1
|
El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T. Correction: Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 2025; 8:e202403129. [PMID: 39586644 PMCID: PMC11588848 DOI: 10.26508/lsa.202403129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Although in humans, the brain fails to heal after an injury, young zebrafish are able to restore tissue structural integrity in less than 24 h, thanks to the mechanical action of microglia.
Collapse
Affiliation(s)
- Francois El-Daher
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Stephen J Enos
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Louisa K Drake
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Daniel Wehner
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus Westphal
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Nicola J Porter
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T. Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 2025; 8:e202403052. [PMID: 39419547 PMCID: PMC11487088 DOI: 10.26508/lsa.202403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Wound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies. Microglia accumulate at the wound site before closure, and computational models suggest that their physical traction could drive this process. Depleting microglia genetically or pharmacologically impairs tissue repair. At the cellular level, live imaging reveals centripetal deformation of astrocytic processes contacted by migrating microglia. Laser severing of these contacts causes rapid retraction of microglial processes and slower retraction of astrocytic processes, indicating tension. Disrupting the lcp1 gene, which encodes the F-actin-stabilising protein L-plastin, in microglia results in failed wound closure. These findings support a mechanical role of microglia in wound contraction and suggest that targeting microglial mechanics could offer new strategies for treating traumatic brain injury.
Collapse
Affiliation(s)
- Francois El-Daher
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Stephen J Enos
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Louisa K Drake
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Daniel Wehner
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus Westphal
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| | - Nicola J Porter
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
- Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Carrasco-Mantis A, Reina-Romo E, Sanz-Herrera JA. A multiphysics hybrid continuum - agent-based model of in vitro vascularized organoids. Comput Biol Med 2024; 185:109559. [PMID: 39709871 DOI: 10.1016/j.compbiomed.2024.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization. Parameters, such as fluid velocity and nutrient consumption, are analyzed along the organoid evolution. METHODS The mathematical model created for this purpose combines continuum and discrete approaches. In the continuum part, the fluid flow and the diffusion of oxygen and nutrients are modeled using a finite element method approach. Meanwhile, the growth of the organoid, blood vessel evolution, as well as their interaction with the surrounding environment, are modeled using agent-based methods. RESULTS Continuum model outcomes include the distribution of shear stress, pressure and fluid velocity around the organoid surface, in addition to the concentration of oxygen and nutrients in its interior. The agent models account for cell proliferation, differentiation, organoid growth and blood vessel morphology, for the different case studies considered. CONCLUSIONS Two main conclusions are achieved in this work: (i) the results of the study quantitatively predict in vitro data, with an enhanced blood vessel invasion under high fluid flow and (ii) the diffusion and consumption model parameters of the organoid cells determine the thickness of the proliferative, quiescent, hypoxic and necrotic layers.
Collapse
Affiliation(s)
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
| | | |
Collapse
|
4
|
Christgen M, Caetano RA, Eisenburger M, Traulsen A, Altrock PM. Deficient cell-cell cohesion is linked with lobular localization in simplified models of lobular carcinoma in situ (LCIS). Math Biosci 2024; 380:109369. [PMID: 39694324 DOI: 10.1016/j.mbs.2024.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Lobular carcinoma in situ (LCIS) is a precursor of invasive lobular carcinoma of the breast. LCIS cells lack cell-cell cohesion due to the loss of E-cadherin. LCIS cells grow in mammary lobules rather than in ducts. The etiology of this pattern, especially its dependence on cellular cohesion, is incompletely understood. We simulated passive intra-glandular scattering of carcinoma in situ (CIS) cells in an ultra-simplified hollow mold tissue replica (HMTR) and a discrete-time mathematical model featuring particles of variable sizes representing single cells (LCIS-like particles) or groups of cohesive carcinoma cells (DCIS-like particles). The HMTR features structures reminiscent of a mammary duct with associated lobules. The discrete mathematical model characterizes spatial redistribution over time and includes transition probabilities between ductal or lobular localizations. Redistribution of particles converged toward an equilibrium depending on particle size. Strikingly, equilibrium proportions depended on particle properties, which we also confirm in a continuous-time mathematical model that considers controlling lobular properties such as crowding. Particles of increasing size, representing CIS cells with proficient cohesion, showed increasingly higher equilibrium ductal proportions. Our investigations represent two conceptual abstractions implying a link between loss of cell-cell cohesion and lobular localization of LCIS, which provide a much-needed logical foundation for studying the connections between collective cell behavior and cancer development in breast tissues. In light of the findings from our simplified modeling approach, we discuss multiple avenues for near-future research that can address and evaluate the redistribution hypothesis mathematically and empirically.
Collapse
Affiliation(s)
- Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Rodrigo A Caetano
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Michael Eisenburger
- Clinic for Prosthetic Dentistry and Biomedical Material Science, Hannover Medical School, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Philipp M Altrock
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany.
| |
Collapse
|
5
|
L Rocha H, Aguilar B, Getz M, Shmulevich I, Macklin P. A multiscale model of immune surveillance in micrometastases gives insights on cancer patient digital twins. NPJ Syst Biol Appl 2024; 10:144. [PMID: 39627216 PMCID: PMC11614875 DOI: 10.1038/s41540-024-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Metastasis is the leading cause of death in patients with cancer, driving considerable scientific and clinical interest in immunosurveillance of micrometastases. We investigated this process by creating a multiscale mathematical model to study the interactions between the immune system and the progression of micrometastases in general epithelial tissue. We analyzed the parameter space of the model using high-throughput computing resources to generate over 100,000 virtual patient trajectories. We demonstrated that the model could recapitulate a wide variety of virtual patient trajectories, including uncontrolled growth, partial response, and complete immune response to tumor growth. We classified the virtual patients and identified key patient parameters with the greatest effect on the simulated immunosurveillance. We highlight the lessons derived from this analysis and their impact on the nascent field of cancer patient digital twins (CPDTs). While CPDTs could enable clinicians to systematically dissect the complexity of cancer in each individual patient and inform treatment choices, our work shows that key challenges remain before we can reach this vision. In particular, we show that there remain considerable uncertainties in immune responses, unreliable patient stratification, and unpredictable personalized treatment. Nonetheless, we also show that in spite of these challenges, patient-specific models suggest strategies to increase control of clinically undetectable micrometastases even without complete parameter certainty.
Collapse
Affiliation(s)
- Heber L Rocha
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Michael Getz
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Islam MA, Ford Versypt AN. Mathematical Modeling of Impacts of Patient Differences on Renin-Angiotensin System and Applications to COVID-19 Lung Fibrosis Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.06.515367. [PMID: 36380760 PMCID: PMC9665336 DOI: 10.1101/2022.11.06.515367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19. However, conflicting evidence suggests decreases, increases, or no changes in RAS peptides after SARS-CoV-2 infection. In addition, detailed mechanisms connecting the patient-specific conditions before infection to infection-induced RAS alterations are still unknown. Here, a multiscale computational model was developed to quantify the systemic contribution of heterogeneous factors of RAS during COVID-19. Three submodels were connected-an agent-based model for in-host COVID-19 response in the lung tissue, a RAS dynamics model, and a fibrosis dynamics model to investigate the effects of patient-group-specific factors in the systemic alteration of RAS and collagen deposition in the lung. The model results indicated cell death due to inflammatory response as a major contributor to the reduction of ACE and ACE2. In contrast, there were no significant changes in ACE2 dynamics due to viral-bound internalization of ACE2. The model explained possible mechanisms for conflicting evidence of patient-group-specific changes in RAS peptides in previously published studies. Simulated results were consistent with reported RAS peptide values for SARS-CoV-2-negative and SARS-CoV-2-positive patients. RAS peptides decreased for all virtual patient groups with aging in both sexes. In contrast, large variations in the magnitude of reduction were observed between male and female virtual patients in the older and middle-aged groups. The patient-specific variations in homeostasis RAS peptide concentrations of SARS-CoV-2-negative patients also affected the dynamics of RAS during infection. The model results also showed that feedback between RAS signaling and renin dynamics could restore ANGI homeostasis concentration but failed to restore homeostasis values of RAS peptides downstream of ANGI. In addition, the results showed that ACE2 variations with age and sex significantly altered the concentrations of RAS peptides and led to collagen deposition with slight variations depending on age and sex. This model may find further applications in patient-specific calibrations of tissue models for acute and chronic lung diseases to develop personalized treatments.
Collapse
|
7
|
Weerasinghe HN, Burrage PM, Jr DVN, Burrage K. Agent-based modeling for the tumor microenvironment (TME). MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7621-7647. [PMID: 39696854 DOI: 10.3934/mbe.2024335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Furthermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding the intra-tumoral communication under cellular stress can potentially lead to the design of successful treatment strategies for cancer.
Collapse
Affiliation(s)
- Hasitha N Weerasinghe
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Pamela M Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Dan V Nicolau Jr
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane, Australia
- Department of Computer Science, University of Oxford, United Kingdom
| |
Collapse
|
8
|
Agmon E. Foundations of a Compositional Systems Biology. ARXIV 2024:arXiv:2408.00942v2. [PMID: 39130201 PMCID: PMC11312625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Composition is a powerful principle for systems biology, focused on the interfaces, interconnections, and orchestration of distributed processes to enable integrative multiscale simulations. Whereas traditional models focus on the structure or dynamics of specific subsystems in controlled conditions, compositional systems biology aims to connect these models, asking critical questions about the space between models: What variables should a submodel expose through its interface? How do coupled models connect and translate across scales? How do domain-specific models connect across biological and physical disciplines to drive the synthesis of new knowledge? This approach requires robust software to integrate diverse datasets and submodels, providing researchers with tools to flexibly recombine, iteratively refine, and collaboratively expand their models. This article offers a comprehensive framework to support this vision, including: a conceptual and graphical framework to define interfaces and composition patterns; standardized schemas that facilitate modular data and model assembly; biological templates that integrate detailed submodels that connect molecular processes to the emergence of the cellular interface; and user-friendly software interfaces that empower research communities to construct and improve multiscale models of cellular systems. By addressing these needs, compositional systems biology will foster a unified and scalable approach to understanding complex cellular systems.
Collapse
|
9
|
Knapp AC, Cruz DA, Mehrad B, Laubenbacher RC. Personalizing computational models to construct medical digital twins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596692. [PMID: 39574674 PMCID: PMC11580862 DOI: 10.1101/2024.05.31.596692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Digital twin technology, pioneered for engineering applications, is being adapted to biomedicine and healthcare; however, several problems need to be solved in the process. One major problem is that of dynamically calibrating a computational model to an individual patient, using data collected from that patient over time. This kind of calibration is crucial for improving model-based forecasts and realizing personalized medicine. The underlying computational model often focuses on a particular part of human biology, combines different modeling paradigms at different scales, and is both stochastic and spatially heterogeneous. A commonly used modeling framework is that of an agent-based model, a computational model for simulating autonomous agents such as cells, which captures how system-level properties are affected by local interactions. There are no standard personalization methods that can be readily applied to such models. The key challenge for any such algorithm is to bridge the gap between the clinically measurable quantities (the macrostate) and the fine-grained data at different physiological scales which are required to run the model (the microstate). In this paper we develop an algorithm which applies a classic data assimilation technique, the ensemble Kalman filter, at the macrostate level. We then link the Kalman update at the macrostate level to an update at the microstate level that produces microstates which are not only compatible with desired macrostates but also highly likely with respect to model dynamics.
Collapse
Affiliation(s)
- Adam C. Knapp
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Daniel A. Cruz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Reinhard C. Laubenbacher
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| |
Collapse
|
10
|
Osborne JM. An adaptive numerical method for multi-cellular simulations of tissue development and maintenance. J Theor Biol 2024; 594:111922. [PMID: 39111542 DOI: 10.1016/j.jtbi.2024.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
In recent years, multi-cellular models, where cells are represented as individual interacting entities, are becoming ever popular. This has led to a proliferation of novel methods and simulation tools. The first aim of this paper is to review the numerical methods utilised by multi-cellular modelling tools and to demonstrate which numerical methods are appropriate for simulations of tissue and organ development, maintenance, and disease. The second aim is to introduce an adaptive time-stepping algorithm and to demonstrate it's efficiency and accuracy. We focus on off-lattice, mechanics based, models where cell movement is defined by a series of first order ordinary differential equations, derived by assuming over-damped motion and balancing forces. We see that many numerical methods have been used, ranging from simple Forward Euler approaches through to higher order single-step methods like Runge-Kutta 4 and multi-step methods like Adams-Bashforth 2. Through a series of exemplar multi-cellular simulations, we see that if: care is taken to have events (births deaths and re-meshing/re-arrangements) occur on common time-steps; and boundaries are imposed on all sub-steps of numerical methods or implemented using forces, then all numerical methods can converge with the correct order. We introduce an adaptive time-stepping method and demonstrate that the best compromise between L∞ error and run-time is to use Runge-Kutta 4 with an increased time-step and moderate adaptivity. We see that a judicious choice of numerical method can speed the simulation up by a factor of 10-60 from the Forward Euler methods seen in Osborne et al. (2017), and a further speed up by a factor of 4 can be achieved by using an adaptive time-step.
Collapse
Affiliation(s)
- James M Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, 3010, Victoria, Australia.
| |
Collapse
|
11
|
Celora GL, Nixson R, Pitt-Francis JM, Maini PK, Byrne HM. Characterising Cancer Cell Responses to Cyclic Hypoxia Using Mathematical Modelling. Bull Math Biol 2024; 86:145. [PMID: 39503769 PMCID: PMC11541430 DOI: 10.1007/s11538-024-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 11/09/2024]
Abstract
In vivo observations show that oxygen levels in tumours can fluctuate on fast and slow timescales. As a result, cancer cells can be periodically exposed to pathologically low oxygen levels; a phenomenon known as cyclic hypoxia. Yet, little is known about the response and adaptation of cancer cells to cyclic, rather than, constant hypoxia. Further, existing in vitro models of cyclic hypoxia fail to capture the complex and heterogeneous oxygen dynamics of tumours growing in vivo. Mathematical models can help to overcome current experimental limitations and, in so doing, offer new insights into the biology of tumour cyclic hypoxia by predicting cell responses to a wide range of cyclic dynamics. We develop an individual-based model to investigate how cell cycle progression and cell fate determination of cancer cells are altered following exposure to cyclic hypoxia. Our model can simulate standard in vitro experiments, such as clonogenic assays and cell cycle experiments, allowing for efficient screening of cell responses under a wide range of cyclic hypoxia conditions. Simulation results show that the same cell line can exhibit markedly different responses to cyclic hypoxia depending on the dynamics of the oxygen fluctuations. We also use our model to investigate the impact of changes to cell cycle checkpoint activation and damage repair on cell responses to cyclic hypoxia. Our simulations suggest that cyclic hypoxia can promote heterogeneity in cellular damage repair activity within vascular tumours.
Collapse
Affiliation(s)
- Giulia L Celora
- Department of Mathematics, University College London, Gordon Street, London, 100190, UK.
| | - Ruby Nixson
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Joe M Pitt-Francis
- Department of Computer Science, University of Oxford, Parks Rd, Oxford, OX1 3QD, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GG, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
12
|
Kunz LV, Bosque JJ, Nikmaneshi M, Chamseddine I, Munn LL, Schuemann J, Paganetti H, Bertolet A. AMBER: A Modular Model for Tumor Growth, Vasculature and Radiation Response. Bull Math Biol 2024; 86:139. [PMID: 39460828 DOI: 10.1007/s11538-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Computational models of tumor growth are valuable for simulating the dynamics of cancer progression and treatment responses. In particular, agent-based models (ABMs) tracking individual agents and their interactions are useful for their flexibility and ability to model complex behaviors. However, ABMs have often been confined to small domains or, when scaled up, have neglected crucial aspects like vasculature. Additionally, the integration into tumor ABMs of precise radiation dose calculations using gold-standard Monte Carlo (MC) methods, crucial in contemporary radiotherapy, has been lacking. Here, we introduce AMBER, an Agent-based fraMework for radioBiological Effects in Radiotherapy that computationally models tumor growth and radiation responses. AMBER is based on a voxelized geometry, enabling realistic simulations at relevant pre-clinical scales by tracking temporally discrete states stepwise. Its hybrid approach, combining traditional ABM techniques with continuous spatiotemporal fields of key microenvironmental factors such as oxygen and vascular endothelial growth factor, facilitates the generation of realistic tortuous vascular trees. Moreover, AMBER is integrated with TOPAS, an MC-based particle transport algorithm that simulates heterogeneous radiation doses. The impact of radiation on tumor dynamics considers the microenvironmental factors that alter radiosensitivity, such as oxygen availability, providing a full coupling between the biological and physical aspects. Our results show that simulations with AMBER yield accurate tumor evolution and radiation treatment outcomes, consistent with established volumetric growth laws and radiobiological understanding. Thus, AMBER emerges as a promising tool for replicating essential features of tumor growth and radiation response, offering a modular design for future expansions to incorporate specific biological traits.
Collapse
Affiliation(s)
- Louis V Kunz
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jesús J Bosque
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mohammad Nikmaneshi
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Kemkar S, Tao M, Ghosh A, Stamatakos G, Graf N, Poorey K, Balakrishnan U, Trask N, Radhakrishnan R. Towards verifiable cancer digital twins: tissue level modeling protocol for precision medicine. Front Physiol 2024; 15:1473125. [PMID: 39507514 PMCID: PMC11537925 DOI: 10.3389/fphys.2024.1473125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer exhibits substantial heterogeneity, manifesting as distinct morphological and molecular variations across tumors, which frequently undermines the efficacy of conventional oncological treatments. Developments in multiomics and sequencing technologies have paved the way for unraveling this heterogeneity. Nevertheless, the complexity of the data gathered from these methods cannot be fully interpreted through multimodal data analysis alone. Mathematical modeling plays a crucial role in delineating the underlying mechanisms to explain sources of heterogeneity using patient-specific data. Intra-tumoral diversity necessitates the development of precision oncology therapies utilizing multiphysics, multiscale mathematical models for cancer. This review discusses recent advancements in computational methodologies for precision oncology, highlighting the potential of cancer digital twins to enhance patient-specific decision-making in clinical settings. We review computational efforts in building patient-informed cellular and tissue-level models for cancer and propose a computational framework that utilizes agent-based modeling as an effective conduit to integrate cancer systems models that encode signaling at the cellular scale with digital twin models that predict tissue-level response in a tumor microenvironment customized to patient information. Furthermore, we discuss machine learning approaches to building surrogates for these complex mathematical models. These surrogates can potentially be used to conduct sensitivity analysis, verification, validation, and uncertainty quantification, which is especially important for tumor studies due to their dynamic nature.
Collapse
Affiliation(s)
- Sharvari Kemkar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Mengdi Tao
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Alokendra Ghosh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Georgios Stamatakos
- In Silico Oncology and In Silico Medicine Group, Institute of Communication and Computer Systems, School of Electrical and Computer Engineering, National Technical University of Athens, Zografos, Greece
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Kunal Poorey
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, United States
| | - Uma Balakrishnan
- Department of Quant Modeling and SW Eng, Sandia National Laboratories, Livermore, CA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathaniel Trask
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Lu C, Vidigueira JM, Chan Jin Jie C, Maksymiuk A, Xiong F. Cell density couples tissue mechanics to control the elongation speed of the body axis. iScience 2024; 27:110968. [PMID: 39391714 PMCID: PMC11466625 DOI: 10.1016/j.isci.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The vertebrate body forms by the addition of new tissues at the posterior end. This elongates the body axis, allowing continued anterior segmentation to produce the stereotypic body plan. This balance requires the elongation speed to be constrained. Here we utilized modeling and tissue force microscopy on chicken embryos to show that cell density of the posterior presomitic mesoderm (pPSM) dynamically modulates elongation speed in a negative feedback loop. Elongation alters the cell density in the pPSM, which in turn controls progenitor cell influx through the mechanical coupling of body axis tissues. This enables responsive cell dynamics in over- and under-elongated axes that consequently self-adjust speed to achieve long-term robustness in axial length. Our simulations and experiments further suggest that cell density and FGF activity synergistically drive elongation. Our work supports a simple mechanism of morphogenetic speed control where the cell density relates negatively to progress, and positively to force generation.
Collapse
Affiliation(s)
- Changqing Lu
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Department of Anatomy, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Joana M.N. Vidigueira
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christopher Chan Jin Jie
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Systems Biology Programme, University of Cambridge, Cambridge, UK
| | - Alicja Maksymiuk
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Fengzhu Xiong
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
15
|
Noël V, Ruscone M, Shuttleworth R, Macnamara CK. PhysiMeSS - a new physiCell addon for extracellular matrix modelling. GIGABYTE 2024; 2024:gigabyte136. [PMID: 39449986 PMCID: PMC11500100 DOI: 10.46471/gigabyte.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
The extracellular matrix, composed of macromolecules like collagen fibres, provides structural support to cells and acts as a barrier that metastatic cells degrade to spread beyond the primary tumour. While agent-based frameworks, such as PhysiCell, can simulate the spatial dynamics of tumour evolution, they only implement cells as circles (2D) or spheres (3D). To model the extracellular matrix as a network of fibres, we require a new type of agent represented by line segments (2D) or cylinders (3D). Here, we present PhysiMeSS, an addon of PhysiCell, introducing a new agent type to describe fibres and their physical interactions with cells and other fibres. PhysiMeSS implementation is available at https://github.com/PhysiMeSS/PhysiMeSS and in the official PhysiCell repository. We provide examples describing the possibilities of this framework. This tool may help tackle important biological questions, such as diseases linked to dysregulation of the extracellular matrix or the processes leading to cancer metastasis.
Collapse
Affiliation(s)
- Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | | | - Cicely K. Macnamara
- School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
16
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. Brief Bioinform 2024; 25:bbae509. [PMID: 39425527 PMCID: PMC11489466 DOI: 10.1093/bib/bbae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Multiscale models provide a unique tool for analyzing complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. These models aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms-coupled with a graphical interface-is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to construct these models more easily, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as Supplementary Material and all models are provided at https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université 15 rue de l'École de Médecine, 75006 Paris, France
- INSERM, U1138, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| |
Collapse
|
17
|
Bekker RA, Obertopp N, Redler G, Penagaricano J, Caudell JJ, Yamoah K, Pilon-Thomas S, Moros EG, Enderling H. Spatially fractionated GRID radiation potentiates immune-mediated tumor control. Radiat Oncol 2024; 19:121. [PMID: 39272128 PMCID: PMC11401399 DOI: 10.1186/s13014-024-02514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumor-immune interactions shape a developing tumor and its tumor immune microenvironment (TIME) resulting in either well-infiltrated, immunologically inflamed tumor beds, or immune deserts with low levels of infiltration. The pre-treatment immune make-up of the TIME is associated with treatment outcome; immunologically inflamed tumors generally exhibit better responses to radio- and immunotherapy than non-inflamed tumors. However, radiotherapy is known to induce opposing immunological consequences, resulting in both immunostimulatory and inhibitory responses. In fact, it is thought that the radiation-induced tumoricidal immune response is curtailed by subsequent applications of radiation. It is thus conceivable that spatially fractionated radiotherapy (SFRT), administered through GRID blocks (SFRT-GRID) or lattice radiotherapy to create areas of low or high dose exposure, may create protective reservoirs of the tumor immune microenvironment, thereby preserving anti-tumor immune responses that are pivotal for radiation success. METHODS We have developed an agent-based model (ABM) of tumor-immune interactions to investigate the immunological consequences and clinical outcomes after 2 Gy × 35 whole tumor radiation therapy (WTRT) and SFRT-GRID. The ABM is conceptually calibrated such that untreated tumors escape immune surveillance and grow to clinical detection. Individual ABM simulations are initialized from four distinct multiplex immunohistochemistry (mIHC) slides, and immune related parameter rates are generated using Latin Hypercube Sampling. RESULTS In silico simulations suggest that radiation-induced cancer cell death alone is insufficient to clear a tumor with WTRT. However, explicit consideration of radiation-induced anti-tumor immunity synergizes with radiation cytotoxicity to eradicate tumors. Similarly, SFRT-GRID is successful with radiation-induced anti-tumor immunity, and, for some pre-treatment TIME compositions and modeling parameters, SFRT-GRID might be superior to WTRT in providing tumor control. CONCLUSION This study demonstrates the pivotal role of the radiation-induced anti-tumor immunity. Prolonged fractionated treatment schedules may counteract early immune recruitment, which may be protected by SFRT-facilitated immune reservoirs. Different biological responses and treatment outcomes are observed based on pre-treatment TIME composition and model parameters. A rigorous analysis and model calibration for different tumor types and immune infiltration states is required before any conclusions can be drawn for clinical translation.
Collapse
Affiliation(s)
- Rebecca A Bekker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Nina Obertopp
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - José Penagaricano
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Borau C, Chisholm R, Richmond P, Walker D. An agent-based model for cell microenvironment simulation using FLAMEGPU2. Comput Biol Med 2024; 179:108831. [PMID: 38970834 DOI: 10.1016/j.compbiomed.2024.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
This work presents an advanced agent-based model developed within the FLAMEGPU2 framework, aimed at simulating the intricate dynamics of cell microenvironments. Our primary objective is to showcase FLAMEGPU2's potential in modelling critical features such as cell-cell and cell-ECM interactions, species diffusion, vascularisation, cell migration, and/or cell cycling. By doing so, we provide a versatile template that serves as a foundational platform for researchers to model specific biological mechanisms or processes. We highlight the utility of our approach as a microscale component within multiscale frameworks. Through four example applications, we demonstrate the model's versatility in capturing phenomena such as strain-stiffening behaviour of hydrogels, cell migration patterns within hydrogels, spheroid formation and fibre reorientation, and the simulation of diffusion processes within a vascularised and deformable domain. This work aims to bridge the gap between computational efficiency and biological fidelity, offering a scalable and flexible platform to advance our understanding of tissue biology and engineering.
Collapse
Affiliation(s)
- C Borau
- Multiscale in Mechanical and Biological Engineering (M2BE), Mechanical Engineering Dept, University of Zaragoza, Zaragoza, Spain; Centro Universitario de la Defensa, Zaragoza, Spain
| | - R Chisholm
- Department of Computer Science and Insigneo Institute of in Silico Medicine, University of Sheffield, Sheffield, UK
| | - P Richmond
- Department of Computer Science and Insigneo Institute of in Silico Medicine, University of Sheffield, Sheffield, UK
| | - D Walker
- Department of Computer Science and Insigneo Institute of in Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Mutsuddy A, Huggins JR, Amrit A, Erdem C, Calhoun JC, Birtwistle MR. Mechanistic modeling of cell viability assays with in silico lineage tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609433. [PMID: 39253474 PMCID: PMC11383287 DOI: 10.1101/2024.08.23.609433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Data from cell viability assays, which measure cumulative division and death events in a population and reflect substantial cellular heterogeneity, are widely available. However, interpreting such data with mechanistic computational models is hindered because direct model/data comparison is often muddled. We developed an algorithm that tracks simulated division and death events in mechanistically detailed single-cell lineages to enable such a model/data comparison and suggest causes of cell-cell drug response variability. Using our previously developed model of mammalian single-cell proliferation and death signaling, we simulated drug dose response experiments for four targeted anti-cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to experimental data. Simulations are consistent with data for strong growth inhibition by trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI-3K inhibitor), but are inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor). Model/data inconsistencies suggest (i) the importance of CDK4/6 for driving the cell cycle may be overestimated, and (ii) that the cellular balance between basal (tonic) and ligand-induced signaling is a critical determinant of receptor inhibitor response. Simulations show subpopulations of rapidly and slowly dividing cells in both control and drug-treated conditions. Variations in mother cells prior to drug treatment all impinging on ERK pathway activity are associated with the rapidly dividing phenotype and trametinib resistance. This work lays a foundation for the application of mechanistic modeling to large-scale cell viability assay datasets and better understanding determinants of cellular heterogeneity in drug response.
Collapse
Affiliation(s)
- Arnab Mutsuddy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Jonah R. Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Aurore Amrit
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jon C. Calhoun
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
20
|
Mongeon B, Hébert-Doutreloux J, Surendran A, Karimi E, Fiset B, Quail DF, Walsh LA, Jenner AL, Craig M. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl 2024; 10:91. [PMID: 39155294 PMCID: PMC11330976 DOI: 10.1038/s41540-024-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma is the most common and deadliest brain tumour in adults, with a median survival of 15 months under the current standard of care. Immunotherapies like immune checkpoint inhibitors and oncolytic viruses have been extensively studied to improve this endpoint. However, most thus far have failed. To improve the efficacy of immunotherapies to treat glioblastoma, new single-cell imaging modalities like imaging mass cytometry can be leveraged and integrated with computational models. This enables a better understanding of the tumour microenvironment and its role in treatment success or failure in this hard-to-treat tumour. Here, we implemented an agent-based model that allows for spatial predictions of combination chemotherapy, oncolytic virus, and immune checkpoint inhibitors against glioblastoma. We initialised our model with patient imaging mass cytometry data to predict patient-specific responses and found that oncolytic viruses drive combination treatment responses determined by intratumoral cell density. We found that tumours with higher tumour cell density responded better to treatment. When fixing the number of cancer cells, treatment efficacy was shown to be a function of CD4 + T cell and, to a lesser extent, of macrophage counts. Critically, our simulations show that care must be put into the integration of spatial data and agent-based models to effectively capture intratumoral dynamics. Together, this study emphasizes the use of predictive spatial modelling to better understand cancer immunotherapy treatment dynamics, while highlighting key factors to consider during model design and implementation.
Collapse
Affiliation(s)
- Blanche Mongeon
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | | | - Anudeep Surendran
- Center for Advanced Systems Understanding, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada.
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Deepa Maheshvare M, Charaborty R, Haldar S, Raha S, Pal D. Kiphynet: an online network simulation tool connecting cellular kinetics and physiological transport. Metabolomics 2024; 20:94. [PMID: 39110256 DOI: 10.1007/s11306-024-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human metabolism is sustained by functional networks that operate at diverse scales. Capturing local and global dynamics in the human body by hierarchically bridging multi-scale functional networks is a major challenge in physiological modeling. OBJECTIVES To develop an interactive, user-friendly web application that facilitates the simulation and visualization of advection-dispersion transport in three-dimensional (3D) microvascular networks, biochemical exchange, and metabolic reactions in the tissue layer surrounding the vasculature. METHODS To help modelers combine and simulate biochemical processes occurring at multiple scales, KiPhyNet deploys our discrete graph-based modeling framework that bridges functional networks existing at diverse scales. KiPhyNet is implemented in Python based on Apache web server using MATLAB as the simulator engine. KiPhyNet provides the functionality to assimilate multi-omics data from clinical and experimental studies as well as vascular data from imaging studies to investigate the role of structural changes in vascular topology on the functional response of the tissue. RESULTS With the network topology, its biophysical attributes, values of initial and boundary conditions, parameterized kinetic constants, biochemical species-specific transport properties such as diffusivity as inputs, a user can use our application to simulate and view the simulation results. The results of steady-state velocity and pressure fields and dynamic concentration fields can be interactively examined. CONCLUSION KiPhyNet provides barrier-free access to perform time-course simulation experiments by building multi-scale models of microvascular networks in physiology, using a discrete modeling framework. KiPhyNet is freely accessible at http://pallab.cds.iisc.ac.in/kiphynet/ and the documentation is available at https://deepamahm.github.io/kiphynet_docs/ .
Collapse
Affiliation(s)
- M Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Rohit Charaborty
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Subhraneel Haldar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
22
|
Chotai M, Wei X, Messer PW. Signatures of selective sweeps in continuous-space populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605365. [PMID: 39091822 PMCID: PMC11291165 DOI: 10.1101/2024.07.26.605365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Selective sweeps describe the process by which an adaptive mutation arises and rapidly fixes in the population, thereby removing genetic variation in its genomic vicinity. The expected signatures of selective sweeps are relatively well understood in panmictic population models, yet natural populations often extend across larger geographic ranges where individuals are more likely to mate with those born nearby. To investigate how such spatial population structure can affect sweep dynamics and signatures, we simulated selective sweeps in populations inhabiting a two-dimensional continuous landscape. The maximum dispersal distance of offspring from their parents can be varied in our simulations from an essentially panmictic population to scenarios with increasingly limited dispersal. We find that in low-dispersal populations, adaptive mutations spread more slowly than in panmictic ones, while recombination becomes less effective at breaking up genetic linkage around the sweep locus. Together, these factors result in a trough of reduced genetic diversity around the sweep locus that looks very similar across dispersal rates. We also find that the site frequency spectrum around hard sweeps in low-dispersal populations becomes enriched for intermediate-frequency variants, making these sweeps appear softer than they are. Furthermore, haplotype heterozygosity at the sweep locus tends to be elevated in low-dispersal scenarios as compared to panmixia, contrary to what we observe in neutral scenarios without sweeps. The haplotype patterns generated by these hard sweeps in low-dispersal populations can resemble soft sweeps from standing genetic variation that arose from substantially older alleles. Our results highlight the need for better accounting for spatial population structure when making inferences about selective sweeps.
Collapse
Affiliation(s)
- Meera Chotai
- Department of Computational Biology, Cornell University
| | - Xinzhu Wei
- Department of Computational Biology, Cornell University
| | | |
Collapse
|
23
|
Singh D, Paquin D. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6659-6693. [PMID: 39176414 DOI: 10.3934/mbe.2024292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Tumor growth dynamics serve as a critical aspect of understanding cancer progression and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico approach to understanding tumor behavior computationally provides an efficient, cost-effective alternative to wet-lab examinations and are adaptable to different environmental conditions, time scales, and unique patient parameters. As a result, this paper explored modeling of free tumor growth in cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors like predictive power and high-resolution simulation competed against drawbacks like simulation load and parameter feasibility in these models. Understanding tumor behavior in different scenarios and contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.
Collapse
Affiliation(s)
- Dashmi Singh
- Stanford University Online High School, 415 Broadway Academy Hall, Floor 2, 8853,415 Broadway, Redwood City, CA 94063, USA
| | - Dana Paquin
- Stanford University Online High School, 415 Broadway Academy Hall, Floor 2, 8853,415 Broadway, Redwood City, CA 94063, USA
| |
Collapse
|
24
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Amiri F, Benson JD. A three-dimensional lattice-free agent-based model of intracellular ice formation and propagation and intercellular mechanics in liver tissues. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231337. [PMID: 39021779 PMCID: PMC11252675 DOI: 10.1098/rsos.231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/20/2024]
Abstract
A successful cryopreservation of tissues and organs is crucial for medical procedures and drug development acceleration. However, there are only a few instances of successful tissue cryopreservation. One of the main obstacles to successful cryopreservation is intracellular ice damage. Understanding how ice spreads can accelerate protocol development and enable model-based decision-making. Previous models of intracellular ice formation in individual cells have been extended to one-cell-wide arrays to establish the theory of intercellular ice propagation in tissues. The current lattice-based ice propagation models do not account for intercellular forces resulting from cell solidification, which could lead to mechanical disruption of tissue structures during freezing. Moreover, these models have not been expanded to include more realistic tissue architectures. In this article, we discuss the development and validation of a stochastic model for the formation and propagation of ice in small tissues using lattice-free agent-based model. We have improved the existing model by incorporating the mechanical effects of water crystallization within cells. Using information from previous research, we have also created a new model that accounts for ice growth in tissue slabs, spheroids and hepatocyte discs. Our model demonstrates that individual cell freezing can have mechanical consequences and is consistent with earlier findings.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
27
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. ARXIV 2024:arXiv:2406.18371v1. [PMID: 38979487 PMCID: PMC11230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms - coupled with a graphical interface - is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to easily construct such models, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as a Supplementary Material and all models are provided at: https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université F-75005, Paris, France
- INSERM, U1138, F-75005, Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| |
Collapse
|
28
|
Vibishan B, B V H, Dey S. A resource-based mechanistic framework for castration-resistant prostate cancer (CRPC). J Theor Biol 2024; 587:111806. [PMID: 38574968 DOI: 10.1016/j.jtbi.2024.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Cancer therapy often leads to the selective elimination of drug-sensitive cells from the tumour. This can favour the growth of cells resistant to the therapeutic agent, ultimately causing a tumour relapse. Castration-resistant prostate cancer (CRPC) is a well-characterised instance of this phenomenon. In CRPC, after systemic androgen deprivation therapy (ADT), a subset of drug-resistant cancer cells autonomously produce testosterone, thus enabling tumour regrowth. A previous theoretical study has shown that such a tumour relapse can be delayed by inhibiting the growth of drug-resistant cells using biotic competition from drug-sensitive cells. In this context, the centrality of resource dynamics to intra-tumour competition in the CRPC system indicates clear scope for the construction of theoretical models that can explicitly incorporate the underlying mechanisms of tumour ecology. In the current study, we use a modified logistic framework to model cell-cell interactions in terms of the production and consumption of resources. Our results show that steady state composition of CRPC can be understood as a composite function of the availability and utilisation efficiency of two resources-oxygen and testosterone. In particular, we show that the effect of changing resource availability or use efficiency is conditioned by their general abundance regimes. Testosterone typically functions in trace amounts and thus affects steady state behaviour of the CRPC system differently from oxygen, which is usually available at higher levels. Our data thus indicate that explicit consideration of resource dynamics can produce novel and useful mechanistic understanding of CRPC. Furthermore, such a modelling approach also incorporates variables into the system's description that can be directly measured in a clinical context. This is therefore a promising avenue of research in cancer ecology that could lead to therapeutic approaches that are more clearly rooted in the biology of CRPC.
Collapse
Affiliation(s)
- B Vibishan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India.
| | - Harshavardhan B V
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India; IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Sutirth Dey
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India.
| |
Collapse
|
29
|
Heiland R, Bergman D, Lyons B, Waldow G, Cass J, Lima da Rocha H, Ruscone M, Noël V, Macklin P. PhysiCell Studio: a graphical tool to make agent-based modeling more accessible. GIGABYTE 2024; 2024:gigabyte128. [PMID: 38948511 PMCID: PMC11211762 DOI: 10.46471/gigabyte.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
Defining a multicellular model can be challenging. There may be hundreds of parameters that specify the attributes and behaviors of objects. In the best case, the model will be defined using some format specification - a markup language - that will provide easy model sharing (and a minimal step toward reproducibility). PhysiCell is an open-source, physics-based multicellular simulation framework with an active and growing user community. It uses XML to define a model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell Studio is a tool to make this task easier. It provides a GUI that allows editing the XML model definition, including the creation and deletion of fundamental objects: cell types and substrates in the microenvironment. It also lets users build their model by defining initial conditions and biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over multiple workshops and academic courses in recent years, which has led to many improvements. There is both a desktop and cloud version. Its design and development has benefited from an active undergraduate and graduate research program. Like PhysiCell, the Studio is open-source software and contributions from the community are encouraged.
Collapse
Affiliation(s)
- Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Daniel Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Blair Lyons
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | - Julie Cass
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Heber Lima da Rocha
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
30
|
Iqbal S, Kamiński M. Review Study on Mechanical Properties of Cellular Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2682. [PMID: 38893947 PMCID: PMC11173958 DOI: 10.3390/ma17112682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Cellular materials are fundamental elements in civil engineering, known for their porous nature and lightweight composition. However, the complexity of its microstructure and the mechanisms that control its behavior presents ongoing challenges. This comprehensive review aims to confront these uncertainties head-on, delving into the multifaceted field of cellular materials. It highlights the key role played by numerical and mathematical analysis in revealing the mysterious elasticity of these structures. Furthermore, the review covers a range of topics, from the simulation of manufacturing processes to the complex relationships between microstructure and mechanical properties. This review provides a panoramic view of the field by traversing various numerical and mathematical analysis methods. Furthermore, it reveals cutting-edge theoretical frameworks that promise to redefine our understanding of cellular solids. By providing these contemporary insights, this study not only points the way for future research but also illuminates pathways to practical applications in civil and materials engineering.
Collapse
Affiliation(s)
| | - Marcin Kamiński
- Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 93-590 Lodz, Poland;
| |
Collapse
|
31
|
Luque LM, Carlevaro CM, Rodriguez-Lomba E, Lomba E. In silico study of heterogeneous tumour-derived organoid response to CAR T-cell therapy. Sci Rep 2024; 14:12307. [PMID: 38811838 PMCID: PMC11137006 DOI: 10.1038/s41598-024-63125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for treating cancers. This method consists in modifying the patients' T-cells to directly target antigen-presenting cancer cells. One of the barriers to the development of this type of therapies, is target antigen heterogeneity. It is thought that intratumour heterogeneity is one of the leading determinants of therapeutic resistance and treatment failure. While understanding antigen heterogeneity is important for effective therapeutics, a good therapy strategy could enhance the therapy efficiency. In this work we introduce an agent-based model (ABM), built upon a previous ABM, to rationalise the outcomes of different CAR T-cells therapies strategies over heterogeneous tumour-derived organoids. We found that one dose of CAR T-cell therapy should be expected to reduce the tumour size as well as its growth rate, however it may not be enough to completely eliminate it. Moreover, the amount of free CAR T-cells (i.e. CAR T-cells that did not kill any cancer cell) increases as we increase the dosage, and so does the risk of side effects. We tested different strategies to enhance smaller dosages, such as enhancing the CAR T-cells long-term persistence and multiple dosing. For both approaches an appropriate dosimetry strategy is necessary to produce "effective yet safe" therapeutic results. Moreover, an interesting emergent phenomenon results from the simulations, namely the formation of a shield-like structure of cells with low antigen expression. This shield turns out to protect cells with high antigen expression. Finally we tested a multi-antigen recognition therapy to overcome antigen escape and heterogeneity. Our studies suggest that larger dosages can completely eliminate the organoid, however the multi-antigen recognition increases the risk of side effects. Therefore, an appropriate small dosages dosimetry strategy is necessary to improve the outcomes. Based on our results, it is clear that a proper therapeutic strategy could enhance the therapies outcomes. In that direction, our computational approach provides a framework to model treatment combinations in different scenarios and to explore the characteristics of successful and unsuccessful treatments.
Collapse
Affiliation(s)
- Luciana Melina Luque
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| | - Carlos Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
- Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900, La Plata, Argentina
| | | | - Enrique Lomba
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| |
Collapse
|
32
|
Colyer B, Bak M, Basanta D, Noble R. A seven-step guide to spatial, agent-based modelling of tumour evolution. Evol Appl 2024; 17:e13687. [PMID: 38707992 PMCID: PMC11064804 DOI: 10.1111/eva.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Spatial agent-based models are frequently used to investigate the evolution of solid tumours subject to localized cell-cell interactions and microenvironmental heterogeneity. As spatial genomic, transcriptomic and proteomic technologies gain traction, spatial computational models are predicted to become ever more necessary for making sense of complex clinical and experimental data sets, for predicting clinical outcomes, and for optimizing treatment strategies. Here we present a non-technical step by step guide to developing such a model from first principles. Stressing the importance of tailoring the model structure to that of the biological system, we describe methods of increasing complexity, from the basic Eden growth model up to off-lattice simulations with diffusible factors. We examine choices that unavoidably arise in model design, such as implementation, parameterization, visualization and reproducibility. Each topic is illustrated with examples drawn from recent research studies and state of the art modelling platforms. We emphasize the benefits of simpler models that aim to match the complexity of the phenomena of interest, rather than that of the entire biological system. Our guide is aimed at both aspiring modellers and other biologists and oncologists who wish to understand the assumptions and limitations of the models on which major cancer studies now so often depend.
Collapse
Affiliation(s)
- Blair Colyer
- Department of MathematicsCity, University of LondonLondonUK
| | - Maciej Bak
- Department of MathematicsCity, University of LondonLondonUK
| | - David Basanta
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Robert Noble
- Department of MathematicsCity, University of LondonLondonUK
| |
Collapse
|
33
|
Simpson MJ, Murphy KM, McCue SW, Buenzli PR. Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240126. [PMID: 39076824 PMCID: PMC11286127 DOI: 10.1098/rsos.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 07/31/2024]
Abstract
Mathematical models describing the spatial spreading and invasion of populations of biological cells are often developed in a continuum modelling framework using reaction-diffusion equations. While continuum models based on linear diffusion are routinely employed and known to capture key experimental observations, linear diffusion fails to predict well-defined sharp fronts that are often observed experimentally. This observation has motivated the use of nonlinear degenerate diffusion; however, these nonlinear models and the associated parameters lack a clear biological motivation and interpretation. Here, we take a different approach by developing a stochastic discrete lattice-based model incorporating biologically inspired mechanisms and then deriving the reaction-diffusion continuum limit. Inspired by experimental observations, agents in the simulation deposit extracellular material, which we call a substrate, locally onto the lattice, and the motility of agents is taken to be proportional to the substrate density. Discrete simulations that mimic a two-dimensional circular barrier assay illustrate how the discrete model supports both smooth and sharp-fronted density profiles depending on the rate of substrate deposition. Coarse-graining the discrete model leads to a novel partial differential equation (PDE) model whose solution accurately approximates averaged data from the discrete model. The new discrete model and PDE approximation provide a simple, biologically motivated framework for modelling the spreading, growth and invasion of cell populations with well-defined sharp fronts. Open-source Julia code to replicate all results in this work is available on GitHub.
Collapse
Affiliation(s)
- Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Keeley M. Murphy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott W. McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pascal R. Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Yakovlev EV, Simkin IV, Shirokova AA, Kolotieva NA, Novikova SV, Nasyrov AD, Denisenko IR, Gursky KD, Shishkov IN, Narzaeva DE, Salmina AB, Yurchenko SO, Kryuchkov NP. Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy. Sci Rep 2024; 14:9846. [PMID: 38684715 PMCID: PMC11059356 DOI: 10.1038/s41598-024-59773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| | - Ivan V Simkin
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Anastasiya A Shirokova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nataliya A Kolotieva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Svetlana V Novikova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Artur D Nasyrov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ilya R Denisenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Konstantin D Gursky
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ivan N Shishkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Diana E Narzaeva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Alla B Salmina
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Stanislav O Yurchenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nikita P Kryuchkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| |
Collapse
|
35
|
Radunskaya A, Sack J. Kill rates by immune cells: Ratio-dependent, or mass action? J Theor Biol 2024; 582:111748. [PMID: 38336242 DOI: 10.1016/j.jtbi.2024.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
We describe a cell-based fixed-lattice model to simulate immune cell and tumor cell interaction involving MHC recognition, and FasL vs perforin lysis. We are motivated by open questions about the mechanisms behind observed kill rates of tumor cells by different types of effector cells. These mechanisms play a big role in the effectiveness of many cancer immunotherapies. The model is a stochastic cellular automaton on a hexagonal grid.
Collapse
Affiliation(s)
| | - Joshua Sack
- California State University, Long Beach, United States of America.
| |
Collapse
|
36
|
Matzko RO, Konur S. BioNexusSentinel: a visual tool for bioregulatory network and cytohistological RNA-seq genetic expression profiling within the context of multicellular simulation research using ChatGPT-augmented software engineering. BIOINFORMATICS ADVANCES 2024; 4:vbae046. [PMID: 38571784 PMCID: PMC10990683 DOI: 10.1093/bioadv/vbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Summary Motivated by the need to parameterize ongoing multicellular simulation research, this paper documents the culmination of a ChatGPT augmented software engineering cycle resulting in an integrated visual platform for efficient cytohistological RNA-seq and bioregulatory network exploration. As contrasted to other systems and synthetic biology tools, BioNexusSentinel was developed de novo to uniquely combine these features. Reactome served as the primary source of remotely accessible biological models, accessible using BioNexusSentinel's novel search engine and REST API requests. The innovative, feature-rich gene expression profiler component was developed to enhance the exploratory experience for the researcher, culminating in the cytohistological RNA-seq explorer based on Human Protein Atlas data. A novel cytohistological classifier would be integrated via pre-processed analysis of the RNA-seq data via R statistical language, providing for useful analytical functionality and good performance for the end-user. Implications of the work span prospects for model orthogonality evaluations, gap identification in network modelling, prototyped automatic kinetics parameterization, and downstream simulation and cellular biological state analysis. This unique computational biology software engineering collaboration with generative natural language processing artificial intelligence was shown to enhance worker productivity, with evident benefits in terms of accelerating coding and machine-human intelligence transfer. Availability and implementation BioNexusSentinel project releases, with corresponding data and installation instructions, are available at https://github.com/RichardMatzko/BioNexusSentinel.
Collapse
Affiliation(s)
- Richard Oliver Matzko
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| | - Savas Konur
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| |
Collapse
|
37
|
Bergman DR, Wang Y, Trujillo E, Fernald AA, Li L, Pearson AT, Sweis RF, Jackson TL. Dysregulated FGFR3 signaling alters the immune landscape in bladder cancer and presents therapeutic possibilities in an agent-based model. Front Immunol 2024; 15:1358019. [PMID: 38515743 PMCID: PMC10954792 DOI: 10.3389/fimmu.2024.1358019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer is an increasingly prevalent global disease that continues to cause morbidity and mortality despite recent advances in treatment. Immune checkpoint inhibitors (ICI) and fibroblast growth factor receptor (FGFR)-targeted therapeutics have had modest success in bladder cancer when used as monotherapy. Emerging data suggests that the combination of these two therapies could lead to improved clinical outcomes, but the optimal strategy for combining these agents remains uncertain. Mathematical models, specifically agent-based models (ABMs), have shown recent successes in uncovering the multiscale dynamics that shape the trajectory of cancer. They have enabled the optimization of treatment methods and the identification of novel therapeutic strategies. To assess the combined effects of anti-PD-1 and anti-FGFR3 small molecule inhibitors (SMI) on tumor growth and the immune response, we built an ABM that captures key facets of tumor heterogeneity and CD8+ T cell phenotypes, their spatial interactions, and their response to therapeutic pressures. Our model quantifies how tumor antigenicity and FGFR3 activating mutations impact disease trajectory and response to anti-PD-1 antibodies and anti-FGFR3 SMI. We find that even a small population of weakly antigenic tumor cells bearing an FGFR3 mutation can render the tumor resistant to combination therapy. However, highly antigenic tumors can overcome therapeutic resistance mediated by FGFR3 mutation. The optimal therapy depends on the strength of the FGFR3 signaling pathway. Under certain conditions, ICI alone is optimal; in others, ICI followed by anti-FGFR3 therapy is best. These results indicate the need to quantify FGFR3 signaling and the fitness advantage conferred on bladder cancer cells harboring this mutation. This ABM approach may enable rationally designed treatment plans to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniel R. Bergman
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Yixuan Wang
- Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
| | - Erica Trujillo
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Anthony A. Fernald
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Lie Li
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | | |
Collapse
|
38
|
Cain JY, Evarts JI, Yu JS, Bagheri N. Incorporating temporal information during feature engineering bolsters emulation of spatio-temporal emergence. Bioinformatics 2024; 40:btae131. [PMID: 38444088 PMCID: PMC10957516 DOI: 10.1093/bioinformatics/btae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/08/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
MOTIVATION Emergent biological dynamics derive from the evolution of lower-level spatial and temporal processes. A long-standing challenge for scientists and engineers is identifying simple low-level rules that give rise to complex higher-level dynamics. High-resolution biological data acquisition enables this identification and has evolved at a rapid pace for both experimental and computational approaches. Simultaneously harnessing the resolution and managing the expense of emerging technologies-e.g. live cell imaging, scRNAseq, agent-based models-requires a deeper understanding of how spatial and temporal axes impact biological systems. Effective emulation is a promising solution to manage the expense of increasingly complex high-resolution computational models. In this research, we focus on the emulation of a tumor microenvironment agent-based model to examine the relationship between spatial and temporal environment features, and emergent tumor properties. RESULTS Despite significant feature engineering, we find limited predictive capacity of tumor properties from initial system representations. However, incorporating temporal information derived from intermediate simulation states dramatically improves the predictive performance of machine learning models. We train a deep-learning emulator on intermediate simulation states and observe promising enhancements over emulators trained solely on initial conditions. Our results underscore the importance of incorporating temporal information in the evaluation of spatio-temporal emergent behavior. Nevertheless, the emulators exhibit inconsistent performance, suggesting that the underlying model characterizes unique cell populations dynamics that are not easily replaced. AVAILABILITY AND IMPLEMENTATION All source codes for the agent-based model, emulation, and analyses are publicly available at the corresponding DOIs: 10.5281/zenodo.10622155, 10.5281/zenodo.10611675, 10.5281/zenodo.10621244, respectively.
Collapse
Affiliation(s)
- Jason Y Cain
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Jacob I Evarts
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Jessica S Yu
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Neda Bagheri
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
39
|
Jayathilake PG, Victori P, Pavillet CE, Lee CH, Voukantsis D, Miar A, Arora A, Harris AL, Morten KJ, Buffa FM. Metabolic symbiosis between oxygenated and hypoxic tumour cells: An agent-based modelling study. PLoS Comput Biol 2024; 20:e1011944. [PMID: 38489376 DOI: 10.1371/journal.pcbi.1011944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2024] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.
Collapse
Affiliation(s)
| | - Pedro Victori
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Clara E Pavillet
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Computing Sciences and Institute for Data Science and Analytics, Bocconi University, Milan, Italy
| | - Chang Heon Lee
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Dimitrios Voukantsis
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ana Miar
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Anjali Arora
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Computing Sciences and Institute for Data Science and Analytics, Bocconi University, Milan, Italy
| |
Collapse
|
40
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
41
|
Wang X, Jenner AL, Salomone R, Warne DJ, Drovandi C. Calibration of agent based models for monophasic and biphasic tumour growth using approximate Bayesian computation. J Math Biol 2024; 88:28. [PMID: 38358410 PMCID: PMC10869399 DOI: 10.1007/s00285-024-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Agent-based models (ABMs) are readily used to capture the stochasticity in tumour evolution; however, these models are often challenging to validate with experimental measurements due to model complexity. The Voronoi cell-based model (VCBM) is an off-lattice agent-based model that captures individual cell shapes using a Voronoi tessellation and mimics the evolution of cancer cell proliferation and movement. Evidence suggests tumours can exhibit biphasic growth in vivo. To account for this phenomena, we extend the VCBM to capture the existence of two distinct growth phases. Prior work primarily focused on point estimation for the parameters without consideration of estimating uncertainty. In this paper, approximate Bayesian computation is employed to calibrate the model to in vivo measurements of breast, ovarian and pancreatic cancer. Our approach involves estimating the distribution of parameters that govern cancer cell proliferation and recovering outputs that match the experimental data. Our results show that the VCBM, and its biphasic extension, provides insight into tumour growth and quantifies uncertainty in the switching time between the two phases of the biphasic growth model. We find this approach enables precise estimates for the time taken for a daughter cell to become a mature cell. This allows us to propose future refinements to the model to improve accuracy, whilst also making conclusions about the differences in cancer cell characteristics.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert Salomone
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - David J Warne
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christopher Drovandi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Niarakis A, Ostaszewski M, Mazein A, Kuperstein I, Kutmon M, Gillespie ME, Funahashi A, Acencio ML, Hemedan A, Aichem M, Klein K, Czauderna T, Burtscher F, Yamada TG, Hiki Y, Hiroi NF, Hu F, Pham N, Ehrhart F, Willighagen EL, Valdeolivas A, Dugourd A, Messina F, Esteban-Medina M, Peña-Chilet M, Rian K, Soliman S, Aghamiri SS, Puniya BL, Naldi A, Helikar T, Singh V, Fernández MF, Bermudez V, Tsirvouli E, Montagud A, Noël V, Ponce-de-Leon M, Maier D, Bauch A, Gyori BM, Bachman JA, Luna A, Piñero J, Furlong LI, Balaur I, Rougny A, Jarosz Y, Overall RW, Phair R, Perfetto L, Matthews L, Rex DAB, Orlic-Milacic M, Gomez LCM, De Meulder B, Ravel JM, Jassal B, Satagopam V, Wu G, Golebiewski M, Gawron P, Calzone L, Beckmann JS, Evelo CT, D’Eustachio P, Schreiber F, Saez-Rodriguez J, Dopazo J, Kuiper M, Valencia A, Wolkenhauer O, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol 2024; 14:1282859. [PMID: 38414974 PMCID: PMC10897000 DOI: 10.3389/fimmu.2023.1282859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Collapse
Affiliation(s)
- Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Inna Kuperstein
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Marc E. Gillespie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- St. John’s University, Queens, NY, United States
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Aichem
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Tobias Czauderna
- Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Felicia Burtscher
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yusuke Hiki
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Kanagawa, Japan
- Keio University School of Medicine, Tokyo, Japan
| | - Finterly Hu
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Nhung Pham
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Egon L. Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases’ Lazzaro Spallanzani’ - IRCCS, Rome, Italy
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Kinza Rian
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
| | - Sylvain Soliman
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aurélien Naldi
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Vidisha Singh
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - Genhotel, Univ Evry, Evry, France
| | | | - Viviam Bermudez
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
| | - Vincent Noël
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | | | | | - Benjamin M. Gyori
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - John A. Bachman
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, United States
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine, Bethesda, MD, United States
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janet Piñero
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura I. Furlong
- Medbioinformatics Solutions SL, Barcelona, Spain
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Aomi, Tokyo, Japan
- Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), AIST, Aomi, Tokyo, Japan
| | - Yohan Jarosz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rupert W. Overall
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Robert Phair
- Integrative Bioinformatics, Inc., Mountain View, CA, United States
| | - Livia Perfetto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Lisa Matthews
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | | | | | - Luis Cristobal Monraz Gomez
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Jean Marie Ravel
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Bijay Jassal
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Guanming Wu
- Oregon Health Sciences University, Portland, OR, United States
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurence Calzone
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Peter D’Eustachio
- Department of Biochemistry & Molecular Pharmacology, NYU. Langone Medical Center, New York, NY, United States
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Victoria, VIC, Australia
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Joaquin Dopazo
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, Spain
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC.), Barcelona, Spain
- I.C.R.E.A., Pg. Lluís Companys 23, Barcelona, Spain
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany
- Leibniz Institute for Food Systems Biology, at the Technical University Munich, Munich, Germany
| | | | - Emmanuel Barillot
- Institut Curie, P.S.L. Research University, Paris, France
- INSERM, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France
| | | | - Rudi Balling
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | |
Collapse
|
43
|
Leschiera E, Al-Hity G, Flint MS, Venkataraman C, Lorenzi T, Almeida L, Audebert C. An individual-based model to explore the impact of psychological stress on immune infiltration into tumour spheroids. Phys Biol 2024; 21:026003. [PMID: 38266283 DOI: 10.1088/1478-3975/ad221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In recentin vitroexperiments on co-culture between breast tumour spheroids and activated immune cells, it was observed that the introduction of the stress hormone cortisol resulted in a decreased immune cell infiltration into the spheroids. Moreover, the presence of cortisol deregulated the normal levels of the pro- and anti-inflammatory cytokines IFN-γand IL-10. We present an individual-based model to explore the interaction dynamics between tumour and immune cells under psychological stress conditions. With our model, we explore the processes underlying the emergence of different levels of immune infiltration, with particular focus on the biological mechanisms regulated by IFN-γand IL-10. The set-up of numerical simulations is defined to mimic the scenarios considered in the experimental study. Similarly to the experimental quantitative analysis, we compute a score that quantifies the level of immune cell infiltration into the tumour. The results of numerical simulations indicate that the motility of immune cells, their capability to infiltrate through tumour cells, their growth rate and the interplay between these cell parameters can affect the level of immune cell infiltration in different ways. Ultimately, numerical simulations of this model support a deeper understanding of the impact of biological stress-induced mechanisms on immune infiltration.
Collapse
Affiliation(s)
- Emma Leschiera
- Léonard de Vinci Pôle Universitaire, Research Center, 92 916 Paris, La Défense, France
- Univ. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France
| | - Gheed Al-Hity
- School of Applied Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Melanie S Flint
- School of Applied Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
| | - Chandrasekhar Venkataraman
- School of Mathematical and Physical Sciences, University of Sussex, Department of Mathematics, Falmer, Brighton BN1 9QH, United Kingdom
| | - Tommaso Lorenzi
- Department of Mathematical Sciences 'G. L. Lagrange', Politecnico di Torino, 10129 Torino, Italy
| | - Luis Almeida
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, 75005 Paris, France
| | - Chloe Audebert
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, 75005 Paris, France
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, 75005 Paris, France
| |
Collapse
|
44
|
Eschweiler D, Yilmaz R, Baumann M, Laube I, Roy R, Jose A, Brückner D, Stegmaier J. Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets. PLoS Comput Biol 2024; 20:e1011890. [PMID: 38377165 PMCID: PMC10906858 DOI: 10.1371/journal.pcbi.1011890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Recent advances in computer vision have led to significant progress in the generation of realistic image data, with denoising diffusion probabilistic models proving to be a particularly effective method. In this study, we demonstrate that diffusion models can effectively generate fully-annotated microscopy image data sets through an unsupervised and intuitive approach, using rough sketches of desired structures as the starting point. The proposed pipeline helps to reduce the reliance on manual annotations when training deep learning-based segmentation approaches and enables the segmentation of diverse datasets without the need for human annotations. We demonstrate that segmentation models trained with a small set of synthetic image data reach accuracy levels comparable to those of generalist models trained with a large and diverse collection of manually annotated image data, thereby offering a streamlined and specialized application of segmentation models.
Collapse
Affiliation(s)
- Dennis Eschweiler
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rüveyda Yilmaz
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Matisse Baumann
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Ina Laube
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Rijo Roy
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Abin Jose
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Daniel Brückner
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| | - Johannes Stegmaier
- RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen, Germany
| |
Collapse
|
45
|
Cockx BJR, Foster T, Clegg RJ, Alden K, Arya S, Stekel DJ, Smets BF, Kreft JU. Is it selfish to be filamentous in biofilms? Individual-based modeling links microbial growth strategies with morphology using the new and modular iDynoMiCS 2.0. PLoS Comput Biol 2024; 20:e1011303. [PMID: 38422165 PMCID: PMC10947719 DOI: 10.1371/journal.pcbi.1011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/18/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Microbial communities are found in all habitable environments and often occur in assemblages with self-organized spatial structures developing over time. This complexity can only be understood, predicted, and managed by combining experiments with mathematical modeling. Individual-based models are particularly suited if individual heterogeneity, local interactions, and adaptive behavior are of interest. Here we present the completely overhauled software platform, the individual-based Dynamics of Microbial Communities Simulator, iDynoMiCS 2.0, which enables researchers to specify a range of different models without having to program. Key new features and improvements are: (1) Substantially enhanced ease of use (graphical user interface, editor for model specification, unit conversions, data analysis and visualization and more). (2) Increased performance and scalability enabling simulations of up to 10 million agents in 3D biofilms. (3) Kinetics can be specified with any arithmetic function. (4) Agent properties can be assembled from orthogonal modules for pick and mix flexibility. (5) Force-based mechanical interaction framework enabling attractive forces and non-spherical agent morphologies as an alternative to the shoving algorithm. The new iDynoMiCS 2.0 has undergone intensive testing, from unit tests to a suite of increasingly complex numerical tests and the standard Benchmark 3 based on nitrifying biofilms. A second test case was based on the "biofilms promote altruism" study previously implemented in BacSim because competition outcomes are highly sensitive to the developing spatial structures due to positive feedback between cooperative individuals. We extended this case study by adding morphology to find that (i) filamentous bacteria outcompete spherical bacteria regardless of growth strategy and (ii) non-cooperating filaments outcompete cooperating filaments because filaments can escape the stronger competition between themselves. In conclusion, the new substantially improved iDynoMiCS 2.0 joins a growing number of platforms for individual-based modeling of microbial communities with specific advantages and disadvantages that we discuss, giving users a wider choice.
Collapse
Affiliation(s)
- Bastiaan J. R. Cockx
- Department of Environmental and Resource Engineering, Technical University of Demark, DTU Lyngby campus, Kgs. Lyngby, Denmark
| | - Tim Foster
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robert J. Clegg
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kieran Alden
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sankalp Arya
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Barth F. Smets
- Department of Environmental and Resource Engineering, Technical University of Demark, DTU Lyngby campus, Kgs. Lyngby, Denmark
| | - Jan-Ulrich Kreft
- Centre for Computational Biology & Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
46
|
Michael CT, Almohri SA, Linderman JJ, Kirschner DE. A framework for multi-scale intervention modeling: virtual cohorts, virtual clinical trials, and model-to-model comparisons. FRONTIERS IN SYSTEMS BIOLOGY 2024; 3:1283341. [PMID: 39310676 PMCID: PMC11415237 DOI: 10.3389/fsysb.2023.1283341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Computational models of disease progression have been constructed for a myriad of pathologies. Typically, the conceptual implementation for pathology-related in-silico intervention studies has been ad-hoc and similar in design to experimental studies. We introduce a multi-scale interventional design (MID) framework toward two key goals: tracking of disease dynamics from within-body to patient to population scale; and tracking impact(s) of interventions across these same spatial scales. Our MID framework prioritizes investigation of impact on individual patients within virtual pre-clinical trials, instead of replicating the design of experimental studies. We apply a MID framework to develop, organize, and analyze a cohort of virtual patients for the study of tuberculosis (TB) as an example disease. For this study, we use HostSim: our next-generation whole patient-scale computational model of individuals infected with Mycobacterium tuberculosis. HostSim captures infection within lungs by tracking multiple granulomas, together with dynamics occurring with blood and lymph node compartments, the compartments involved during pulmonary TB. We extend HostSim to include a simple drug intervention as an example of our approach and use our MID framework to quantify the impact of treatment at cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and population scales. Sensitivity analyses allow us to determine which features of virtual patients are the strongest predictors of intervention efficacy across scales. These insights allow us to identify patient-heterogeneous mechanisms that drive outcomes across scales.
Collapse
Affiliation(s)
- Christian T. Michael
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sayed Ahmad Almohri
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Denise E. Kirschner
- Department of Microbiology & Immunology, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Zheng H, Harcum SW, Pei J, Xie W. Stochastic biological system-of-systems modelling for iPSC culture. Commun Biol 2024; 7:39. [PMID: 38191636 PMCID: PMC10774284 DOI: 10.1038/s42003-023-05653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Large-scale manufacturing of induced pluripotent stem cells (iPSCs) is essential for cell therapies and regenerative medicines. Yet, iPSCs form large cell aggregates in suspension bioreactors, resulting in insufficient nutrient supply and extra metabolic waste build-up for the cells located at the core. Since subtle changes in micro-environment can lead to a heterogeneous cell population, a novel Biological System-of-Systems (Bio-SoS) framework is proposed to model cell-to-cell interactions, spatial and metabolic heterogeneity, and cell response to micro-environmental variation. Building on stochastic metabolic reaction network, aggregation kinetics, and reaction-diffusion mechanisms, the Bio-SoS model characterizes causal interdependencies at individual cell, aggregate, and cell population levels. It has a modular design that enables data integration and improves predictions for different monolayer and aggregate culture processes. In addition, a variance decomposition analysis is derived to quantify the impact of factors (i.e., aggregate size) on cell product health and quality heterogeneity.
Collapse
Affiliation(s)
- Hua Zheng
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Jinxiang Pei
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Wei Xie
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Wiesner D, Suk J, Dummer S, Nečasová T, Ulman V, Svoboda D, Wolterink JM. Generative modeling of living cells with SO(3)-equivariant implicit neural representations. Med Image Anal 2024; 91:102991. [PMID: 37839341 DOI: 10.1016/j.media.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Data-driven cell tracking and segmentation methods in biomedical imaging require diverse and information-rich training data. In cases where the number of training samples is limited, synthetic computer-generated data sets can be used to improve these methods. This requires the synthesis of cell shapes as well as corresponding microscopy images using generative models. To synthesize realistic living cell shapes, the shape representation used by the generative model should be able to accurately represent fine details and changes in topology, which are common in cells. These requirements are not met by 3D voxel masks, which are restricted in resolution, and polygon meshes, which do not easily model processes like cell growth and mitosis. In this work, we propose to represent living cell shapes as level sets of signed distance functions (SDFs) which are estimated by neural networks. We optimize a fully-connected neural network to provide an implicit representation of the SDF value at any point in a 3D+time domain, conditioned on a learned latent code that is disentangled from the rotation of the cell shape. We demonstrate the effectiveness of this approach on cells that exhibit rapid deformations (Platynereis dumerilii), cells that grow and divide (C. elegans), and cells that have growing and branching filopodial protrusions (A549 human lung carcinoma cells). A quantitative evaluation using shape features and Dice similarity coefficients of real and synthetic cell shapes shows that our model can generate topologically plausible complex cell shapes in 3D+time with high similarity to real living cell shapes. Finally, we show how microscopy images of living cells that correspond to our generated cell shapes can be synthesized using an image-to-image model.
Collapse
Affiliation(s)
- David Wiesner
- Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic.
| | - Julian Suk
- Department of Applied Mathematics & Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Sven Dummer
- Department of Applied Mathematics & Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Tereza Nečasová
- Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Vladimír Ulman
- IT4Innovations, VSB - Technical University of Ostrava, Ostrava, Czech Republic
| | - David Svoboda
- Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic
| | - Jelmer M Wolterink
- Department of Applied Mathematics & Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
49
|
Heiland R, Bergman D, Lyons B, Cass J, Rocha HL, Ruscone M, Noël V, Macklin P. PhysiCell Studio: a graphical tool to make agent-based modeling more accessible. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563727. [PMID: 37961612 PMCID: PMC10634793 DOI: 10.1101/2023.10.24.563727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Defining a multicellular model can be challenging. There may be hundreds of parameters that specify the attributes and behaviors of objects. Hopefully the model will be defined using some format specification, e.g., a markup language, that will provide easy model sharing (and a minimal step toward reproducibility). PhysiCell is an open source, physics-based multicellular simulation framework with an active and growing user community. It uses XML to define a model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell Studio is a tool to make this task easier. It provides a graphical user interface that allows editing the XML model definition, including the creation and deletion of fundamental objects, e.g., cell types and substrates in the microenvironment. It also lets users build their model by defining initial conditions and biological rules, run simulations, and view results interactively. PhysiCell Studio has evolved over multiple workshops and academic courses in recent years which has led to many improvements. Its design and development has benefited from an active undergraduate and graduate research program. Like PhysiCell, the Studio is open source software and contributions from the community are encouraged.
Collapse
Affiliation(s)
- Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Daniel Bergman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University. Baltimore, MD USA
- Convergence Institute, Johns Hopkins University. Baltimore, MD USA
| | - Blair Lyons
- Allen Institute for Cell Science, Seattle, WA USA
| | - Julie Cass
- Allen Institute for Cell Science, Seattle, WA USA
| | - Heber L. Rocha
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| | - Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN USA
| |
Collapse
|
50
|
Islam MA, Getz M, Macklin P, Ford Versypt AN. An agent-based modeling approach for lung fibrosis in response to COVID-19. PLoS Comput Biol 2023; 19:e1011741. [PMID: 38127835 PMCID: PMC10769079 DOI: 10.1371/journal.pcbi.1011741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The severity of the COVID-19 pandemic has created an emerging need to investigate the long-term effects of infection on patients. Many individuals are at risk of suffering pulmonary fibrosis due to the pathogenesis of lung injury and impairment in the healing mechanism. Fibroblasts are the central mediators of extracellular matrix (ECM) deposition during tissue regeneration, regulated by anti-inflammatory cytokines including transforming growth factor beta (TGF-β). The TGF-β-dependent accumulation of fibroblasts at the damaged site and excess fibrillar collagen deposition lead to fibrosis. We developed an open-source, multiscale tissue simulator to investigate the role of TGF-β sources in the progression of lung fibrosis after SARS-CoV-2 exposure, intracellular viral replication, infection of epithelial cells, and host immune response. Using the model, we predicted the dynamics of fibroblasts, TGF-β, and collagen deposition for 15 days post-infection in virtual lung tissue. Our results showed variation in collagen area fractions between 2% and 40% depending on the spatial behavior of the sources (stationary or mobile), the rate of activation of TGF-β, and the duration of TGF-β sources. We identified M2 macrophages as primary contributors to higher collagen area fraction. Our simulation results also predicted fibrotic outcomes even with lower collagen area fraction when spatially-localized latent TGF-β sources were active for longer times. We validated our model by comparing simulated dynamics for TGF-β, collagen area fraction, and macrophage cell population with independent experimental data from mouse models. Our results showed that partial removal of TGF-β sources changed the fibrotic patterns; in the presence of persistent TGF-β sources, partial removal of TGF-β from the ECM significantly increased collagen area fraction due to maintenance of chemotactic gradients driving fibroblast movement. The computational findings are consistent with independent experimental and clinical observations of collagen area fractions and cell population dynamics not used in developing the model. These critical insights into the activity of TGF-β sources may find applications in the current clinical trials targeting TGF-β for the resolution of lung fibrosis.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michael Getz
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|