1
|
Zhang X, Huo H, Fu G, Li C, Lin W, Dai H, Xi X, Zhai L, Yuan Q, Zhao G, Huo J. Long-read and short-read RNA-seq reveal the transcriptional regulation characteristics of PICK1 in Baoshan pig testis. Anim Reprod 2024; 21:e20240047. [PMID: 39371543 PMCID: PMC11452158 DOI: 10.1590/1984-3143-ar2024-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 10/08/2024] Open
Abstract
PICK1 plays a crucial role in mammalian spermatogenesis. Here, we integrated single-molecule long-read and short-read sequencing to comprehensively examine PICK1 expression patterns in adult Baoshan pig (BS) testes. We identified the most important transcript ENSSSCT00000000120 of PICK1, obtaining its full-length coding sequence (CDS) spanning 1254 bp. Gene structure analysis located PICK1 on pig chromosome 5 with 14 exons. Protein structure analysis reflected that PICK1 consisted of 417 amino acids containing two conserved domains, PDZ and BAR_PICK1. Phylogenetic analysis underscored the evolutionary conservation and homology of PICK1 across different mammalian species. Evaluation of protein interaction network, KEGG, and GO pathways implied that interacted with 50 proteins, predominantly involved in glutamatergic synapses, amphetamine addiction, neuroactive ligand-receptor interactions, dopaminergic synapses, and synaptic vesicle recycling, and PICK1 exhibited significant correlation with DLG4 and TBC1D20. Functional annotation identified that PICK1 was involved in 9 GOs, including seven cellular components and two molecular functions. ceRNA network analysis suggested BS PICK1 was regulated by seven miRNA targets. Moreover, qPCR expression analysis across 15 tissues highlighted that PICK1 was highly expressed in the bulbourethral gland and testis. Subcellular localization analysis in ST (Swine Tesits) cells demonstrated that PICK1 significantly localized within the cytoplasm. Overall, our findings shed new light on PICK1's role in BS reproduction, providing a foundation for further functional studies of PICK1.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, Yunnan, China
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Guowen Fu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changyao Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xuemin Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Zhai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qingting Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Lai JHC, Tsogka M, Xia J. Sodium arsenite induces aggresome formation by promoting PICK1 BAR domain homodimer formation. Mol Biol Cell 2024; 35:ar128. [PMID: 39083353 PMCID: PMC11481693 DOI: 10.1091/mbc.e24-05-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The aggresome is a perinuclear structure that sequesters misfolded proteins. It is implicated in various neurodegenerative diseases. The perinuclear structure enriched with protein interacting with C kinase 1 (PICK1) was found to be inducible by cellular stressors, colocalizing with microtubule-organizing center markers and ubiquitin, hence classifying it as an aggresome. Sodium arsenite but not arsenate was found to potently induce aggresome formation through an integrated stress response-independent pathway. In HEK293T cells, under arsenite stress, PICK1 localization to the aggresome was prioritized, and formation of PICK1 homodimers was favored. Additionally, PICK1 could enhance protein entry into aggresomes. This study shows that arsenite can induce the formation of both RNA stress granules and aggresomes at the same time, and that PICK1 shows conditional localization to aggresomes, suggesting a possible involvement of PICK1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- John Ho Chun Lai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Marianthi Tsogka
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The Brain and Intelligence Research Institute, and Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China
| |
Collapse
|
3
|
Jensen KL, Christensen NR, Goddard CM, Jager SE, Noes-Holt G, Kanneworff IB, Jakobsen A, Jiménez-Fernández L, Peck EG, Sivertsen L, Comaposada Baro R, Houser GA, Mayer FP, Diaz-delCastillo M, Topp ML, Hopkins C, Thomsen CD, Soltan ABI, Tidemand FG, Arleth L, Heegaard AM, Sørensen AT, Madsen KL. Peripherally restricted PICK1 inhibitor mPD5 ameliorates pain behaviors in murine inflammatory and neuropathic pain models. JCI Insight 2024; 9:e170976. [PMID: 39287978 PMCID: PMC11530130 DOI: 10.1172/jci.insight.170976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Chronic pain is a complex, debilitating, and escalating health problem worldwide, impacting 1 in 5 adults. Current treatment is compromised by dose-limiting side effects, including high abuse liability, loss of ability to function socially and professionally, fatigue, drowsiness, and apathy. PICK1 has emerged as a promising target for the treatment of chronic pain conditions. Here, we developed and characterized a cell-permeable fatty acid-conjugated bivalent peptide inhibitor of PICK1 and assessed its effects on acute and chronic pain. The myristoylated PICK1 inhibitor, myr-NPEG4-(HWLKV)2 (mPD5), self-assembled into core-shell micelles that provided favorable pharmacodynamic properties and relieved evoked mechanical and thermal hypersensitivity as well as ongoing hypersensitivity and anxiodepressive symptoms in mouse models of neuropathic and inflammatory pain following subcutaneous administration. No overt side effects were associated with mPD5 administration, and it had no effect on acute nociception. Finally, neuropathic pain was relieved far into the chronic phase (18 weeks after spared nerve injury surgery) and while the effect of a single injection ceased after a few hours, repeated administration provided pain relief lasting up to 20 hours after the last injection.
Collapse
Affiliation(s)
| | - Nikolaj Riis Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, and
| | | | - Sara Elgaard Jager
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Ida Buur Kanneworff
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Jakobsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | | | - Emily G. Peck
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Line Sivertsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | | | - Grace Anne Houser
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Felix Paul Mayer
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Løth Topp
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience
| | - Chelsea Hopkins
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Dubgaard Thomsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ahmed Barakat Ibrahim Soltan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Grønbæk Tidemand
- X-ray and Neutron Science, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lise Arleth
- X-ray and Neutron Science, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
5
|
Jin J, Li K, Du Y, Gao F, Wang Z, Li W. Multi-omics study identifies that PICK1 deficiency causes male infertility by inhibiting vesicle trafficking in Sertoli cells. Reprod Biol Endocrinol 2023; 21:114. [PMID: 38001535 PMCID: PMC10675906 DOI: 10.1186/s12958-023-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Infertility affects approximately 10-15% of reproductive-age men worldwide, and genetic causes play a role in one-third of cases. As a Bin-Amphiphysin-Rvs (BAR) domain protein, protein interacting with C-kinase 1 (PICK1) deficiency could lead to impairment of acrosome maturation. However, its effects on auxiliary germ cells such as Sertoli cells are unknown. PURPOSE The present work was aimed to use multi-omics analysis to research the effects of PICK1 deficiency on Sertoli cells and to identify effective biomarkers to distinguish fertile males from infertile males caused by PICK1 deficiency. METHODS Whole-exome sequencing (WES) was performed on 20 infertility patients with oligozoospermia to identify pathogenic PICK1 mutations. Multi-omics analysis of a PICK1 knockout (KO) mouse model was utilized to identify pathogenic mechanism. Animal and cell function experiments of Sertoli cell-specific PICK1 KO mouse were performed to verify the functional impairment of Sertoli cells. RESULTS Two loss-of-function deletion mutations c.358delA and c.364delA in PICK1 resulting in transcription loss of BAR functional domain were identified in infertility patients with a specific decrease in serum inhibin B, indicating functional impairment of Sertoli cells. Multi-omics analysis of PICK1 KO mouse illustrated that targeted genes of differentially expressed microRNAs and mRNAs are significantly enriched in the negative regulatory role in the vesicle trafficking pathway, while metabolomics analysis showed that the metabolism of amino acids, lipids, cofactors, vitamins, and endocrine factors changed. The phenotype of PICK1 KO mouse showed a reduction in testis volume, a decreased number of mature spermatozoa and impaired secretory function of Sertoli cells. In vitro experiments confirmed that the expression of growth factors secreted by Sertoli cells in PICK1 conditional KO mouse such as Bone morphogenetic protein 4 (BMP4) and Fibroblast growth factor 2 (FGF2) were decreased. CONCLUSIONS Our study attributed male infertility caused by PICK1 deficiency to impaired vesicle-related secretory function of Sertoli cells and identified a variety of significant candidate biomarkers for male infertility induced by PICK1 deficiency.
Collapse
Affiliation(s)
- Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Yaoqiang Du
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Fang Gao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China.
| | - Weixing Li
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
6
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Hummer BH, Carter T, Sellers BL, Triplett JD, Asensio CS. Identification of the functional domain of the dense core vesicle biogenesis factor HID-1. PLoS One 2023; 18:e0291977. [PMID: 37751424 PMCID: PMC10522040 DOI: 10.1371/journal.pone.0291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.
Collapse
Affiliation(s)
- Blake H. Hummer
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Theodore Carter
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Breanna L. Sellers
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Jenna D. Triplett
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Cedric S. Asensio
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| |
Collapse
|
8
|
Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, Solimena M, Ermácora MR. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci 2023; 32:e4649. [PMID: 37159024 PMCID: PMC10201709 DOI: 10.1002/pro.4649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of β-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 μm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Diego S. Vazquez
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Milagros B. Abate
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| | - Carolin Wegbrod
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Juha M. Torkko
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Michele Solimena
- Department of Molecular DiabetologyUniversity Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, TU DresdenDresdenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Mario R. Ermácora
- Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICETUniversidad Nacional de QuilmesProvincia de Buenos AiresArgentina
| |
Collapse
|
9
|
Chiu SL, Chen CM, Huganir RL. ICA69 regulates activity-dependent synaptic strengthening and learning and memory. Front Mol Neurosci 2023; 16:1171432. [PMID: 37251649 PMCID: PMC10213502 DOI: 10.3389/fnmol.2023.1171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition. ICA69 is first identified as a diabetes-associated protein well characterized for its function in the biogenesis of secretory vesicles and trafficking of insulin from ER, Golgi to post-Golgi in pancreatic beta cells. In the brain, ICA69 is found in the AMPAR protein complex through its interaction with PICK1, which binds directly to GluA2 or GluA3 AMPAR subunits. Here, we showed that ICA69 regulates PICK1's distribution in neurons and stability in the mouse hippocampus, which in turn can impact AMPAR function in the brain. Biochemical analysis of postsynaptic density (PSD) proteins from hippocampi of mice lacking ICA69 (Ica1 knockout) and their wild-type littermates revealed comparable AMPAR protein levels. Electrophysiological recording and morphological analysis of CA1 pyramidal neurons from Ica1 knockout also showed normal AMPAR-mediated currents and dendrite architecture, indicating that ICA69 does not regulate synaptic AMPAR function and neuron morphology at the basal state. However, genetic deletion of ICA69 in mice selectively impairs NMDA receptor (NMDAR)-dependent LTP but not LTD at Schaffer collateral to CA1 synapses, which correlates with behavioral deficits in tests of spatial and associative learning and memory. Together, we identified a critical and selective role of ICA69 in LTP, linking ICA69-mediated synaptic strengthening to hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica (NPAS), Academia Sinica, Taipei, Taiwan
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chih-Ming Chen
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Backe MB, Andersen RC, Jensen M, Jin C, Hundahl C, Dmytriyeva O, Treebak JT, Hansen JB, Gerhart-Hines Z, Madsen KL, Holst B. PICK1-Deficient Mice Maintain Their Glucose Tolerance During Diet-Induced Obesity. J Endocr Soc 2023; 7:bvad057. [PMID: 37200849 PMCID: PMC10185814 DOI: 10.1210/jendso/bvad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 05/20/2023] Open
Abstract
Context Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with β-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the β-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.
Collapse
Affiliation(s)
- Marie Balslev Backe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Epidemiology, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Rita Chan Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunyu Jin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cecilie Hundahl
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jakob Bondo Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Tran DT, Pottekat A, Lee K, Raghunathan M, Loguercio S, Mir SA, Paton AW, Paton JC, Arvan P, Kaufman RJ, Itkin-Ansari P. Inflammatory Cytokines Rewire the Proinsulin Interaction Network in Human Islets. J Clin Endocrinol Metab 2022; 107:3100-3110. [PMID: 36017587 PMCID: PMC10233482 DOI: 10.1210/clinem/dgac493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 01/19/2023]
Abstract
CONTEXT Aberrant biosynthesis and secretion of the insulin precursor proinsulin occurs in both type I and type II diabetes. Inflammatory cytokines are implicated in pancreatic islet stress and dysfunction in both forms of diabetes, but the mechanisms remain unclear. OBJECTIVE We sought to determine the effect of the diabetes-associated cytokines on proinsulin folding, trafficking, secretion, and β-cell function. METHODS Human islets were treated with interleukin-1β and interferon-γ for 48 hours, followed by analysis of interleukin-6, nitrite, proinsulin and insulin release, RNA sequencing, and unbiased profiling of the proinsulin interactome by affinity purification-mass spectrometry. RESULTS Cytokine treatment induced secretion of interleukin-6, nitrites, and insulin, as well as aberrant release of proinsulin. RNA sequencing showed that cytokines upregulated genes involved in endoplasmic reticulum stress, and, consistent with this, affinity purification-mass spectrometry revealed cytokine induced proinsulin binding to multiple endoplasmic reticulum chaperones and oxidoreductases. Moreover, increased binding to the chaperone immunoglobulin binding protein was required to maintain proper proinsulin folding in the inflammatory environment. Cytokines also regulated novel interactions between proinsulin and type 1 and type 2 diabetes genome-wide association studies candidate proteins not previously known to interact with proinsulin (eg, Ataxin-2). Finally, cytokines induced proinsulin interactions with a cluster of microtubule motor proteins and chemical destabilization of microtubules with Nocodazole exacerbated cytokine induced proinsulin secretion. CONCLUSION Together, the data shed new light on mechanisms by which diabetes-associated cytokines dysregulate β-cell function. For the first time, we show that even short-term exposure to an inflammatory environment reshapes proinsulin interactions with critical chaperones and regulators of the secretory pathway.
Collapse
Affiliation(s)
- Duc T Tran
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Plexium, San Diego, CA, USA
| | - Anita Pottekat
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Illumina, San Diego, CA, USA
| | - Kouta Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Saiful A Mir
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- University of Calcutta, West Bengal, India
| | | | | | - Peter Arvan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Randal J Kaufman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | |
Collapse
|
13
|
Rohli KE, Boyer CK, Bearrows SC, Moyer MR, Elison WS, Bauchle CJ, Blom SE, Zhang J, Wang Y, Stephens SB. ER Redox Homeostasis Regulates Proinsulin Trafficking and Insulin Granule Formation in the Pancreatic Islet β-Cell. FUNCTION 2022; 3:zqac051. [PMID: 36325514 PMCID: PMC9614934 DOI: 10.1093/function/zqac051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Defects in the pancreatic β-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in β-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores β-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Marshall R Moyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48103, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Sørensen AT, Rombach J, Gether U, Madsen KL. The Scaffold Protein PICK1 as a Target in Chronic Pain. Cells 2022; 11:1255. [PMID: 35455935 PMCID: PMC9031029 DOI: 10.3390/cells11081255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.
Collapse
Affiliation(s)
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.T.S.); (J.R.); (U.G.)
| |
Collapse
|
15
|
Andersen RC, Schmidt JH, Rombach J, Lycas MD, Christensen NR, Lund VK, Stapleton DS, Pedersen SS, Olsen MA, Stoklund M, Noes-Holt G, Nielsen TT, Keller MP, Jansen AM, Herlo R, Pietropaolo M, Simonsen JB, Kjærulff O, Holst B, Attie AD, Gether U, Madsen KL. Coding variants identified in diabetic patients alter PICK1 BAR domain function in insulin granule biogenesis. J Clin Invest 2022; 132:144904. [PMID: 35077398 PMCID: PMC8884907 DOI: 10.1172/jci144904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.
Collapse
Affiliation(s)
- Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan H. Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joscha Rombach
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew D. Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj R. Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor K. Lund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Signe S. Pedersen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A. Olsen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Stoklund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tommas T.E. Nielsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anna M. Jansen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Herlo
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jens B. Simonsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ole Kjærulff
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Jensen KL, Noes-Holt G, Sørensen AT, Madsen KL. A Novel Peripheral Action of PICK1 Inhibition in Inflammatory Pain. Front Cell Neurosci 2021; 15:750902. [PMID: 34975407 PMCID: PMC8714954 DOI: 10.3389/fncel.2021.750902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major healthcare problem that impacts one in five adults across the globe. Current treatment is compromised by dose-limiting side effects including drowsiness, apathy, fatigue, loss of ability to function socially and professionally as well as a high abuse liability. Most of these side effects result from broad suppression of excitatory neurotransmission. Chronic pain states are associated with specific changes in the efficacy of synaptic transmission in the pain pathways leading to amplification of non-noxious stimuli and spontaneous pain. Consequently, a reversal of these specific changes may pave the way for the development of efficacious pain treatment with fewer side effects. We have recently described a high-affinity, bivalent peptide TAT-P4-(C5)2, enabling efficient targeting of the neuronal scaffold protein, PICK1, a key protein in mediating chronic pain sensitization. In the present study, we demonstrate that in an inflammatory pain model, the peptide does not only relieve mechanical allodynia by targeting PICK1 involved in central sensitization, but also by peripheral actions in the inflamed paw. Further, we assess the effects of the peptide on novelty-induced locomotor activity, abuse liability, and memory performance without identifying significant side effects.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Saleh M, Mohamed NA, Sehrawat A, Zhang T, Thomas M, Wang Y, Kalsi R, Molitoris J, Prasadan K, Gittes GK. β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia. J Biol Chem 2021; 297:101235. [PMID: 34582892 PMCID: PMC8605249 DOI: 10.1016/j.jbc.2021.101235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed Saleh
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nada A Mohamed
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anuradha Sehrawat
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Zhang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Madison Thomas
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yan Wang
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ranjeet Kalsi
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Justin Molitoris
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George K Gittes
- Division of Pediatric Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Ma CIJ, Brill JA. Quantitation of Secretory Granule Size in Drosophila Larval Salivary Glands. Bio Protoc 2021; 11:e4039. [PMID: 34250205 DOI: 10.21769/bioprotoc.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/02/2022] Open
Abstract
Maturation of secretory granules is a crucial process that ensures the bioactivity of cargo proteins undergoing regulated secretion. In Drosophila melanogaster, the larval salivary glands produce secretory granules that are up to four-fold larger in cross-sectional area after maturation. Therefore, we developed a live imaging microscopy approach to quantitate the size of secretory granules with a view to identifying genes involved in their maturation. Here, we describe the procedures of larval salivary gland dissection and sample preparation for live imaging with a fluorescence confocal microscope. Furthermore, we describe the workflow for measuring the size of secretory granules by cross-sectional surface area and statistical analysis. Our live imaging microscopy method provides a reliable read-out for the status of secretory granule maturation in Drosophila larval salivary glands.
Collapse
Affiliation(s)
- Cheng-I J Ma
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
21
|
Lund VK, Lycas MD, Schack A, Andersen RC, Gether U, Kjaerulff O. Rab2 drives axonal transport of dense core vesicles and lysosomal organelles. Cell Rep 2021; 35:108973. [PMID: 33852866 DOI: 10.1016/j.celrep.2021.108973] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.
Collapse
Affiliation(s)
- Viktor Karlovich Lund
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matthew Domenic Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anders Schack
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rita Chan Andersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ole Kjaerulff
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
22
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
23
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
24
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
25
|
Dickerson MT, Dadi PK, Butterworth RB, Nakhe AY, Graff SM, Zaborska KE, Schaub CM, Jacobson DA. Tetraspanin-7 regulation of L-type voltage-dependent calcium channels controls pancreatic β-cell insulin secretion. J Physiol 2020; 598:4887-4905. [PMID: 32790176 PMCID: PMC8095317 DOI: 10.1113/jp279941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Tetraspanin (TSPAN) proteins regulate many biological processes, including intracellular calcium (Ca2+ ) handling. TSPAN-7 is enriched in pancreatic islet cells; however, the function of islet TSPAN-7 has not been identified. Here, we characterize how β-cell TSPAN-7 regulates Ca2+ handling and hormone secretion. We find that TSPAN-7 reduces β-cell glucose-stimulated Ca2+ entry, slows Ca2+ oscillation frequency and decreases glucose-stimulated insulin secretion. TSPAN-7 controls β-cell function through a direct interaction with L-type voltage-dependent Ca2+ channels (CaV 1.2 and CaV 1.3), which reduces channel Ca2+ conductance. TSPAN-7 slows activation of CaV 1.2 and accelerates recovery from voltage-dependent inactivation; TSPAN-7 also slows CaV 1.3 inactivation kinetics. These findings strongly implicate TSPAN-7 as a key regulator in determining the set-point of glucose-stimulated Ca2+ influx and insulin secretion. ABSTRACT Glucose-stimulated insulin secretion (GSIS) is regulated by calcium (Ca2+ ) entry into pancreatic β-cells through voltage-dependent Ca2+ (CaV ) channels. Tetraspanin (TSPAN) transmembrane proteins control Ca2+ handling, and thus they may also modulate GSIS. TSPAN-7 is the most abundant islet TSPAN and immunostaining of mouse and human pancreatic slices shows that TSPAN-7 is highly expressed in β- and α-cells; however, the function of islet TSPAN-7 has not been determined. Here, we show that TSPAN-7 knockdown (KD) increases glucose-stimulated Ca2+ influx into mouse and human β-cells. Additionally, mouse β-cell Ca2+ oscillation frequency was accelerated by TSPAN-7 KD. Because TSPAN-7 KD also enhanced Ca2+ entry when membrane potential was clamped with depolarization, the effect of TSPAN-7 on CaV channel activity was examined. TSPAN-7 KD enhanced L-type CaV currents in mouse and human β-cells. Conversely, heterologous expression of TSPAN-7 with CaV 1.2 and CaV 1.3 L-type CaV channels decreased CaV currents and reduced Ca2+ influx through both channels. This was presumably the result of a direct interaction of TSPAN-7 and L-type CaV channels because TSPAN-7 coimmunoprecipitated with both CaV 1.2 and CaV 1.3 from primary human β-cells and from a heterologous expression system. Finally, TSPAN-7 KD in human β-cells increased basal (5.6 mM glucose) and stimulated (45 mM KCl + 14 mM glucose) insulin secretion. These findings strongly suggest that TSPAN-7 modulation of β-cell L-type CaV channels is a key determinant of β-cell glucose-stimulated Ca2+ entry and thus the set-point of GSIS.
Collapse
Affiliation(s)
- Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Regan B Butterworth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, Nashville, TN, USA
| |
Collapse
|
26
|
The adaptor protein APPL2 controls glucose-stimulated insulin secretion via F-actin remodeling in pancreatic β-cells. Proc Natl Acad Sci U S A 2020; 117:28307-28315. [PMID: 33122440 DOI: 10.1073/pnas.2016997117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous actin (F-actin) cytoskeletal remodeling is critical for glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells, and its dysregulation causes type 2 diabetes. The adaptor protein APPL1 promotes first-phase GSIS by up-regulating soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression. However, whether APPL2 (a close homology of APPL1 with the same domain organization) plays a role in β-cell functions is unknown. Here, we show that APPL2 enhances GSIS by promoting F-actin remodeling via the small GTPase Rac1 in pancreatic β-cells. β-cell specific abrogation of APPL2 impaired GSIS, leading to glucose intolerance in mice. APPL2 deficiency largely abolished glucose-induced first- and second-phase insulin secretion in pancreatic islets. Real-time live-cell imaging and phalloidin staining revealed that APPL2 deficiency abolished glucose-induced F-actin depolymerization in pancreatic islets. Likewise, knockdown of APPL2 expression impaired glucose-stimulated F-actin depolymerization and subsequent insulin secretion in INS-1E cells, which were attributable to the impairment of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation. Treatment with the F-actin depolymerization chemical compounds or overexpression of gelsolin (a F-actin remodeling protein) rescued APPL2 deficiency-induced defective GSIS. In addition, APPL2 interacted with Rac GTPase activating protein 1 (RacGAP1) in a glucose-dependent manner via the bin/amphiphysin/rvs-pleckstrin homology (BAR-PH) domain of APPL2 in INS-1E cells and HEK293 cells. Concomitant knockdown of RacGAP1 expression reverted APPL2 deficiency-induced defective GSIS, F-actin remodeling, and Rac1 activation in INS-1E cells. Our data indicate that APPL2 interacts with RacGAP1 and suppresses its negative action on Rac1 activity and F-actin depolymerization thereby enhancing GSIS in pancreatic β-cells.
Collapse
|
27
|
Yong XLH, Cousin MA, Anggono V. PICK1 Controls Activity-Dependent Synaptic Vesicle Cargo Retrieval. Cell Rep 2020; 33:108312. [PMID: 33113376 DOI: 10.1016/j.celrep.2020.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Chen L, Tao F, Zhang Y, Shu C, Xiang W, Yang L, Chen X, Hong Y, Chen B, Li K, Zhang W, Hao K, Ge F, Wang Z, Lyu J. Islet-cell autoantigen 69 accelerates liver regeneration by downregulating Tgfbr1 and attenuating Tgfβ signaling in mice. FEBS Lett 2020; 594:2881-2893. [PMID: 32531799 DOI: 10.1002/1873-3468.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022]
Abstract
Regeneration is a unique defense mechanism of liver tissue in response to functional cell loss induced by toxic chemicals or surgical resection. In this study, we found that Islet-cell autoantigen 69 (Ica69) accelerates liver regeneration in mice. Following 70% partial hepatectomy, both Ica69 mRNA and protein are significantly upregulated in mouse hepatocytes at the early stage of liver regeneration. Compared with the wild-type mice, Ica69-deficient mice have more severe liver injury, delayed liver regeneration, and high surgical accidental mortality following hepatectomy. Mechanistically, Ica69 interacts with Pick1 protein to regulate Tgfbr1 protein expression and Tgfβ-induced Smad2 phosphorylation. Our findings suggest that Ica69 in liver tissue is a new potential target for promoting liver regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Fei Tao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | | | - Chongyi Shu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Weiling Xiang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Leixiang Yang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Xiaopan Chen
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Yeting Hong
- Laboratory Medical School, Hangzhou Medical College, China
| | - Bingyu Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Kaiqiang Li
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Ke Hao
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Feihang Ge
- Laboratory Medical School, Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhen Wang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| |
Collapse
|
29
|
Qiu H, Ma L, Feng F. PICK1 attenuates high glucose-induced pancreatic β-cell death through the PI3K/Akt pathway and is negatively regulated by miR-139-5p. Biochem Biophys Res Commun 2020; 522:14-20. [DOI: 10.1016/j.bbrc.2019.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
|
30
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
31
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
32
|
Islet-cell autoantigen 69 mediates the antihyperalgesic effects of electroacupuncture on inflammatory pain by regulating spinal glutamate receptor subunit 2 phosphorylation through protein interacting with C-kinase 1 in mice. Pain 2019; 160:712-723. [PMID: 30699097 PMCID: PMC6407810 DOI: 10.1097/j.pain.0000000000001450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is Available in the Text. A clear role of ICA69 in mediating the antihyperalgesic effects of electroacupuncture was confirmed, and the ICA69-PICK1-GluR2 molecular mechanism to explain these effects is proposed. Electroacupuncture (EA) is widely used in clinical settings to reduce inflammatory pain. Islet-cell autoantigen 69 (ICA69) has been reported to regulate long-lasting hyperalgesia in mice. ICA69 knockout led to reduced protein interacting with C-kinase 1 (PICK1) expression and increased glutamate receptor subunit 2 (GluR2) phosphorylation at Ser880 in spinal dorsal horn. In this study, we evaluated the role of ICA69 in the antihyperalgesic effects of EA and the underlying mechanism through regulation of GluR2 and PICK1 in spinal dorsal horn. Hyperalgesia was induced in mice with subcutaneous plantar injection of complete Freund adjuvant (CFA) to cause inflammatory pain. Electroacupuncture was then applied for 30 minutes every other day after CFA injection. When compared with CFA group, paw withdrawal frequency of CFA+EA group was significantly decreased. Remarkable increases in Ica1 mRNA expression and ICA69 protein levels on the ipsilateral side were detected in the CFA+EA group. ICA69 expression reached the peak value around day 3. More importantly, ICA69 deletion impaired the antihyperalgesic effects of EA on GluR2-p, but PICK1 deletion could not. Injecting ICA69 peptide into the intrathecal space of ICA69-knockout mice mimicked the effects of EA analgesic and inhibited GluR2-p. Electroacupuncture had no effects on the total protein of PICK1 and GluR2. And, EA could increase the formation of ICA69-PICK1 complexes and decrease the amount of PICK1-GluR2 complexes. Our findings indicate that ICA69 mediates the antihyperalgesic effects of EA on CFA-induced inflammatory pain by regulating spinal GluR2 through PICK1 in mice.
Collapse
|
33
|
Ifie E, Russell MA, Dhayal S, Leete P, Sebastiani G, Nigi L, Dotta F, Marjomäki V, Eizirik DL, Morgan NG, Richardson SJ. Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells. Diabetologia 2018; 61:2344-2355. [PMID: 30074059 PMCID: PMC6182664 DOI: 10.1007/s00125-018-4704-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2018] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The Coxsackie and adenovirus receptor (CAR) is a transmembrane cell-adhesion protein that serves as an entry receptor for enteroviruses and may be essential for their ability to infect cells. Since enteroviral infection of beta cells has been implicated as a factor that could contribute to the development of type 1 diabetes, it is often assumed that CAR is displayed on the surface of human beta cells. However, CAR exists as multiple isoforms and it is not known whether all isoforms subserve similar physiological functions. In the present study, we have determined the profile of CAR isoforms present in human beta cells and monitored the subcellular localisation of the principal isoform within the cells. METHODS Formalin-fixed, paraffin-embedded pancreatic sections from non-diabetic individuals and those with type 1 diabetes were studied. Immunohistochemistry, confocal immunofluorescence, electron microscopy and western blotting with isoform-specific antisera were employed to examine the expression and cellular localisation of the five known CAR isoforms. Isoform-specific qRT-PCR and RNA sequencing (RNAseq) were performed on RNA extracted from isolated human islets. RESULTS An isoform of CAR with a terminal SIV motif and a unique PDZ-binding domain was expressed at high levels in human beta cells at the protein level. A second isoform, CAR-TVV, was also present. Both forms were readily detected by qRT-PCR and RNAseq analysis in isolated human islets. Immunocytochemical studies indicated that CAR-SIV was the principal isoform in islets and was localised mainly within the cytoplasm of beta cells, rather than at the plasma membrane. Within the cells it displayed a punctate pattern of immunolabelling, consistent with its retention within a specific membrane-bound compartment. Co-immunofluorescence analysis revealed significant co-localisation of CAR-SIV with zinc transporter protein 8 (ZnT8), prohormone convertase 1/3 (PC1/3) and insulin, but not proinsulin. This suggests that CAR-SIV may be resident mainly in the membranes of insulin secretory granules. Immunogold labelling and electron microscopic analysis confirmed that CAR-SIV was localised to dense-core (insulin) secretory granules in human islets, whereas no immunolabelling of the protein was detected on the secretory granules of adjacent exocrine cells. Importantly, CAR-SIV was also found to co-localise with protein interacting with C-kinase 1 (PICK1), a protein recently demonstrated to play a role in insulin granule maturation and trafficking. CONCLUSIONS/INTERPRETATION The SIV isoform of CAR is abundant in human beta cells and is localised mainly to insulin secretory granules, implying that it may be involved in granule trafficking and maturation. We propose that this subcellular localisation of CAR-SIV contributes to the unique sensitivity of human beta cells to enteroviral infection.
Collapse
Affiliation(s)
- Eseoghene Ifie
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Mark A Russell
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Shalinee Dhayal
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena and Fondazione Umberto Di Mario ONLUS-Toscana Life Sciences, Siena, Italy
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
34
|
Goo BMSS, Sanstrum BJ, Holden DZY, Yu Y, James NG. Arc/Arg3.1 has an activity-regulated interaction with PICK1 that results in altered spatial dynamics. Sci Rep 2018; 8:14675. [PMID: 30279480 PMCID: PMC6168463 DOI: 10.1038/s41598-018-32821-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc; also known as Arg3.1) is an immediate early gene product that is transcribed in dendritic spines and, to date, has been best characterized as a positive regulator of AMPAR endocytosis during long-term depression (LTD) through interaction with endocytic proteins. Here, we show that protein interacting with C terminal kinase 1 (PICK1), a protein known to bind to the GluA2 subunit of AMPARs and associated with AMPAR trafficking, was pulled-down from brain homogenates and synaptosomes when using Arc as immobilized bait. Fluctuation and FLIM-FRET-Phasor analysis revealed direct interaction between these proteins when co-expressed that was increased under depolarizing conditions in live cells. At the plasma membrane, Arc-mCherry oligomerization was found to be concentration dependent. Additionally, co-expression of Arc-mCherry and EGFP-PICK1 followed by depolarizing conditions resulted in significant increases in the number and size of puncta containing both proteins. Furthermore, we identified the Arc binding region to be the first 126 amino acids of the PICK1 BAR domain. Overall, our data support a novel interaction and model where PICK1 mediates Arc regulation of AMPARs particularly under depolarizing conditions.
Collapse
Affiliation(s)
- Brandee M S S Goo
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | - Bethany J Sanstrum
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | - Diana Z Y Holden
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | | | - Nicholas G James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
35
|
Herlo R, Lund VK, Lycas MD, Jansen AM, Khelashvili G, Andersen RC, Bhatia V, Pedersen TS, Albornoz PB, Johner N, Ammendrup-Johnsen I, Christensen NR, Erlendsson S, Stoklund M, Larsen JB, Weinstein H, Kjærulff O, Stamou D, Gether U, Madsen KL. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1. Cell Rep 2018; 23:2056-2069. [DOI: 10.1016/j.celrep.2018.04.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
|
36
|
Hussain SS, Harris MT, Kreutzberger AJB, Inouye CM, Doyle CA, Castle AM, Arvan P, Castle JD. Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 2018. [PMID: 29540530 PMCID: PMC5935073 DOI: 10.1091/mbc.e17-08-0519] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In pancreatic β-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol’s role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi interference–induced depletion in cultured pancreatic β-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.
Collapse
Affiliation(s)
- Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Megan T Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Candice M Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Catherine A Doyle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anna M Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105
| | - J David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
37
|
Li J, Mao Z, Huang J, Xia J. PICK1 is essential for insulin production and the maintenance of glucose homeostasis. Mol Biol Cell 2018; 29:587-596. [PMID: 29298842 PMCID: PMC6004578 DOI: 10.1091/mbc.e17-03-0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a peripheral membrane protein that controls insulin granule formation, trafficking, and maturation in INS-1E cells. However, global Pick1-knockout mice showed only a subtle diabetes-like phenotype. This raises the possibility that compensatory effects from tissues other than pancreatic beta cells may obscure the effects of insulin deficiency. To explore the role of PICK1 in pancreatic islets, we generated mice harboring a conditional Pick1 allele in a C57BL/6J background. The conditional Pick1-knockout mice exhibited impaired glucose tolerance, profound insulin deficiency, and hyperglycemia. In vitro experiments showed that the ablation of Pick1 in pancreatic beta cells selectively decreased the initial rapid release of insulin and the total insulin levels in the islets. Importantly, the specific ablation of Pick1 induced elevated proinsulin levels in the circulation and in the islets, accompanied by a reduction in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3). The deletion of Pick1 triggered the specific elimination of chromogranin B in pancreatic beta cells, which is believed to control granule formation and release. Collectively, these data demonstrate the critical role of PICK1 in secretory granule biogenesis, proinsulin processing, and beta cell function. We conclude that the beta cell-specific deletion of Pick1 in mice led to hyperglycemia and eventually to diabetes.
Collapse
Affiliation(s)
- Jia Li
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- College of Life Science, Shaanxi Normal University, Shaanxi 710119, China
| | - Zhuo Mao
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Center for Diabetes, Obesity and Metabolism, Department of Physiology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518061, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China
- Shenzhen Institute of Advanced Technologies, Shenzhen 518055, China
| | - Jun Xia
- Department of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
39
|
Cattin-Ortolá J, Topalidou I, Dosey A, Merz AJ, Ailion M. The dense-core vesicle maturation protein CCCP-1 binds RAB-2 and membranes through its C-terminal domain. Traffic 2017; 18:720-732. [PMID: 28755404 DOI: 10.1111/tra.12507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Dense-core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled-coil protein CCCP-1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP-1 binds the small GTPase RAB-2 and colocalizes with it at the trans-Golgi. Here, we report a structure-function analysis of CCCP-1 to identify domains of the protein important for its localization, binding to RAB-2, and function in DCV biogenesis. We find that the CCCP-1 C-terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP-1 localization and for binding to RAB-2, and is required for the function of CCCP-1 in DCV biogenesis. In addition, CCCP-1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid-binding motif. We conclude that CCCP-1 is a coiled-coil protein that binds an activated Rab and localizes to the Golgi via its C-terminus, properties similar to members of the golgin family of proteins. CCCP-1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.
Collapse
Affiliation(s)
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, Washington.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab 2017; 6:958-973. [PMID: 28951821 PMCID: PMC5605729 DOI: 10.1016/j.molmet.2017.04.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the β-cell as a means of preserving functional β-cell mass. SCOPE OF REVIEW We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. MAJOR CONCLUSIONS Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Collapse
Key Words
- ATF6, Activating Transcription Factor 6
- CHOP, CCAAT/Enhancer-Binding Homologous Protein
- EPAC, Exchange Factor Directly Activated by cAMP
- EROβ1, ER-resident oxidoreductase β1
- GIP, Gastric Inhibitory Polypeptide
- GLP-1, Glucagon-like Peptide 1
- GLUT2, Glucose Transporter 2
- GSIS, Glucose Stimulated Insulin Secretion
- IREα, Inositol Requiring Enzyme α
- Insulin production
- NEFA, Non-esterified Fatty Acid
- PERK, Protein Kinase RNA-like Endoplasmic Reticulum Kinase
- PKA, Protein Kinase A
- PKC, Protein Kinase C
- PLC, Phospholipase C
- ROS, Reactive Oxygen Species
- SNAP-25, Soluble NSF Attachment Protein 25
- SNARE, Soluble NSF Attachment Protein Receptor
- STZ, Streptozotocin
- T2DM
- T2DM, Type 2 Diabetes Mellitus
- TRP, Transient Receptor Potential
- VAMP-2, Vehicle Associated Membrane Protein 2
- VDCC, Voltage Dependent Calcium Channel
- mTORC1, Mammalian Target of Rapamycin 1
- nH, Hill coefficient
- β-cell rest
Collapse
Affiliation(s)
- Brandon B. Boland
- MedImmune, Cardiovascular and Metabolic Disease Research, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | |
Collapse
|
41
|
Li Y, Li F, Bai B, Wu Z, Hou X, Shen Y, Wang Y. Protein interacting with C‑kinase 1 modulates exocytosis and KATP conductance in pancreatic β cells. Mol Med Rep 2017; 16:4247-4252. [PMID: 28731156 DOI: 10.3892/mmr.2017.7056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/06/2017] [Indexed: 11/06/2022] Open
Abstract
It has been previously identified that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are expressed in pancreatic β cells and regulate exocytosis and insulin release. It is known that protein interacting with C‑kinase 1 (PICK1) regulates trafficking and synaptic targeting of AMPARs in the central nervous system. However, it is unknown whether PICK1 regulates glutamate‑induced insulin release in β cells. The present study demonstrated that glutamate‑induced exocytosis was increased in β cells derived from PICK1‑knockout mice. In agreement with this result, adding PICK1 in β cells reduced glutamate‑induced exocytosis, whereas adding EVKI, a peptide that interrupts the interaction between AMPARs and PICK1, increased the exocytosis of β cells with the application of glutamate. Furthermore, the conductance of ATP‑sensitive potassium (KATP) channels was reduced in PICK1‑knockout mice, which was reversed by the overexpression of PICK1. In addition, PICK1 application reduced voltage oscillation induced by the closure of KATP. Taken together, the results indicate that PICK1 regulates glutamate‑induced exocytosis in β cells.
Collapse
Affiliation(s)
- Yunhong Li
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fan Li
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Bin Bai
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenyong Wu
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaolin Hou
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ying Shen
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yin Wang
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
42
|
Molecular regulation of insulin granule biogenesis and exocytosis. Biochem J 2017; 473:2737-56. [PMID: 27621482 DOI: 10.1042/bcj20160291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic β-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from β-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the β-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.
Collapse
|
43
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
44
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
45
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
47
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep 2016; 6:20924. [PMID: 26868290 PMCID: PMC4751430 DOI: 10.1038/srep20924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 11/08/2022] Open
Abstract
PICK1 (protein interacting with C-kinase 1) is a peripheral membrane protein that interacts with diverse membrane proteins. PICK1 has been shown to regulate the clustering and membrane localization of synaptic receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors, metabotropic glutamate receptor 7, and ASICs (acid-sensing ion channels). Moreover, recent evidence suggests that PICK1 can mediate the trafficking of various vesicles out from the Golgi complex in several cell systems, including neurons. However, how PICK1 affects vesicle-trafficking dynamics remains unexplored. Here, we show that PICK1 mediates vesicle trafficking by interacting with syntabulin, a kinesin-binding protein that mediates the trafficking of both synaptic vesicles and mitochondria in axons. Syntabulin recruits PICK1 onto microtubule structures and mediates the trafficking of PICK1-containing vesicles along microtubules. In neurons, syntabulin alters PICK1 expression by recruiting PICK1 into axons and regulates the trafficking dynamics of PICK1-containing vesicles. Furthermore, we show that syntabulin forms a complex with PICK1 and ASICs, regulates ASIC protein expression in neurons, and participates in ASIC-induced acidotoxicity.
Collapse
|
49
|
Zhu J, Wang Z, Zhang N, Ma J, Xu SL, Wang Y, Shen Y, Li YH. Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia. Neurochem Res 2015; 41:795-803. [DOI: 10.1007/s11064-015-1754-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 02/05/2023]
|
50
|
Membrane Binding and Modulation of the PDZ Domain of PICK1. MEMBRANES 2015; 5:597-615. [PMID: 26501328 PMCID: PMC4704001 DOI: 10.3390/membranes5040597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/10/2015] [Indexed: 11/17/2022]
Abstract
Scaffolding proteins serve to assemble protein complexes in dynamic processes by means of specific protein-protein and protein-lipid binding domains. Many of these domains bind either proteins or lipids exclusively; however, it has become increasingly evident that certain domains are capable of binding both. Especially, many PDZ domains, which are highly abundant protein-protein binding domains, bind lipids and membranes. Here we provide an overview of recent large-scale studies trying to generalize and rationalize the binding patterns as well as specificity of PDZ domains towards membrane lipids. Moreover, we review how these PDZ-membrane interactions are regulated in the case of the synaptic scaffolding protein PICK1 and how this might affect cellular localization and function.
Collapse
|