1
|
Horsnell R, Leigh FJ, Wright TIC, Burridge AJ, Ligeza A, Przewieslik-Allen AM, Howell P, Uauy C, Edwards KJ, Bentley AR. A wheat chromosome segment substitution line series supports characterization and use of progenitor genetic variation. THE PLANT GENOME 2024; 17:e20288. [PMID: 36718796 DOI: 10.1002/tpg2.20288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.
Collapse
Affiliation(s)
- Richard Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Aleksander Ligeza
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Philip Howell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| |
Collapse
|
2
|
Boehm J, Cai X. Enrichment and Diversification of the Wheat Genome via Alien Introgression. PLANTS (BASEL, SWITZERLAND) 2024; 13:339. [PMID: 38337872 PMCID: PMC10857235 DOI: 10.3390/plants13030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.
Collapse
Affiliation(s)
- Jeffrey Boehm
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun Biol 2023; 6:426. [PMID: 37069312 PMCID: PMC10110605 DOI: 10.1038/s42003-023-04781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
Collapse
Affiliation(s)
- Akshaya Vasudevan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Türkösi E, Ivanizs L, Farkas A, Gaál E, Kruppa K, Kovács P, Szakács É, Szőke-Pázsi K, Said M, Cápal P, Griffiths S, Doležel J, Molnár I. Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat- Aegilops biuncialis Hybrids. FRONTIERS IN PLANT SCIENCE 2022; 13:875676. [PMID: 35769292 PMCID: PMC9234525 DOI: 10.3389/fpls.2022.875676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 06/10/2023]
Abstract
Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.
Collapse
Affiliation(s)
- Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Szent István Campus, MATE, Gödöllő, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| | - Mahmoud Said
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | | | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute for Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Loránd Research Network, Martonvásár, Hungary
| |
Collapse
|
5
|
Leigh FJ, Wright TIC, Horsnell RA, Dyer S, Bentley AR. Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity (Edinb) 2022; 128:291-303. [PMID: 35383318 PMCID: PMC9076643 DOI: 10.1038/s41437-022-00527-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change will have numerous impacts on crop production worldwide necessitating a broadening of the germplasm base required to source and incorporate novel traits. Major variation exists in crop progenitor species for seasonal adaptation, photosynthetic characteristics, and root system architecture. Wheat is crucial for securing future food and nutrition security and its evolutionary history and progenitor diversity offer opportunities to mine favourable functional variation in the primary gene pool. Here we provide a review of the status of characterisation of wheat progenitor variation and the potential to use this knowledge to inform the use of variation in other cereal crops. Although significant knowledge of progenitor variation has been generated, we make recommendations for further work required to systematically characterise underlying genetics and physiological mechanisms and propose steps for effective use in breeding. This will enable targeted exploitation of useful variation, supported by the growing portfolio of genomics and accelerated breeding approaches. The knowledge and approaches generated are also likely to be useful across wider crop improvement.
Collapse
Affiliation(s)
- Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard A Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Sarah Dyer
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
6
|
Mastrangelo AM, Cattivelli L. What Makes Bread and Durum Wheat Different? TRENDS IN PLANT SCIENCE 2021; 26:677-684. [PMID: 33612402 DOI: 10.1016/j.tplants.2021.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 05/18/2023]
Abstract
Durum wheat (tetraploid) and bread wheat (hexaploid) are two closely related species with potentially different adaptation capacities and only a few distinct technological properties that make durum semolina and wheat flour more suitable for pasta, or bread and bakery products, respectively. Interspecific crosses and new breeding technologies now allow researchers to develop wheat lines with durum or bread quality features in either a tetraploid or hexaploid genetic background; such lines combine any technological properties of wheat with the different adaptation capacity expressed by tetraploid and hexaploid wheat genomes. Here, we discuss what makes bread and durum wheat different, consider their environmental adaptation capacity and the major quality-related genes that explain the different end-uses of semolina and bread flour and that could be targets for future wheat breeding programs.
Collapse
Affiliation(s)
- Anna M Mastrangelo
- CREA Research Centre for Cereal and Industrial Crops, Foggia, 71122, Italy
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, 29017, Italy.
| |
Collapse
|
7
|
Genetic Diversity, Linkage Disequilibrium and Population Structure of Bulgarian Bread Wheat Assessed by Genome-Wide Distributed SNP Markers: From Old Germplasm to Semi-Dwarf Cultivars. PLANTS 2021; 10:plants10061116. [PMID: 34073128 PMCID: PMC8228972 DOI: 10.3390/plants10061116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/04/2023]
Abstract
Genetic diversity and population structure are key resources for breeding purposes and genetic studies of important agronomic traits in crops. In this study, we described SNP-based genetic diversity, linkage disequilibrium and population structure in a panel of 179 bread wheat advanced cultivars and old accessions from Bulgaria, using an optimized wheat 25K Infinium iSelect array. Out of 19,019 polymorphic SNPs, 17,968 had a known chromosome position on the A (41%), B (42%) and D (11%) genome, and 6% were not assigned to any chromosome. Homoeologous group 4, in particular chromosome 4D, was the least polymorphic. In the total population, the Nei’s gene diversity was within the range 0.1–0.5, and the polymorphism information content ranged from 0.1 to 0.4. Significant differences between the old and modern collections were revealed with respect to the linkage disequilibrium (LD): the average values for LD (r2), the percentage of the locus pairs in LD and the LD decay were 0.64, 16% and 3.3 for the old germplasm, and 0.43, 30% and 4.1 for the modern releases, respectively. Structure and k-means clustering algorithm divided the panel into three groups. The old accessions formed a distinct subpopulation. The cluster analysis further distinguished the modern releases according to the geographic region and genealogy. Gene exchange was evidenced mainly between the subpopulations of contemporary cultivars. The achieved understanding of the genetic diversity and structure of the Bulgarian wheat population and distinctiveness of the old germplasm could be of interest for breeders developing cultivars with improved characteristics. The obtained knowledge about SNP informativeness and the LD estimation are worthwhile for selecting markers and for considering the composition of a population in association mapping studies of traits of interest.
Collapse
|
8
|
Wang Q, Yan N, Chen H, Li S, Hu H, Lin Y, Shi H, Zhou K, Jiang X, Yu S, Li C, Chen G, Yang Z, Liu Y. Genome-Wide Association Study of Kernel Traits in Aegilops tauschii. Front Genet 2021; 12:651785. [PMID: 34122506 PMCID: PMC8194309 DOI: 10.3389/fgene.2021.651785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat (Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW), kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three continuous years. Based on population structure analysis, 223 A. tauschii were divided into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications based on cluster analysis were highly consistent with the population structure results. Meanwhile, the extent of linkage disequilibrium decay distance (r2 = 0.5) was about 110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide association analysis was performed on these kernel traits using 6,723 single nucleotide polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven chromosomes, were identified using a mixed linear model explaining 4.82–13.36% of the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000, AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700). The transfer of beneficial genes from A. tauschii to wheat using marker-assisted selection will broaden the wheat D subgenome improve the efficiency of breeding.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirui Li
- Chengdu Foreign Language School, Chengdu, China
| | - Haiyan Hu
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojun Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shifan Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zisong Yang
- College of Resources and Environment, Aba Teachers University, Wenchuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
López-Fernández M, Pascual L, Faci I, Fernández M, Ruiz M, Benavente E, Giraldo P. Exploring the End-Use Quality Potential of a Collection of Spanish Bread Wheat Landraces. PLANTS (BASEL, SWITZERLAND) 2021; 10:620. [PMID: 33805170 PMCID: PMC8064353 DOI: 10.3390/plants10040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Modern plant-breeding practices have narrowed the genetic base of wheat, such that there is a need to introduce new germplasms with underexploited diversity into breeding programs. Wheat landraces are a very valuable resource when searching for genetic variation, which not only possess increased adaptability, but also quality-related traits. Several studies have shown a wide genetic diversity in Spanish wheat landraces compared to other germplasm collections; therefore, the main objective of this study is to analyze the variability in a collection of 189 landraces from the Spanish National Plant Genetic Resources Centre (Centro de Recursos Fitogenéticos, CRF-INIA, Alcalá de Henares), in relation to end-use quality traits. We characterized the whole collection for high-molecular-weight glutenin and puroindoline allelic composition, and for gluten strength. In addition, grain protein content, grains per spike, and thousand kernel weight were evaluated in samples from four-year field trials. The relationship between glutenin composition and quality was evaluated, and some alleles strongly associated with high quality were identified in the collection, some of them specific for Iberian landraces. The results also show the presence of novel variability within high-molecular-weight glutenin and puroindolines, which needs to be characterized further in order to assess its influence on wheat quality. In addition, a set of landraces showing outstanding values for gluten quality and a good agronomic performance was selected for testing in field trials in order to evaluate the suitability of their direct use in cropping systems.
Collapse
Affiliation(s)
- Matilde López-Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| | - Isabel Faci
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| | - Mario Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| | - Magdalena Ruiz
- National Plant Genetic Resources Centre, National Institute for Agricultural and Food Research and Technology, 28800 Alcalá de Henares, Spain;
| | - Elena Benavente
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (M.L.-F.); (L.P.); (I.F.); (M.F.); (E.B.)
| |
Collapse
|
10
|
Pototskaya IV, Shamanin VP, Shepelev SS, Bhatta M, Morgounov AI. Analysis of the Genome D Polymorphism of Synthetic Wheat Obtained on the Basis of Ae. tauschii L. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Akram S, Arif MAR, Hameed A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genet 2020; 62:27-41. [PMID: 33128382 DOI: 10.1007/s13353-020-00593-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023]
Abstract
Wheat is a foremost food grain of Pakistan and occupies a vital position in agricultural policies of the country. Wheat demand will be increased by 60% by 2050 which is a serious concern to meet this demand. Conventional breeding approaches are not enough to meet the demand of growing human population. It is paramount to integrate underutilized genetic diversity into wheat gene pool through efficient and accurate breeding tools and technology. In this study, we present the genetic analysis of a 312 diverse pre-breeding lines using DArT-seq SNPs seeking to elucidate the genetic components of emergence percentage, heading time, plant height, lodging, thousand kernel weight, and yield (Yd) which resulted in detection of 201 significant (p value < 10-3) and 61 highly significant associations (p value < 1.45 × 10-4). More importantly, chromosomes 1B and 2A carried loci linked to Yd in two different seasons, and an increase of up to 8.20% is possible in Yd by positive allele mining. We identified seven lines with > 4 positive alleles for Yd whose pedigree carried Aegilops squarrosa as one of the parents providing evidence that Aegilops species, apart from imparting resistance against biotic stresses, may also provide alleles for yield enhancement.
Collapse
Affiliation(s)
- Saba Akram
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan.
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
12
|
Sansaloni C, Franco J, Santos B, Percival-Alwyn L, Singh S, Petroli C, Campos J, Dreher K, Payne T, Marshall D, Kilian B, Milne I, Raubach S, Shaw P, Stephen G, Carling J, Pierre CS, Burgueño J, Crosa J, Li H, Guzman C, Kehel Z, Amri A, Kilian A, Wenzl P, Uauy C, Banziger M, Caccamo M, Pixley K. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat Commun 2020; 11:4572. [PMID: 32917907 PMCID: PMC7486412 DOI: 10.1038/s41467-020-18404-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/16/2020] [Indexed: 11/09/2022] Open
Abstract
Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs. Genebanks hold comprehensive collections of wild species, wild relatives, and landraces that are useful for genetic improvement. Here, the authors report the genotype of nearly 80,000 wheat accessions using DArTseq technology to show the less explored genetic diversity.
Collapse
Affiliation(s)
- Carolina Sansaloni
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico.
| | - Jorge Franco
- Departamento de Biometria y Estadística, Facultad de agronomía, Universidad de la República, Ruta 3, km 363, Paysandú, C.P., 60000, Uruguay
| | - Bruno Santos
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Sukhwinder Singh
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico.,Geneshifters, 222 Mary Jena Lane, Pullman, WA, 99163, USA
| | - Cesar Petroli
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Jaime Campos
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Kate Dreher
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Thomas Payne
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - David Marshall
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz Der Vereinten Nationen 7, Bonn, 53113, Germany
| | - Iain Milne
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Sebastian Raubach
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Paul Shaw
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Gordon Stephen
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Jason Carling
- Diversity Arrays Technology, Building 3, Level D, University of Canberra, Monana St., Bruce, ACT, 2617, Australia
| | - Carolina Saint Pierre
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Juan Burgueño
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - José Crosa
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - HuiHui Li
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Carlos Guzman
- Departamento de Genética Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Córdoba, Spain
| | - Zakaria Kehel
- Genetic Resouces Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Rabat-Salé-Zemmour-Zaër, Morocco
| | - Ahmed Amri
- Genetic Resouces Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Rabat-Salé-Zemmour-Zaër, Morocco
| | - Andrzej Kilian
- Diversity Arrays Technology, Building 3, Level D, University of Canberra, Monana St., Bruce, ACT, 2617, Australia
| | - Peter Wenzl
- Genetic Resouces Program, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira CP 763537 Apartado Aéreo 6713, Cali, Colombia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marianne Banziger
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Kevin Pixley
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| |
Collapse
|
13
|
Identification of Quantitative Trait Loci Relating to Flowering Time, Flag Leaf and Awn Characteristics in a Novel Triticum dicoccum Mapping Population. PLANTS 2020; 9:plants9070829. [PMID: 32630645 PMCID: PMC7412379 DOI: 10.3390/plants9070829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders’ single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.
Collapse
|
14
|
Fellers JP, Matthews A, Fritz AK, Rouse MN, Grewal S, Hubbart‐Edwards S, King IP, King J. Resistance to wheat rusts identified in wheat/ Amblyopyrum muticum chromosome introgressions. CROP SCIENCE 2020; 60:1957-1964. [PMID: 34354296 PMCID: PMC8317048 DOI: 10.1002/csc2.20120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 06/01/2023]
Abstract
Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single-gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is continually needed, and new resistance sources are limited within hexaploid wheat genetic stocks. Wild relatives are able to be a resource for new resistance genes but are hindered because of chromosome incapability with domesticated wheats. Twenty-eight double-haploid hexaploid wheat/Amblyopyrum muticum (Boiss.) Eig introgression lines, with introgressions covering the majority of the T genome, were evaluated for resistance to Puccinia triticina Erikss., P. graminis Pers.:Pers. f.sp. tritici Erikss. & E. Henning, and P. striiformis Westend. f.sp. tritici Erikss.. At the seedling level, four lines were resistant to races of P. triticina, six lines were resistant to P. graminis, and 15 lines were resistant to P. striiformis. At the adult stage, 16 lines were resistant to P. triticina. Line 355 had resistance to all three rusts and line 161 had resistance to all tested races of P. triticina. Some of these lines will require further work to reduce the size of the introgressed segment; however, lines 92 and 355 have very small fragments and can be used directly as new resistance donors.
Collapse
Affiliation(s)
- John P. Fellers
- USDA–ARS Hard Winter Wheat Genetics Research UnitManhattanKS66506USA
| | - Angie Matthews
- Department of AgronomyKansas State UniversityManhattanKS66506USA
| | - Allan K. Fritz
- Department of AgronomyKansas State UniversityManhattanKS66506USA
| | | | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Stella Hubbart‐Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| |
Collapse
|
15
|
Gaire R, Ohm H, Brown-Guedira G, Mohammadi M. Identification of regions under selection and loci controlling agronomic traits in a soft red winter wheat population. THE PLANT GENOME 2020; 13:e20031. [PMID: 33016613 DOI: 10.1002/tpg2.20031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 05/28/2023]
Abstract
Comprehensive information of a breeding population is a necessity to design promising crosses. This study was conducted to characterize a soft red winter wheat breeding population that was subject of intensive germplasm introductions and introgression from exotic germplasm. We used genome-wide markers and phenotypic assessment to identify signatures of selection and loci controlling agronomic traits in a soft red winter wheat population. The study of linkage disequilibrium (LD) revealed that the extent of LD and its decay varied among chromosomes with chromosomes 2B and 7D showing the most extended islands of high-LD with slow rates of decay. Four sub-populations, two with North American origin and two with Australian and Chinese origins, were identified. Genome-wide scans for selection signatures using FST and hapFLK identified 13 genomic regions under selection, of which five loci (LT, Fr-A2, Vrn-A1, Vrn-B1, Vrn3) were associated with environmental adaptation and two loci were associated with disease resistance genes (Sr36 and Fhb1). Genome-wide association studies identified major loci controlling yield and yield related traits. For days to heading and plant height, major loci with effects sizes of 2.2 days and 5 cm were identified on chromosomes 7B and 6A respectively. For test weight, number of spikes per square meter, and number of kernels per square meter, large effect loci were identified on chromosomes 1A, 4B, and 5A, respectively. However, for yield alone, no major loci were detected. A combination of selection for large effect loci for yield components and genomic selection could be a promising approach for yield improvement.
Collapse
Affiliation(s)
- Rupesh Gaire
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
| | - Herbert Ohm
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
| | - Gina Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- US Department of Agriculture, Agricultural Research Services, Southeast Area, Plant Science Research, Raleigh, NC, 27695, USA
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Bansal M, Adamski NM, Toor PI, Kaur S, Molnár I, Holušová K, Vrána J, Doležel J, Valárik M, Uauy C, Chhuneja P. Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:903-915. [PMID: 31894365 DOI: 10.1007/s00122-019-03514-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/17/2019] [Indexed: 05/13/2023]
Abstract
Lr76 and Yr70 have been fine mapped using the sequence of flow-sorted recombinant 5D chromosome from wheat-Ae. umbellulata introgression line. The alien introgression has been delineated to 9.47-Mb region on short arm of wheat chromosome 5D. Leaf rust and stripe rust are among the most damaging diseases of wheat worldwide. Wheat cultivation based on limited number of rust resistance genes deployed over vast areas expedites the emergence of new pathotypes warranting a continuous deployment of new resistance genes. In this paper, fine mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance genes Lr76 and Yr70 is being reported. We flow sorted and paired-end sequenced 5U chromosome of Ae. umbellulata, recombinant chromosome 5D (5DIL) from wheat-Ae. umbellulata introgression line pau16057 and 5DRP of recurrent parent WL711. Chromosome 5U reads were mapped against the reference Chinese Spring chromosome 5D sequence, and alien-specific SNPs were identified. Chromosome 5DIL and 5DRP sequences were de novo assembled, and alien introgression-specific markers were designed by selecting 5U- and 5D-specific SNPs. Overall, 27 KASP markers were mapped in high-resolution population consisting of 1404 F5 RILs. The mapping population segregated for single gene each for leaf rust and stripe rust resistance. The physical order of the SNPs in pau16057 was defined by projecting the 27 SNPs against the IWGSC RefSeq v1.0 sequence. Based on this physical map, the size of Ae. umbellulata introgression was determined to be 9.47 Mb on the distal most end of the short arm of chromosome 5D. This non-recombining alien segment carries six NB-LRR encoding genes based on NLR annotation of assembled chromosome 5DIL sequence and IWGSC RefSeq v1.1 gene models. The presence of SNPs and other sequence variations in these genes between pau16057 and WL711 suggested that they are candidates for Lr76 and Yr70.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - István Molnár
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, 783 71, Olomouc, Czech Republic
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|
17
|
Mahboubi M, Mehrabi R, Naji AM, Talebi R. Whole-genome diversity, population structure and linkage disequilibrium analysis of globally diverse wheat genotypes using genotyping-by-sequencing DArTseq platform. 3 Biotech 2020; 10:48. [PMID: 32002339 PMCID: PMC6960278 DOI: 10.1007/s13205-019-2014-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/08/2019] [Indexed: 02/03/2023] Open
Abstract
In this study, 129 wheat genotypes from globally diverse origins were genotyped using DArTseq (SilicoDArT and SNP) markers. After filtering markers for quality-filtering, 14,270 SilicoDArTs and 6484 SNPs were retained and used for genetic diversity, population structure and linkage disequilibrium analyses. The highest number of SilicoDArT and SNP markers mapped on genome A and B compared to genome D. In both marker types, polymorphism information content (PIC) values ranged from 0.1 to 0.5, while > 0.80% of SilicoDArTs and > 0.44% SNPs showed PIC value more than median (0.25%). Un-weighted Neighbor Joining cluster analysis and Bayesian-based model population structure grouped wheat genotypes into three and four clusters, respectively. Principal component analysis and discriminant analysis of principal component results showed highly match with cluster and population structure analysis. Linkage disequilibrium (LD) was more extensive in both marker types, while graphical display of LD decay for both marker types showed that LD declined in the region close to 15 kbp, where r 2-values corresponded to r 2 = 0.16. Overall, our genetic diversity analysis showed high level of variation in studied wheat genotypes, even though there was no relationship between wheat grouping and origins. This might be attributed to admixture level that occurred during long-term natural selection of wheat genotypes in different parts of the world. Highly diverse wheat genotypes used in this study may possess unique genes and are useful sources in breeding programs to improve grain yield and quality.
Collapse
Affiliation(s)
- Mojgan Mahboubi
- College of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, PO Box 8415683111, Isfahan, Iran
| | - Amir Mohammad Naji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Reza Talebi
- College of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
18
|
Gahlaut V, Jaiswal V, Singh S, Balyan HS, Gupta PK. Multi-Locus Genome Wide Association Mapping for Yield and Its Contributing Traits in Hexaploid Wheat under Different Water Regimes. Sci Rep 2019; 9:19486. [PMID: 31862891 PMCID: PMC6925107 DOI: 10.1038/s41598-019-55520-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/29/2019] [Indexed: 11/20/2022] Open
Abstract
Multi-locus genome wide association study was undertaken using a set of 320 diverse spring wheat accessions, which were each genotyped for 9,626 SNPs. The association panel was grown in replicated trials in four environments [two each in irrigated (IR) and rainfed (RF) environments], and phenotypic data were recorded for five traits including days to heading, days to maturity, plant height, thousand grain weight and grain yield. Forty-six significant marker-trait associations (MTAs) were identified for five traits. These included 20 MTAs in IR and 19 MTAs in RF environments; seven additional MTAs were common to both the environments. Five of these MTAs were co-localized with previously known QTL/MTAs and the remaining MTAs were novel and add to the existing knowledge. Three desirable haplotypes for agronomic traits, one for improvement in RF environment and two for improvement in IR environment were identified. Eighteen (18) promising candidate genes (CGs) involved in seven different biological activities were also identified. The expression profiles of four (Trehalose-6-Phosphate, APETALA2/Ethylene-responsive factor, DNA-binding One Zinc Finger and Gibberellin-dioxygenases) of the 18 genes showed that they were induced by drought stress in the wheat seedlings. The MTAs, haplotypes and CG-based markers may be used in marker-assisted breeding for drought tolerance in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India.
| |
Collapse
|
19
|
Genetic Contribution of Synthetic Hexaploid Wheat to CIMMYT's Spring Bread Wheat Breeding Germplasm. Sci Rep 2019; 9:12355. [PMID: 31451719 PMCID: PMC6710277 DOI: 10.1038/s41598-019-47936-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/15/2019] [Indexed: 11/08/2022] Open
Abstract
Synthetic hexaploid (SH) wheat (AABBD'D') is developed by artificially generating a fertile hybrid between tetraploid durum wheat (Triticum turgidum, AABB) and diploid wild goat grass (Aegilops tauschii, D'D'). Over three decades, the International Maize and Wheat Improvement Center (CIMMYT) has developed and utilized SH wheat to bridge gene transfer from Ae. tauschii and durum wheat to hexaploid bread wheat. This is a unique example of success utilizing wild relatives in mainstream breeding at large scale worldwide. Our study aimed to determine the genetic contribution of SH wheat to CIMMYT's global spring bread wheat breeding program. We estimated the theoretical and empirical contribution of D' to synthetic derivative lines using the ancestral pedigree and marker information using over 1,600 advanced lines and their parents. The average marker-estimated D' contribution was 17.5% with difference in genome segments suggesting application of differential selection pressure. The pedigree-based contribution was correlated with marker-based estimates without providing chromosome segment specific variation. Results from international yield trials showed that 20% of the lines were synthetic derived with an average D' contribution of 15.6%. Our results underline the importance of SH wheat in maintaining and enhancing genetic diversity and genetic gain over years and is important for development of a more targeted introgression strategy. The study provides retrospective view into development and utilization of SH in the CIMMYT Global Wheat Program.
Collapse
|
20
|
Bhatta M, Shamanin V, Shepelev S, Baenziger PS, Pozherukova V, Pototskaya I, Morgounov A. Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. J Appl Genet 2019; 60:283-289. [PMID: 31414379 DOI: 10.1007/s13353-019-00514-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
Abstract
Recurrent selection and intercrossing between best of the best parents in each generation of breeding cycle resulted in a narrower genetic diversity in elite wheat (Triticum aestivum L.) germplasm. Therefore, we investigated diverse source of 143 synthetic and bread wheat accessions for identifying potentially rich genetic resources for improving the genetic diversity in wheat. This study identified 47,526 genotyping-by-sequencing-derived SNP markers that were nearly evenly distributed across three genomes of wheat. The population structure analysis identified three distinct clusters (Japan synthetics, CIMMYT synthetics, and bread wheat) of wheat genotypes on the basis of type and geographical origin of wheat accessions. Population differentiation using analysis of molecular variance indicated 21% of the total genetic variance among subgroups and the remainder within subgroups. This study also identified that the Japan synthetic group was the most divergent group compared with other subgroups. The genetic diversity comparisons between synthetic and bread wheat lines showed that the gene diversity of synthetic wheat was 33% higher than bread wheat accessions, indicating the potential use of these lines for broadening the genetic diversity of modern wheat cultivars. The results from this study will be helpful in further understanding genomic features of wheat and facilitate their use in wheat breeding programs.
Collapse
Affiliation(s)
- Madhav Bhatta
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | | | | | - Alexey Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey.
| |
Collapse
|
21
|
Venske E, dos Santos RS, Busanello C, Gustafson P, Costa de Oliveira A. Bread wheat: a role model for plant domestication and breeding. Hereditas 2019; 156:16. [PMID: 31160891 PMCID: PMC6542105 DOI: 10.1186/s41065-019-0093-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bread wheat is one of the most important crops in the world. Its domestication coincides with the beginning of agriculture and since then, it has been constantly under selection by humans. Its breeding has followed millennia of cultivation, sometimes with unintended selection on adaptive traits, and later by applying intentional but empirical selective pressures. For more than one century, wheat breeding has been based on science, and has been constantly evolving due to on farm agronomy and breeding program improvements. The aim of this work is to briefly review wheat breeding, with emphasis on the current advances. DISCUSSION Improving yield potential, resistance/tolerance to biotic and abiotic stresses, and baking quality, have been priorities for breeding this cereal, however, new objectives are arising, such as biofortification enhancement. The narrow genetic diversity and complexity of its genome have hampered the breeding progress and the application of biotechnology. Old approaches, such as the introgression from relative species, mutagenesis, and hybrid breeding are strongly reappearing, motivated by an accumulation of knowledge and new technologies. A revolution has taken place regarding the use of molecular markers whereby thousands of plants can be routinely genotyped for thousands of loci. After 13 years, the wheat reference genome sequence and annotation has finally been completed, and is currently available to the scientific community. Transgenics, an unusual approach for wheat improvement, still represents a potential tool, however it is being replaced by gene editing, whose technology along with genomic selection, speed breeding, and high-throughput phenotyping make up the most recent frontiers for future wheat improvement. FINAL CONSIDERATION Agriculture and plant breeding are constantly evolving, wheat has played a major role in these processes and will continue through decades to come.
Collapse
Affiliation(s)
- Eduardo Venske
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Railson Schreinert dos Santos
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Carlos Busanello
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| | - Perry Gustafson
- Plant Sciences Division, 1–32 Agriculture, University of Missouri, Columbia, MO 65211 USA
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Crop Science Department, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Capão do Leão Campus, Capão do Leão, Rio Grande do Sul 96010-610 Brazil
| |
Collapse
|
22
|
Suneja Y, Gupta AK, Bains NS. Stress Adaptive Plasticity: Aegilops tauschii and Triticum dicoccoides as Potential Donors of Drought Associated Morpho-Physiological Traits in Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:211. [PMID: 30858862 PMCID: PMC6397871 DOI: 10.3389/fpls.2019.00211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/07/2019] [Indexed: 05/05/2023]
Abstract
The inconsistent prevalence of abiotic stress in most of the agroecosystems can be addressed through deployment of plant material with stress adaptive plasticity. The present study explores water stress induced plasticity for early root-shoot development, proline induction and cell membrane injury in 57 accessions of Aegilops tauschii (DD-genome) and 26 accessions of Triticum dicoccoides (AABB-genome) along with durum and bread wheat cultivars. Thirty three Ae. tauschii accessions and 18 T. dicoccoides accessions showed an increase in root dry weight (ranging from 1.8 to 294.75%) under water stress. Shoot parameters- length and biomass, by and large were suppressed by water stress, but genotypes with stress adaptive plasticity leading to improvement of shoot traits (e.g., Ae tauschii accession 14191 and T. dicoccoides accession 7130) could be identified. Water stress induced active responses, rather than passive repartitioning of biomass was indicated by better shoot growth in seedlings of genotypes with enhanced root growth under stress. Membrane injury seemed to work as a trigger to activate water stress adaptive cellular machinery and was found positively correlated with several root-shoot based adaptive responses in seedlings. Stress induced proline accumulation in leaf tissue showed marked inter- and intra-specific genetic variation but hardly any association with stress adaptive plasticity. Genotypic variation for early stage plasticity traits viz., change in root dry weight, shoot length, shoot fresh weight, shoot dry weight and membrane injury positively correlated with grain weight based stress tolerance index (r = 0.267, r = 0.404, r = 0.299, r = 0.526, and r = 0.359, respectively). In another such trend, adaptive seedling plasticity correlated positively with resistance to early flowering under stress (r = 0.372 with membrane injury, r = 0.286 with change in root length, r = 0.352 with change in shoot length, r = 0.268 with change in shoot dry weight). Overall, Ae. tauschii accessions 9816, 14109, 14128, and T. dicoccoides accessions 5259 and 7130 were identified as potential donors of stress adaptive plasticity. The prospect of the study for molecular marker tagging, cloning of plasticity genes and creation of elite synthetic hexaploid donors is discussed.
Collapse
Affiliation(s)
- Yadhu Suneja
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Anil Kumar Gupta
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Navtej Singh Bains
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
23
|
Bhatta M, Morgounov A, Belamkar V, Baenziger PS. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. Int J Mol Sci 2018; 19:E3011. [PMID: 30279375 PMCID: PMC6212811 DOI: 10.3390/ijms19103011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023] Open
Abstract
Synthetic hexaploid wheat (SHW; 2n = 6x = 42, AABBDD, Triticum aestivum L.) is produced from an interspecific cross between durum wheat (2n = 4x = 28, AABB, T. turgidum L.) and goat grass (2n = 2x = 14, DD, Aegilops tauschii Coss.) and is reported to have significant novel alleles-controlling biotic and abiotic stresses resistance. A genome-wide association study (GWAS) was conducted to unravel these loci [marker⁻trait associations (MTAs)] using 35,648 genotyping-by-sequencing-derived single nucleotide polymorphisms in 123 SHWs. We identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genomes, respectively) and haplotype blocks associated with grain yield and yield-related traits including root traits under drought stress. The phenotypic variance explained by the MTAs ranged from 1.1% to 32.3%. Most of the MTAs (120 out of 194) identified were found in genes, and of these 45 MTAs were in genes annotated as having a potential role in drought stress. This result provides further evidence for the reliability of MTAs identified. The large number of MTAs (53) identified especially on the D-genome demonstrate the potential of SHWs for elucidating the genetic architecture of complex traits and provide an opportunity for further improvement of wheat under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Madhav Bhatta
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Alexey Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), 06511 Emek, Ankara, Turkey.
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
24
|
Erginbas-Orakci G, Sehgal D, Sohail Q, Ogbonnaya F, Dreisigacker S, Pariyar SR, Dababat AA. Identification of Novel Quantitative Trait Loci Linked to Crown Rot Resistance in Spring Wheat. Int J Mol Sci 2018; 19:E2666. [PMID: 30205560 PMCID: PMC6165080 DOI: 10.3390/ijms19092666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 01/04/2023] Open
Abstract
Crown rot (CR), caused by various Fusarium species, is a major disease in many cereal-growing regions worldwide. Fusarium culmorum is one of the most important species, which can cause significant yield losses in wheat. A set of 126 advanced International Maize and Wheat Improvement Center (CIMMYT) spring bread wheat lines were phenotyped against CR for field crown, greenhouse crown and stem, and growth room crown resistance scores. Of these, 107 lines were genotyped using Diversity Array Technology (DArT) markers to identify quantitative trait loci linked to CR resistance by genome-wide association study. Results of the population structure analysis grouped the accessions into three sub-groups. Genome wide linkage disequilibrium was large and declined on average within 20 cM (centi-Morgan) in the panel. General linear model (GLM), mixed linear model (MLM), and naïve models were tested for each CR score and the best model was selected based on quarantine-quarantine plots. Three marker-trait associations (MTAs) were identified linked to CR resistance; two of these on chromosome 3B were associated with field crown scores, each explaining 11.4% of the phenotypic variation and the third MTA on chromosome 2D was associated with greenhouse stem score and explained 11.6% of the phenotypic variation. Together, these newly identified loci provide opportunity for wheat breeders to exploit in enhancing CR resistance via marker-assisted selection or deployment in genomic selection in wheat breeding programs.
Collapse
Affiliation(s)
- Gul Erginbas-Orakci
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF06600, Mexico.
| | - Quahir Sohail
- International Winter Wheat Improvement Program (IWWIP), International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar 25000, Pakistan.
| | - Francis Ogbonnaya
- Grains Research and Development Corporation (GRDC), P.O. Box 5367, Kingston, ACT 2604, Australia.
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF06600, Mexico.
| | - Shree R Pariyar
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Abdelfattah A Dababat
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara 06511, Turkey.
| |
Collapse
|
25
|
Wang H, Hu Z, Huang K, Han Y, Zhao A, Han H, Song L, Fan C, Li R, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:976-987. [PMID: 29932270 DOI: 10.1111/tpj.14005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Common wheat is an allohexaploid (BBAADD) that originated from the hybridization and polyploidization of the diploid Aegilops tauschii (DD) with the allotetraploid Triticum turgidum (BBAA). Phenotypic changes often arise with the formation and evolution of allopolyploid wheat, but little is known about the evolution of root traits in different wheat species with varying ploidy levels. Here, we reported that the lateral root number on the primary root (LRNPR) of synthetic and natural allohexaploid wheats (BBAADD) is significantly higher than that of their allotetraploid (BBAA) and diploid (AA and SS) progenitors, but is much lower than that of their diploid (DD) progenitors. The expression of the wheat gene TaLBD16, an ortholog of the Arabidopsis LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16), which is involved in lateral root development in Arabidopsis, was positively correlated with the LRNPR in diploid and allopolyploid wheats. In natural and synthetic allohexaploid wheats, the transcript of the TaLBD16 from the D genome (TaLBD16-D) was relatively more abundant compared with TaLBD16-A and TaLBD16-B. Consistent with the observed variation in LRNPR, the divergence in the expression of TaLBD16 homoeologous genes occurred before the formation of polyploidy wheat. Collectively, our observations indicate that the D genome played a crucial role in the increased lateral root number of allohexaploid wheats compared with their allotetraploid progenitors, and that TaLBD16-D was one of the key genes involved in the formation of lateral root number during wheat evolution.
Collapse
Affiliation(s)
- Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ke Huang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yao Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Haiming Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Long Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaofeng Fan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Run Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics 2018; 19:591. [PMID: 30081829 PMCID: PMC6090860 DOI: 10.1186/s12864-018-4969-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023] Open
Abstract
Background Synthetic hexaploid wheat (SHW) is a reconstitution of hexaploid wheat from its progenitors (Triticum turgidum ssp. durum L.; AABB x Aegilops tauschii Coss.; DD) and has novel sources of genetic diversity for broadening the genetic base of elite bread wheat (BW) germplasm (T. aestivum L). Understanding the diversity and population structure of SHWs will facilitate their use in wheat breeding programs. Our objectives were to understand the genetic diversity and population structure of SHWs and compare the genetic diversity of SHWs with elite BW cultivars and demonstrate the potential of SHWs to broaden the genetic base of modern wheat germplasm. Results The genotyping-by-sequencing of SHW provided 35,939 high-quality single nucleotide polymorphisms (SNPs) that were distributed across the A (33%), B (36%), and D (31%) genomes. The percentage of SNPs on the D genome was nearly same as the other two genomes, unlike in BW cultivars where the D genome polymorphism is generally much lower than the A and B genomes. This indicates the presence of high variation in the D genome in the SHWs. The D genome gene diversity of SHWs was 88.2% higher than that found in a sample of elite BW cultivars. Population structure analysis revealed that SHWs could be separated into two subgroups, mainly differentiated by geographical location of durum parents and growth habit of the crop (spring and winter type). Further population structure analysis of durum and Ae. parents separately identified two subgroups, mainly based on type of parents used. Although Ae. tauschii parents were divided into two sub-species: Ae. tauschii ssp. tauschii and ssp. strangulate, they were not clearly distinguished in the diversity analysis outcome. Population differentiation between SHWs (Spring_SHW and Winter_SHW) samples using analysis of molecular variance indicated 17.43% of genetic variance between populations and the remainder within populations. Conclusions SHWs were diverse and had a clearly distinguished population structure identified through GBS-derived SNPs. The results of this study will provide valuable information for wheat genetic improvement through inclusion of novel genetic variation and is a prerequisite for association mapping and genomic selection to unravel economically important marker-trait associations and for cultivar development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4969-2) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Goriewa-Duba K, Duba A, Kwiatek M, Wiśniewska H, Wachowska U, Wiwart M. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.). PLoS One 2018; 13:e0192862. [PMID: 29447228 PMCID: PMC5813972 DOI: 10.1371/journal.pone.0192862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.
Collapse
Affiliation(s)
- Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Michał Kwiatek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Wielkopolskie Voivodeship, Poland
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Wielkopolskie Voivodeship, Poland
| | - Halina Wiśniewska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Wielkopolskie Voivodeship, Poland
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Marian Wiwart
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| |
Collapse
|
28
|
Yan L, Liu Z, Xu H, Zhang X, Zhao A, Liang F, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Transcriptome analysis reveals potential mechanisms for different grain size between natural and resynthesized allohexaploid wheats with near-identical AABB genomes. BMC PLANT BIOLOGY 2018; 18:28. [PMID: 29402221 PMCID: PMC5799976 DOI: 10.1186/s12870-018-1248-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Common wheat is a typical allohexaploid species (AABBDD) derived from the interspecific crossing between allotetraploid wheat (AABB) and Aegilops tauschii (DD). Wide variation in grain size and shape observed among Aegilops tauschii can be retained in synthetic allohexaploid wheats, but the underlying mechanism remains enigmatic. Here, the natural and resynthesized allohexaploid wheats with near-identical AB genomes and different D genomes (TAA10 and XX329) were employed for analysis. RESULTS Significant differences in grain size and weight between TAA10 and XX329 were observed at the early stages of development, which could be mainly attributed to the higher growth rates of the pericarp and endosperm cells in XX329 compared to TAA10. Furthermore, comparative transcriptome analysis identified that 8891 of 69,711 unigenes (12.75%) were differentially expressed between grains at 6 days after pollination (DAP) of TAA10 and XX329, including 5314 up-regulated and 3577 down-regulated genes in XX329 compared to TAA10. The MapMan functional annotation and enrichment analysis revealed that the differentially expressed genes were significantly enriched in categories of cell wall, carbohydrate and hormone metabolism. Notably, consistent with the up-regulation of sucrose synthase genes in resynthesized relative to natural allohexaploid wheat, the resynthesized allohexaploid wheat accumulated much higher contents of glucose and fructose in 6-DAP grains than those of the natural allohexaploid wheat. CONCLUSIONS These data indicated that the genetic variation of the D genome induced drastic alterations of gene expression in grains of the natural and resynthesized allohexaploid wheats, which may contribute to the observed differences in grain size and weight.
Collapse
Affiliation(s)
- Lei Yan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiaoping Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035 China
| | - Fei Liang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
29
|
|
30
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
31
|
King J, Grewal S, Yang C, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen AM, Burridge A, Bloor C, Davassi A, da Silva GJ, Chalmers K, King IP. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:217-226. [PMID: 27459228 PMCID: PMC5258861 DOI: 10.1111/pbi.12606] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 05/11/2023]
Abstract
Despite some notable successes, only a fraction of the genetic variation available in wild relatives has been utilized to produce superior wheat varieties. This is as a direct result of the lack of availability of suitable high-throughput technologies to detect wheat/wild relative introgressions when they occur. Here, we report on the use of a new SNP array to detect wheat/wild relative introgressions in backcross progenies derived from interspecific hexaploid wheat/Ambylopyrum muticum F1 hybrids. The array enabled the detection and characterization of 218 genomewide wheat/Am. muticum introgressions, that is a significant step change in the generation and detection of introgressions compared to previous work in the field. Furthermore, the frequency of introgressions detected was sufficiently high to enable the construction of seven linkage groups of the Am. muticum genome, thus enabling the syntenic relationship between the wild relative and hexaploid wheat to be determined. The importance of the genetic variation from Am. muticum introduced into wheat for the development of superior varieties is discussed.
Collapse
Affiliation(s)
- Julie King
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | - Surbhi Grewal
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | - Cai‐yun Yang
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | - Stella Hubbart
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | - Duncan Scholefield
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | - Stephen Ashling
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| | | | | | | | | | | | - Glacy J. da Silva
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
- Federal University of PelotasPelotasBrazil
| | - Ken Chalmers
- School of Agriculture, Food and WineThe University of AdelaideAdelaideSAAustralia
| | - Ian P. King
- Division of Plant and Crop SciencesSchool of BiosciencesThe University of Nottingham, Sutton Bonington CampusLoughboroughUK
| |
Collapse
|
32
|
Arora S, Singh N, Kaur S, Bains NS, Uauy C, Poland J, Chhuneja P. Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2017; 8:886. [PMID: 28620398 PMCID: PMC5450224 DOI: 10.3389/fpls.2017.00886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 05/18/2023]
Abstract
Aegilops tauschii, the D-genome progenitor of Triticum aestivum, encompasses huge diversity for various traits of potential economic importance such as yield, biotic and abiotic stress tolerance, quality and nutrition. In the present study, variation for grain size in Ae. tauschii germplasm was studied and its genetic basis dissected using genome-wide association study (GWAS). Grain length, width, and weight evaluated in 177 Ae. tauschii accessions over 3 years showed near normal distribution with 1.74-, 1.75-, and 2.82-fold variation, respectively. These lines were genetically characterized using genotyping-by-sequencing (GBS) protocol that produced 11,489 single nucleotide polymorphic (SNP) markers. Genetic diversity analysis revealed the presence of two distinct subgroups (designated as lineage 1 and 2) in Ae. tauschii. Based on GBS markers, the genetic similarity was calculated between the accessions and GWAS was conducted using 114 non-redundant accessions and 5,249 SNP markers. A total of 17 SNPs associated with grain size traits distributed over all the seven chromosomes were revealed with 6D, 5D, and 2D harboring most significant marker-trait associations. Some of the chromosomal regions such as 6D_66.4-71.1 cM, 1D_143.5-156.7 cM, and 2D_89.9-92.5 cM had associations with multiple traits. Candidate genes associated with cell division and differentiation were identified for some of the associated SNP markers. Further efforts to validate these loci will help to understand their role in determining grain size and allelic diversity in current germplasm and its effect on grain size upon transfer to bread wheat background.
Collapse
Affiliation(s)
- Sanu Arora
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- Crop Genetics, John Innes CentreNorwich, United Kingdom
| | - Narinder Singh
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, ManhattanKS, United States
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Navtej S. Bains
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- Department of Plant Breeding and Genetics, Punjab Agricultural UniversityLudhiana, India
| | | | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, ManhattanKS, United States
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
33
|
Wiersma AT, Brown LK, Brisco EI, Liu TL, Childs KL, Poland JA, Sehgal SK, Olson EL. Fine mapping of the stem rust resistance gene SrTA10187. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2369-2378. [PMID: 27581540 DOI: 10.1007/s00122-016-2776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
SrTA10187 was fine-mapped to a 1.1 cM interval, candidate genes were identified in the region of interest, and molecular markers were developed for marker-assisted selection and Sr gene pyramiding. Stem rust (Puccinia graminis f. sp. tritici, Pgt) races belonging to the Ug99 (TTKSK) race group pose a serious threat to global wheat (Triticum aestivum L.) production. To improve Pgt host resistance, the Ug99-effective resistance gene SrTA10187 previously identified in Aegilops tauschii Coss. was introgressed into wheat, and mapped to the short arm of wheat chromosome 6D. In this study, high-resolution mapping of SrTA10187 was done using a population of 1,060 plants. Pgt resistance was screened using race QFCSC. PCR-based SNP and STS markers were developed from genotyping-by-sequencing tags and SNP sequences available in online databases. SrTA10187 segregated as expected in a 3:1 ratio of resistant to susceptible individuals in three out of six BC3F2 families, and was fine-mapped to a 1.1 cM region on wheat chromosome 6DS. Marker context sequence was aligned to the reference Ae. tauschii genome to identify the physical region encompassing SrTA10187. Due to the size of the corresponding region, candidate disease resistance genes could not be identified with confidence. Comparisons with the Ae. tauschii genetic map developed by Luo et al. (PNAS 110(19):7940-7945, 2013) enabled identification of a discrete genetic locus and a BAC minimum tiling path of the region spanning SrTA10187. Annotation of pooled BAC library sequences led to the identification of candidate genes in the region of interest-including a single NB-ARC-LRR gene. The shorter genetic interval and flanking KASP™ and STS markers developed in this study will facilitate marker-assisted selection, gene pyramiding, and positional cloning of SrTA10187.
Collapse
Affiliation(s)
- Andrew T Wiersma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Linda K Brown
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Elizabeth I Brisco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Tiffany L Liu
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Kevin L Childs
- Department of Plant Biology and Center for Genomics-Enabled Plant Science, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Jesse A Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, 4011 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Plant Science, South Dakota State University, Plant Science-Box 2140C, Brookings, SD, 57007, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
35
|
Novoselović D, Bentley AR, Šimek R, Dvojković K, Sorrells ME, Gosman N, Horsnell R, Drezner G, Šatović Z. Characterizing Croatian Wheat Germplasm Diversity and Structure in a European Context by DArT Markers. FRONTIERS IN PLANT SCIENCE 2016; 7:184. [PMID: 26941756 PMCID: PMC4761793 DOI: 10.3389/fpls.2016.00184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/03/2016] [Indexed: 05/08/2023]
Abstract
Narrowing the genetic base available for future genetic progress is a major concern to plant breeders. In order to avoid this, strategies to characterize and protect genetic diversity in regional breeding pools are required. In this study, 89 winter wheat cultivars released in Croatia between 1936 and 2006 were genotyped using 1,229 DArT (diversity array technology) markers to assess the diversity and population structure. In order to place Croatian breeding pool (CBP) in a European context, Croatian wheat cultivars were compared to 523 European cultivars from seven countries using a total of 166 common DArT markers. The results show higher genetic diversity in the wheat breeding pool from Central Europe (CE) as compared to that from Northern and Western European (NWE) countries. The most of the genetic diversity was attributable to the differences among cultivars within countries. When the geographical criterion (CE vs. NWE) was applied, highly significant difference between regions was obtained that accounted for 16.19% of the total variance, revealing that the CBP represents genetic variation not currently captured in elite European wheat. The current study emphasizes the important contribution made by plant breeders to maintaining wheat genetic diversity and suggests that regional breeding is essential to the maintenance of this diversity. The usefulness of open-access wheat datasets is also highlighted.
Collapse
Affiliation(s)
- Dario Novoselović
- Department for Breeding & Genetics of Small Cereal Crops, Agricultural Institute OsijekOsijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant BreedingZagreb, Croatia
| | - Alison R. Bentley
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Ruđer Šimek
- Department for Breeding & Genetics of Small Cereal Crops, Agricultural Institute OsijekOsijek, Croatia
- *Correspondence: Ruđer Šimek,
| | - Krešimir Dvojković
- Department for Breeding & Genetics of Small Cereal Crops, Agricultural Institute OsijekOsijek, Croatia
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, IthacaNY, USA
| | | | - Richard Horsnell
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Georg Drezner
- Department for Breeding & Genetics of Small Cereal Crops, Agricultural Institute OsijekOsijek, Croatia
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant BreedingZagreb, Croatia
- Faculty of Agriculture, University of ZagrebZagreb, Croatia
| |
Collapse
|
36
|
Li LF, Liu B, Olsen KM, Wendel JF. A re-evaluation of the homoploid hybrid origin of Aegilops tauschii, the donor of the wheat D-subgenome. THE NEW PHYTOLOGIST 2015; 208:4-8. [PMID: 25612061 DOI: 10.1111/nph.13294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, No. 5268 Renmin Str., Changchun, 130024, China
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, No. 5268 Renmin Str., Changchun, 130024, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
37
|
Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3477-86. [PMID: 25821073 DOI: 10.1093/jxb/erv122] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.
Collapse
Affiliation(s)
| | - Ibrahim El-Basyoni
- Department of Agronomy and Horticulture, 362D Plant Science Building, 1875 N. 38th Street, University of Nebraska, Lincoln, NE 68583-0915, USA Crop Science Department, 15 F, Mogamaa El-Abadia, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Peter S Baenziger
- Department of Agronomy and Horticulture, 362D Plant Science Building, 1875 N. 38th Street, University of Nebraska, Lincoln, NE 68583-0915, USA
| | | | - Conxita Royo
- IRTA, Avda Rovira Roure 191, 25198 Lleida, Spain
| | - Kursad Ozbek
- Central Field Crops Research Institute, Şehit Cem Ersever Cad. No: 9-11 Yenimahalle, 06520 Ankara, Turkey
| | - Husnu Aktas
- Gap Uluslararası Tarımsal Araştırma ve Eğitim Merkezi Silvan Yolu Üzeri 9. Km PK.72, 21110 Diyarbakir, Turkey
| | - Emel Ozer
- Bahri Dagdas Uluslararasi Tarimsal Arastirma Enstitüsü, PK:125, Karatay, 42020 Konya, Turkey
| | - Fatih Ozdemir
- Bahri Dagdas Uluslararasi Tarimsal Arastirma Enstitüsü, PK:125, Karatay, 42020 Konya, Turkey
| | - Alagu Manickavelu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | | |
Collapse
|
38
|
Scott JC, Manisterski J, Sela H, Ben-Yehuda P, Steffenson BJ. Resistance of Aegilops Species from Israel to Widely Virulent African and Israeli Races of the Wheat Stem Rust Pathogen. PLANT DISEASE 2014; 98:1309-1320. [PMID: 30703930 DOI: 10.1094/pdis-01-14-0062-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Widely virulent races of the stem rust pathogen (Puccinia graminis f. sp. tritici) such as those isolated from Africa (e.g., TTKSK, isolate synonym Ug99) threaten wheat production worldwide. To identify Aegilops accessions with effective resistance to such virulent stem rust races, up to 10 different species from Israel were evaluated against African races TTKSK, TTKST, and TTTSK and the Israeli race TTTTC as seedlings in the greenhouse. A wide diversity of stem rust reactions was observed across the Aegilops spp. and ranged from highly resistant (i.e., infection type 0) to highly susceptible (infection type 4). The frequency of resistance within a species to races TTTTC and TTKSK ranged from 7 and 14%, respectively, in Aegilops searsii to 98 and 100% in AE. speltoides. In all, 346 accessions were found resistant to the three African races and 138 accessions were resistant (or heterogeneous with a resistant component) to all four races. The species with broadly resistant accessions included Ae. longissima (59 accessions), Ae. peregrina (47 accessions), Ae. sharonensis (15 accessions), Ae. geniculata (9 accessions), Ae. kotschyi (5 accessions), and Ae. bicornis (3 accessions). Few geographical trends or correlations with climatic variables were observed with respect to stem rust resistance in the Aegilops spp. The exception was Ae. longissima infected with race TTTTC, where a high frequency of resistance was found in central and northern Israel and a very low frequency in southern Israel (Negev desert region). This geographical trend followed a pattern of annual precipitation in Israel, and a significant correlation was found between this variable and resistance in Ae. longissima. Although difficult, it is feasible to transfer resistance genes from Aegilops spp. into wheat through conventional wide-crossing schemes or, alternatively, a cloning and transformation approach. The broadly resistant accessions identified in this study will be valuable in these research programs.
Collapse
Affiliation(s)
- Jeness C Scott
- Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - Jacob Manisterski
- Institute for Cereal Crops Improvement, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Hanan Sela
- Institute for Cereal Crops Improvement, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Pnina Ben-Yehuda
- Institute for Cereal Crops Improvement, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
39
|
Wu D, Sun G, Yang L, Hu Q. Comparison of Acetyl-CoA carboxylase 1 (Acc-1) gene diversity among different Triticeae genomes. Gene 2014; 546:11-5. [PMID: 24865934 DOI: 10.1016/j.gene.2014.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/10/2014] [Accepted: 05/22/2014] [Indexed: 01/05/2023]
Abstract
It has widely been documented that life form and mating system have significant influences on genetic diversity. In the tribe Triticeae, several genera contain both annual and perennial species, whereas other genera comprise strictly annual or perennial species. It was suggested that Triticeae annuals have originated from Triticeae perennials. The present study aims to analyze nucleotide diversity of Acc-1 gene among different Triticeae genomes, and attempts to link effects of life history (annuals and perennials) and mating systems. The nucleotide diversity of 364 Acc-1 sequences in Triticeae species was characterized. The highest estimates of nucleotide diversity values (π=0.01919, θ=0.03515) were found for the Ns genome among the genomes analyzed. Nucleotide diversities in the D genome and Ns genome of polyploids are higher than those in respective genomes of diploids, while in the St genome of polyploids, it is lower than that in the St genome of diploids. The averaged π value (0.013705) in the genomes of perennials is more than twice of the value (0.00508) in the genomes of annuals. The averaged π value (0.01323) in the genomes of outcrossing species is two-fold of the value (0.005664) in the genomes of selfer. Our results suggested that the evolutionary history and mating system may play an important role in determining nucleotide diversity of Acc-1 gene in each genome.
Collapse
Affiliation(s)
- Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China; Biology Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada.
| | - Lie Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Qunwen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
40
|
Molnár I, Kubaláková M, Šimková H, Farkas A, Cseh A, Megyeri M, Vrána J, Molnár-Láng M, Doležel J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1091-104. [PMID: 24553964 DOI: 10.1007/s00122-014-2282-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/03/2014] [Indexed: 05/10/2023]
Abstract
Chromosomes 5A (u) , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (A(u)A(u)), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5A(u), 5S and 5D could be sorted with purities of 78-90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1-7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary,
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olson EL, Rouse MN, Pumphrey MO, Bowden RL, Gill BS, Poland JA. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2477-84. [PMID: 23864229 DOI: 10.1007/s00122-013-2148-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 06/18/2013] [Indexed: 05/09/2023]
Abstract
Aegilops tauschii, the diploid progenitor of the wheat D genome, is a readily accessible germplasm pool for wheat breeding as genes can be transferred to elite wheat cultivars through direct hybridization followed by backcrossing. Gene transfer and genetic mapping can be integrated by developing mapping populations during backcrossing. Using direct crossing, two genes for resistance to the African stem rust fungus race TTKSK (Ug99), were transferred from the Ae. tauschii accessions TA10187 and TA10171 to an elite hard winter wheat line, KS05HW14. BC2 mapping populations were created concurrently with developing advanced backcross lines carrying rust resistance. Bulked segregant analysis on the BC2 populations identified marker loci on 6DS and 7DS linked to stem rust resistance genes transferred from TA10187 and TA10171, respectively. Linkage maps were developed for both genes and closely linked markers reported in this study will be useful for selection and pyramiding with other Ug99-effective stem rust resistance genes. The Ae. tauschii-derived resistance genes were temporarily designated SrTA10187 and SrTA10171 and will serve as valuable resources for stem rust resistance breeding.
Collapse
Affiliation(s)
- Eric L Olson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | | | | | |
Collapse
|
42
|
Utkina LL, Andreev YA, Rogozhin EA, Korostyleva TV, Slavokhotova AA, Oparin PB, Vassilevski AA, Grishin EV, Egorov TA, Odintsova TI. Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J 2013; 280:3594-608. [PMID: 23702306 DOI: 10.1111/febs.12349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/15/2022]
Abstract
A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize.
Collapse
Affiliation(s)
- Lyubov L Utkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Laikova LI, Belan IA, Badaeva ED, Rosseeva LP, Shepelev SS, Shumny VK, Pershina LA. Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res 2012; 20:699-715. [DOI: 10.1007/s10577-012-9307-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023]
|
45
|
Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256. Biomolecules 2012; 2:228-39. [PMID: 24970134 PMCID: PMC4030846 DOI: 10.3390/biom2020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 11/26/2022] Open
Abstract
orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS) that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482), amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc) (the outgroup species). Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes.
Collapse
|
46
|
Feiz L, Martin JM, Giroux MJ. Creation and functional analysis of new Puroindoline alleles in Triticum aestivum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:247-57. [PMID: 18846362 DOI: 10.1007/s00122-008-0893-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 09/06/2008] [Indexed: 05/24/2023]
Abstract
The Hardness (Ha) locus controls grain texture and affects many end-use properties of wheat (Triticum aestivum L.). The Ha locus is functionally comprised of the Puroindoline a and b genes, Pina and Pinb, respectively. The lack of Pin allelic diversity is a major factor limiting Ha functional analyses and wheat quality improvement. In order to create new Ha alleles, a 630 member M(2) population was produced in the soft white spring cultivar Alpowa using ethylmethane sulfonate mutagenesis. The M(2) population was screened to identify new alleles of Pina and Pinb. Eighteen new Pin alleles, including eight missense alleles, were identified. F(2) populations for four of the new Pin alleles were developed after crossing each back to non-mutant Alpowa. Grain hardness was then measured on F(2:3) seeds and the impact of each allele on grain hardness was quantified. The tested mutations were responsible for between 28 and 94% of the grain hardness variation and seed weight and vigor of all mutation lines was restored among the F(2) populations. Selection of new Pin alleles following direct phenotyping or direct sequencing is a successful approach to identify new Ha alleles useful in improving wheat product quality and understanding Ha locus function.
Collapse
Affiliation(s)
- L Feiz
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT, 59717-3150, USA
| | | | | |
Collapse
|
47
|
Chu CG, Friesen TL, Xu SS, Faris JD. Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:873-81. [PMID: 18575834 DOI: 10.1007/s00122-008-0826-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 06/09/2008] [Indexed: 05/07/2023]
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is a destructive foliar disease of wheat causing significant yield reduction in major wheat growing areas throughout the world. The objective of this study was to identify quantitative trait loci (QTL) conferring resistance to tan spot in the synthetic hexaploid wheat (SHW) line TA4152-60. A doubled haploid (DH) mapping population derived from TA4152-60 x ND495 was inoculated with conidia produced by isolates of each of four virulent races of P. tritici-repentis found in North America. QTL analysis revealed a total of five genomic regions significantly associated with tan spot resistance, all of which were contributed by the SHW line. Among them, two novel QTLs located on chromosome arms 2AS and 5BL conferred resistance to all isolates tested. Another novel QTL on chromosome arm 5AL conferred resistance to isolates of races 1, 2 and 5, and a QTL specific to a race 3 isolate was detected on chromosome arm 4AL. None of these QTLs corresponded to known host selective toxin (HST) insensitivity loci, but a second QTL on chromosome arm 5BL conferred resistance to the Ptr ToxA producing isolates of races 1 and 2 and corresponded to the Tsn1 (Ptr ToxA sensitivity) locus. This indicates that the wheat-P. tritici-repentis pathosystem is much more complex than previously thought and that selecting for toxin insensitivity alone will not necessarily lead to tan spot resistance. The markers associated with the QTLs identified in this work will be useful for deploying the SHW line as a tan spot resistance source in wheat breeding.
Collapse
Affiliation(s)
- C-G Chu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | |
Collapse
|
48
|
Thompson JP. Resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus) in synthetic hexaploid wheats and their durum and Aegilops tauschii parents. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar07222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n = 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n = 4x = 28, AABB) with Aegilops tauschii Coss. (2n = 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F1 hybrids with Janz, a susceptible bread wheat, were tested and the F1s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F1s and F2s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Collapse
|
49
|
Able JA, Langridge P, Milligan AS. Capturing diversity in the cereals: many options but little promiscuity. TRENDS IN PLANT SCIENCE 2007; 12:71-9. [PMID: 17224300 DOI: 10.1016/j.tplants.2006.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulated given that it plays a pivotal role in generating diversity. With the advent of a wider range of genomics technologies, our understanding of meiotic processes should increase rapidly. Although comparative genetics has been useful, particularly in the broader grass family, the development of physical maps, long-range sequencing and transcript profiles promises to unravel the complexities of genomes as large or larger than wheat. Highlighting the most significant findings to date, this review pools the knowledge on these tools and reproductive processes.
Collapse
Affiliation(s)
- Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
50
|
Oliver RE, Xu SS, Stack RW, Friesen TL, Jin Y, Cai X. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1473-9. [PMID: 16544125 DOI: 10.1007/s00122-006-0250-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 02/20/2006] [Indexed: 05/07/2023]
Abstract
Four wheat (Triticum aestivum L.)-Thinopyrum ponticum derivatives SS5 (PI604926), SS156 (PI604947), SS363 (PI604970), and SS660 (PI604879), were identified as resistant to Fusarium head blight (FHB), a serious fungal disease of wheat worldwide. Seedling reactions to tan spot and Stagonospora nodorum blotch (SNB), two important foliar diseases of wheat, suggest that these four derivatives are resistant to tan spot and two of them (SS5 and SS156) are resistant to SNB. Fluorescent genomic in situ hybridization (FGISH) patterns of mitotic chromosomes indicate that these four derivatives are partial wheat-Th. ponticum amphiploids, each with a total of 56 chromosomes, though with different amounts of Th. ponticum chromatin. These four amphiploids were hybridized with each other to determine homology between the Th. ponticum genomes in each of the amphiploids. Analysis of chromosome pairing in the F1 hybrids using FGISH suggests that each amphiploid carries a similar set of Th. ponticum chromosomes. These wheat-Th. ponticum amphiploids represent a potential novel source of resistance to FHB, tan spot, and SNB for wheat breeding.
Collapse
Affiliation(s)
- R E Oliver
- Department of Plant Sciences, 166 Loftsgard Hall, North Dakota State University (NDSU), Fargo, ND 58105, USA
| | | | | | | | | | | |
Collapse
|