1
|
Davoudi S, Rahdar M, Borjkhani M, Alavi-Majd H, Hosseinmardi N, Behzadi G, Janahmadi M. The Impact of Astroglia Kir4.1 Channel Dysfunction on Neuronal Activity and Autism-Related Behavioral Abnormalities. Glia 2025. [PMID: 39834183 DOI: 10.1002/glia.24676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD. This study investigates astroglia Kir4.1 as a regulator of neuronal excitability and behavioral abnormalities in rats with autistic-like traits induced by prenatal exposure to valproic acid (VPA). Whole-cell patch-clamp recordings were obtained from pyramidal neurons in the hippocampal CA1 region, showing that inhibition of Kir4.1 channels led to electrophysiological changes indicative of neuronal hyperexcitability, similar to that seen in VPA-exposed neurons. Specifically, there was increased input resistance and voltage threshold, alongside decreased time constant and rheobase. Behavioral assessments after 7 days of intrahippocampal PA6 (5 μg/mL/day) administration revealed significant social withdrawal, heightened anxiety, reduced exploration, and impaired recognition memory, underscoring the behavioral deficits linked to autism. While Kir4.1 inhibition affected excitability, it did not alter the output of CA1 pyramidal neurons in autistic-like rats. These findings emphasize the critical role of astroglia Kir4.1 channels in modulating neuronal excitability and associated behavioral impairments within the VPA-induced autism model, suggesting a promising target for future therapeutic interventions.
Collapse
Affiliation(s)
- Shima Davoudi
- Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Hamid Alavi-Majd
- Department of Biostatistics, Faculty of Para Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kim SH, Lee J, Jang M, Roh SE, Kim S, Lee JH, Seo J, Baek J, Hwang JY, Baek IS, Lee YS, Shigetomi E, Lee CJ, Koizumi S, Kim SK, Kim SJ. Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors. Nat Neurosci 2025:10.1038/s41593-024-01807-z. [PMID: 39748107 DOI: 10.1038/s41593-024-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares'). BG flares were also elicited in response to an intraplantar capsaicin injection. Chemogenetic inactivation of LC terminals or BG in the cerebellar cortex or BG-specific knockdown of α1-adrenergic receptors suppressed BG flares, reduced nocifensive licking and had analgesic effects in nerve injury-induced chronic neuropathic pain. Moreover, chemogenetic activation of BG or an intraplantar capsaicin injection reduced Purkinje cell firing, which may disinhibit the output activity of the deep cerebellar nuclei. These results suggest a role for BG in computing noxious information from the LC and in modulating pain-related behaviors by regulating cerebellar output.
Collapse
Affiliation(s)
- Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jewoo Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Zhou X, Zhao C, Xu H, Xu Y, Zhan L, Wang P, He J, Lu T, Gu Y, Yang Y, Xu C, Chen Y, Liu Y, Zeng Y, Tian F, Chen Q, Xie X, Liu J, Hu H, Li J, Zheng Y, Guo J, Gao Z. Pharmacological inhibition of Kir4.1 evokes rapid-onset antidepressant responses. Nat Chem Biol 2024; 20:857-866. [PMID: 38355723 DOI: 10.1038/s41589-024-01555-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhao
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Li Zhan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Taotao Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueling Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Yang
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyang Chen
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Qian Chen
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hailan Hu
- Liangzhu Laboratory, Zhejiang University School of Medicine, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- College of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- School of Pharmacy, Henan University, Kaifeng, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
4
|
Bataveljic D, Pivonkova H, de Concini V, Hébert B, Ezan P, Briault S, Bemelmans AP, Pichon J, Menuet A, Rouach N. Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model. Nat Commun 2024; 15:3583. [PMID: 38678030 PMCID: PMC11055954 DOI: 10.1038/s41467-024-47681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.
Collapse
Affiliation(s)
- Danijela Bataveljic
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Helena Pivonkova
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vidian de Concini
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Betty Hébert
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Sylvain Briault
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
- Department of Genetics, Regional Hospital, Orléans, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, 92260, France
| | - Jacques Pichon
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, CNRS UMR7355 and Orléans University, Orléans, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
5
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
6
|
Øyehaug L. Slow ion concentration oscillations and multiple states in neuron-glia interaction-insights gained from reduced mathematical models. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1189118. [PMID: 37284003 PMCID: PMC10241345 DOI: 10.3389/fnetp.2023.1189118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023]
Abstract
When potassium in the extracellular space separating neurons and glia reaches sufficient levels, neurons may fire spontaneous action potentials or even become inactivated due to membrane depolarisation, which, in turn, may lead to increased extracellular potassium levels. Under certain circumstances, this chain of events may trigger periodic bursts of neuronal activity. In the present study, reduced neuron-glia models are applied to explore the relationship between bursting behaviour and ion concentration dynamics. These reduced models are built based on a previously developed neuron-glia model, in which channel-mediated neuronal sodium and potassium currents are replaced by a function of neuronal sodium and extracellular potassium concentrations. Simulated dynamics of the resulting two reduced models display features that are qualitatively similar to those of the existing neuron-glia model. Bifurcation analyses of the reduced models show rich and interesting dynamics that include the existence of Hopf bifurcations between which the models exhibit slow ion concentration oscillations for a wide range of parameter values. The study demonstrates that even very simple models can provide insights of possible relevance to complex phenomena.
Collapse
|
7
|
Barbay T, Pecchi E, Ducrocq M, Rouach N, Brocard F, Bos R. Astrocytic Kir4.1 channels regulate locomotion by orchestrating neuronal rhythmicity in the spinal network. Glia 2023; 71:1259-1277. [PMID: 36645018 DOI: 10.1002/glia.24337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
Neuronal rhythmogenesis in the spinal cord is correlated with variations in extracellular K+ levels ([K+ ]e ). Astrocytes play important role in [K+ ]e homeostasis and compute neuronal information. Yet it is unclear how neuronal oscillations are regulated by astrocytic K+ homeostasis. Here we identify the astrocytic inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) as a key molecular player for neuronal rhythmicity in the spinal central pattern generator (CPG). By combining two-photon calcium imaging with electrophysiology, immunohistochemistry and genetic tools, we report that astrocytes display Ca2+ transients before and during oscillations of neighboring neurons. Inhibition of astrocytic Ca2+ transients with BAPTA decreases the barium-sensitive Kir4.1 current responsible of K+ clearance. Finally, we show in mice that Kir4.1 knockdown in astrocytes progressively prevents neuronal oscillations and alters the locomotor pattern resulting in lower motor performances in challenging tasks. These data identify astroglial Kir4.1 channels as key regulators of neuronal rhythmogenesis in the CPG driving locomotion.
Collapse
Affiliation(s)
- Tony Barbay
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Emilie Pecchi
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Myriam Ducrocq
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Frédéric Brocard
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Rémi Bos
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| |
Collapse
|
8
|
Oudart M, Avila-Gutierrez K, Moch C, Dossi E, Milior G, Boulay AC, Gaudey M, Moulard J, Lombard B, Loew D, Bemelmans AP, Rouach N, Chapat C, Cohen-Salmon M. The ribosome-associated protein RACK1 represses Kir4.1 translation in astrocytes and influences neuronal activity. Cell Rep 2023; 42:112456. [PMID: 37126448 DOI: 10.1016/j.celrep.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/10/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.
Collapse
Affiliation(s)
- Marc Oudart
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clara Moch
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Mathis Gaudey
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Alexis-Pierre Bemelmans
- CEA, Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clément Chapat
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France.
| |
Collapse
|
9
|
Curry RN, Aiba I, Meyer J, Lozzi B, Ko Y, McDonald MF, Rosenbaum A, Cervantes A, Huang-Hobbs E, Cocito C, Greenfield JP, Jalali A, Gavvala J, Mohila C, Serin Harmanci A, Noebels J, Rao G, Deneen B. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron 2023; 111:682-695.e9. [PMID: 36787748 PMCID: PMC9991983 DOI: 10.1016/j.neuron.2023.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Seizures are a frequent pathophysiological feature of malignant glioma. Recent studies implicate peritumoral synaptic dysregulation as a driver of brain hyperactivity and tumor progression; however, the molecular mechanisms that govern these phenomena remain elusive. Using scRNA-seq and intraoperative patient ECoG recordings, we show that tumors from seizure patients are enriched for gene signatures regulating synapse formation. Employing a human-to-mouse in vivo functionalization pipeline to screen these genes, we identify IGSF3 as a mediator of glioma progression and dysregulated neural circuitry that manifests as spreading depolarization (SD). Mechanistically, we discover that IGSF3 interacts with Kir4.1 to suppress potassium buffering and found that seizure patients exhibit reduced expression of potassium handlers in proliferating tumor cells. In vivo imaging reveals that dysregulated synaptic activity emanates from the tumor-neuron interface, which we confirm in patients. Our studies reveal that tumor progression and seizures are enabled by ion dyshomeostasis and identify SD as a driver of disease.
Collapse
Affiliation(s)
- Rachel Naomi Curry
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malcolm Ford McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Rosenbaum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emmet Huang-Hobbs
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carolina Cocito
- Department of Pediatric Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Ali Jalali
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jay Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie Mohila
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Noebels
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Program in Development, Disease, Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
11
|
Polykretis I, Michmizos KP. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 2022; 50:505-518. [PMID: 35840871 PMCID: PMC9671849 DOI: 10.1007/s10827-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.
Collapse
Affiliation(s)
- Ioannis Polykretis
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
12
|
Tyurikova O, Shih P, Dembitskaya Y, Savtchenko LP, McHugh TJ, Rusakov DA, Semyanov A. K + efflux through postsynaptic NMDA receptors suppresses local astrocytic glutamate uptake. Glia 2022; 70:961-974. [PMID: 35084774 PMCID: PMC9132042 DOI: 10.1002/glia.24150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.
Collapse
Affiliation(s)
- Olga Tyurikova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Pei‐Yu Shih
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Yulia Dembitskaya
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Leonid P. Savtchenko
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Thomas J. McHugh
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- RIKEN Center for Brain Science, Wako‐shiSaitamaJapan
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
13
|
Wu G, Heck I, Zhang N, Phaup G, Zhang X, Wu Y, Stalla DE, Weng Z, Sun H, Li H, Zhang Z, Ding S, Li DP, Zhang Y. Wireless, battery-free push-pull microsystem for membrane-free neurochemical sampling in freely moving animals. SCIENCE ADVANCES 2022; 8:eabn2277. [PMID: 35196090 PMCID: PMC8865804 DOI: 10.1126/sciadv.abn2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/29/2021] [Indexed: 06/12/2023]
Abstract
Extensive studies in both animals and humans have demonstrated that high molecular weight neurochemicals, such as neuropeptides and other polypeptide neurochemicals, play critical roles in various neurological disorders. Despite many attempts, existing methods are constrained by detecting neuropeptide release in small animal models during behavior tasks, which leaves the molecular mechanisms underlying many neurological and psychological disorders unresolved. Here, we report a wireless, programmable push-pull microsystem for membrane-free neurochemical sampling with cellular spatial resolution in freely moving animals. In vitro studies demonstrate the sampling of various neurochemicals with high recovery (>80%). Open-field tests reveal that the device implantation does not affect the natural behavior of mice. The probe successfully captures the pharmacologically evoked release of neuropeptide Y in freely moving mice. This wireless push-pull microsystem creates opportunities for neuroscientists to understand where, when, and how the release of neuropeptides modulates diverse behavioral outputs of the brain.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Ian Heck
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Glenn Phaup
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - David E. Stalla
- Electron Microscopy Core, University of Missouri, Columbia, MO 65211, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhe Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Shinghua Ding
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - De-Pei Li
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Prelic S, Pal Mahadevan V, Venkateswaran V, Lavista-Llanos S, Hansson BS, Wicher D. Functional Interaction Between Drosophila Olfactory Sensory Neurons and Their Support Cells. Front Cell Neurosci 2022; 15:789086. [PMID: 35069116 PMCID: PMC8777253 DOI: 10.3389/fncel.2021.789086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
Insects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen, and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g., by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to the neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- CIFASIS-CONICET Franco-Argentine International Center for Information and Systems Sciences—National Council for Scientific and Technical Research, Rosario, Argentina
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Dieter Wicher
| |
Collapse
|
15
|
Alijevic O, Peng Z, Kellenberger S. Changes in H +, K +, and Ca 2+ Concentrations, as Observed in Seizures, Induce Action Potential Signaling in Cortical Neurons by a Mechanism That Depends Partially on Acid-Sensing Ion Channels. Front Cell Neurosci 2021; 15:732869. [PMID: 34720879 PMCID: PMC8553998 DOI: 10.3389/fncel.2021.732869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are activated by extracellular acidification. Because ASIC currents are transient, these channels appear to be ideal sensors for detecting the onset of rapid pH changes. ASICs are involved in neuronal death after ischemic stroke, and in the sensation of inflammatory pain. Ischemia and inflammation are associated with a slowly developing, long-lasting acidification. Recent studies indicate however that ASICs are unable to induce an electrical signaling activity under standard experimental conditions if pH changes are slow. In situations associated with slow and sustained pH drops such as high neuronal signaling activity and ischemia, the extracellular K+ concentration increases, and the Ca2+ concentration decreases. We hypothesized that the concomitant changes in H+, K+, and Ca2+ concentrations may allow a long-lasting ASIC-dependent induction of action potential (AP) signaling. We show that for acidification from pH7.4 to pH7.0 or 6.8 on cultured cortical neurons, the number of action potentials and the firing time increased strongly if the acidification was accompanied by a change to higher K+ and lower Ca2+ concentrations. Under these conditions, APs were also induced in neurons from ASIC1a-/- mice, in which a pH of ≤ 5.0 would be required to activate ASICs, indicating that ASIC activation was not required for the AP induction. Comparison between neurons of different ASIC genotypes indicated that the ASICs modulate the AP induction under such changed ionic conditions. Voltage-clamp measurements of the Na+ and K+ currents in cultured cortical neurons showed that the lowering of the pH inhibited Na+ and K+ currents. In contrast, the lowering of the Ca2+ together with the increase in the K+ concentration led to a hyperpolarizing shift of the activation voltage dependence of voltage-gated Na+ channels. We conclude that the ionic changes observed during high neuronal activity mediate a sustained AP induction caused by the potentiation of Na+ currents, a membrane depolarization due to the changed K+ reversal potential, the activation of ASICs, and possibly effects on other ion channels. Our study describes therefore conditions under which slow pH changes induce neuronal signaling by a mechanism involving ASICs.
Collapse
Affiliation(s)
- Omar Alijevic
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
O'Donovan B, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: Implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol 2021; 26:e13042. [PMID: 33864336 DOI: 10.1111/adb.13042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Astrocytes have become established as an important regulator of neuronal activity in the brain. Accumulating literature demonstrates that cocaine self-administration in rodent models induces structural changes within astrocytes that may influence their interaction with the surrounding neurons. Here, we provide evidence that cocaine impacts astrocytes at the functional level and alters neuronal sensitivity to astrocyte-derived glutamate. We report that a 14-day period of short access to cocaine (2 h/day) decreases spontaneous astrocytic Ca2+ transients and precipitates changes in astrocyte network activity in the nucleus accumbens shell. This is accompanied by increased prevalence of slow inward currents, a physiological marker of neuronal activation by astrocytic glutamate, in a subset of medium spiny neurons. Within, but not outside, of this subset, we observe an increase in duration and frequency of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic events. Additionally, we find that the link between synaptic NMDA receptor plasticity and neuron sensitivity to astrocytic glutamate is maintained independent of drug exposure and is observed in both cocaine and saline control animals. Imaging analyses of neuronal Ca2+ activity show no effect of cocaine self-administration on individual cells or on neuronal network activity in brain slices. Therefore, our data indicate that cocaine self-administration promotes astrocyte-specific functional changes that can be linked to increased glutamate-mediated coupling with principal neurons in the nucleus accumbens. Such coupling may be spatially restricted as it does not result in a broad impact on network structure of local neuronal circuits.
Collapse
Affiliation(s)
- Bernadette O'Donovan
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Austin Neugornet
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Richik Neogi
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
- Integrated Biomedical Sciences University of Kentucky Lexington Kentucky USA
| | - Mengfan Xia
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Pavel Ortinski
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| |
Collapse
|
17
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
18
|
A dynamics model of neuron-astrocyte network accounting for febrile seizures. Cogn Neurodyn 2021; 16:411-423. [PMID: 35401866 PMCID: PMC8934847 DOI: 10.1007/s11571-021-09706-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/03/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022] Open
Abstract
Febrile seizure (FS) is a full-body convulsion caused by a high body temperature that affect young kids, however, how these most common of human seizures are generated by fever has not been known. One common observation is that cortical neurons become overexcited with abnormal running of sodium and potassium ions cross membrane in raised body temperature condition, Considering that astrocyte Kir4.1 channel play a critical role in maintaining extracellular homeostasis of ionic concentrations and electrochemical potentials of neurons by fast depletion of extracellular potassium ions, we examined here the potential role of temperature-dependent Kir4.1 channel in astrocytes in causing FS. We first built up a temperature-dependent computational model of the Kir4.1 channel in astrocytes and validated with experiments. We have then built up a neuron-astrocyte network and examine the role of the Kir4.1 channel in modulating neuronal firing dynamics as temperature increase. The numerical experiment demonstrated that the Kir4.1 channel function optimally in the body temperature around 37 °C in cleaning 'excessive' extracellular potassium ions during neuronal firing process, however, higher temperature deteriorates its cleaning function, while lower temperature slows down its cleaning efficiency. With the increase of temperature, neurons go through different stages of spiking dynamics from spontaneous slow oscillations, to tonic spiking, fast bursting oscillations, and eventually epileptic bursting. Thus, our study may provide a potential new mechanism that febrile seizures may be happened due to temperature-dependent functional disorders of Kir4.1 channel in astrocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09706-w.
Collapse
|
19
|
Basnayake K, Mazaud D, Kushnireva L, Bemelmans A, Rouach N, Korkotian E, Holcman D. Nanoscale molecular architecture controls calcium diffusion and ER replenishment in dendritic spines. SCIENCE ADVANCES 2021; 7:eabh1376. [PMID: 34524854 PMCID: PMC8443180 DOI: 10.1126/sciadv.abh1376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Dendritic spines are critical components of neuronal synapses as they receive and transform synaptic inputs into a succession of calcium-regulated biochemical events. The spine apparatus (SA), an extension of smooth endoplasmic reticulum, regulates slow and fast calcium dynamics in spines. Calcium release events deplete SA calcium ion reservoir rapidly, yet the next cycle of signaling requires its replenishment. How spines achieve this replenishment without triggering calcium release remains unclear. Using computational modeling, calcium and STED superresolution imaging, we show that the SA replenishment involves the store-operated calcium entry pathway during spontaneous calcium transients. We identified two main conditions for SA replenishment without depletion: a small amplitude and a slow timescale for calcium influx, and a close proximity between SA and plasma membranes. Thereby, spine’s nanoscale organization separates SA replenishment from depletion. We further conclude that spine’s receptor organization also determines the calcium dynamics during the induction of long-term synaptic changes.
Collapse
Affiliation(s)
- Kanishka Basnayake
- Computational Biology and Applied Mathematics, Institut de Biologie de l’École Normale Supérieure-PSL, Paris, France
| | - David Mazaud
- Neuroglial Interactions in Cerebral Physiology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | - Alexis Bemelmans
- Commissariat à l’Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center and Centre National de la Recherche Scientifique UMR9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Eduard Korkotian
- Faculty of Biology, Perm State University, Perm, Russia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - David Holcman
- Computational Biology and Applied Mathematics, Institut de Biologie de l’École Normale Supérieure-PSL, Paris, France
- Churchill College and the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Li X, Lv J, Li J, Ren X. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review). Exp Ther Med 2021; 22:1021. [PMID: 34373707 PMCID: PMC8343704 DOI: 10.3892/etm.2021.10453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
As the major cause of irreversible loss of vision in adults, diabetic retinopathy (DR) is one of the most serious complications of diabetes. The imbalance of the retinal microenvironment and destruction of the blood-retinal barrier have a significant role in the progression of DR. Inward rectifying potassium channel 4.1 (Kir4.1) is located on Müller cells and is closely related to potassium homeostasis, water balance and glutamate clearance in the whole retina. The present review discusses the functions of Kir4.1 in regulating the retinal microenvironment and related biological mechanisms in DR. In the future, Kir4.1 may represent a novel alternative therapeutic target for DR through affecting the retinal microenvironment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiajun Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiazhi Li
- Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
21
|
Zhu Y, Xu S, Eisenberg RS, Huang H. A tridomain model for potassium clearance in optic nerve of Necturus. Biophys J 2021; 120:3008-3027. [PMID: 34214534 DOI: 10.1016/j.bpj.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/28/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Complex fluids flow in complex ways in complex structures. Transport of water and various organic and inorganic molecules in the central nervous system are important in a wide range of biological and medical processes. However, the exact driving mechanisms are often not known. In this work, we investigate flows induced by action potentials in an optic nerve as a prototype of the central nervous system. Different from traditional fluid dynamics problems, flows in biological tissues such as the central nervous system are coupled with ion transport. They are driven by osmosis created by concentration gradient of ionic solutions, which in turn influence the transport of ions. Our mathematical model is based on the known structural and biophysical properties of the experimental system used by the Harvard group Orkand et al. Asymptotic analysis and numerical computation show the significant role of water in convective ion transport. The full model (including water) and the electrodiffusion model (excluding water) are compared in detail to reveal an interesting interplay between water and ion transport. In the full model, convection due to water flow dominates inside the glial domain. This water flow in the glia contributes significantly to the spatial buffering of potassium in the extracellular space. Convection in the extracellular domain does not contribute significantly to spatial buffering. Electrodiffusion is the dominant mechanism for flows confined to the extracellular domain.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China.
| | - Robert S Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois; Department of Physiology & Biophysics, Rush University, Chicago, Illinois
| | - Huaxiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada; Research Centre for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University (Zhuhai), Zhuhai, China; Division of Science and Technology, BNU-HKBU United International College, Zhuhai, China.
| |
Collapse
|
22
|
Kalia M, Meijer HGE, van Gils SA, van Putten MJAM, Rose CR. Ion dynamics at the energy-deprived tripartite synapse. PLoS Comput Biol 2021; 17:e1009019. [PMID: 34143772 PMCID: PMC8244923 DOI: 10.1371/journal.pcbi.1009019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/30/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023] Open
Abstract
The anatomical and functional organization of neurons and astrocytes at 'tripartite synapses' is essential for reliable neurotransmission, which critically depends on ATP. In low energy conditions, synaptic transmission fails, accompanied by a breakdown of ion gradients, changes in membrane potentials and cell swelling. The resulting cellular damage and cell death are causal to the often devastating consequences of an ischemic stroke. The severity of ischemic damage depends on the age and the brain region in which a stroke occurs, but the reasons for this differential vulnerability are far from understood. In the present study, we address this question by developing a comprehensive biophysical model of a glutamatergic synapse to identify key determinants of synaptic failure during energy deprivation. Our model is based on fundamental biophysical principles, includes dynamics of the most relevant ions, i.e., Na+, K+, Ca2+, Cl- and glutamate, and is calibrated with experimental data. It confirms the critical role of the Na+/K+-ATPase in maintaining ion gradients, membrane potentials and cell volumes. Our simulations demonstrate that the system exhibits two stable states, one physiological and one pathological. During energy deprivation, the physiological state may disappear, forcing a transit to the pathological state, which can be reverted when blocking voltage-gated Na+ and K+ channels. Our model predicts that the transition to the pathological state is favoured if the extracellular space fraction is small. A reduction in the extracellular space volume fraction, as, e.g. observed with ageing, will thus promote the brain's susceptibility to ischemic damage. Our work provides new insights into the brain's ability to recover from energy deprivation, with translational relevance for diagnosis and treatment of ischemic strokes.
Collapse
Affiliation(s)
- Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Hil G. E. Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | - Stephan A. van Gils
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands
| | | | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Kronschläger MT, Siegert ASM, Resch FJ, Rajendran PS, Khakh BS, Sandkühler J. Lamina-specific properties of spinal astrocytes. Glia 2021; 69:1749-1766. [PMID: 33694249 PMCID: PMC8252791 DOI: 10.1002/glia.23990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high‐ and low‐threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina‐specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1–L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine‐tuned for the integration of nociceptive versus tactile information.
Collapse
Affiliation(s)
- Mira T Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Anna S M Siegert
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Felix J Resch
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na +/K + Pumping Rates. Neurochem Res 2020; 45:2607-2630. [PMID: 32948935 DOI: 10.1007/s11064-020-03125-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [18F]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [13C]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.
Collapse
|
27
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
28
|
Johnson CK, Fernandez-Abascal J, Wang Y, Wang L, Bianchi L. The Na +-K +-ATPase is needed in glia of touch receptors for responses to touch in C. elegans. J Neurophysiol 2020; 123:2064-2074. [PMID: 32292107 PMCID: PMC7444924 DOI: 10.1152/jn.00636.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/15/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Four of the five types of mammalian mechanosensors are composed of nerve endings and accessory cells. In Caenorhabditis elegans we showed that glia support the function of nose touch neurons via the activity of glial Na+ and K+ channels. We show here that a third regulator of Na+ and K+, the Na+-K+-ATPase, is needed in glia of nose touch neurons for touch. Importantly, we show that two Na+-K+-ATPase genes are needed for the function rather than structural integrity and that their ion transport activity is crucial for touch. Finally, when glial Na+-K+-ATPase genes are knocked out, touch can be restored by activation of a third Na+-K+-ATPase. Taken together, these data show the requirement in glia of touch neurons of the function of the Na+-K+-ATPase. These data underscore the importance of the homeostasis of Na+ and K+, most likely in the space surrounding touch neurons, in touch sensation, a function that might be conserved across species.NEW & NOTEWORTHY Increasing evidence supports that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.
Collapse
Affiliation(s)
- Christina K Johnson
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ying Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
29
|
Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int 2020; 136:104727. [PMID: 32194142 DOI: 10.1016/j.neuint.2020.104727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Glia use multiple mechanisms to mediate potassium fluxes that support neuronal function. In addition to changes in potassium levels within synapses, these ions are dynamically dispersed through the interstitial parenchyma, perivascular spaces, leptomeninges, cerebrospinal fluid, choroid plexus, blood, vitreous, and endolymph. Neural circuits drive diversity in the glia that buffer potassium and this is reciprocal. Glia mediate buffering of potassium locally at glial-neuronal interfaces and via widespread networked connections. Control of potassium levels in the central nervous system is mediated by mechanisms operating at various loci with complexity that is difficult to model. However, major components of networked glial buffering are known. The role that potassium buffering plays in homeostasis of the CNS underlies some pathologic phenomena. An overview of potassium fluxes in the CNS is relevant for understanding consequences of pathogenic sequence variants in genes that encode potassium buffering proteins. Potassium flows in the CNS are described as follows: K1, the coordinated potassium fluxes within the astrocytic cradle around the synapse; K2, temporary storage of potassium within astrocytic processes in proposed microdomains; K3, potassium fluxes between oligodendrocytes and astrocytes; K4, potassium fluxes between astrocytes; K5, astrocytic potassium flux mediation of neurovasular coupling; K6, CSF delivery of potassium to perivascular spaces with dispersion to interstitial fluid between astrocytic endfeet; K7, astrocytic delivery of potassium to CSF and K8, choroid plexus (modified glia) regulation of potassium at the blood-CSF barrier. Components, mainly potassium channels, transporters, connexins and modulators, and the pathogenic sequence variants of their genes with the associated diseases are described.
Collapse
Affiliation(s)
- Marie E Beckner
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
30
|
Wotton CA, Cross CD, Bekar LK. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J Neurosci Res 2020; 98:964-977. [PMID: 32067254 DOI: 10.1002/jnr.24597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 11/07/2022]
Abstract
Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.
Collapse
Affiliation(s)
- Caitlin A Wotton
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cassidy D Cross
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
31
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 2019; 19:729-743. [PMID: 30401802 DOI: 10.1038/s41583-018-0080-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Close structural and functional interactions of astrocytes with synapses play an important role in brain function. The repertoire of ways in which astrocytes can regulate synaptic transmission is complex so that they can both promote and dampen synaptic efficacy. Such contrasting effects raise questions regarding the determinants of these divergent astroglial functions. Recent findings provide insights into where, when and how astroglial regulation of synapses takes place by revealing major molecular and functional intrinsic heterogeneity as well as switches in astrocytes occurring during development or specific patterns of neuronal activity. Astrocytes may therefore be seen as boosters or gatekeepers of synaptic circuits depending on their intrinsic and transformative properties throughout life.
Collapse
Affiliation(s)
- Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
33
|
Wang J, Zielewicz L, Grewer C. A K +/Na + co-binding state: Simultaneous versus competitive binding of K + and Na + to glutamate transporters. J Biol Chem 2019; 294:12180-12190. [PMID: 31235523 DOI: 10.1074/jbc.ra119.009421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+ This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Laura Zielewicz
- Department of Chemistry, Binghamton University, Binghamton, New York 13902
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York 13902.
| |
Collapse
|
34
|
Yousef M, Babür E, Delibaş S, Tan B, Çimen A, Dursun N, Süer C. Adult-Onset Hypothyroidism Alters the Metaplastic Properties of Dentate Granule Cells by Decreasing Akt Phosphorylation. J Mol Neurosci 2019; 68:647-657. [PMID: 31069661 DOI: 10.1007/s12031-019-01323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
The expression of homosynaptic long-term depression (LTD) governs the subsequent induction of long-term potentiation (LTP) at hippocampal synapses. This process, called metaplasticity, is associated with a transient increase in the levels of several kinases, such as extracellular signal-regulated protein kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and Akt kinase. It has been increasingly realized that the chemical changes in the hippocampus caused by hypothyroidism may be the key underlying causes of the learning deficits, memory loss, and impaired LTP associated with this disease. However, the functional role of thyroid hormones in the "plasticity of synaptic plasticity" has only begun to be elucidated. To address this issue, we sought to determine whether the administration of 6-n-propyl-2-thiouracil (PTU) alters the relationship between priming and the induction of subsequent LTP and related signaling molecules. The activation of ERK1/2, JNK, and Akt was measured in the hippocampus at least 95 min after priming onset. We found that priming stimulation at 5 Hz for 3 s negatively impacted the induction of LTP by subsequent tetanic stimulation in hypothyroid animals, as manifested by a more rapid decrease in the fEPSP slope and population spike amplitude. This phenomenon was accompanied by lower levels of phosphorylated Akt in the surgically removed hippocampus of the hypothyroid rats compared to the euthyroid rats. The metaplastic response and the expression of these proteins in the 1-Hz-primed hippocampus were not different between the two groups. These observations suggest that decreased PI3K/Akt signaling may be involved in the compromised metaplastic regulation of LTP observed in hypothyroidism, which may account for the learning difficulties/cognitive impairments associated with this condition.
Collapse
Affiliation(s)
- Marwa Yousef
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Ercan Babür
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Sumeyra Delibaş
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Burak Tan
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Ayşenur Çimen
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Nurcan Dursun
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey
| | - Cem Süer
- Physiology department of Medicine, University of Erciyes, Kayseri, Turkey.
| |
Collapse
|
35
|
Cui Y, Yang Y, Dong Y, Hu H. Decoding Depression: Insights from Glial and Ketamine Regulation of Neuronal Burst Firing in Lateral Habenula. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:141-150. [PMID: 30718267 DOI: 10.1101/sqb.2018.83.036871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The rapid antidepressant effect of ketamine is arguably one of the most significant advances in the mental health field in the last half century. However, its mechanism of action has remained elusive. Here, we describe our latest discovery on how ketamine blocks N-methyl-D-aspartate receptor (NMDAR)-dependent burst firing of an "antireward" center in the brain, the lateral habenula (LHb), to mediate its antidepressant effects. We also discuss a novel structure-function mechanism at the glia-neuron interface to account for the enhanced LHb bursting during depression. These results reveal new molecular targets for the therapeutic intervention of major depression.
Collapse
Affiliation(s)
- Yihui Cui
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan Yang
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yiyan Dong
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.,Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China
| | - Hailan Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.,Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China.,Mental Health Center, Zhejiang University, Hangzhou 310013, China
| |
Collapse
|
36
|
Schirmer L, Möbius W, Zhao C, Cruz-Herranz A, Ben Haim L, Cordano C, Shiow LR, Kelley KW, Sadowski B, Timmons G, Pröbstel AK, Wright JN, Sin JH, Devereux M, Morrison DE, Chang SM, Sabeur K, Green AJ, Nave KA, Franklin RJ, Rowitch DH. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. eLife 2018; 7:36428. [PMID: 30204081 PMCID: PMC6167053 DOI: 10.7554/elife.36428] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
Glial support is critical for normal axon function and can become dysregulated in white matter (WM) disease. In humans, loss-of-function mutations of KCNJ10, which encodes the inward-rectifying potassium channel KIR4.1, causes seizures and progressive neurological decline. We investigated Kir4.1 functions in oligodendrocytes (OLs) during development, adulthood and after WM injury. We observed that Kir4.1 channels localized to perinodal areas and the inner myelin tongue, suggesting roles in juxta-axonal K+ removal. Conditional knockout (cKO) of OL-Kcnj10 resulted in late onset mitochondrial damage and axonal degeneration. This was accompanied by neuronal loss and neuro-axonal dysfunction in adult OL-Kcnj10 cKO mice as shown by delayed visual evoked potentials, inner retinal thinning and progressive motor deficits. Axon pathologies in OL-Kcnj10 cKO were exacerbated after WM injury in the spinal cord. Our findings point towards a critical role of OL-Kir4.1 for long-term maintenance of axonal function and integrity during adulthood and after WM injury.
Collapse
Affiliation(s)
- Lucas Schirmer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrés Cruz-Herranz
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Lucile Ben Haim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Christian Cordano
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Lawrence R Shiow
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Garrett Timmons
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Anne-Katrin Pröbstel
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Jackie N Wright
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Jung Hyung Sin
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Michael Devereux
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Daniel E Morrison
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sandra M Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States.,Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Robin Jm Franklin
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosurgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
37
|
Savtchenko LP, Bard L, Jensen TP, Reynolds JP, Kraev I, Medvedev N, Stewart MG, Henneberger C, Rusakov DA. Disentangling astroglial physiology with a realistic cell model in silico. Nat Commun 2018; 9:3554. [PMID: 30177844 PMCID: PMC6120909 DOI: 10.1038/s41467-018-05896-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/10/2018] [Indexed: 12/05/2022] Open
Abstract
Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging.
Collapse
Affiliation(s)
- Leonid P Savtchenko
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Lucie Bard
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Thomas P Jensen
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - James P Reynolds
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Igor Kraev
- The Open University, Milton Keynes, MK7 6AA, UK
| | | | | | - Christian Henneberger
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
- German Center of Neurodegenerative Diseases (DZNE), Bonn, 53127, Germany
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, 53127, Germany
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
38
|
Latulippe J, Lotito D, Murby D. A mathematical model for the effects of amyloid beta on intracellular calcium. PLoS One 2018; 13:e0202503. [PMID: 30133494 PMCID: PMC6105003 DOI: 10.1371/journal.pone.0202503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
The accumulation of Alzheimer's disease (AD) associated Amyloid beta (Aβ) oligomers can trigger aberrant intracellular calcium (Ca2+) levels by disrupting the intrinsic Ca2+ regulatory mechanism within cells. These disruptions can cause changes in homeostasis levels that can have detrimental effects on cell function and survival. Although studies have shown that Aβ can interfere with various Ca2+ fluxes, the complexity of these interactions remains elusive. We have constructed a mathematical model that simulates Ca2+ patterns under the influence of Aβ. Our simulations shows that Aβ can increase regions of mixed-mode oscillations leading to aberrant signals under various conditions. We investigate how Aβ affects individual flux contributions through inositol triphosphate (IP3) receptors, ryanodine receptors, and membrane pores. We demonstrate that controlling for the ryanodine receptor's maximal kinetic reaction rate may provide a biophysical way of managing aberrant Ca2+ signals. The influence of a dynamic model for IP3 production is also investigated under various conditions as well as the impact of changes in membrane potential. Our model is one of the first to investigate the effects of Aβ on a variety of cellular mechanisms providing a base modeling scheme from which further studies can draw on to better understand Ca2+ regulation in an AD environment.
Collapse
Affiliation(s)
- Joe Latulippe
- Mathematics Department, Norwich University, Northfield, Vermont, United States of America
- * E-mail:
| | - Derek Lotito
- Chemistry and Biochemistry Department, Norwich University, Northfield, Vermont, United States of America
| | - Donovan Murby
- Mathematics Department, Norwich University, Northfield, Vermont, United States of America
| |
Collapse
|
39
|
Abstract
Exome and targeted sequencing have revolutionized clinical diagnosis. This has been particularly striking in epilepsy and neurodevelopmental disorders, for which new genes or new variants of preexisting candidate genes are being continuously identified at increasing rates every year. A surprising finding of these efforts is the recognition that gain of function potassium channel variants are actually associated with certain types of epilepsy, such as malignant migrating partial seizures of infancy or early-onset epileptic encephalopathy. This development has been difficult to understand as traditionally potassium channel loss-of-function, not gain-of-function, has been associated with hyperexcitability disorders. In this article, we describe the current state of the field regarding the gain-of-function potassium channel variants associated with epilepsy (KCNA2, KCNB1, KCND2, KCNH1, KCNH5, KCNJ10, KCNMA1, KCNQ2, KCNQ3, and KCNT1) and speculate on the possible cellular mechanisms behind the development of seizures and epilepsy in these patients. Understanding how potassium channel gain-of-function leads to epilepsy will provide new insights into the inner working of neural circuits and aid in developing new therapies.
Collapse
Affiliation(s)
- Zachary Niday
- Dept. of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
40
|
Octeau JC, Faas G, Mody I, Khakh BS. Making, Testing, and Using Potassium Ion Selective Microelectrodes in Tissue Slices of Adult Brain. J Vis Exp 2018. [PMID: 29781998 DOI: 10.3791/57511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Potassium ions significantly contribute to the resting membrane potential of cells and, therefore, extracellular K+ concentration is a crucial regulator of cell excitability. Altered concentrations of extracellular K+ affect the resting membrane potential and cellular excitability by shifting the equilibria between closed, open and inactivated states for voltage-dependent ion channels that underlie action potential initiation and conduction. Hence, it is valuable to directly measure extracellular K+ dynamics in health and diseased states. Here, we describe how to make, calibrate and use monopolar K+-selective microelectrodes. We deployed them in adult hippocampal brain slices to measure electrically evoked K+ concentration dynamics. The judicious use of such electrodes is an important part of the tool-kit needed to evaluate cellular and biophysical mechanisms that control extracellular K+ concentrations in the nervous system.
Collapse
Affiliation(s)
- J Christopher Octeau
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles;
| | - Guido Faas
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Istvan Mody
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles;
| |
Collapse
|
41
|
Kelley KW, Ben Haim L, Schirmer L, Tyzack GE, Tolman M, Miller JG, Tsai HH, Chang SM, Molofsky AV, Yang Y, Patani R, Lakatos A, Ullian EM, Rowitch DH. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron 2018; 98:306-319.e7. [PMID: 29606582 PMCID: PMC5919779 DOI: 10.1016/j.neuron.2018.03.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/08/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS. Kir4.1 is upregulated in astrocytes around high-activity alpha motor neurons (MNs) Astrocyte Kir4.1 KO caused decreased peak strength without alpha MN loss ALS patient-derived astrocytes show cell-autonomous Kir4.1 downregulation Astrocyte Kir4.1 regulates MN size through PI3K/mTOR/pS6 activation
Collapse
Affiliation(s)
- Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucile Ben Haim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucas Schirmer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giulia E Tyzack
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Michaela Tolman
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - John G Miller
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hui-Hsin Tsai
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandra M Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna V Molofsky
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongjie Yang
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rickie Patani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB20QQ, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Paediatrics and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB20QQ, UK.
| |
Collapse
|
42
|
Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, Bergles DE. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 2018; 7:34829. [PMID: 29596047 PMCID: PMC5903864 DOI: 10.7554/elife.34829] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
The inwardly rectifying K+ channel Kir4.1 is broadly expressed by CNS glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here, we show that selective deletion of Kir4.1 from oligodendrocyte progenitors (OPCs) or mature oligodendrocytes did not impair their development or disrupt the structure of myelin. However, mice lacking oligodendrocyte Kir4.1 channels exhibited profound functional impairments, including slower clearance of extracellular K+ and delayed recovery of axons from repetitive stimulation in white matter, as well as spontaneous seizures, a lower seizure threshold, and activity-dependent motor deficits. These results indicate that Kir4.1 channels in oligodendrocytes play an important role in extracellular K+ homeostasis in white matter, and that selective loss of this channel from oligodendrocytes is sufficient to impair K+ clearance and promote seizures.
Collapse
Affiliation(s)
- Valerie A Larson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
43
|
Du M, Li J, Chen L, Yu Y, Wu Y. Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure. PLoS Comput Biol 2018; 14:e1005877. [PMID: 29590095 PMCID: PMC5891073 DOI: 10.1371/journal.pcbi.1005877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/09/2018] [Accepted: 11/06/2017] [Indexed: 01/30/2023] Open
Abstract
Experimental recordings in hippocampal slices indicate that astrocytic dysfunction may cause neuronal hyper-excitation or seizures. Considering that astrocytes play important roles in mediating local uptake and spatial buffering of K+ in the extracellular space of the cortical circuit, we constructed a novel model of an astrocyte-neuron network module consisting of a single compartment neuron and 4 surrounding connected astrocytes and including extracellular potassium dynamics. Next, we developed a new model function for the astrocyte gap junctions, connecting two astrocyte-neuron network modules. The function form and parameters of the gap junction were based on nonlinear regression fitting of a set of experimental data published in previous studies. Moreover, we have created numerical simulations using the above single astrocyte-neuron network module and the coupled astrocyte-neuron network modules. Our model validates previous experimental observations that both Kir4.1 channels and gap junctions play important roles in regulating the concentration of extracellular potassium. In addition, we also observe that changes in Kir4.1 channel conductance and gap junction strength induce spontaneous epileptic activity in the absence of external stimuli. Astrocytes are critical regulators of normal physiological activity in the central nervous system, and one of their key functions is removing extracellular K+. In recent years, numerous biological studies have shown that astrocytic Kir4.1 channels and gap junctions between astrocytes act as major K+ clearance mechanisms. Dysfunction of either of these regulatory mechanisms may cause generation of K+-induced seizures. However, it is unclear how and to what extent these two K+-regulating processes lead to spontaneous epileptic activity. These questions were addressed in the present study by constructing novel single astrocyte-neuron network models and a coupled astrocyte-neuron module network connected by an astrocyte gap junction based on existing experimental observations and previous theoretical reports. Simulation results first verified that either down-regulation of astrocytic Kir4.1 channels or a decrease of the gap junction strength between astrocytes causes neuropathological hyper-excitability and spontaneous epileptic activity. These results imply that dysfunctional astrocytes should be considered as targets for therapeutic strategies in epilepsy.
Collapse
Affiliation(s)
- Mengmeng Du
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jiajia Li
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuguo Yu
- State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail: (YY); (YW)
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail: (YY); (YW)
| |
Collapse
|
44
|
Milton M, Smith PD. It's All about Timing: The Involvement of Kir4.1 Channel Regulation in Acute Ischemic Stroke Pathology. Front Cell Neurosci 2018; 12:36. [PMID: 29503609 PMCID: PMC5820340 DOI: 10.3389/fncel.2018.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
An acute ischemic stroke is characterized by the presence of a blood clot that limits blood flow to the brain resulting in subsequent neuronal loss. Acute stroke threatens neuronal survival, which relies heavily upon proper function of astrocytes. Neurons are more susceptible to cell death when an astrocyte is unable to carry out its normal functions in supporting the neuron in the area affected by the stroke (Rossi et al., 2007; Takano et al., 2009). For example, under normal conditions, astrocytes initially swell in response to changes in extracellular osmotic pressure and then reduce their regulatory volume in response to volume-activated potassium (K+) and chloride channels (Vella et al., 2015). This astroglial swelling may be overwhelmed, under ischemic conditions, due to the increased levels of glutamate and extracellular K+ (Lai et al., 2014; Vella et al., 2015). The increase in extracellular K+ contributes to neuronal damage and loss through the initiation of harmful secondary cascades (Nwaobi et al., 2016). Reducing the amount of extracellular K+ could, in theory, limit or prevent neuronal damage and loss resulting in an improved prognosis for individuals following ischemic stroke. Kir4.1, an inwardly rectifying K+ channel, has demonstrated an ability to regulate the rapid reuptake of this ion to return the cell to basal levels allowing it to fire again in rapid transmission (Sibille et al., 2015). Despite growing interest in this area, the underlying mechanism suggesting that neuroprotection could occur through modification of the Kir4.1 channel's activity has yet to be described. The purpose of this review is to examine the current literature and propose potential underlying mechanisms involving Kir4.1, specially the mammalian target of rapamycin (mTOR) and/or autophagic pathways, in the pathogenesis of ischemic stroke. The hope is that this review will instigate further investigation of Kir4.1 as a modulator of stroke pathology.
Collapse
Affiliation(s)
| | - Patrice D. Smith
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
45
|
The Astrocytic Microdomain as a Generative Mechanism for Local Plasticity. Brain Inform 2018. [DOI: 10.1007/978-3-030-05587-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
46
|
Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions. Brain Res Bull 2018; 136:17-25. [DOI: 10.1016/j.brainresbull.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/03/2023]
|
47
|
Role of astrocyte connexin hemichannels in cortical spreading depression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:216-223. [PMID: 28864364 DOI: 10.1016/j.bbamem.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in >50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2+], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through "spatial buffering". However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
48
|
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends Neurosci 2017; 40:422-437. [PMID: 28578789 PMCID: PMC5706770 DOI: 10.1016/j.tins.2017.05.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | | | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rosemarie Grantyn
- Exzellenzcluster NeuroCure & Abt. Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| |
Collapse
|
49
|
Li L, Fan Y, Li Q, Sheng R, Si H, Fang J, Tong L, Tang B. Simultaneous Single-Cell Analysis of Na+, K+, Ca2+, and Mg2+ in Neuron-Like PC-12 Cells in a Microfluidic System. Anal Chem 2017; 89:4559-4565. [DOI: 10.1021/acs.analchem.6b05045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Yuanyuan Fan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Renjie Sheng
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Haibin Si
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Juan Fang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| |
Collapse
|
50
|
Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci Biobehav Rev 2017; 77:87-97. [PMID: 28279812 DOI: 10.1016/j.neubiorev.2017.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
Abstract
The human brain contains two major cell populations, neurons and glia. While neurons are electrically excitable and capable of discharging short voltage pulses known as action potentials, glial cells are not. However, astrocytes, the prevailing subtype of glia in the cortex, are highly connected and can modulate the excitability of neurons by changing the concentration of potassium ions in the extracellular environment, a process called K+ clearance. During the past decade, astrocytes have been the focus of much research, mainly due to their close association with synapses and their modulatory impact on neuronal activity. It has been shown that astrocytes play an essential role in normal brain function including: nitrosative regulation of synaptic release in the neocortex, synaptogenesis, synaptic transmission and plasticity. Here, we discuss the role of astrocytes in network modulation through their K+ clearance capabilities, a theory that was first raised 50 years ago by Orkand and Kuffler. We will discuss the functional alterations in astrocytic activity that leads to aberrant modulation of network oscillations and synchronous activity.
Collapse
|