are provided as inputs to ongoing discussions about priority setting for global chemicals and pollution management. Furthermore, we suggest that this SEJ process be repeated periodically as new information becomes available.
Collapse
Affiliation(s)
- Deniz Marti
- University of Southern California, Los Angeles, California, United States of America
| | | | | | - Mona Wells
- The Meadows Center for Water and the Environment, San Marcos, Texas, United States of America
| | - Lilian Corra
- Global Alliance on Health and Pollution, Geneva, Switzerland
| | - Howard Hu
- University of Southern California’s Keck School of Medicine, Los Angeles, California, United States of America
| | - Patrick N. Breysse
- Johns Hopkins’ Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Jack Caravanos
- New York University School of Global Public Health, New York, New York, United States of America
| | | | | | | |
Collapse
|
23
|
Mlelwa R, Rother HA. Reviewing the current state of legacy POP-brominated flame retardants in plastic childcare products and toys: a scoping review protocol. Syst Rev 2024; 13:148. [PMID: 38831309 PMCID: PMC11149179 DOI: 10.1186/s13643-024-02524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/08/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Due to their adverse environmental and health impacts, brominated flame retardants (BFRs) are listed in Annex A of the Stockholm Convention for global elimination of production and use. Their health impacts include endocrine disruption, cancer, reproductive effects, and neurobehavioral and developmental disorders in children. Emerging literature suggests that legacy POP-BFRs are increasingly found in consumer products, including those used for and by children. The presence of legacy POP-BFRs in children's products is a big concern. Children are more vulnerable to chemical exposure risks than adults because their bodies are still developing and fragile. The rising problem is contributed to by the global push towards a circular economy that encourages responsible production and consumption by practising the recycling of waste materials. Waste materials such as electronic and electrical equipment plastics often contain POP-BFRs. POP-BFRs in waste materials are transferred into new products through recycling. The recycled products have become a potential source of exposure to legacy POP-BFRs for vulnerable populations, particularly children. Our scoping review aims to map and summarise the emerging literature. This information is needed to inform evidence-based policies to protect children from toxic exposures. METHODS Our scoping review will follow a methodological framework proposed by Arksey and O'Malley. Peer-reviewed and grey literature on the topic will be retrieved from electronic databases and other relevant sites. Two reviewers will screen titles and abstracts, followed by a full-text review of studies for eligibility based on the established inclusion and exclusion criteria. Data will be extracted, and findings will be mapped in a table according to study settings, types of children's products tested, and concentration of legacy POP-BFRs in contaminated products. A map chart will be created to display how contaminated products are spread globally. DISCUSSION Because of their unique vulnerabilities, children continue to suffer disproportionate exposures to toxic chemicals compared to adults. Information on potential exposures, particularly for children, is crucial to make evidence-based policies. We intend to map and summarise the emerging literature on legacy POP-BFRs in children's products. Findings will be disseminated to relevant stakeholders through publishing in a peer-reviewed scientific journal and policy briefs. SYSTEMATIC REVIEW REGISTRATION The protocol is registered with the Open Science Framework ( https://doi.org/10.17605/OSF.IO/7KDE5 ).
Collapse
Affiliation(s)
- Rebecca Mlelwa
- Environmental Health Division and Centre for Environmental and Occupational Health Research, School of Public Health, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Hanna-Andrea Rother
- Environmental Health Division and Centre for Environmental and Occupational Health Research, School of Public Health, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
24
|
Broniatowski M, Wydro P. Interactions of Brominated Flame Retardants with Membrane Models of Dehalogenating Bacteria: Langmuir Monolayer and Grazing Incidence X-ray Diffraction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10600-10614. [PMID: 38721840 PMCID: PMC11112749 DOI: 10.1021/acs.langmuir.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department
of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| | - Paweł Wydro
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
25
|
Xu J, Ge F, Yu J, Li J, Dou Y, Shan D, Cai X, Kong D. Levels, Distribution and Ecological Risk Assessment of PBDEs in Soils and Plants Around the Engineering Plastics Factory. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:75. [PMID: 38733395 DOI: 10.1007/s00128-024-03891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024]
Abstract
This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.
Collapse
Affiliation(s)
- Jing Xu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Feng Ge
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Jia Yu
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Juying Li
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Yezhi Dou
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Didi Shan
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Xiaoyu Cai
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Deyang Kong
- Ministry of Ecology Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China.
| |
Collapse
|
26
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
27
|
Qin C, Wu J, Lu X, Gu C, Guo Y, Hu G, Chen M, Xia K, Wang H, Xie M. Degradation of the emerging brominated flame retardant tetrabromobisphenol S using organo-montmorillonite supported nanoscale zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33547-33560. [PMID: 38683431 DOI: 10.1007/s11356-024-33451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The widespread occurrence of emerging brominated flame retardant tetrabromobisphenol S (TBBPS) has become a major environmental concern. In this study, a nanoscale zero-valent iron (nZVI) impregnated organic montmorillonite composite (nZVI-OMT) was successfully prepared and utilized to degrade TBBPS in aqueous solution. The results show that the nZVI-OMT composite was very stable and reusable as the nZVI was well dispersed on the organic montmorillonite. Organic montmorillonite clay layers provide a strong support, facilitate well dispersion of the nZVI chains, and accelerate the overall TBBPS transformation with a degradation rate constant 5.5 times higher than that of the original nZVI. Four major intermediates, including tribromobisphenol S (tri-BBPS), dibromobisphenol S (di-BBPS), bromobisphenol S (BBPS), and bisphenol S (BPS), were detected by high-resolution mass spectrometry (HRMS), indicating sequential reductive debromination of TBBPS mediated by nZVI-OMT. The effective elimination of acute ecotoxicity predicted by toxicity analysis also suggests that the debromination process is a safe and viable option for the treatment of TBBPS. Our results have shown for the first time that TBBPS can be rapidly degraded by an nZVI-OMT composite, expanding the potential use of clay-supported nZVI composites as an environmentally friendly material for wastewater treatment and groundwater remediation.
Collapse
Affiliation(s)
- Chao Qin
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing, 210036, China
| | - Junxue Wu
- Institute of Plant Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Lu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, Jiangsu, China
| | - Chenggang Gu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042, China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing, 210036, China
| | - Min Chen
- College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hui Wang
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing, 210036, China
| | - Mingjie Xie
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, Jiangsu, China.
| |
Collapse
|
28
|
Xiong S, Fu J, Dong C, Pei Z, Yang R, Li Y, Zhang Q, Jiang G. Bioaccumulation and Trophodynamics of Novel Brominated Flame Retardants (NBFRs) in Marine Food Webs from the Arctic and Antarctic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6804-6813. [PMID: 38512799 DOI: 10.1021/acs.est.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.
Collapse
Affiliation(s)
- Siyuan Xiong
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Chen Y, Che J, Wang J, Tuo Y, Zhao H, Chen Y, Sai L, Zhao H, Zhang R. Functional Melanin Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for High-Sensitivity Detection of TBBPA and TBBPS Contaminations in Animal-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6744-6753. [PMID: 38498411 DOI: 10.1021/acs.jafc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.
Collapse
Affiliation(s)
- Yuan Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiaying Che
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiagui Wang
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yuanyuan Tuo
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huayu Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yi Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Luheng Sai
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huifang Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030012, China
| |
Collapse
|
30
|
Wang X, Ye X, Chen Y, Lin J. Different effects of TCBPA exposure on liver cancer cells and liver cells: two sides of the coin. Am J Cancer Res 2024; 14:1363-1375. [PMID: 38590409 PMCID: PMC10998740 DOI: 10.62347/ysxw8940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Tetrachlorobisphenol A (TCBPA), widely used as a substitute for tetrabromobisphenol A (TBBPA), has been detected in various environmental media. Therefore, a detailed evaluation of the toxicological properties of TCBPA is necessary. In this study, we used hepatoma and normal liver cell models in vitro to investigate the effects of TCBPA. Our findings indicate that TCBPA promotes the proliferation of liver cancer cells, as evidenced by MTT and EdU assays, and enhances the expression levels of molecules related to hepatoma proliferation. Further investigation into the molecular mechanism revealed that TCBPA-induced hepatoma proliferation is regulated by an NLRP3-mediated inflammatory process. Additionally, TCBPA was found to promote the epithelial-mesenchymal transition (EMT) process in liver cancer cells. Conversely, TCBPA inhibited the proliferation of normal liver cells. Mechanistic studies showed that TCBPA induced cell pyroptosis in normal liver cells by evaluating a series of related markers, including NLRP3, IL-1β, ASC, GASDMD, and Caspase 1. In vivo models further showed that TCBPA causes liver tissue damage. In summary, this study demonstrates that TCBPA has a dual effect: promoting the occurrence and development of liver tumor cells in vitro, while inhibiting the proliferation of normal liver cells, like two sides of a coin. These opposite cellular outcomes are regulated by NLRP3-mediated inflammatory processes, providing valuable insights for evaluating the potential health impacts of TCBPA.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital351 Mingyue Street, Wucheng District, Jinhua 321001, Zhejiang, China
| |
Collapse
|
31
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
32
|
Rani P, Husain A, Bhasin KK, Kumar G. Zinc(II)-MOF: A Versatile Luminescent Sensor for Selective Molecular Recognition of Flame Retardants and Antibiotics. Inorg Chem 2024; 63:3486-3498. [PMID: 38329939 DOI: 10.1021/acs.inorgchem.3c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An exceptional Zinc(II)-organic framework with the formula [{Zn(L4-py)(bdc)}·DMF]n (Zn-MOF) has been constructed solvothermally using a novel linker L4-py {2,7-bis(3-(pyridin-4-ylethynyl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone}, coligand H2bdc (1,4-benzenedicarboxylic acid), and ZnBF4·xH2O. The ligand L4-py has been fabricated after functionalization of NDA (1,4,5,8-naphthalenetetracarboxylic dianhydride) core with 3-(pyridin-4-ylethynyl)phenyl group. The single-crystal X-ray analysis reveals that Zn-MOF exhibits a comprehensive three-dimensional (3D) framework architecture and features (4)-connected uninodal dia; 4/6/c1; sqc6 topology with point symbol {66} and two-dimensional (2D) + 2D, parallel polycatenation. Notably, Zn-MOF displayed excellent fluorescence phenomenon and stability in water as well as in methanol solvents and was harnessed as a versatile sensor, demonstrating selective and sensitive molecular recognition of flame retardants and antibiotics. Notably, Zn-MOF displayed 57 and 49.5% quenching efficiency for the flame-retardant pentabromophenol (PBP) and 3,3',5,5'-tetrabromobisphenol A (TBPA), respectively. Whereas an outstanding 90% quenching efficiency was observed for antibiotics, tetracycline (TC) and secnidazole (SD). The mechanistic investigations of this luminescence quenching suggest that this might be primarily occurring via the Fourier resonance energy transfer (FRET) and photoinduced electron transfer (PET) mechanisms, which might be assisted by the competitive absorption and host-guest interactions. The π-electron-rich framework structure of sensor Zn-MOF activates this mechanism.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar, Punjab 144012, India
| | - K K Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Girijesh Kumar
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| |
Collapse
|
33
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
34
|
Zhu M, Jia P, Yang G, Song L, Hu Y, Wang B. Synergistic effects of core-shell structured piperazine pyrophosphate microcapsules on fire safety and mechanical property in styrenic thermoplastic elastomer. J Colloid Interface Sci 2024; 653:1112-1122. [PMID: 37783011 DOI: 10.1016/j.jcis.2023.09.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
In this study, core-shell structured piperazine pyrophosphate (PAPP) is designed to enhance the fire safety and mechanical property of styrenic thermoplastic elastomer (TPE) composites. The PAPP is microencapsulated with carbon nanotube modified melamine-formaldehyde resin to prepare core-shell structured flame retardants (MT@PAPP). Due to the excellent compatibility between the MT@PAPP and TPE matrix, the mechanical property of TPE/MT@PAPP is improved. Compared with TPE, the peak heat release rate and peak smoke production rate of TPE/MT@PAPP are decreased by 78.5% and 60.0%, respectively. Thus, the core-shell structured piperazine pyrophosphate microcapsule strategy provides an excellent approach to obtain high-performance TPE composites.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China; Hefei Genius Advanced Material Co., Ltd, 2388 Lianhua Road, Hefei, Anhui 230009, People's Republic of China
| | - Pengfei Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Guisheng Yang
- Hefei Genius Advanced Material Co., Ltd, 2388 Lianhua Road, Hefei, Anhui 230009, People's Republic of China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
35
|
de Souza JS. Thyroid hormone biosynthesis and its role in brain development and maintenance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 142:329-365. [PMID: 39059990 DOI: 10.1016/bs.apcsb.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Thyroid hormones are critical modulators in the physiological processes necessary to virtually all tissues, with exceptionally fundamental roles in brain development and maintenance. These hormones regulate essential neurodevelopment events, including neuronal migration, synaptogenesis, and myelination. Additionally, thyroid hormones are crucial for maintaining brain homeostasis and cognitive function in adulthood. This chapter aims to offer a comprehensive understanding of thyroid hormone biosynthesis and its intricate role in brain physiology. Here, we described the mechanisms underlying the biosynthesis of thyroid hormones, their influence on various aspects of brain development and ongoing maintenance, and the proteins in the brain that are responsive to these hormones. This chapter was geared towards broadening our understanding of thyroid hormone action in the brain, shedding light on potential therapeutic targets for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Janaina Sena de Souza
- Department of Pediatrics and Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
36
|
Deng J, Liu W, Gao L, Jia T, He Y, Mao T, Hussain J. A Review of Distribution and Profiles of HBCD in Different Environmental Media of China. Molecules 2023; 29:36. [PMID: 38202620 PMCID: PMC10779568 DOI: 10.3390/molecules29010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hexabromocyclododecane (HBCD) is the most important flame retardant that has been used in Expanded Polystyrene foam and Extruded Polystyrene foam in the past forty years across the world. China was the major producer and user of HBCD, and the total HBCD production was about 0.3 million tons. Although HBCD was completely banned in China in 2021 because of its long-range transport, bioaccumulation and toxicity, there is still a lot of residue in the environment. Therefore, we reviewed multiple studies concerning the distribution of HBCD in diverse environmental matrices, such as in the air, dust, soil, water, sediment, and biota. Results revealed that HBCD levels in different environments in China present geographical variation and were at a high level compared with other countries. In all environmental media, relatively high HBCD concentrations have been found in industrial and urban areas. Industrialization and urbanization are two important factors that influence the concentration and distribution of HBCD in the environment. In terms of isomer, γ-HBCD was the dominant isomer in soil, water, and sediment, while in the biota α-HBCD was the predominant isomer.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan
| |
Collapse
|
37
|
Wang Z, Jia H, Jiang Y, Cui S, Li YF. Bioaccumulation of novel brominated flame retardants in crucian carp (Carassius auratus): Implications for electronic waste recycling area monitoring. ENVIRONMENTAL RESEARCH 2023; 239:117412. [PMID: 37839535 DOI: 10.1016/j.envres.2023.117412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Bioaccumulation factor (BAF) of pollutants is an important parameter for evaluating their bioaccumulation potential and an important indicator for evaluating their environmental risks. However, little study exits on the BAF of novel brominated flame retardants (NBFRs). The present study determined 17 NBFRs in 24 water samples in dissolved phase and 93 crucian carp samples collected from an electronic waste recycling site in northern China, in order to examine their contamination, distribution and bioaccumulation. The results showed that the targeted NBFRs were widely detectable in the dissolved phase and crucian carps. In dissolved phase, allyl 2,4,6-tribromophenyl ether (ATE) had the highest detectable rate (100%) and concentration (mean: 1.3 ± 0.62 ng/L), but in crucian carp, hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) was the one with the highest detectable rate (89%) and concentration (mean: 16 ± 9.2 ng/g wet weight (ww)) among all 17 NBFRs. The discharge and water solubility of NBFRs determined their concentration in the dissolved phase, while the concentration of NBFRs in crucian carp was the results of their discharge and food exposure. The estimated BAFs exceeded 5000 L/kg for petabromoethylbenzene (PBEB), pentabromotoluene (PBT), HCDBCO, pentabromobenzyl acrylate (PBBA), 1,2,3,4,5-pentabromobenzene (PBBZ), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), hexabromobenzene (HBBZ), and α-1,2,5,6-tetrabromocyclooctane (α-TBCO), suggesting that these compounds were above the hazard standard of bioaccumulation. Although the BAFs of 2,3,5,6-tetrabromo-p-xylene (p-TBX), 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE), α-/β-tetrabromoethylcyclohexane (α-/β-TBECH) and ATE were less than 5000, the potential of bioaccumulation cannot be ignored. The log BAF of tested NBFRs showed a pattern of first increasing and then decreasing with the increase of log KOW, the water solubility of NBFRs, the exposure to fish, the uptake and depuration of fish were the key factor to this pattern. To our knowledge, the BAF values of the most of NBFRs calculated in this study were not reported in the published work previously.
Collapse
Affiliation(s)
- Zhaowei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.
| | - Yan Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Song Cui
- IJRC-PTS, School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
38
|
Akintunde ME, Lin YP, Krakowiak P, Pessah IN, Hertz-Picciotto I, Puschner B, Ashwood P, Van de Water J. Ex vivo exposure to polybrominated diphenyl ether (PBDE) selectively affects the immune response in autistic children. Brain Behav Immun Health 2023; 34:100697. [PMID: 38020477 PMCID: PMC10654005 DOI: 10.1016/j.bbih.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1β, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.
Collapse
Affiliation(s)
- Marjannie Eloi Akintunde
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Yan-ping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paula Krakowiak
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Irva Hertz-Picciotto
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paul Ashwood
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
- School of Medicine, Department of Microbiology and Immunology, University of California, Davis, United States
| | - Judy Van de Water
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| |
Collapse
|
39
|
Marinello WP, Gillera SEA, Huang L, Rollman J, Reif DM, Patisaul HB. Uncovering the common factors of chemical exposure and behavior: Evaluating behavioral effects across a testing battery using factor analysis. Neurotoxicology 2023; 99:264-273. [PMID: 37914043 PMCID: PMC11154886 DOI: 10.1016/j.neuro.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Although specific environmental chemical exposures, including flame retardants, are known risk factors for neurodevelopmental disorders (NDDs), direct experimental evidence linking specific chemicals to NDDs is limited. Studies focusing on the mechanisms by which the social processing systems are vulnerable to chemical exposure are underrepresented in the literature, even though social impairments are defining characteristics of many NDDs. We have repeatedly demonstrated that exposure to Firemaster 550 (FM 550), a prevalent flame retardant mixture used in foam-based furniture and infant products, can adversely impact a variety of behavioral endpoints. Our recent work in prairie voles (Microtus ochrogaster), a prosocial animal model, demonstrated that perinatal exposure to FM 550 sex specifically impacts socioemotional behavior. Here, we utilized a factor analysis approach on a battery of behavioral data from our prior study to extract underlying factors that potentially explain patterns within the FM 550 behavior data. This approach identified which aspects of the behavioral battery are most robust and informative, an outcome critical for future study designs. Pearson's correlation identified behavioral endpoints associated with distance and stranger interactions that were highly correlated across 5 behavioral tests. Using these behavioral endpoints, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) extracted 2 factors that could explain the data: Activity (distance traveled endpoints) and Sociability (time spent with a novel conspecific). Exposure to FM 550 significantly decreased Activity and decreased Sociability. This factor analysis approach to behavioral data offers the advantages of modeling numerous measured variables and simplifying the data set by presenting the data in terms of common, overarching factors in terms of behavioral function.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; ICF International Inc, Durham, NC 27713, USA
| | - Lynn Huang
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - John Rollman
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
40
|
Martinez G, Zhu J, Takser L, Baccarelli AA, Bellenger JP. Complementarity of plasma and stool for the characterization of children's exposure to halogenated flame retardants: Update on analytical methods and application to a Canadian cohort. CHEMOSPHERE 2023; 344:140222. [PMID: 37734505 DOI: 10.1016/j.chemosphere.2023.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Sixteen halogenated flame retardants including Polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants were measured in stool and plasma samples from children aged 8.9-13.8 years old. Samples were obtained from a Canadian cohort investigating the effect of contaminants on children's neurodevelopment in the Estrie region, Québec, Canada. The method for stool analysis developed for this study showed good recovery for all targeted compounds (73%-93%) with associated relative standard deviation (RSD) in the range of 16.0%-30.7% for most compounds except for the thermosensitive BDE209, OBTMBI, and BTBPE, which showed slightly higher RSD, i.e., 49.3%, 37.2%, and 34.9% respectively. Complementarity investigation of stool and blood samples allowed us to better characterize human exposure to these halogenated flame retardants. Exposure patterns differed significantly between stool and blood, notably in the relative abundance of BDE47, BDE100, BDE99, and BDE153 and the detection frequencies of BDE209, syn-DP, anti-DP, and DBDPE. There was no correlation between the two matrices' PBDEs concentration levels except for BDE153 (rho = 0.44, p < 0.01). Our results indicate that future epidemiological studies may benefit from the use of stool as a complementary matrix to blood, especially investigations into chemical impacts on the gut microbiome. Results also revealed that children from the GESTE cohort, an Eastern Canadian semi-rural cohort, are exposed to both historical and emergent flame retardants.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Jean-Philippe Bellenger
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
41
|
Klimm A, Vetter W. Hydroxylated transformation products obtained after UV irradiation of the current-use brominated flame retardants hexabromobenzene, pentabromotoluene, and pentabromoethylbenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118556-118566. [PMID: 37917263 PMCID: PMC10697972 DOI: 10.1007/s11356-023-30566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Hexabromobenzene (HBB), pentabromotoluene (PBT), and pentabromoethylbenzene (PBEB) are current-use brominated flame retardants (cuBFRs) which have been repeatedly detected in environmental samples. Since information on hydroxylated transformation products (OH-TPs) was scarcely available, the three polybrominated compounds were UV irradiated for 10 min in benzotrifluoride. Fractionation on silica gel enabled the separate collection and identification of OH-TPs. For more insights, aliquots of the separated OH-TPs were UV irradiated for another 50 min (60 min total UV irradiation time). The present investigation of polar UV irradiation products of HBB, PBT, and PBEB was successful in each case. Altogether, eight bromophenols were detected in the case of HBB (three Br3-, four Br4-, and one Br5-isomer), and nine OH-TPs were observed in the case of PBT/PBEB (six Br3- and three Br4-congeners). In either case, Br➔OH exchange was more relevant than H➔OH exchange. Also, such exchange was most relevant in meta- and ortho-positions. As a further point, and in agreement with other studies, the transformation rate decreased with decreasing degree of bromination. UV irradiation of HBB additionally resulted in the formation of tri- and tetrabrominated dihydroxylated compounds (brominated diphenols) that were subsequently identified. These dihydroxylated transformation products were found to be more stable than OH-TPs.
Collapse
Affiliation(s)
- Alexandra Klimm
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599, Stuttgart, Germany.
| |
Collapse
|
42
|
Yilmaz O, Kucuk M, Darie-Nita RN, Cheaburu-Yilmaz CN. Halogen-Free Waterborne Polymeric Hybrid Coatings for Improved Fire Retardancy of Textiles. Polymers (Basel) 2023; 15:4496. [PMID: 38231923 PMCID: PMC10707787 DOI: 10.3390/polym15234496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Wildfires are becoming more intense and more frequent, ravaging the habitations and ecosystems in their path. One solution to reducing the risk of damage to buildings and other structures during a fire event is the use of fire-retardant coatings that can stop or slow down the spread of flames, especially for textile materials. The present study focuses on the preparation and application of halogen-free boron/bentonite-based polymeric fire-retardant (FR) hybrid coating formulations for fabrics such as cotton (CO) and polyester (PE) fibers. For the preparation of FR composites, two types of boron derivatives, disodium octaborate and zinc borate, were used in combination with sodium bentonite. A styrene-acrylic copolymer was specifically synthesized and used as a coating binder for FR components to apply on fabrics. The properties of the synthesized copolymer and FR composites were characterized with a particle size analysis, FTIR spectroscopy, a dynamic mechanical thermal analysis (DMTA), and rheological measurements. The obtained hybrid composites based on styrene-acrylic copolymers and two different inorganic fillers were applied on cotton (CO) and polyester (PE) fabrics with a screen-printing technique, and the flame retardancy performance of the finished textile samples was investigated by means of flame spread and limit oxygen index (LOI) tests. The findings showed that the FR-composite-coated fabrics had higher LOI values and much decreased flame spread rates in comparison with uncoated ones. Among the boron derivatives, the composites prepared with disodium octaborate (FR-A) had much more pronounced LOI values and decreased flame spread behavior in comparison with the composite with zinc borate (FR-B). When compared to a commercial product, the FR-A composite, in conjunction with the specially synthesized polymer, demonstrated commendable fire retardancy performance and emerged as a promising candidate for a halogen-free waterborne fire-retardant coating for fabrics.
Collapse
Affiliation(s)
- Onur Yilmaz
- Leather Engineering Department, Faculty of Engineering, Ege University, Bornova 35100, Izmir, Türkiye;
- ACADEMICHEM Kimya ARGE San. Tic. Ltd. Şti, Ege University Technology Development Zone, Bornova 35100, Izmir, Türkiye
| | - Mehmet Kucuk
- Textile Engineering Department, Faculty of Engineering, Ege University, Bornova 35100, Izmir, Türkiye;
| | - Raluca Nicoleta Darie-Nita
- Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Catalina Natalia Cheaburu-Yilmaz
- ACADEMICHEM Kimya ARGE San. Tic. Ltd. Şti, Ege University Technology Development Zone, Bornova 35100, Izmir, Türkiye
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, Buca 35390, Izmir, Türkiye
| |
Collapse
|
43
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
44
|
Arnold C. From Canaries to Cats: Domestic Animals as Sentinels for Human Exposure Effects. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:112001. [PMID: 37966804 PMCID: PMC10650500 DOI: 10.1289/ehp12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 11/16/2023]
|
45
|
Meizler A, Porter N, Roddick F. Removal and detoxification of pentahalogenated phenols using a photocatalytically induced enzymatic process. Heliyon 2023; 9:e21738. [PMID: 38034683 PMCID: PMC10684381 DOI: 10.1016/j.heliyon.2023.e21738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Poly-halogenated phenols generated from a range of industrial processes can find their way into rivers and ground water. Here we report on a potential treatment for reducing the toxicity of these aqueous pollutants using two highly toxic penta-halogenated phenols (pentachlorophenol (PCP) and pentabromophenol (PBP)) as surrogates. Solutions were passed through a glass column packed with a silica support fused with titanium dioxide (TiO2) and horseradish peroxidase (HRP) immobilized on its TiO2/glass surface (HRP-Tglass). TiO2 photocatalysis was activated through irradiation with UVB (320 nm) which in turn activated the HRP. Two operational flow rates (0.5 and 1.25 mL min-1; hydraulic retention times (HRTs) of 20 and 8 min, respectively), tested the effect of retention time on the extent of degradation and reduction in toxicity of the treated effluent. Microtox® was used to measure the toxicity of the substrate and its by-products at both flow rates. At the highest flow rate, dehalogenation was limited (removal of 37 % chlorine and 22 % bromine) and the toxicity of the reaction products increased. At the lowest flow rate, the longer exposure time resulted in approximately 97 % and 96 % transformation of PCP and PBP, respectively, a greater degree of dehalogenation (removal of 65 % chlorine and 70 % bromine) and a substantial decrease in toxicity of the treated solutions. The higher toxicity of effluent from the higher flow rate was attributed to the initial degradation products being more toxic than the substrates. With a longer HRT, these were then further broken down to less toxic products. Additional toxicity tests (Hydra hexactinella (Hydra) and Chinese Hamster Ovary (CHO) cell toxicity were conducted on the effluent from the lowest flow rate. Both were less sensitive than the Microtox test, with Hydra proving more sensitive than CHO. The novelty of this work is the toxicity risk assessment of the products resulting from the use of a spatially separated immobilized enzyme and photooxidation system. The system was robust and showed no decrease in treatment efficacy over 10 h.
Collapse
Affiliation(s)
- A. Meizler
- Department of Post-Graduate, Hong Bang International University, 215 Điện Biên Phủ, P.15, Q. Bình Thạnh, Ho Chi Minh City, 700000, Viet Nam
| | - N.A. Porter
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - F.A. Roddick
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
46
|
Sun G, Du X, Wu Y, Yin G, Chen L, Liu X, Zhou Y, Qiu Y, Lin T. Novel and legacy brominated flame retardants in snakes and frogs: Tissue distribution, biomagnification, and maternal transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165194. [PMID: 37391149 DOI: 10.1016/j.scitotenv.2023.165194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Although many studies have examined polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in biota, information on the bioaccumulation characteristics of NBFRs from field works is limited. This study investigated the tissue-specific exposure to PBDEs and NBFRs in two reptilian (short-tailed mamushi and red-backed rat snake) and one amphibian species (black-spotted frog) prevalent in the Yangtze River Delta, China. The levels of ΣPBDEs and ΣNBFRs ranged from 4.4-250 and 2.9-22 ng/g lipid weight for snakes respectively and 2.9-120 and 7.1-97 ng/g lipid weight for frogs respectively. BDE-209, BDE-154, and BDE-47 were three major PBDE congeners while decabromodiphenylethane (DBDPE) dominated in NBFRs. Tissue burdens indicated that snake adipose was the major storage site of PBDEs and NBFRs. The biomagnification factors (BMFs) estimated from black-spotted frog to red-backed rat snake indicated the biomagnification of penta- to nona-BDE congeners (BMFs 1.1-4.0) but the lack of biomagnification of other BDE and all NBFR congeners (BMFs 0.16-0.78). Mother to egg transfer of PBDEs and NBFRs evaluated in frogs showed that maternal transfer efficiency was positively related to chemical lipophilicity. This is the first field study on the tissue distribution of NBFRs in reptiles and amphibians and the maternal transfer behavior of 5 major NBFRs. The results underline the bioaccumulation potential of alternative NBFRs.
Collapse
Affiliation(s)
- Guanzhen Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Luting Chen
- SUEZ (Shanghai) Investment Co., LTD, Shanghai 200070, China
| | - Xiaojun Liu
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherches Royallieu - CS 60 319, 60 203 Compiègne Cedex, France
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
47
|
Berger ML, Shaw SD, Rolsky CB, Chen D, Sun J, Rosing-Asvid A, Granquist SM, Simon M, Bäcklin BM, Roos AM. Alternative and legacy flame retardants in marine mammals from three northern ocean regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122255. [PMID: 37517638 DOI: 10.1016/j.envpol.2023.122255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Flame retardants are globally distributed contaminants that have been linked to negative health effects in humans and wildlife. As top predators, marine mammals bioaccumulate flame retardants and other contaminants in their tissues which is one of many human-imposed factors threatening population health. While some flame retardants, such as the polybrominated diphenyl ethers (PBDE), have been banned because of known toxicity and environmental persistence, limited data exist on the presence and distribution of current-use alternative flame retardants in marine mammals from many industrialized and remote regions of the world. Therefore, this study measured 44 legacy and alternative flame retardants in nine marine mammal species from three ocean regions: the Northwest Atlantic, the Arctic, and the Baltic allowing for regional, species, age, body condition, temporal, and tissue comparisons to help understand global patterns. PBDE concentrations were 100-1000 times higher than the alternative brominated flame retardants (altBFRs) and Dechloranes. 2,2',4,5,5'-pentabromobiphenyl (BB-101) and hexabromobenzene (HBBZ) were the predominant altBFRs, while Dechlorane-602 was the predominant Dechlorane. This manuscript also reports only the second detection of hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO) in marine mammals. The NW Atlantic had the highest PBDE concentrations followed by the Baltic and Arctic which reflects greater historical use of PBDEs in North America compared to Europe and greater industrialization of North America and Baltic countries compared to the Arctic. Regional patterns for other compounds were more complicated, and there were significant interactions among species, regions, body condition and age class. Lipid-normalized PBDE concentrations in harbor seal liver and blubber were similar, but HBBZ and many Dechloranes had higher concentrations in liver, indicating factors other than lipid dynamics affect the distribution of these compounds. The health implications of contamination by this mixture of compounds are of concern and require further research.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles B Rolsky
- Shaw Institute, PO Box 1652, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China; Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jiachen Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China; College of Marine Life Science, Ocean University of China, CN-266003, Qingdao, China
| | - Aqqalu Rosing-Asvid
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Sandra Magdalena Granquist
- Seal Research Department, The Icelandic Seal Center, Höfðabraut 6, 530 Hvammstangi, Iceland; Marine and Freshwater Research Institute, Fornubúðir 5, 220 Hafnarfjörður, Iceland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland
| | - Britt-Marie Bäcklin
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 104 05 Stockholm, Sweden
| | - Anna Maria Roos
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900, Nuuk, Greenland; Department of Environmental Research and Monitoring, Swedish Museum of Natural History, PO Box 104 05 Stockholm, Sweden
| |
Collapse
|
48
|
Reale E, Hopf NB, Breider F, Grandjean D, Pirard C, Charlier C, Koch HM, Berthet A, Suarez G, Borgatta M. Repeated Human Exposure to Semivolatile Organic Compounds by Inhalation: Novel Protocol for a Nonrandomized Study. JMIR Res Protoc 2023; 12:e51020. [PMID: 37831504 PMCID: PMC10612011 DOI: 10.2196/51020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Semivolatile organic compounds (SVOCs) comprise several different chemical families used mainly as additives in many everyday products. SVOCs can be released into the air as aerosols and deposit on particulate matter during use by dispersion, evaporation, or abrasion. Phthalates are SVOCs of growing concern due to their endocrine-disrupting effects. Human data on the absorption, distribution, metabolism, and excretion (ADME) of these compounds upon inhalation are almost nonexistent. OBJECTIVE The goal of this study is to develop a method for repeated inhalation exposures to SVOCs to characterize their ADME in humans. METHODS We will use diethylhexyl phthalate (DEHP), a major indoor air pollutant, as a model SVOC in this novel protocol. The Swiss official Commission on Ethics in Human Research, Canton de Vaud, approved the study on October 14, 2020 (project-ID 2020-01095). Participants (n=10) will be repeatedly exposed (2 short daily exposures over 4 days) to isotope-labeled DEHP (DEHP-d4) to distinguish administered exposures from background exposures. DEHP-d4 aerosols will be generated with a small, portable, aerosol-generating device. Participants will inhale DEHP-d4-containing aerosols themselves with this device at home. Air concentrations of the airborne phthalates will be less than or equal to their occupational exposure limit (OEL). DEHP-d4 and its metabolites will be quantified in urine and blood before, during, and after exposure. RESULTS Our developed device can generate DEHP-d4 aerosols with diameters of 2.5 μm or smaller and a mean DEHP-d4 mass of 1.4 (SD 0.2) μg per puff (n=6). As of May 2023, we have enrolled 5 participants. CONCLUSIONS The portable device can be used to generate phthalate aerosols for repeated exposure in human studies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51020.
Collapse
Affiliation(s)
- Elena Reale
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Nancy B Hopf
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Florian Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dominique Grandjean
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Pirard
- Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
- Laboratory of Clinical, Forensic and Environmental Toxicology, University Hospital of Liege, Liege, Belgium
| | - Corinne Charlier
- Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
- Laboratory of Clinical, Forensic and Environmental Toxicology, University Hospital of Liege, Liege, Belgium
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum, Bochum, Germany
| | - Aurélie Berthet
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Guillaume Suarez
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Myriam Borgatta
- Department of Occupational Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Sousa-Guedes D, Cunha SC, Fernandes JO, Semedo D, Sillero N, Marco A, Bessa F. Can plastic pollution contaminate loggerhead turtle nests? Evaluation of flame retardants (PBDEs) levels in the sand. MARINE POLLUTION BULLETIN 2023; 195:115550. [PMID: 37722265 DOI: 10.1016/j.marpolbul.2023.115550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Plastic pollution is a global environmental issue affecting multiple ecosystems, namely sea turtle nesting grounds. We analysed the potential chemical contamination caused by plastic debris in loggerhead turtle (Caretta caretta) nests, focusing on polybrominated diphenyl ethers (PBDEs, a class of flame retardants). For that, we conducted a field experiment in a turtle hatchery (Cabo Verde) by placing plastic fragments in the nests at two depths: surface and ~20 cm. We evaluated the nests' success and quantified the levels of PBDEs in the sand using GC-MS/MS. Our results suggest that plastics on the nests' surface can leak contaminants, infiltrating the sand up to 20 cm. Buried plastics showed no relevant leakage of chemicals. While hatching and emergence success was unaffected, we found a relationship between leucistic embryos and contamination levels. Our study highlights the threats of plastic accumulation on beaches, which can potentially leak chemicals and contaminate turtle nests.
Collapse
Affiliation(s)
- Diana Sousa-Guedes
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Sara C Cunha
- LAQV/Requimte, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 4050-313 Porto, Portugal.
| | - José O Fernandes
- LAQV/Requimte, Faculdade de Farmácia da Universidade do Porto, Rua Jorge de Viterbo Ferreira, 4050-313 Porto, Portugal.
| | - Diana Semedo
- BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| | - Adolfo Marco
- BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111 Sal Rei, Boa Vista Island, Cabo Verde; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain.
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
50
|
Holuka C, Morel C, Roth S, Lamartinière Y, Mériaux SB, Paoli J, Guébels P, Duca RC, Godderis L, van Nieuwenhuyse A, Kremarik-Bouillaud P, Cariou R, Emond C, Schroeder H, Turner JD, Grova N. The epigenetic hallmark of early-life α-hexabromocyclododecane exposure: From cerebellar 6-mA levels to locomotor performance in adulthood. ENVIRONMENT INTERNATIONAL 2023; 178:108103. [PMID: 37494814 DOI: 10.1016/j.envint.2023.108103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Faculty of Science, University of Luxembourg, L-4365 Belval, Luxembourg.
| | - Chloé Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sarah Roth
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Yordenca Lamartinière
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Justine Paoli
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Pauline Guébels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Radu C Duca
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Lode Godderis
- Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium.
| | - An van Nieuwenhuyse
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Pascaline Kremarik-Bouillaud
- UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | | | - Claude Emond
- PKSH Inc., Crabtree, Quebec, Canada; School of Public Health, DSEST, University of Montreal, Montreal, Quebec, Canada.
| | - Henri Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| |
Collapse
|