1
|
Jiang Y, Cesta CE, Liu Q, Kingwell E, Stridh P, Shchetynsky K, Olsson T, Kockum I, Stener-Victorin E, Jiang X, Manouchehrinia A. Exploring the relationship between polycystic ovarian syndrome, testosterone, and multiple sclerosis in women: A nationwide cohort study and genome-wide cross-trait analysis. Mult Scler 2024:13524585241292802. [PMID: 39503308 DOI: 10.1177/13524585241292802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND Women have a higher risk of developing multiple sclerosis (MS), potentially due to hormonal factors. Elevated testosterone levels, common in polycystic ovary syndrome (PCOS), might influence MS risk. OBJECTIVE To investigate the relationship between PCOS, as a proxy for elevated testosterone levels, and MS risk through phenotypic and genomic analysis. METHODS Cox regression models analysed the association between PCOS and MS risk. The genome-wide cross-trait analysis examined the genetic architecture. RESULTS In a Swedish cohort of 1,374,529 women, 77 (0.3%) with PCOS and 3,654 (0.3%) without PCOS were diagnosed with MS. After adjusting for birth year and obesity, no association was found between PCOS and MS (HR = 0.91, 95% CI = 0.72-1.15), which was confirmed by Mendelian randomization analysis, where genetically predicted PCOS propensity, sex hormone-binding globulin (SHBG), or testosterone levels did not causally affect MS risk (all p-values > 0.05). By exploring horizontal pleiotropy, we identified shared genetic regions and 19 independent pleiotropic SNPs for SHBG with MS and 11 for testosterone with MS. CONCLUSION We did not find evidence for a causal role of PCOS, as a proxy of elevated testosterone, in reducing the risk of MS in women. The shared genetic loci between testosterone, SHBG, and MS provide biological insights.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolyn E Cesta
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qianwen Liu
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elaine Kingwell
- Research Department of Primary Care & Population Health, University College London, London, UK
| | - Pernilla Stridh
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klementy Shchetynsky
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Chen CY, Cheng CF, Chen PC, Wu CS, Lin MC, Su MH, Chang CYY, Pan YJ, Huang YT, Fan CC, Wang SH. Familial coaggregation and shared genetic influence between major depressive disorder and gynecological diseases. Eur J Epidemiol 2024:10.1007/s10654-024-01166-w. [PMID: 39495462 DOI: 10.1007/s10654-024-01166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The mechanism underlying the co-occurrence of major depressive disorder (MDD) and gynecological diseases remains unclear. This study aimed to investigate the familial co-aggregation and shared genetic loading between MDD and gynecological diseases, namely dysmenorrhea, endometriosis, uterine leiomyomas (UL), and polycystic ovary syndrome (PCOS). Overall, 2,121,632 females born 1970-1999 with parental information were enrolled from the Taiwan National Health Insurance Research Database (NHIRD); 25,142 same-sex twins and 951,779 persons with full-sibling(s) were selected. Genome-wide genotyping data were available for 67,882 unrelated female participants from the Taiwan Biobank linked to the NHIRD. A generalized linear model with a logistic link function was used to examine the associations of individual history, family history in parents/full-siblings/same-sex twins, and polygenic risk scores (PRS) for MDD with the risk of gynecological diseases; generalized estimating equations were used to consider the non-independence of data. Both parents affected with MDD was associated with four gynecological diseases, and its magnitude of association was higher than either affected parent; maternal MDD showed a higher magnitude of association than paternal MDD. Full-siblings of patients with MDD had a higher risk of four gynecological diseases; same-sex twins of patients with MDD had a greater association with dysmenorrhea and PCOS. PRS for MDD was associated with dysmenorrhea and endometriosis. Familial co-aggregation was observed in the co-occurrence of MDD and four gynecological diseases. There exists a shared polygenic liability between MDD and dysmenorrhea and endometriosis. Individuals with MDD-affected relatives or a higher PRS for MDD should be monitored for gynecological diseases.
Collapse
Affiliation(s)
- Cheng-Yun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Hsin Su
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Zhang Y, Jiang X, Song X, Zhang J, Mao W, Chen W, Yuan S, Chen Y, Mu L, Zhao Y. Mendelian randomization and multi-omics approach analyses reveal impaired glucose metabolism and oxidative phosphorylation in visceral adipose tissue of women with polycystic ovary syndrome. Hum Reprod 2024:deae244. [PMID: 39448886 DOI: 10.1093/humrep/deae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
STUDY QUESTION What is the significance of visceral adipose tissue (VAT) in the pathogenesis of polycystic ovary syndrome (PCOS) and its impact on the regulation of metabolic disorders in women with PCOS? SUMMARY ANSWER We revealed a potentially causal relationship between increased genetically predicted VAT and PCOS-related traits, and found that VAT exhibited impaired glucose metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in women with PCOS. WHAT IS KNOWN ALREADY PCOS is a common reproductive endocrine disorder accompanied by many metabolic abnormalities. Adipose tissue is a metabolically active endocrine organ that regulates multiple physiological processes, and VAT has a much stronger association with metabolism than subcutaneous adipose tissue does. STUDY DESIGN, SIZE, DURATION Mendelian randomization (MR) analysis was used to investigate the potential causal association between genetically predicted VAT and the risk of PCOS. Data for MR analysis were extracted from European population cohorts. VAT samples from sixteen PCOS patients and eight control women who underwent laparoscopic surgery were collected for proteomics and targeted metabolomics analyses. PARTICIPANTS/MATERIALS, SETTING, METHODS PCOS was diagnosed according to the 2003 Rotterdam Criteria. The control subjects were women who underwent laparoscopic investigation for infertility or benign indications. Proteomics was performed by TMT labeling and liquid chromatography-tandem mass spectrometry analysis, and targeted metabolomics was performed by ultra-performance liquid chromatography-tandem mass spectrometry analysis. The key differentially expressed proteins (DEPs) were validated by immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE MR analysis revealed a potentially causal relationship between increased genetically predicted VAT and PCOS, as well as related traits, such as polycystic ovaries, total testosterone, bioavailable testosterone, and anti-Müllerian hormone, while a negative relationship was found with sex hormone-binding globulin. Enrichment pathway analysis of DEPs indicated the inhibition of glycolysis and activation of mitochondrial OXPHOS in the VAT of PCOS patients. MR analysis revealed that key DEPs involved in glycolysis and OXPHOS were significantly linked to PCOS and its related traits. Dot blot assay confirmed a significant decrease in glycolysis enzymes PKM2 and HK1, and an increase in mitochondrial Complex I and III subunits, NDUFS3 and UQCR10. Moreover, metabolomics analysis confirmed down-regulated metabolites of energy metabolic pathways, in particular glycolysis. Further analysis of PCOS and control subjects of normal weight revealed that dysregulation of glucose metabolism and OXPHOS in VAT of women with PCOS was independent of obesity. LARGE SCALE DATA The mass spectrometry proteomics data have been deposited to the iProX database (http://www.iprox.org) with the iProX accession: IPX0005774001. LIMITATIONS, REASONS FOR CAUTION There may be an overlap in some exposure and outcome data, which might affect the results in the MR analysis. WIDER IMPLICATIONS OF THE FINDINGS The changes in protein expression of key enzymes affect their activities and disrupt the energy metabolic homeostasis in VAT, providing valuable insight for identifying potential intervention targets of PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Project of China (2021YFC2700402), the National Natural Science Foundation of China (82071608, 82271665), the Key Clinical Projects of Peking University Third Hospital (BYSY2022043), and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-001). All authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yurong Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xintong Jiang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xueling Song
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jiajia Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Weian Mao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Clinical Key Specialty Construction Program, Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Gao X, Zhao H, Shi Q, Zou T, Zhu Y. Exploring the causal pathway from gut microbiota to polycystic ovary syndrome: A network Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40115. [PMID: 39432652 PMCID: PMC11495796 DOI: 10.1097/md.0000000000040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complicated endocrine and metabolic syndrome with unclear pathogenesis. The gut microbiota sheds light on the etiology and pathophysiology of PCOS. We used Mendelian randomization (MR) studies to systematically evaluate the pathological mechanism gut microbiota causally associated with PCOS risk. A network MR analysis was performed to estimate the causal effects of gut microbiota and risk factors on PCOS, as well as the mediation effect of risk factors linking gut microbiota to PCOS. The investigation of side effects for the important gut microbiota was subsequently broadened to include phenotypes by performing Phenowide-MR analysis for a range of diseases. Genus Sellimonas id.14369 were causally associated with reduced PCOS risk (odds ratio [OR] = 0.69, 95% confidence interval [CI]: 0.58-0.84, P = 1.22 × 10-4) after multiple testing correction. And Sellimonas retained consistent causal effect estimates after a series of sensitivity analyses. In addition, we observed an indirect effect of Sellimonas on PCOS through body mass index (BMI) using network MR (b = -0.05, 95% CI: -0.09 to -0.01), with a mediated proportion of 12.82% of the total effect. Further, Phenowide-MR analyses showed that the protective effects of Sellimonas on type 2 diabetes and depression (for type 2 diabetes: OR = 0.95, 95% CI: 0.90-0.99, P = .0366; for depression: OR = 0.99, 95% CI: 0.98-1.00, P = .0210). We summarized that the causal path between gut microbiota and type 2 diabetes are also jointly mediated by BMI. Sellimonas may be a protective factor of PCOS, which can affect the occurrence of PCOS through BMI, supporting future studies on the importance of addressing obesity and metabolic issues in preventing and managing PCOS.
Collapse
Affiliation(s)
- Xueyan Gao
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Huijuan Zhao
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Qingling Shi
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zou
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yidan Zhu
- Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Sun S, Liu Y, Li L, Xiong L, Jiao M, Yang J, Li X, Liu W. Unveiling the shared genetic architecture between testosterone and polycystic ovary syndrome. Sci Rep 2024; 14:23931. [PMID: 39397165 PMCID: PMC11471787 DOI: 10.1038/s41598-024-75816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
Testosterone (T) is a critical predictor of polycystic ovary syndrome (PCOS) but the genetic overlap between T and PCOS has not been established. Here by leveraging genetic datasets from large-scale genome-wide association studies, we assessed the genetic correlation and polygenic overlap between PCOS and three T-related traits using linkage disequilibrium score regression and the bivariate causal mixture model methods. The conjunctional false discovery rate (conjFDR) method was employed to identify shared causal variants. Functional annotation of variants was conducted using FUMA. Total T and bioavailable T exhibited positive correlations with PCOS, while sex hormone-binding globulin (SHBG) showed a negative correlation. All three traits demonstrated extensive genetic overlap with PCOS, with a minimum of 68% of T-related variants influencing PCOS. The conjFDR revealed 4 to 6 causal variants within joint genomic loci shared between PCOS and T-related traits. Functional annotations suggested that these variants might impact PCOS by modulating nearby genes, such as FSHB. Our findings support the hypothesis that PCOS is significantly influenced by androgen abnormalities. Additionally, this study identified several causal variants potentially involved in shared biological mechanisms between PCOS and T regulation.
Collapse
Affiliation(s)
- Shuliu Sun
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Lanlan Li
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Lili Xiong
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Minjie Jiao
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Jian Yang
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaojuan Li
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, 710061, China.
| |
Collapse
|
6
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
7
|
Briceño Silva GD, Thomas Garcia KD, Ajamyan H, Shekhawat P, Rodriguez LC, Hammoud A, Avalos Zapata MDJ, Flores Hernandez N, Rayon Rayon HM. Polycystic Ovarian Syndrome: Exploring Hypertension and Cardiometabolic Implications. Cureus 2024; 16:e70958. [PMID: 39507182 PMCID: PMC11540106 DOI: 10.7759/cureus.70958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting women of reproductive age, with significant implications for cardiometabolic health. This review focuses on the relationship between PCOS and hypertension (HTN), an area that remains underexplored despite growing evidence of its importance. PCOS is characterized by hyperandrogenism (HA), ovulatory dysfunction, and polycystic ovarian morphology (PCOM), all of which contribute to a complex metabolic profile that includes insulin resistance (IR), obesity, and dyslipidemia. These factors collectively exacerbate the risk of HTN. Emerging research suggests HA in PCOS may directly influence the renin-angiotensin system (RAS), increasing blood pressure by promoting sodium retention and vascular tone. Additionally, IR, prevalent in both lean and obese women with PCOS, further contributes to HTN by enhancing sympathetic nervous system activity and impairing endothelial function. Despite these associations, the direct link between PCOS and HTN has not been definitively established, warranting further investigation. This review synthesizes current knowledge on the etiology of PCOS and its metabolic consequences, highlighting the need for targeted research to clarify the mechanisms linking PCOS with HTN. Understanding these pathways is crucial for improving the management of PCOS and reducing cardiovascular risks in affected women. By addressing these gaps, this review underscores the importance of considering HTN as a significant comorbidity in PCOS and calls for more comprehensive studies to guide clinical practice.
Collapse
Affiliation(s)
| | | | - Hrachya Ajamyan
- General Medicine, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, ARM
| | - Pallavi Shekhawat
- Obstetrics and Gynecology, Postgraduate Institute of Medical Sciences and Research (PGIMSR) and Employees' State Insurance (ESI) Model Hospital, Delhi, IND
| | | | - Ahmad Hammoud
- General Practice, Ilia State University, Tbilisi, GEO
| | | | | | - Hilda M Rayon Rayon
- General Practice, Universidad Nacional Autónoma de México (UNAM), Mexico City, MEX
| |
Collapse
|
8
|
Huang F, Deng Y, Zhou M, Tang R, Zhang P, Chen R. Fecal microbiota transplantation from patients with polycystic ovary syndrome induces metabolic disorders and ovarian dysfunction in germ-free mice. BMC Microbiol 2024; 24:364. [PMID: 39333864 PMCID: PMC11437718 DOI: 10.1186/s12866-024-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Dysbiosis of the microbiome is a key hallmark of polycystic ovary syndrome (PCOS). However, the interaction between the host and microbiome and its relevance to the pathogenesis of PCOS remain unclear. METHODS To evaluate the role of the commensal gut microbiome in PCOS, we gavaged germ-free mice with the fecal microbiota from patients with PCOS or healthy individuals and evaluated the reproductive endocrine features of the recipient mice. RESULTS Mice transplanted with fecal microbiota from PCOS patients and those transplanted from healthy controls presented different bacterial profiles and reproductive endocrine features. The fecal microbiota of the mice in the PCOS group was enriched in Phocaeicola, Mediterraneibacter, Oscillospiraceae, Lawsonibacter and Rikenellaceae. Fecal microbiota transplantation (FMT) from PCOS patients induced increased disruption of ovarian functions, lipo-metabolic disturbance, insulin resistance and an obese-like phenotype in recipient mice. CONCLUSION Our findings suggest that the microbiome may govern the set point of PCOS-bearing individuals and that gut ecosystem manipulation may be a useful marker and target for the management of PCOS.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Yuzhoujia Deng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Miao Zhou
- Beijing ClouDNA Technology Co., Ltd, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China.
| |
Collapse
|
9
|
Wachowski NA, Pippin JA, Boehm K, Lu S, Leonard ME, Manduchi E, Parlin UW, Wabitsch M, Chesi A, Wells AD, Grant SFA, Pahl MC. Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C. Diabetologia 2024:10.1007/s00125-024-06261-x. [PMID: 39240351 DOI: 10.1007/s00125-024-06261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 09/07/2024]
Abstract
AIMS/HYPOTHESIS Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.
Collapse
Affiliation(s)
- Nicholas A Wachowski
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ursula W Parlin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Moore T. X centromeric drive may explain the prevalence of polycystic ovary syndrome and other conditions: Genomic structure of the human X chromosome pericentromeric region is consistent with meiotic drive associated with PCOS and other conditions. Bioessays 2024; 46:e2400056. [PMID: 39072829 DOI: 10.1002/bies.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.
Collapse
Affiliation(s)
- Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Kim AE, Lee IT, Ottey S, Dokras A. Lack of adequate counseling about pregnancy complications in patients with polycystic ovary syndrome: a cross-sectional survey study. F S Rep 2024; 5:312-319. [PMID: 39381657 PMCID: PMC11456671 DOI: 10.1016/j.xfre.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 10/10/2024] Open
Abstract
Objective To assess the counseling experiences of patients with polycystic ovary syndrome (PCOS) related to obstetric complications and preconception management of comorbidities. Design Cross-sectional survey study. Setting Not applicable. Patients Patients with PCOS with a history of or attempt at pregnancy. Interventions Not applicable. Main Outcome Measures Demographic characteristics, medical history, and counseling experiences. Results Of the 302 respondents, 72.9% had a previous pregnancy, with 66.8% reporting complications during pregnancy. Of the entire cohort, 52.7% received preconception counseling on PCOS-related obstetric complications, and 41.5% were satisfied with their counseling experience. Five percent were counseled on related postpartum complications, and 43.4% received counseling about prepregnancy weight management, with the minority satisfied with their counseling. Among the respondents with existing comorbidities including hypertension, diabetes, and anxiety or depression, the minority received counseling on their preconception management. Although there were no racial disparities in the overall counseling of pregnancy complications, more black patients were counseled about preeclampsia, cesarean section, and preterm birth than white patients. Of the patients who had a single provider managing their PCOS care, 78.6% who saw a reproductive endocrinologist, 53.2% who saw a general gynecologist, and 35.0% who saw a primary care physician reported receiving counseling on related pregnancy complications. Conclusions Despite the high prevalence of obstetric complications associated with PCOS, our study revealed inadequate patient counseling about both the antepartum and postpartum periods and preconception management of existing comorbidities. Our findings highlight the urgent need to increase provider education and patient awareness to optimize maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Anne E. Kim
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Iris T. Lee
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sasha Ottey
- PCOS Challenge: The National Polycystic Ovary Syndrome Association, Atlanta, Georgia
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
13
|
Rosenfield RL. The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. Endocr Rev 2024; 45:553-592. [PMID: 38457123 DOI: 10.1210/endrev/bnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 94109, USA
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Wang X, Han H, Shi X, Nie X, Zhu R, Jin J, Zhou H. Genetic insights of blood lipid metabolites on polycystic ovary syndrome risk: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1391826. [PMID: 39045272 PMCID: PMC11263216 DOI: 10.3389/fendo.2024.1391826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pathologically, metabolic disorder plays a crucial role in polycystic ovarian syndrome (PCOS). However, there is no conclusive evidence lipid metabolite levels to PCOS risk. Methods In this study, genome-wide association study (GWAS) genetic data for 122 lipid metabolites were used to assign instrumental variables (IVs). PCOS GWAS were derived from a large-scale meta-analysis of 10,074 PCOS cases and 103,164 controls. An inverse variance weighted (IVW) analysis was the primary methodology used for Mendelian randomization (MR). For sensitivity analyses, Cochran Q test, MR-Egger intercept, MR-PRESSO, leave-one-out analysis,and Steiger test were performed. Furthermore, we conducted replication analysis, meta-analysis, and metabolic pathway analysis. Lastly, reverse MR analysis was used to determine whether the onset of PCOS affected lipid metabolites. Results This study detected the blood lipid metabolites and potential metabolic pathways that have a genetic association with PCOS onset. After IVW, sensitivity analyses, replication and meta-analysis, two pathogenic lipid metabolites of PCOS were finally identified: Hexadecanedioate (OR=1.85,95%CI=1.27-2.70, P=0.001) and Dihomo-linolenate (OR=2.45,95%CI=1.30-4.59, P=0.005). Besides, It was found that PCOS may be mediated by unsaturated fatty acid biosynthesis and primary bile acid biosynthesis metabolic pathways. Reverse MR analysis showed the causal association between PCOS and 2-tetradecenoyl carnitine at the genetic level (OR=1.025, 95% CI=1.003-1.048, P=0.026). Conclusion Genetic evidence suggests a causal relationship between hexadecanedioate and dihomo-linolenate and the risk of PCOS. These compounds could potentially serve as metabolic biomarkers for screening PCOS and selecting drug targets. The identification of these metabolic pathways is valuable in guiding the exploration of the pathological mechanisms of PCOS, although further studies are necessary for confirmation.
Collapse
Affiliation(s)
- Xinzhe Wang
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huawei Han
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuwen Shi
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaping Nie
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Zhu
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Jin
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Christ JP, Yu O, Barton B, Schulze-Rath R, Grafton J, Cronkite D, Covey J, Kelley A, Holden E, Hilpert J, Sacher F, Micks E, Reed SD. Risk Factors for Incident Polycystic Ovary Syndrome Diagnosis. J Womens Health (Larchmt) 2024; 33:879-886. [PMID: 38557154 DOI: 10.1089/jwh.2023.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Objective: While highly prevalent, risk factors for incident polycystic ovary syndrome (PCOS) are poorly delineated. Using a population-based cohort, we sought to identify predictors of incident PCOS diagnosis. Materials and Methods: A matched case-control analysis was completed utilizing patients enrolled in Kaiser Permanente Washington from 2006 to 2019. Inclusion criteria included female sex, age 16-40 years, and ≥3 years of prior enrollment with ≥1 health care encounter. PCOS cases were identified using International Classification of Diseases codes. For each incident case (n = 2,491), 5 patients without PCOS (n = 12,455) were matched based on birth year and enrollment status. Potential risk factors preceding diagnosis included family history of PCOS, premature menarche, parity, race, weight gain, obesity, valproate use, metabolic syndrome, epilepsy, prediabetes, and types 1 and 2 diabetes. Potential risk factors for incident PCOS diagnosis were assessed with univariate and multivariable conditional logistic regressions. Results: Mean age of PCOS cases was 26.9 years (SD 6.8). PCOS cases, compared with non-PCOS, were more frequently nulliparous (70.9% versus 62.4%) and in the 3 years prior to index date were more likely to have obesity (53.8% versus 20.7%), metabolic syndrome (14.5% versus 4.3%), prediabetes (7.4% versus 1.6%), and type 2 diabetes (4.1% versus 1.7%) (p < 0.001 for all comparisons). In multivariable models, factors associated with higher risk for incident PCOS included the following: obesity (compared with nonobese) Class I-II (body-mass index [BMI], 30-40 kg/m2; odds ratio [OR], 3.8; 95% confidence interval [CI], 3.4-4.2), Class III (BMI > 40 kg/m2; OR, 7.5, 95% CI, 6.5-8.7), weight gain (compared with weight loss or maintenance) of 1-10% (OR, 1.7, 95% CI, 1.3-2.1), 10-20% (OR, 1.9; 95% CI, 1.5-2.4), and >20% (OR, 2.6; 95% CI, 1.9-3.6), prediabetes (OR, 2.7; 95% CI, 2.1-3.4), and metabolic syndrome (OR, 1.8: 95% CI, 1.5-2.1). Conclusion: Excess weight gain, obesity, and metabolic dysfunction may play a key role in the ensuing phenotypic expression of PCOS. Treatment and prevention strategies targeted at preventing weight gain in early reproductive years may help reduce the risk of this syndrome.
Collapse
Affiliation(s)
- Jacob P Christ
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Onchee Yu
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Brooke Barton
- School of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Jane Grafton
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - David Cronkite
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Jennifer Covey
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Ann Kelley
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Erika Holden
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Jan Hilpert
- Translational Clinical Medicine, Bayer AG, Berlin, Germany
| | | | - Elizabeth Micks
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Susan D Reed
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, Mendes de Oliveira E, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santoni F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia RY, Terao C, Riggan MJ, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington de Gonzalez A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Huebner H, Hunter DJ, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O'Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, Pharoah PDP, Li L, Easton DF, Njølstad PR, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat Genet 2024; 56:1397-1411. [PMID: 38951643 PMCID: PMC11250262 DOI: 10.1038/s41588-024-01798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024]
Abstract
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Federico Santoni
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Raina Y Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Marjorie J Riggan
- Department of Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonathan P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
- Cancer Prevention and Control Research Program, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Catriona L K Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Yong Loo Lin School of Medicine, Department of Obstetrics and Gynecology and Human Potential Translational Research Programme, National University Singapore, Singapore City, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Coruña, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ, Orsay, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Crawley, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, MA, USA
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet-University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paolo Radice
- Unit of Preventive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Faculty of Medicine, Clalit National Cancer Control Center, Carmel Medical Center and Technion, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | - Emmanouil Saloustros
- Division of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Doris Stöckl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Adolescent Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Boston University Chobanian and Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon and Exeter Hospital, Exeter, UK
| | - Despoina Manousaki
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Wang G, Yang H, Jiang X, Mao W, Li P, Lin X, Li Y, Ye Z, Zhang Y, Chen W, Yuan S, Zhao Y, Mu L. Association of serum uric acid with women's ovarian reserve: observational study and Mendelian randomization analyses. Fertil Steril 2024; 122:162-173. [PMID: 38355031 DOI: 10.1016/j.fertnstert.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE To investigate the association between serum uric acid and women's ovarian reserve. DESIGN Retrospective observational study and Mendelian randomization study. SETTING University-affiliated in vitro fertilization center. PATIENTS Observational analyses were undertaken using data from 8,257 women with infertility who finished their first in vitro fertilization treatments between May 2017 and December 2021. Mendelian randomization analyses were based on genome-wide association summary statistics from several biobanks of predominantly European ancestries. INTERVENTIONS Observational study involved testing log2 transformed serum uric acid levels (for linear, negative regression, and logistic regression analyses); original uric acid levels (for nonlinear association analyses). Mendelian randomization study involved testing genetically predicted uric acid levels. MAIN OUTCOME MEASURES Biomarkers including antimüllerian hormone, basal antral follicle count, follicle-stimulating hormone, luteinizing hormone, ratio of follicle-stimulating hormone to luteinizing hormone, estradiol; indices of ovarian response to stimulation including poor ovarian response according to different criteria and oocyte yield. RESULTS In retrospective observational study, all ovarian reserve-related outcomes demonstrated significant differences across serum uric acid quartiles. A two-fold uric acid increase was associated with increased antimüllerian hormone (adjusted β = 0.69; 95% confidence interval [CI], 0.43-0.95), antral follicle count (adjusted incidence rate ratio = 1.10, 95% CI, 1.05-1.14), luteinizing hormone (adjusted β = 0.53, 95% CI, 0.28-0.78), decreased risks of Bologna poor ovarian response (adjusted odds ratio = 0.97; 95% CI, 0.95-0.99) and groups 2-4 Poseidon poor ovarian response (group 2: 0.63, 0.56-0.71; group 3: 0.71, 0.65-0.78; group 4: 0.50, 0.46-0.55), whereas an increased risk of group 1 (1.26, 1.13-1.41). Nonlinear analyses showed a common inflection point at 320-340 μmol/L of uric acid. Interactions between uric acid and antimüllerian hormone and antral follicle count were presented in association with oocyte yield. Mendelian randomization results suggested a significant association between genetically predicted uric acid levels and antimüllerian hormone levels (β = 0.08; 95% CI, 0.04-0.12) but none for uric acid in relation to polycystic ovarian syndrome or other related hormones. CONCLUSION Higher uric acid levels were associated with better ovarian reserve and increased levels of antimüllerian hormone albeit an increased risk of unexpected poor ovarian response.
Collapse
Affiliation(s)
- Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, People's Republic of China; Xiamen Key Laboratory of Reproduction and Genetics, Xiamen, People's Republic of China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xintong Jiang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weian Mao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, People's Republic of China; Xiamen Key Laboratory of Reproduction and Genetics, Xiamen, People's Republic of China
| | - Xiaojing Lin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Yurong Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Wei Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, People's Republic of China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, People's Republic of China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, People's Republic of China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Zhang Q, Ke W, Ye J, Zhang P, Yang Q, Pan F, Wang K, Zha B. Is thyroid function associated with polycystic ovary syndrome? A bidirectional Mendelian randomization study. Endocrine 2024; 85:380-391. [PMID: 38472621 DOI: 10.1007/s12020-024-03756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE Some observational studies have suggested the association between thyroid function and polycystic ovary syndrome (PCOS). However, it remains to be determined whether these associations are causal or not. The aim of this study was to investigate the underlying causal association between different thyroid function status and PCOS. METHODS Bidirectional Mendelian randomization (MR) analysis was conducted to explore the impact of different thyroid function statuses on PCOS. The study included 10,074 individuals with PCOS and 103,164 controls for the primary analysis, with validation analysis repeated in the FinnGen R9 and EstBB PCOS cohorts. Female-specific thyroid function GWAS data were obtained from European population, including Hyperthyroidism (22,383 cases and 54,288 controls) and Hypothyroidism (27,383 cases and 54,288 controls) from the UK Biobank, and TSH (54,288 cases and 72,167 controls) and FT4 (49,269 cases and 72,167 controls) within the reference range from the ThyroidOmics Consortium. Inverse variance weighting (IVW) was chosen as the principal method, and sensitivity analysis was conducted to test for the presence of horizontal pleiotropy or heterogeneity. RESULTS The IVW analysis indicated nominal significance between normal TSH levels and PCOS after adjusted for age and BMI [OR (95% CI) = 0.78(0.62,0.97), P = 0.029], suggesting that maintaining normal TSH levels might act as a protective factor against the pathogenesis of PCOS. Besides, in order to increase the statistical power, we pooled PCOS GWAS above together by meta-analysis and found PCOS contributed to the occurrence of hyperthyroidism [OR(95%CI) = 1.37(0.73,2.57), P = 0.012]. However, no causal relationship was found after Bonferroni correction (P-value < 0.0031). CONCLUSION Although the MR analysis didn't indicate genetic causal association between thyroid function and PCOS after Bonferroni correction. Further efforts are needed to interpret the potential causal relationship between thyroid function and PCOS in different age and BMI subgroup.
Collapse
Affiliation(s)
- Qinnan Zhang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Wencai Ke
- Department of Clinical Laboratory Medicine, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Jun Ye
- Department of Obstetrics and Gynecology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Panpan Zhang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Fanfan Pan
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Kai Wang
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| | - Bingbing Zha
- Department of Endocrinology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Ma Y, Cai J, Liu LW, Wen T, Huang W, Hou W, Wei Z, Xu Y, Xu Y, Wang Y, Mai Q. Causal relationships exist between polycystic ovary syndrome and adverse pregnancy and perinatal outcomes: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1327849. [PMID: 39006363 PMCID: PMC11239544 DOI: 10.3389/fendo.2024.1327849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Previous observational studies have shown that polycystic ovary syndrome (PCOS) was associated with adverse pregnancy and perinatal outcomes. However, it remains controversial whether PCOS is an essential risk factor for these adverse pregnancy and perinatal outcomes. We aimed to use instrumental variables in a two-sample Mendelian randomization (MR) study to determine causality between PCOS and adverse pregnancy and perinatal outcomes. Materials and methods Summary statistics were extracted from a recent genome-wide association study (GWAS) meta-analysis conducted in PCOS, which included 10,074 cases and 103,164 controls of European ancestry. Data on Adverse pregnancy and perinatal outcomes were summarized from the FinnGen database of European ancestry, which included more than 180,000 samples. The inverse variance weighted (IVW) method of MR was applied for the main outcome. To assess heterogeneity and pleiotropy, we conducted sensitivity analyses, including leave-one-out analysis, weighted median, MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier), and MR-Egger regression. Results Two-sample MR analysis with the IVW method suggested that PCOS exerted causal effects on the risk of hypertensive disorders of pregnancy [odds ratio (OR) 1.170, 95% confidence interval (CI) 1.051-1.302, p = 0.004], in particular gestational hypertension (OR 1.083, 95% CI 1.007-1.164, p = 0.031), but not other pregnancy and perinatal diseases (all p > 0.05). Sensitivity analyses demonstrated pleiotropy only in pre-eclampsia or eclampsia (p = 0.0004), but not in other pregnancy and perinatal diseases (all p > 0.05). The results remained consistent after excluding two outliers (all p > 0.05). Conclusions We confirmed a causal relationship between PCOS and hypertensive disorders of pregnancy, in particular gestational hypertension, but no association with any other adverse pregnancy or perinatal outcome. Therefore, we suggest that women with PCOS who are pregnant should have their blood pressure closely monitored.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lok-Wan Liu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianrui Wen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weina Huang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhui Hou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zixin Wei
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizi Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingyun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Guo X, Chen L, He J, Zhang X, Xu S. Genetically predicted high sex hormone binding globulin was associated with decreased risk of polycystic ovary syndrome. BMC Womens Health 2024; 24:357. [PMID: 38902677 PMCID: PMC11188236 DOI: 10.1186/s12905-024-03144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Previous observational studies have indicated an inverse correlation between circulating sex hormone binding globulin (SHBG) levels and the incidence of polycystic ovary syndrome (PCOS). Nevertheless, conventional observational studies may be susceptible to bias. Consequently, we conducted a two-sample Mendelian randomization (MR) investigation to delve deeper into the connection between SHBG levels and the risk of PCOS. METHODS We employed single-nucleotide polymorphisms (SNPs) linked to serum SHBG levels as instrumental variables (IVs). Genetic associations with PCOS were derived from a meta-analysis of GWAS data. Our primary analytical approach relied on the inverse-variance weighted (IVW) method, complemented by alternative MR techniques, including simple-median, weighted-median, MR-Egger regression, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) testing. Additionally, sensitivity analyses were conducted to assess the robustness of the association. RESULTS We utilized 289 SNPs associated with serum SHBG levels, achieving genome-wide significance, as instrumental variables (IVs). Our MR analyses revealed that genetically predicted elevated circulating SHBG concentrations were linked to a reduced risk of PCOS (odds ratio (OR) = 0.56, 95% confidence interval (CI): 0.39-0.78, P = 8.30 × 10-4) using the IVW method. MR-Egger regression did not detect any directional pleiotropic effects (P intercept = 0.626). Sensitivity analyses, employing alternative MR methods and IV sets, consistently reaffirmed our results, underscoring the robustness of our findings. CONCLUSIONS Through a genetic epidemiological approach, we have substantiated prior observational literature, indicating a potential causal inverse relationship between serum SHBG concentrations and PCOS risk. Nevertheless, further research is needed to elucidate the underlying mechanism of SHBG in the development of PCOS.
Collapse
Affiliation(s)
- Xiaofeng Guo
- The Second Affiliated Hospital of Zhejiang University School of Medicine, LanXi Hospital; LanXi People's Hospital, Jinhua, 321100, China
| | - Langlang Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, LanXi Hospital; LanXi People's Hospital, Jinhua, 321100, China
| | - Jianhua He
- The Second Affiliated Hospital of Zhejiang University School of Medicine, LanXi Hospital; LanXi People's Hospital, Jinhua, 321100, China
| | - Xiaozhi Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, LanXi Hospital; LanXi People's Hospital, Jinhua, 321100, China
| | - Shui Xu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, LanXi Hospital; LanXi People's Hospital, Jinhua, 321100, China.
| |
Collapse
|
22
|
Samma ZH, Khan HN, Riffat S, Ashraf M, Rehman R. Unraveling the Genetic Associations of DENND1A (rs9696009) and ERBB4 (rs2178575) with Infertile Polycystic Ovary Syndrome Females in Pakistan. Biochem Genet 2024; 62:2148-2165. [PMID: 37870708 DOI: 10.1007/s10528-023-10537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex genetic disorder in reproductive-aged women which is associated with comorbidities of reproductive, metabolic, cardiovascular, endocrine, and psychological nature. PCOS is the most common cause of anovulatory infertility. Pathogenesis of PCOS involves strong interaction between environmental and genetic factors. Many Single-Nucleotide Polymorphisms (SNPs) have been associated with PCOS in different populations. Currently, very limited association studies of PCOS and infertility have been done on Pakistani population. The variants DENND1A rs9696009 and ERBB4 rs2178575 are significantly associated with PCOS in Chinese and European populations. These candidate genes regulate the production of androgen hormone, Anti-Mullerian Hormone (AMH), and luteinizing hormone. All these hormones are involved pathogenesis of PCOS and infertility. The aim of the study is to find an association of DENND1A rs9696009 and ERBB4 rs2178575 variants with PCOS in infertile Pakistani females. In this case-control study, 300 infertile females were recruited. The cases (n = 160) were infertile female diagnosed with PCOS (Rotterdam Criteria), and controls (n = 140) were infertile women with no evidence of PCOS. The genomic DNA was isolated, and genotyping was done by PCR-Restriction fragment length polymorphism and further validated by DNA Sanger Sequencing. The Chi-Square analysis showed rs2178575 (ERBB4) was significantly associated with infertility (χ2 = 10.282, p = 0.005852) while rs9696009 (DENND1A) did not show any significant association (χ2 = 3.10, p = 0.212036). Furthermore, multinomial logistic regression analysis was performed and revealed that rs2178575 (ERBB4) heterozygous genotypes (GA) and mutant genotypes (AA) decrease the risk of infertility by 0.541 times (OR = 0.541, 95% CI = 0.314-0.930, p = 0.026) and 0.416 times (OR = 0.416, 95% CI = 0.228-0.757, p = 0.004), respectively, compared to wild-type genotype (GG). The ERBB4 variant is significantly associated with PCOS infertile women and genetically indicated that ERBB4 (rs2178575) decreases the risk of infertility in females having PCOS.
Collapse
Affiliation(s)
- Zainab Hanif Samma
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Sumaira Riffat
- Department of Physiology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, Karachi, 74800, Pakistan.
| |
Collapse
|
23
|
Jiang L, Sun Y, Pan P, Li L, Yang D, Huang J, Li Y. Live birth rate per fresh embryo transfer and cumulative live birth rate in patients with PCOS under the POSEIDON classification: a retrospective study. Front Endocrinol (Lausanne) 2024; 15:1348771. [PMID: 38863934 PMCID: PMC11165210 DOI: 10.3389/fendo.2024.1348771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Background Ovarian stimulation (OS) for in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) in women with PCOS often results in multiple follicular development, yet some individuals experience poor or suboptimal responses. Limited data exist regarding the impact of poor/suboptimal ovarian response on pregnancy outcomes in women with PCOS. Objectives The aim of this study was to evaluate whether the live birth rate (LBR) per fresh embryo transfer and cumulative live birth rate (CLBR) per aspiration cycle differ in women with PCOS defined by the Patient-Oriented Strategy Encompassing IndividualizeD Oocyte Number (POSEIDON) criteria. Methods A retrospective study involving 2,377 women with PCOS who underwent their first IVF/ICSI cycle at Sun Yat-sen Memorial Hospital from January 2011 to December 2020 was used. Patients were categorized into four groups based on age, antral follicle count, and the number of oocytes retrieved, according to the POSEIDON criteria. The LBR and CLBR were compared among these groups. Logistic regression analysis was performed to assess whether the POSEIDON criteria served as independent risk factors and identify factors associated with POSEIDON. Results For patients <35 years old, there was no significant difference in the clinical pregnancy rate between POSEIDON and non-POSEIDON patients, whereas POSEIDON patients exhibited lower rates of implantation and live birth. POSEIDON Group 1a displayed lower rates of implantation, clinical pregnancy, and live birth. However, no significant differences were observed in the rates of clinical pregnancy and live birth between POSEIDON Group 1b and non-POSEIDON groups. For patients ≥35 years old, there were no significant differences in the rates of implantation, clinical pregnancy, and live birth between POSEIDON and non-POSEIDON patients. CLBRs were significantly lower in POSEIDON Groups 1 and 2, compared with the non-POSEIDON groups. The levels of body mass index (BMI), follicle-stimulating hormone (FSH), and antral follicle count (AFC) were associated with POSEIDON hypo-response. POSEIDON was found to be associated with lower CLBR, but not LBR per fresh embryo transfer. Conclusions In patients with PCOS, an unexpected suboptimal response can achieve a fair LBR per fresh embryo transfer. However, CLBR per aspirated cycle in POSEIDON patients was lower than that of normal responders. BMI, basal FSH level, and AFC were independent factors associated with POSEIDON. Our study provides data for decision-making in women with PCOS after an unexpected poor/suboptimal response to OS.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yiting Sun
- The Assisted Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Ping Pan
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Lin Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Dongzi Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jia Huang
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- Reproductive Medicine Centre, Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
24
|
Su N, Li J, Xia Y, Huang C, Chen L. Non-causal relationship of polycystic ovarian syndrome with homocysteine and B vitamins: evidence from a two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1393847. [PMID: 38841299 PMCID: PMC11150916 DOI: 10.3389/fendo.2024.1393847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Previous observational studies have identified a correlation between elevated plasma homocysteine (Hcy) levels and polycystic ovary syndrome (PCOS). This study aimed to determine whether a causal relationship exists between Hcy and PCOS at the genetic level. Methods A two-sample Mendelian Randomization (TSMR) study was implemented to assess the genetic impact of plasma levels of Hcy, folate, vitamin B12, and vitamin B6 on PCOS in individuals of European ancestry. Independent single nucleotide polymorphisms (SNPs) associated with Hcy (n=12), folate (n=2), vitamin B12 (n=10), and vitamin B6 (n=1) at genome-wide significance levels (P<5×10-8) were selected as instrumental variables (IVs). Data concerning PCOS were obtained from the Apollo database. The primary method of causal estimation was inverse variance weighting (IVW), complemented by sensitivity analyses to validate the results. Results The study found no genetic evidence to suggest a causal association between plasma levels of Hcy, folate, vitamin B12, vitamin B6, and PCOS. The effect sizes, determined through random-effect IVW, were as follows: Hcy per standard deviation increase, OR = 1.117, 95%CI: (0.842, 1.483), P = 0.442; folate per standard deviation increase, OR = 1.008, CI: (0.546, 1.860), P = 0.981; vitamin B12 per standard deviation increase, OR = 0.978, CI: (0.808, 1.185), P = 0.823; and vitamin B6 per standard deviation increase, OR = 0.967, CI: (0.925, 1.012), P = 0.145. The fixed-effect IVW results for each nutrient exposure and PCOS were consistent with the random-effect IVW findings, with additional sensitivity analyses reinforcing these outcomes. Conclusion Our findings indicate no causal link between Hcy, folate, vitamin B12, vitamin B6 levels, and PCOS.
Collapse
Affiliation(s)
- Nianjun Su
- Department of Reproductive Health and Infertility, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Jinsheng Li
- South China University of Technology School of Medicine, Guangzhou, China
| | - Yubing Xia
- Wurang Town Health Center, Zhaoqing, China
| | - Cuiyu Huang
- Department of Reproductive Health and Infertility, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Lei Chen
- Department of Obstetrics and Gynecology, The Sixth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
25
|
van der Ham K, Moolhuijsen LME, Brewer K, Sisk R, Dunaif A, Laven JSE, Louwers YV, Visser JA. Clustering Identifies Subtypes With Different Phenotypic Characteristics in Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2024:dgae298. [PMID: 38753423 DOI: 10.1210/clinem/dgae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 05/20/2024]
Abstract
CONTEXT Hierarchical clustering (HC) identifies subtypes of polycystic ovary syndrome (PCOS). OBJECTIVE This work aimed to identify clinically significant subtypes in a PCOS cohort diagnosed with the Rotterdam criteria and to further characterize the distinct subtypes. METHODS Clustering was performed using the variables body mass index (BMI), luteinizing hormone (LH), follicle-stimulating hormone, dehydroepiandrosterone sulfate, sex hormone-binding globulin (SHBG), testosterone, insulin, and glucose. Subtype characterization was performed by analyzing the variables estradiol, androstenedione, dehydroepiandrosterone, cortisol, anti-Müllerian hormone (AMH), total follicle count (TFC), lipid profile, and blood pressure. Study participants were girls and women who attended our university hospital for reproductive endocrinology screening between February 1993 and February 2021. In total, 2502 female participants of European ancestry, aged 13 to 45 years with PCOS (according to the Rotterdam criteria), were included. A subset of these (n = 1067) fulfilled the National Institutes of Health criteria (ovulatory dysfunction and hyperandrogenism). Main outcome measures included the identification of distinct PCOS subtypes using cluster analysis. Additional clinical variables associated with these subtypes were assessed. RESULTS Metabolic, reproductive, and background PCOS subtypes were identified. In addition to high LH and SHBG levels, the reproductive subtype had the highest TFC and levels of AMH (all P < .001). In addition to high BMI and insulin levels, the metabolic subtype had higher low-density lipoprotein levels and higher systolic and diastolic blood pressure (all P < .001). The background subtype had lower androstenedione levels and features of the other 2 subtypes. CONCLUSION Reproductive and metabolic traits not used for subtyping differed significantly in the subtypes. These findings suggest that the subtypes capture distinct PCOS causal pathways.
Collapse
Affiliation(s)
- Kim van der Ham
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Kelly Brewer
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan Sisk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Balen AH, Tamblyn J, Skorupskaite K, Munro MG. A comprehensive review of the new FIGO classification of ovulatory disorders. Hum Reprod Update 2024; 30:355-382. [PMID: 38412452 DOI: 10.1093/humupd/dmae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) system for the classification of disorders of ovulation was produced 50 years ago and, by international consensus, has been updated by the International Federation of Gynecology and Obstetrics (FIGO). OBJECTIVE AND RATIONALE This review outlines in detail each component of the FIGO HyPO-P (hypothalamic, pituitary, ovarian, PCOS) classification with a concise description of each cause, and thereby provides a systematic method for diagnosis and management. SEARCH METHODS We searched the published articles in the PubMed database in the English-language literature until October 2022, containing the keywords ovulatory disorders; ovulatory dysfunction; anovulation, and each subheading in the FIGO HyPO-P classification. We did not include abstracts or conference proceedings because the data are usually difficult to assess. OUTCOMES We present the most comprehensive review of all disorders of ovulation, published systematically according to the logical FIGO classification. WIDER IMPLICATIONS Improving the diagnosis of an individual's ovulatory dysfunction will significantly impact clinical practice by enabling healthcare practitioners to make a precise diagnosis and plan appropriate management.
Collapse
Affiliation(s)
- Adam H Balen
- Leeds Centre for Reproductive Medicine, The University of Leeds, Leeds, UK
| | - Jennifer Tamblyn
- Leeds Centre for Reproductive Medicine, The University of Leeds, Leeds, UK
| | | | - Malcolm G Munro
- Department of Obstetrics and Gynecology, The University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Cao Q, Wang R, Zhou R, Huang X, Li Y, Zhu H, Qiao X, Huang W. The early development of offspring born to women with polycystic ovary syndrome: Insights from a prospective birth cohort study in Southwestern China. Psychoneuroendocrinology 2024; 163:106984. [PMID: 38340540 DOI: 10.1016/j.psyneuen.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE This prospective cohort study aimed to investigate the effect of maternal polycystic ovary syndrome (PCOS) on the offspring early development. METHODS A total of 91 mother-child pairs, consisting of 33 PCOS and 58 non-PCOS, were recruited. Peripheral blood tests were performed during 12-16, 24-28, and 32-36 weeks of gestation. Ages & Stages Questionnaires (ASQ) were utilized to assess the motor development of offspring at 27 months of age. Logistic regression models were employed to compare groups and control confounding variables. RESULTS Women with PCOS had a higher level of testosterone and free androgen index than the non-PCOS group in all three detection windows. There were no intergroup differences in any of the five domains of specific ASQ domain scores or the body measurements of the offspring at 27 months old. Stratification by sex of offspring suggested that no significant differences were detected in the male offspring. However, in the female offspring, the PCOS group exhibited lower gross motor scores in female offspring than the non-PCOS group (48.1 ± 11.8 vs. 55.2 ± 8.1, P = 0.027), as well as lower fine motor scores (48.5 ± 8.5 vs. 53.6 ± 11.0, P = 0.028). The gross motor score of female offspring in the PCOS group remained lower even after adjustments. Each 1 ng/mL increase in testosterone at 12-16 weeks of gestation was associated with a decrease in gross motor score of female offspring by 12.2 (95% CI = -23.3 to -1.0, P = 0.038). The highest tertile of testosterone at 12-16 weeks of gestation was associated with a 7.75-point decrease in gross motor score of female offspring compared to the lowest tertile of testosterone (95% CI = -14.9 to -0.6, P = 0.040), with a significant linear trend observed (P for trend = 0.031). CONCLUSIONS The findings of this study suggest that maternal PCOS could exert a negative influence on the gross motor development of female offspring, potentially associated with intrauterine androgen exposure during the early stages of pregnancy.
Collapse
Affiliation(s)
- Qi Cao
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ruiying Wang
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rong Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Huang
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yujing Li
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Huili Zhu
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xinyu Qiao
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Huang
- Department of Reproductive Medical Center, West China Second University Hospital, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Chronobiology of National Health Commission (Sichuan University), Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
28
|
Sharma P, Senapati S, Goyal LD, Kaur B, Kamra P, Khetarpal P. Genome-wide association study (GWAS) identified PCOS susceptibility variants and replicates reported risk variants. Arch Gynecol Obstet 2024; 309:2009-2019. [PMID: 38421422 DOI: 10.1007/s00404-024-07400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Genetic predisposition and environmental factors are considered risk factors for polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) have been reported from various subpopulations to evaluate SNPs associated with PCOS risk. No PCOS-associated GWAS study has been reported from India so far. PURPOSE The current study was conducted to identify the PCOS-susceptible loci among the North Indian population and to validate the significant loci reported by previous GWAS studies. METHODS A total of 272 participants with 134 PCOS patients and 138 age-matched healthy controls were recruited. Genomic DNA was isolated and genotyped by using Infinium Global Screening Array v3.0 microchip considering HWE 10e-5 statistically significant. RESULTS A total of fifteen markers have been identified as candidate PCOS risk factors. Only two SNPs, namely rs17186366 and rs11171739 have been identified through replication analysis while comparing the previously reported PCOS GWAS data. In-silico analysis was performed to study the functional impact of identified significant genes for gene ontology, pathways related to gene set, and cluster analysis to determine protein-protein interaction among genes or gene products. CONCLUSION The study suggests that multiple variants play an important role in PCOS pathogenesis and emphasizes the importance of further genetic studies among Indian subpopulations. The study also validates two previously reported SNPs in the Indian population. What this study adds to clinical work Study summarizes the importance of candidate gene markers validated by replication and in-silico functional study, significantly involved in PCOS pathogenesis in the studied population. These markers can be used in the future as diagnostic markers for clinical phenotype identification.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sabyasachi Senapati
- Laboratory of Immunogenomics, Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, 151401, India
| | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, 151001, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, 152107, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
29
|
Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic ovary syndrome. Nat Rev Dis Primers 2024; 10:27. [PMID: 38637590 DOI: 10.1038/s41572-024-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Despite affecting ~11-13% of women globally, polycystic ovary syndrome (PCOS) is a substantially understudied condition. PCOS, possibly extending to men's health, imposes a considerable health and economic burden worldwide. Diagnosis in adults follows the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome, requiring two out of three criteria - clinical or biochemical hyperandrogenism, ovulatory dysfunction, and/or specific ovarian morphological characteristics or elevated anti-Müllerian hormone. However, diagnosing adolescents omits ovarian morphology and anti-Müllerian hormone considerations. PCOS, marked by insulin resistance and hyperandrogenism, strongly contributes to early-onset type 2 diabetes, with increased odds for cardiovascular diseases. Reproduction-related implications include irregular menstrual cycles, anovulatory infertility, heightened risks of pregnancy complications and endometrial cancer. Beyond physiological manifestations, PCOS is associated with anxiety, depression, eating disorders, psychosexual dysfunction and negative body image, collectively contributing to diminished health-related quality of life in patients. Despite its high prevalence persisting into menopause, diagnosing PCOS often involves extended timelines and multiple health-care visits. Treatment remains ad hoc owing to limited understanding of underlying mechanisms, highlighting the need for research delineating the aetiology and pathophysiology of the syndrome. Identifying factors contributing to PCOS will pave the way for personalized medicine approaches. Additionally, exploring novel biomarkers, refining diagnostic criteria and advancing treatment modalities will be crucial in enhancing the precision and efficacy of interventions that will positively impact the lives of patients.
Collapse
Affiliation(s)
| | - Helena Teede
- Monash Centre for Health Research and Implementation, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Richard Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Science, Penn State College of Medicine, Hershey, PA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joop Laven
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, Netherlands
| | - Kathleen Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
30
|
Choudhari R, Tayade S, Tiwari A, Satone P. Diagnosis, Management, and Associated Comorbidities of Polycystic Ovary Syndrome: A Narrative Review. Cureus 2024; 16:e58733. [PMID: 38779261 PMCID: PMC11110474 DOI: 10.7759/cureus.58733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most widespread and diverse endocrine health issue affecting many adolescent-aged women globally. It is the most frequent illness in reproductive-aged women. According to the Rotterdam criteria, two out of three elements: oligo-anovulation, hyperandrogenism, and polycystic ovaries (defined as having at least one ovary with an ovarian volume > 10 mL and/or 12 or more follicles measuring 2 to 9 mm in diameter) are present in PCOS. Conducted studies show epigenetics, environmental toxins, stress, and food as external factors as well as inflammation, oxidative stress, hyperandrogenism, insulin resistance, and obesity as internal factors related to PCOS. Although a portion of the mechanism associated with the occurrence of PCOS has been identified, there is still much to learn about the exact etiology and pathophysiology. The main debate covers the best ways to diagnose and treat this disease in adolescents. Early detection is crucial because of the disease's long-term effects on metabolic and reproductive health. Before beginning treatment for this group of young women, a firm diagnosis may not be made. Various criteria are used to diagnose PCOS patients. A person with PCOS has a chance of developing several comorbidities and health effects. PCOS patients are at risk of cardiac diseases, metabolic syndromes, resistance to insulin, infertility, and many more. There are numerous medications available for PCOS therapy that need a methodical approach. However, changing one's lifestyle should come first. There is proof in the support of the usage of several medications for PCOS, including mucolytic agents, Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, gliptins (oral diabetic medication), glucose-like peptide-1 receptor analogues, glitazones, and sodium-glucose cotransporter protein-2 (SGLT2) inhibitors. A comprehensive, systematic, schematic therapy approach is crucial for the treatment of PCOS.
Collapse
Affiliation(s)
- Rutuja Choudhari
- Department of Obstetrics and Gynaecology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Surekha Tayade
- Department of Obstetrics and Gynaecology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aakriti Tiwari
- Department of Obstetrics and Gynaecology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prasiddhi Satone
- Department of Obstetrics and Gynaecology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Lalonde-Bester S, Malik M, Masoumi R, Ng K, Sidhu S, Ghosh M, Vine D. Prevalence and Etiology of Eating Disorders in Polycystic Ovary Syndrome: A Scoping Review. Adv Nutr 2024; 15:100193. [PMID: 38408541 PMCID: PMC10973592 DOI: 10.1016/j.advnut.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder affecting females across the lifespan. Eating disorders (EDs) are psychiatric conditions that may impact the development of PCOS and comorbidities including obesity, metabolic syndrome, and type 2 diabetes. The aim of this scoping review was to determine the prevalence of EDs and disordered eating, and to review the etiology of EDs in PCOS. The review was conducted using search terms addressing PCOS, EDs, and disordered eating in databases, including PubMed, Scopus, PsycINFO, and CINAHL. Structured interviews, self-administered questionnaires, chart review, or self-reported diagnosis were used to identify EDs in 38 studies included in the review. The prevalence of any ED in those with PCOS ranged from 0% to 62%. Those with PCOS were 3-6-fold more likely to have an ED and higher odds ratios (ORs) of an elevated ED score compared with controls. In those with PCOS, 30% had a higher OR of bulimia nervosa and binge ED was 3-fold higher compared with controls. Studies were limited on anorexia nervosa and other specified feeding or ED (such as night eating syndrome) and these were not reported to be higher in PCOS. To our knowledge, no studies reported on avoidant/restrictive food intake disorder, rumination disorder, or pica in PCOS. Studies showed strong associations between overweight, body dissatisfaction, and disordered eating in PCOS. The etiologic development of EDs in PCOS remains unclear; however, psychological, metabolic, hypothalamic, and genetic factors are implicated. The prevalence of any ED in PCOS varied because of the use of different diagnostic and screening tools. Screening of all individuals with PCOS for EDs is recommended and high-quality studies on the prevalence, pathogenesis of specific EDs, relationship to comorbidities, and effective interventions to treat ED in those with PCOS are needed.
Collapse
Affiliation(s)
- Sophie Lalonde-Bester
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Mishal Malik
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Reihaneh Masoumi
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Katie Ng
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Sidhu
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Mahua Ghosh
- Division of Endocrinology and Metabolism, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Metabolic and Cardiovascular Disease Laboratory, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
Calcaterra V, Magenes VC, Massini G, De Sanctis L, Fabiano V, Zuccotti G. High Fat Diet and Polycystic Ovary Syndrome (PCOS) in Adolescence: An Overview of Nutritional Strategies. Nutrients 2024; 16:938. [PMID: 38612972 PMCID: PMC11013055 DOI: 10.3390/nu16070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted and heterogeneous disorder, linked with notable reproductive, metabolic, and psychological outcomes. During adolescence, key components of PCOS treatment involve weight loss achieved through lifestyle and dietary interventions, subsequently pursued by pharmacological or surgical therapies. Nutritional interventions represent the first-line therapeutic approach in adolescents affected by PCOS, but different kinds of dietary protocols exist, so it is necessary to clarify the effectiveness and benefits of the most well-known nutritional approaches. We provided a comprehensive review of the current literature concerning PCOS definition, pathophysiology, and treatment options, highlighting nutritional strategies, particularly those related to high-fat diets. The high-fat nutritional protocols proposed in the literature, such as the ketogenic diet (KD), appear to provide benefits to patients with PCOS in terms of weight loss and control of metabolic parameters. Among the different types of KD studies, very low-calorie ketogenic diets (VLCKD), can be considered an effective dietary intervention for the short-term treatment of patients with PCOS. It rapidly leads to weight loss alongside improvements in body composition and metabolic profile. Even though extremely advantageous, long-term adherence to the KD is a limiting factor. Indeed, this dietary regimen could become unsustainable due to the important restrictions required for ketosis development. Thus, a combination of high-fat diets with more nutrient-rich nutritional regimens, such as the Mediterranean diet, can amplify positive effects for individuals with PCOS.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
| | - Giulia Massini
- Pediatric Endocrinology, Regina Margherita Children Hospital, 10131 Torino, Italy; (G.M.); (L.D.S.)
- Department of Public Health and Pediatric Sciences, University of Torino, 10131 Torino, Italy
| | - Luisa De Sanctis
- Pediatric Endocrinology, Regina Margherita Children Hospital, 10131 Torino, Italy; (G.M.); (L.D.S.)
- Department of Public Health and Pediatric Sciences, University of Torino, 10131 Torino, Italy
| | - Valentina Fabiano
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, 20154 Milan, Italy; (V.C.M.); (V.F.); (G.Z.)
- Department of Biomedical and Clinical Science, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
33
|
Ahmadi M, Fathi M, Malmir A, Ghafouri-Fard S. Role of circular RNA/miRNA axes in the pathophysiology of polycystic ovary syndrome. Mol Biol Rep 2024; 51:437. [PMID: 38520572 DOI: 10.1007/s11033-024-09376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a disorder resulted from interactions between genetic and environmental factors. Based on the importance of epigenetic factors in the pathoetiology of PCOS, the current review focused on identification of circular RNAs (circRNAs) that are involved in PCOS through acting as molecular sponges for microRNAs (miRNAs). The literature search led to identification of circ_0043533/miR-1179, circ_0030018/miR-136, circ_FURIN/miR-423-5p, circ-FURIN/miR-195-5p, circ_0043532/miR-182, circ_RANBP9/miR-136-5p, circRHBG/miR-515-5p, circMTO1/miR-320b, circASPH/miR-375, circPSMC3/miR-296-3p, circLDLR/miR-1294, circPUM1/miR-760, and hsa_circ_0118530/miR-136 as molecular axes contributing to the pathogenesis of PCOS. To set the stage for future research on the role of the ceRNA network in PCOS, in-silico analyses were performed using miRWalk, miRNet, and miRDIP databases. miRWalk identified 80 genes regulated by 5 miRNAs, miRNet revealed 6449 circRNAs potentially controlling 11 miRNAs, and miRDIP identified 11 miRNAs associated with 35 human pathways. These targets can be used in the treatment options, design of personalized medicine and prediction of prognosis of PCOS.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Malmir
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Venkatesh SS, Wittemans LBL, Palmer DS, Baya NA, Ferreira T, Hill B, Lassen FH, Parker MJ, Reibe S, Elhakeem A, Banasik K, Bruun MT, Erikstrup C, Jensen BA, Juul A, Mikkelsen C, Nielsen HS, Ostrowski SR, Pedersen OB, Rohde PD, Sorensen E, Ullum H, Westergaard D, Haraldsson A, Holm H, Jonsdottir I, Olafsson I, Steingrimsdottir T, Steinthorsdottir V, Thorleifsson G, Figueredo J, Karjalainen MK, Pasanen A, Jacobs BM, Hubers N, Lippincott M, Fraser A, Lawlor DA, Timpson NJ, Nyegaard M, Stefansson K, Magi R, Laivuori H, van Heel DA, Boomsma DI, Balasubramanian R, Seminara SB, Chan YM, Laisk T, Lindgren CM. Genome-wide analyses identify 21 infertility loci and over 400 reproductive hormone loci across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24304530. [PMID: 38562841 PMCID: PMC10984039 DOI: 10.1101/2024.03.19.24304530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.
Collapse
Affiliation(s)
- Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Laura B L Wittemans
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Teresa Ferreira
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melody J Parker
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Mie T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Bitten A Jensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Juul
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| | - Henriette S Nielsen
- Department of Obstetrics and Gynecology, The Fertility Clinic, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Kge, Denmark
| | - Palle D Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Jessica Figueredo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Minna K Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anu Pasanen
- Research Unit of Clinical Medicine, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Benjamin M Jacobs
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, EC1M 6BQ, United Kingdom
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Margaret Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Reedik Magi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
- Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - David A van Heel
- Blizard Institute, Queen Mary University London, London, E1 2AT, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephanie B Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yee-Ming Chan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
35
|
Stamou MI, Smith KT, Kim H, Balasubramanian R, Gray KJ, Udler MS. Polycystic Ovary Syndrome Physiologic Pathways Implicated Through Clustering of Genetic Loci. J Clin Endocrinol Metab 2024; 109:968-977. [PMID: 37967238 PMCID: PMC10940264 DOI: 10.1210/clinem/dgad664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, with disease loci identified from genome-wide association studies (GWAS) having largely unknown relationships to disease pathogenesis. OBJECTIVE This work aimed to group PCOS GWAS loci into genetic clusters associated with disease pathophysiology. METHODS Cluster analysis was performed for 60 PCOS-associated genetic variants and 49 traits using GWAS summary statistics. Cluster-specific PCOS partitioned polygenic scores (pPS) were generated and tested for association with clinical phenotypes in the Mass General Brigham Biobank (MGBB, N = 62 252). Associations with clinical outcomes (type 2 diabetes [T2D], coronary artery disease [CAD], and female reproductive traits) were assessed using both GWAS-based pPS (DIAMANTE, N = 898,130, CARDIOGRAM/UKBB, N = 547 261) and individual-level pPS in MGBB. RESULTS Four PCOS genetic clusters were identified with top loci indicated as following: (i) cluster 1/obesity/insulin resistance (FTO); (ii) cluster 2/hormonal/menstrual cycle changes (FSHB); (iii) cluster 3/blood markers/inflammation (ATXN2/SH2B3); (iv) cluster 4/metabolic changes (MAF, SLC38A11). Cluster pPS were associated with distinct clinical traits: Cluster 1 with increased body mass index (P = 6.6 × 10-29); cluster 2 with increased age of menarche (P = 1.5 × 10-4); cluster 3 with multiple decreased blood markers, including mean platelet volume (P = 3.1 ×10-5); and cluster 4 with increased alkaline phosphatase (P = .007). PCOS genetic clusters GWAS-pPSs were also associated with disease outcomes: cluster 1 pPS with increased T2D (odds ratio [OR] 1.07; P = 7.3 × 10-50), with replication in MGBB all participants (OR 1.09, P = 2.7 × 10-7) and females only (OR 1.11, 4.8 × 10-5). CONCLUSION Distinct genetic backgrounds in individuals with PCOS may underlie clinical heterogeneity and disease outcomes.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kirk T Smith
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyunkyung Kim
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kathryn J Gray
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
36
|
Dadachanji R, Khavale S, Patil A, Mukherjee S. Investigating the association of previously identified genome-wide significant loci (rs10739076 and rs1784692) with PCOS susceptibility and its related traits in Indian women. Eur J Obstet Gynecol Reprod Biol 2024; 294:156-162. [PMID: 38245954 DOI: 10.1016/j.ejogrb.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE(S) Polycystic ovary syndrome (PCOS) is a multifactorial endocrinopathy with an enigmatic etiology. Hallmark features include irregular menstrual cycles, insulin resistance and hyperandrogenemia and affected women are prone to development of adverse reproductive and cardiometabolic outcomes like anovulatory infertility, impaired glucose tolerance, type 2 diabetes, dyslipidemia, metabolic syndrome and cardiovascular disease. Genetic underpinnings of PCOS have been investigated extensively using genome-wide association studies, which have led to the identification of several novel susceptibility loci. However, as ethnic diversity contributes to phenotypic and genetic heterogeneity, we undertook the first genetic association study to determine the association of rs10739076 of PLGRKT and rs1784692 of ZBTB16 with PCOS susceptibility and its related traits in Indian women. STUDY DESIGN The present case-control study comprised 497 women with PCOS diagnosed according to the Rotterdam criteria and 233 age matched healthy women as controls. All participants were characterized in terms of anthropometric, hormonal and metabolic parameters and the variants were investigated by direct sequencing. Genotypic and genotype-phenotype association of these variants with PCOS susceptibility and its related biochemical and hormonal traits was analyzed with appropriate statistical tests. RESULTS The genotypic and allelic frequencies of rs1784692 of ZBTB16 were significantly decreased in lean women with PCOS only, and this variant was associated with lowered insulin levels, HOMA-IR, LH:FSH ratio along with increased ApoA1 levels and QUICKI in them. Although, the PLGRKT variant, rs10739076, showed similar frequency distribution in both lean and obese groups, it was found to be associated with reduced fasting glucose in all women with PCOS. CONCLUSION(S) To the best of our knowledge, this is the first study to demonstrate that ZBTB16 variant showed significant association with reduced PCOS susceptibility in lean rather than obese Indian women, highlighting the impact of obesity on determining genetic predisposition to PCOS in Indian women. In contrast, PLGRKT variant did not influence PCOS risk in lean or obese women. Importantly, both variants exerted a protective effect on glucose metabolism, insulin resistance, gonadotropin and lipid levels in women with PCOS. Determination of susceptibility variants for PCOS demand population specific replication studies to ascertain best candidate loci for PCOS.
Collapse
Affiliation(s)
- Roshan Dadachanji
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Sushma Khavale
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Anushree Patil
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400012, India.
| |
Collapse
|
37
|
Liu C, Zheng Y, Hu S, Liang X, Li Y, Yu Z, Liu Y, Bian Y, Man Y, Zhao S, Liu X, Liu H, Huang T, Ma J, Chen ZJ, Zhao H, Zhang Y. TOX3 deficiency mitigates hyperglycemia by suppressing hepatic gluconeogenesis through FoxO1. Metabolism 2024; 152:155766. [PMID: 38145825 DOI: 10.1016/j.metabol.2023.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Excessive hepatic glucose production is a hallmark that contributes to hyperglycemia in type 2 diabetes (T2D). The regulatory network governing this process remains incompletely understood. Here, we demonstrate that TOX3, a high-mobility group family member, acts as a major transcriptional driver for hepatic glucose production. METHODS Tox3-overexpressed and knockout mice were constructed to explore its metabolic functions. Transcriptomic and chromatin-immunoprecipitation sequencing (ChIP-seq) were used to identify downstream targets of TOX3. Both FoxO1 silencing and inhibitor approaches were used to assess the contribution of FoxO1. TOX3 expression levels were examined in the livers of mice and human subjects. Finally, Tox3 was genetically manipulated in diet-induced obese mice to evaluate its therapeutic potential. RESULTS Hepatic Tox3 overexpression activates the gluconeogenic program, resulting in hyperglycemia and insulin resistance in mice. Hepatocyte-specific Tox3 knockout suppresses gluconeogenesis and improves insulin sensitivity. Mechanistically, integrated hepatic transcriptomic and ChIP-seq analyses identify FoxO1 as a direct target of TOX3. TOX3 stimulates FoxO1 transcription by directly binding to and activating its promoter, whereas FoxO1 silencing abrogates TOX3-induced dysglycemia in mice. In human subjects, hepatic TOX3 expression shows a significant positive correlation with blood glucose levels under normoglycemic conditions, yet is repressed by high glucose during T2D. Importantly, hepatic Tox3 deficiency markedly protects against and ameliorates the hyperglycemia and glucose intolerance in diet-induced diabetic mice. CONCLUSIONS Our findings establish TOX3 as a driver for excessive gluconeogenesis through activating hepatic FoxO1 transcription. TOX3 could serve as a promising target for preventing and treating hyperglycemia in T2D.
Collapse
Affiliation(s)
- Congcong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shourui Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Xiaofan Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuxuan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Zhiheng Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yuanyuan Man
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Jinlong Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong 250012, China; Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.
| |
Collapse
|
38
|
Burns K, Mullin BH, Moolhuijsen LME, Laisk T, Tyrmi JS, Cui J, Actkins KV, Louwers YV, Davis LK, Dudbridge F, Azziz R, Goodarzi MO, Laivuori H, Mägi R, Visser JA, Laven JSE, Wilson SG, Day FR, Stuckey BGA. Body mass index stratified meta-analysis of genome-wide association studies of polycystic ovary syndrome in women of European ancestry. BMC Genomics 2024; 25:208. [PMID: 38408933 PMCID: PMC10895801 DOI: 10.1186/s12864-024-09990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using a case-control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/obese PCOS subtypes. RESULTS The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 × 10-12) and rs2228260 within XBP1 (P = 3.68 × 10-8). One additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses (P = 1.76 × 10-6). There were no significant loci observed for the overweight or obese sub-strata when analysed separately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached genome-wide significance (P = 3.22 × 10-9) and a gene-based association was identified with ERBB4 (P = 1.59 × 10-6). Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each of the three BMI strata. CONCLUSIONS Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show variation in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resistance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns relevant to PCOS BMI-subtype.
Collapse
Affiliation(s)
- Kharis Burns
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, WA, 6009, Australia.
- Medical School, University of Western Australia, Nedlands, WA, Australia.
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaakko S Tyrmi
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ky'Era V Actkins
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, UK
| | - Ricardo Azziz
- Obstetrics & Gynecology, Medicine, and Healthcare Organization & Policy, Schools of Medicine and Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Institute for Molecular Medicine Finland, FIMM, hiLIFE, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Felix R Day
- MRC Epidemiology Unit, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Bronwyn G A Stuckey
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Keogh Institute for Medical Research, Nedlands, WA, Australia
| |
Collapse
|
39
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
40
|
Joshi A. PCOS stratification for precision diagnostics and treatment. Front Cell Dev Biol 2024; 12:1358755. [PMID: 38389707 PMCID: PMC10881805 DOI: 10.3389/fcell.2024.1358755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Globally, polycystic ovarian syndrome (PCOS) affects approximately 10% of fertile women, leading to great health and economic burden. PCOS is a heterogenous illness that can cause infertility, irregular menstrual cycles, acne, and hirsutism, among other symptoms. The clinical diagnosis is primarily a diagnosis of exclusion if one or more of the three primary symptoms, namely, oligo- or anovulation, hyperandrogenism, and polycystic ovarian morphology, are present. Obesity and PCOS are often coexisting disorders that may be bidirectionally causally related. Phenotypic heterogeneity throughout the reproductive lifespan, such as the overlap of PCOS symptoms with regular fluctuations in a woman's menstrual cycle and metabolism during the menarche and menopausal transition, further complicates diagnosis. PCOS etiology is mostly unknown and complex, likely due to the fact that it is a group of disorders with overlapping metabolic and reproductive problems. Evidence-based, common, standardized guidelines for PCOS diagnosis and treatment are urgently needed. Genomics and clinical data from populations across diverse ages and ethnicities are urgently needed to build efficient machine learning models for the stratification of PCOS. PCOS subtype-specific strategies for early screening, an accurate diagnosis, and management throughout life will optimize healthcare resources and reduce unnecessary testing. This will pave the way for women to be able to take the best possible care of their own health using the latest clinical expertise combined with their unique needs and preferences.
Collapse
Affiliation(s)
- Anagha Joshi
- Computational Biology Unit, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
41
|
Guixue G, Yifu P, Xiaofeng T, Qian S, Yuan G, Wen Y, Conghui H, Zuobin Z. Investigating the causal impact of polycystic ovary syndrome on gestational diabetes mellitus: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1337562. [PMID: 38375192 PMCID: PMC10875069 DOI: 10.3389/fendo.2024.1337562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Determining the causal relationship between polycystic ovary syndrome (PCOS) and gestational diabetes mellitus (GDM) holds significant implications for GDM prevention and treatment. Despite numerous observational studies suggesting an association between PCOS and GDM, it remains unclear whether a definitive causal relationship exists between these two conditions and which specific features of PCOS contribute to increased incidence of GDM. Methods The causal relationship between polycystic ovary syndrome (PCOS), its characteristic indices, and gestational diabetes mellitus (GDM) was investigated using a two-sample Mendelian randomization study based on publicly available statistics from genome-wide association studies (GWAS). The inverse-variance weighted method was employed as the primary analytical approach to examine the association between PCOS, its characteristic indices, and GDM. MR Egger intercept was used to assess pleiotropy, while Q values and their corresponding P values were utilized to evaluate heterogeneity. It is important to note that this study adopts a two-sample MR design where PCOS and its characteristic indices are considered as exposures, while GDM is treated as an outcome. Results The study results indicate that there is no causal relationship between PCOS and GDM (all methods P > 0.05, 95% CI of OR values passed 1). The IVW OR value was 1.007 with a 95% CI of 0.906 to 1.119 and a P value of 0.904. Moreover, the MR Egger Q value was 8.141 with a P value of 0.701, while the IVW Q value was also 8.141 with a P value of 0.774, indicating no significant heterogeneity. Additionally, the MR Egger intercept was 0.0004, which was close to zero with a P value of 0.988, suggesting no pleiotropy. However, the study did find a causal relationship between several other factors such as testosterone, high-density lipoprotein, sex hormone-binding globulin, body mass index, waist-hip ratio, apolipoprotein A-I, number of children, diabetes illnesses of mother, father and siblings, hemoglobin A1c, fasting insulin, fasting blood glucose, years of schooling, and GDM based on the IVW method. Conclusion We observed no association between genetically predicted PCOS and the risk of GDM, implying that PCOS itself does not confer an increased susceptibility to GDM. The presence of other PCOS-related factors such as testosterone, high-density lipoprotein, and sex hormone-binding globulin may elucidate the link between PCOS and GDM. Based on these findings, efforts aimed at preventing GDM in individuals with PCOS should prioritize those exhibiting high-risk features rather than encompassing all women with PCOS.
Collapse
Affiliation(s)
- Guan Guixue
- Department of Gynecology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Pu Yifu
- Laboratory of Genetic Disease and Perinatal Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tang Xiaofeng
- Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sun Qian
- Department of Gynecology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Gao Yuan
- Department of Gynecology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Yang Wen
- Department of Gynecology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Gynecology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Han Conghui
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhu Zuobin
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
42
|
Oliveri A, Rebernick RJ, Kuppa A, Pant A, Chen Y, Du X, Cushing KC, Bell HN, Raut C, Prabhu P, Chen VL, Halligan BD, Speliotes EK. Comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank. Nat Genet 2024; 56:212-221. [PMID: 38200128 PMCID: PMC10923176 DOI: 10.1038/s41588-023-01625-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence IR-associated loci. Seventy-two of these 114 loci have not been previously associated with IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 European individuals in the Michigan Genomics Initiative. We identified associations with diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes critical in IR.
Collapse
Affiliation(s)
- Antonino Oliveri
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Asmita Pant
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kelly C Cushing
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ponnandy Prabhu
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Brian D Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Liu H, Tu M, Yin Z, Zhang D, Ma J, He F. Unraveling the complexity of polycystic ovary syndrome with animal models. J Genet Genomics 2024; 51:144-158. [PMID: 37777062 DOI: 10.1016/j.jgg.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
Collapse
Affiliation(s)
- Huanju Liu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mixue Tu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyong Yin
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Zhejiang Provincial Clinical Research Center for Child Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, Zhejiang 310006, China.
| | - Jun Ma
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| | - Feng He
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
44
|
Wang J, Fiori PL, Capobianco G, Carru C, Chen Z. Gut microbiota and polycystic ovary syndrome, focus on genetic associations: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1275419. [PMID: 38318294 PMCID: PMC10838976 DOI: 10.3389/fendo.2024.1275419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Background The contribution of gut microbiota to the pathogenesis of polycystic ovary syndrome (PCOS) is controversial. The causal relationship to this question is worth an in-depth comprehensive of known single nucleotide polymorphisms associated with gut microbiota. Methods We conducted bidirectional Mendelian randomization (MR) utilizing instrumental variables associated with gut microbiota (N = 18,340) from MiBioGen GWAS to assess their impact on PCOS risk in the FinnGen GWAS (27,943 PCOS cases and 162,936 controls). Two-sample MR using inverse variance weighting (IVW) was undertaken, followed by the weighted median, weighted mode, and MR-Egger regression. In a subsample, we replicated our findings using the meta-analysis PCOS consortium (10,074 cases and 103,164 controls) from European ancestry. Results IVWMR results suggested that six gut microbiota were causally associated with PCOS features. After adjusting BMI, SHBG, fasting insulin, testosterone, and alcohol intake frequency, the effect sizes were significantly reduced. Reverse MR analysis revealed that the effects of PCOS features on 13 gut microbiota no longer remained significant after sensitivity analysis and Bonferroni corrections. MR replication analysis was consistent and the results suggest that gut microbiota was likely not an independent cause of PCOS. Conclusion Our findings did not support the causal relationships between the gut microbiota and PCOS features at the genetic level. More comprehensive genome-wide association studies of the gut microbiota and PCOS are warranted to confirm their genetic relationship. Declaration This study contains 3533 words, 0 tables, and six figures in the text as well as night supplementary files and 0 supplementary figures in the Supplementary material.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
45
|
Zhu J, Eliasen AU, Aris IM, Stinson SE, Holm JC, Hansen T, Hivert MF, Bønnelykke K, Salem RM, Hirschhorn JN, Chan YM. Pediatric Features of Genetic Predisposition to Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2024; 109:380-388. [PMID: 37690116 PMCID: PMC10795915 DOI: 10.1210/clinem/dgad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) has historically been conceptualized as a disorder of the reproductive system in women. However, offspring of women with PCOS begin to show metabolic features of PCOS in childhood, suggestive of childhood manifestations. OBJECTIVE To identify childhood manifestations of genetic risk for PCOS. METHODS We calculated a PCOS polygenic risk score (PRS) for 12 350 girls and boys in 4 pediatric cohorts-ALSPAC (UK), COPSAC (Denmark), Project Viva (USA), and The HOLBÆK Study (Denmark). We tested for association of the PRS with PCOS-related phenotypes throughout childhood and with age at pubarche and age at peak height velocity and meta-analyzed effects across cohorts using fixed-effect models. RESULTS Higher PRS for PCOS was associated with higher body mass index in midchildhood (0.05 kg/m2 increase per 1 SD of PRS, 95% CI 0.03, 0.07, P = 3 × 10-5) and higher risk of obesity in early childhood (OR 1.34, 95% CI 1.13, 1.59, P = .0009); both persisted through late adolescence (P all ≤.03). Higher PCOS PRS was associated with earlier age at pubarche (0.85-month decrease per 1 SD of PRS, 95% CI -1.44, -0.26, P = .005) and younger age at peak height velocity (0.64-month decrease per 1 SD of PRS, 95% CI -0.94, -0.33, P = 4 × 10-5). CONCLUSION Genetic risk factors for PCOS are associated with alterations in metabolic, growth, and developmental traits in childhood. Thus, PCOS may not simply be a condition that affects women of reproductive age but, rather, a possible manifestation of an underlying condition that affects both sexes starting in early life.
Collapse
Affiliation(s)
- Jia Zhu
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anders U Eliasen
- Copenhagen Prospective Studies on Asthma in Childhood Research Center (COPSAC), Copenhagen University Hospital, Herlev-Gentofte, Copenhagen 2820, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard University and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- The Children's Obesity Clinic, Accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk 4300, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard University and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood Research Center (COPSAC), Copenhagen University Hospital, Herlev-Gentofte, Copenhagen 2820, Denmark
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Shi J, Hu KL, Li XX, Ge YM, Yu XJ, Zhao J. Bisphenol a downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome. Cell Commun Signal 2024; 22:28. [PMID: 38200540 PMCID: PMC10782693 DOI: 10.1186/s12964-023-01410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiao-Xue Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Yi-Meng Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Xiao-Jun Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
47
|
Chen-Patterson A, Bernier A, Burgert T, Davis V, Khan T, Geller D, Paprocki E, Shah R, Witchel SF, Pereira-Eshraghi C, Sopher AB, Cree MG, Torchen LC. Distinct Reproductive Phenotypes Segregate With Differences in Body Weight in Adolescent Polycystic Ovary Syndrome. J Endocr Soc 2024; 8:bvad169. [PMID: 38213910 PMCID: PMC10783242 DOI: 10.1210/jendso/bvad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/13/2024] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) is a heterogenous clinical syndrome defined by hyperandrogenism and irregular menses. In adult women with PCOS, discrete metabolic and reproductive subgroups have been identified. We hypothesize that distinct phenotypes can be distinguished between adolescent girls who are lean (LN-G) and girls with obesity (OB-G) at the time of PCOS diagnosis. Methods Data were extracted from the CALICO multisite PCOS database. Clinical data collected at the time of diagnosis were available in 354 patients (81% with obesity) from 7 academic centers. Patients with body mass index (BMI) < 85th percentile for age and sex were characterized as lean (LN-G) and those with BMI percentile ≥ 95th percentile as obese (OB-G). We compared metabolic and reproductive phenotypes in LN-G and OB-G. Results Reproductive phenotypes differed between the groups, with LN-G having higher total testosterone, androstenedione, and LH levels, while OB-G had lower sex hormone binding globulin (SHBG) and higher free testosterone. Metabolic profiles differed as expected, with OB-G having higher hemoglobin A1c, alanine aminotransferase, and serum triglycerides and more severe acanthosis nigricans. Conclusion LN-G with PCOS had a distinct reproductive phenotype characterized by increased LH, total testosterone, and androstenedione levels, suggesting neuroendocrine-mediated ovarian androgen production. In contrast, phenotypes in OB-G suggest hyperandrogenemia is primarily driven by insulin resistance with low SHBG levels. These observations support the existence of distinct metabolic and reproductive subtypes in adolescent PCOS characterized by unique mechanisms for hyperandrogenemia.
Collapse
Affiliation(s)
| | - Angelina Bernier
- Pediatric Endocrinology, University of Florida, Gainesville, FL 32608, USA
| | - Tania Burgert
- Pediatric Endocrinology, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Vanessa Davis
- Pediatric Endocrinology, John H. Stroger, Jr. Hospital, Chicago, IL 60612, USA
| | - Tazeena Khan
- University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - David Geller
- Pediatric Endocrinology, Children's Hospital, Los Angeles, CA 90027, USA
| | - Emily Paprocki
- Pediatric Endocrinology, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Selma F Witchel
- Pediatric Endocrinology, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | | | - Aviva B Sopher
- Pediatric Endocrinology, Columbia University, NewYork, NY 10032, USA
| | - Melanie G Cree
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Laura C Torchen
- Pediatric Endocrinology, Lurie Children's Hospital, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
48
|
Mbarek H, Gordon SD, Duffy DL, Hubers N, Mortlock S, Beck JJ, Hottenga JJ, Pool R, Dolan CV, Actkins KV, Gerring ZF, Van Dongen J, Ehli EA, Iacono WG, Mcgue M, Chasman DI, Gallagher CS, Schilit SLP, Morton CC, Paré G, Willemsen G, Whiteman DC, Olsen CM, Derom C, Vlietinck R, Gudbjartsson D, Cannon-Albright L, Krapohl E, Plomin R, Magnusson PKE, Pedersen NL, Hysi P, Mangino M, Spector TD, Palviainen T, Milaneschi Y, Penninnx BW, Campos AI, Ong KK, Perry JRB, Lambalk CB, Kaprio J, Ólafsson Í, Duroure K, Revenu C, Rentería ME, Yengo L, Davis L, Derks EM, Medland SE, Stefansson H, Stefansson K, Del Bene F, Reversade B, Montgomery GW, Boomsma DI, Martin NG. Genome-wide association study meta-analysis of dizygotic twinning illuminates genetic regulation of female fecundity. Hum Reprod 2024; 39:240-257. [PMID: 38052102 PMCID: PMC10767824 DOI: 10.1093/humrep/dead247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2023] [Indexed: 12/07/2023] Open
Abstract
STUDY QUESTION Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S) Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Skłodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nikki Hubers
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Sally Mortlock
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jeffrey J Beck
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ky’Era V Actkins
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Jenny Van Dongen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matt Mcgue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel I Chasman
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Samantha L P Schilit
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Cynthia C Morton
- Harvard Medical School, Harvard University, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | - Eva Krapohl
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Statistical Sciences & Innovation, UCB Biosciences GmbH, Monheim, Germany
| | - Robert Plomin
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pirro Hysi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brenda W Penninnx
- Department of Psychiatry, EMGO Institute for Health and Care Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Adrian I Campos
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Cornelis B Lambalk
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
- Amsterdam University Medical Centers Location VU Medical Center, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Ísleifur Ólafsson
- Department of Clinical Biochemistry, National University Hospital of Iceland, Reykjavik, Iceland
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Céline Revenu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Loic Yengo
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Lea Davis
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Eske M Derks
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Bruno Reversade
- Genome Institute of Singapore, Laboratory of Human Genetics & Therapeutics, A*STAR, Singapore, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, Saudi Arabia
| | - Grant W Montgomery
- Institute of Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Polinski KJ, Robinson SL, Putnick DL, Sundaram R, Ghassabian A, Joseph P, Gomez-Lobo V, Bell EM, Yeung EH. Maternal self-reported polycystic ovary syndrome with offspring and maternal cardiometabolic outcomes. Hum Reprod 2024; 39:232-239. [PMID: 37935839 PMCID: PMC10767861 DOI: 10.1093/humrep/dead227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
STUDY QUESTION Do children born to mothers with polycystic ovary syndrome (PCOS) have an adverse cardiometabolic profile including arterial stiffness at 9 years of age compared to other children? SUMMARY ANSWER Children of mothers with PCOS did not have differing cardiometabolic outcomes than children without exposure. WHAT IS KNOWN ALREADY While women with PCOS themselves have higher risk of cardiometabolic conditions such as obesity and diabetes, the evidence on intergenerational impact is unclear. Given in utero sequalae of PCOS (e.g. hyperandrogenism, insulin resistance), the increased risk could be to both boys and girls. STUDY DESIGN, SIZE, DURATION The Upstate KIDS cohort is a population-based birth cohort established in 2008-2010 to prospectively study the impact of infertility treatment on children's health. After ∼10 years of follow-up, 446 mothers and their 556 children attended clinical visits to measure blood pressure (BP), heart rate, arterial stiffness by pulse wave velocity (PWV), mean arterial pressure, lipids, high-sensitivity C-reactive protein (hsCRP), hemoglobin A1c (HbA1c), and anthropometrics. PARTICIPANTS/MATERIALS, SETTING, METHODS Women self-reported ever diagnoses of PCOS ∼4 months after delivery of their children in 2008-2010. Linear regression models applying generalized estimating equations to account for correlation within twins were used to examine associations with each childhood cardiometabolic outcome. MAIN RESULTS AND THE ROLE OF CHANCE In this cohort with women oversampled on infertility treatment, ∼14% of women reported a PCOS diagnosis (n = 61). We observed similarities in BP, heart rate, PWV, lipids, hsCRP, HbA1c, and anthropometry (P-values >0.05) among children born to mothers with and without PCOS. Associations did not differ by child sex. LIMITATIONS, REASONS FOR CAUTION The sample size of women with PCOS precluded further separation of subgroups (e.g. by hirsutism). The population-based approach relied on self-reported diagnosis of maternal PCOS even though self-report has been found to be valid. Participants were predominantly non-Hispanic White and a high proportion were using fertility treatment due to the original design. Differences in cardiometabolic health may be apparent later in age, such as after puberty. WIDER IMPLICATIONS OF THE FINDINGS Our results provide some reassurance that cardiometabolic factors do not differ in children of women with and without self-reported PCOS during pregnancy. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States (contracts #HHSN275201200005C, #HHSN267200700019C, #HHSN275201400013C, #HHSN275201300026I/27500004, #HHSN275201300023I/27500017). The authors have no conflicts of interest. REGISTRATION NUMBER NCT03106493.
Collapse
Affiliation(s)
- K J Polinski
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - S L Robinson
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - D L Putnick
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - R Sundaram
- Biostatistics and Bioinformatics Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - A Ghassabian
- Departments of Pediatrics and of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - P Joseph
- Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V Gomez-Lobo
- Pediatric and Adolescent Gynecology Program, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - E M Bell
- Department of Environmental Health Sciences, Epidemiology and Biostatistics, University at Albany School of Public Health, Albany, NY, USA
| | - E H Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Nisa KU, Tarfeen N, Mir SA, Waza AA, Ahmad MB, Ganai BA. Molecular Mechanisms in the Etiology of Polycystic Ovary Syndrome (PCOS): A Multifaceted Hypothesis Towards the Disease with Potential Therapeutics. Indian J Clin Biochem 2024; 39:18-36. [PMID: 38223007 PMCID: PMC10784448 DOI: 10.1007/s12291-023-01130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Among the premenopausal women, Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrinopathy affecting the reproductive system and metabolic rhythms leading to disrupted menstrual cycle. Being heterogeneous in nature it is characterized by complex symptomology of oligomennorhoea, excess of androgens triggering masculine phenotypic appearance and/or multiple follicular ovaries. The etiology of this complex disorder remains somewhat doubtful and the researchers hypothesize multisystem links in the pathogenesis of this disease. In this review, we attempt to present several hypotheses that tend to contribute to the etiology of PCOS. Metabolic inflexibility, aberrant pattern of gonadotropin signaling along with the evolutionary, genetic and environmental factors have been discussed. Considered a lifelong endocrinological implication, no universal treatment is available for PCOS so far however; multiple drug therapy is often advised along with simple life style intervention is mainly advised to manage its cardinal symptoms. Here we aimed to present a summarized view of pathophysiological links of PCOS with potential therapeutic strategies.
Collapse
Affiliation(s)
- Khair Ul Nisa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006 India
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Najeebul Tarfeen
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, 190010 India
| | - Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical Collage (GMC), Srinagar, 190010 India
| | - Mir Bilal Ahmad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006 India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, 190006 India
| |
Collapse
|