1
|
Recher D, Rohde J, Da Poian G, Henninger M, Brogli L, Huber R, Karlen W, Lustenberger C, Kleim B. Targeted memory reactivation during sleep improves emotional memory modulation following imagery rescripting. Transl Psychiatry 2024; 14:490. [PMID: 39695124 DOI: 10.1038/s41398-024-03192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Targeted Memory Reactivation (TMR) during sleep benefits memory integration and consolidation. In this pre-registered study, we investigated the effects of TMR applied during non-rapid eye movement (NREM) sleep following modulation and updating of aversive autobiographical memories using imagery rescripting (ImR). During 2-5 nights postImR, 80 healthy participants were repeatedly presented with either idiosyncratic words from an ImR updated memory during sleep (experimental group) or with no or neutral words (control groups) using a wearable EEG device (Mobile Health Systems Lab-Sleepband, MHSL-SB) [1] implementing a close-loop cueing procedure. Multivariate analysis were conducted to assess change score trajectories in five key emotional memory characteristics (positive and negative valence, emotional distress, arousal, and vividness) across assessments (timepoints, t) and between the study groups (TMR condition). While ImR showed significant effects on all memory characteristics (d = 0.76-1.66), there were significant additional improvements in the experimental group. Memories were significantly less vivid and afflicted with less emotional distress and arousal following ImR-words cueing. TMR during sleep in individuals' homes was feasible and further improved some ImR's adaptive memory effects. If replicated in clinical samples, TMR may be utilized to augment the effects of ImR and other clinical memory modulation procedures and create personalized treatment options. Such advances in emotional memory treatments are direly needed, as aversive memories are a salient feature across mental disorders, such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Dominique Recher
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Judith Rohde
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor System Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mirka Henninger
- Psychological Methods, Evaluation and Statistics, Department of Psychology, University of Zurich, Zurich, Switzerland
- Statistics and Data Science, Department of Psychology, University of Basel, Basel, Switzerland
| | - Luzius Brogli
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
- Cognitive Neuroscience of Memory and Consciousness, Department of Psychology, University of Bern, Bern, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Karlen
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Caroline Lustenberger
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Gasparello A, Baldassarri A, Degasperi G, Cellini N. The impact of sleep on factual memory retention over 24 hr. J Sleep Res 2024; 33:e14237. [PMID: 38754902 DOI: 10.1111/jsr.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Although a period of sleep seems to benefit the retention of declarative memories, recent studies have challenged both the size of this effect and its active influence on memory consolidation. This study aimed to further investigate the effect of sleep and its time dependency on the consolidation of factual information. In a within-subjects design, 48 participants (Mage = 24.37 ± 4.18 years, 31F) were asked to learn several facts in a multi-sensory "flashcard-like" memory task at 21:00 hours (sleep first condition) or at 09:00 hours (wake first condition). Then, in each condition, participants performed an immediate recall test (T0), and two delayed tests 12 hr (T1) and 24 hr (T2) later. Participants' sleep was recorded at their homes with a portable device. Results revealed that memory retention was better after a night of sleep compared with wakefulness, regardless of the delay from encoding (a few hr versus 12+ hr), but the sleep effect was modest. The decline in memory during the wake period following sleep was smaller compared with the decline observed during the 12 hr of wakefulness after encoding. However, after 24 hr from the encoding, when all participants experienced a period of both sleep and wakefulness, memory performance in the two conditions was similar. Overall, our data suggest that sleep exerts a small, yet beneficial, influence on memory retention by likely reducing interference and actively stabilizing memory traces.
Collapse
Affiliation(s)
| | | | | | - Nicola Cellini
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Liu XL, Ranganath C, O'Reilly RC. A complementary learning systems model of how sleep moderates retrieval practice effects. Psychon Bull Rev 2024; 31:2022-2035. [PMID: 38530592 PMCID: PMC11543715 DOI: 10.3758/s13423-024-02489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
While many theories assume that sleep is critical in stabilizing and strengthening memories, our recent behavioral study (Liu & Ranganath, 2021, Psychonomic Bulletin & Review, 28[6], 2035-2044) suggests that sleep does not simply stabilize memories. Instead, it plays a more complex role, integrating information across two temporally distinct learning episodes. In the current study, we simulated the results of Liu and Ranganath (2021) using our biologically plausible computational model, TEACH, developed based on the complementary learning systems (CLS) framework. Our model suggests that when memories are activated during sleep, the reduced influence of temporal context establishes connections across temporally separated events through mutual training between the hippocampus and neocortex. In addition to providing a compelling mechanistic explanation for the selective effect of sleep, this model offers new examples of the diverse ways in which the cortex and hippocampus can interact during learning.
Collapse
Affiliation(s)
- Xiaonan L Liu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Randall C O'Reilly
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Wang Y, Meng Y, Zhang R, Du J, Huang Y, Zheng S, Xu S, Xiao L, Xu J, Wang H, Su T, Tang Y. Positive effects of napping on memory consolidation and resistance against interference. Sleep Breath 2023; 27:2499-2507. [PMID: 37059903 DOI: 10.1007/s11325-023-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE This study explored the relationship between naps and memory among habitual nappers in China. METHODS Medical college students participated and were divided into 30-min, 60-min, and 90-min time-in-bed groups. To evaluate declarative and procedural memory performance, A-B and A-C interfering word pair and interfering finger tapping tasks were employed. RESULTS Among 60 students, a significant decrease in the correct recall rate in the declarative task after having a nap was found only in the 30-min group (p = 0.005). After learning interference (A-C word pairs), the correct recall rate for the declarative task decreased significantly in all interference tests (ps < 0.001). In the procedural task, the speed of sequence A in the retests increased after having a nap in all three groups (ps < 0.048), with a significant decrease in accuracy only in the 30-min group (p = 0.042). After learning interference (sequence B) in the procedural task, the speed of sequence A increased in the 60-min group after 1 h (p = 0.049), and both the 60-min and 90-min groups showed increased speed after one night (ps < 0.022). No significant improvement in speed was found in the 30-min group (ps > 0.05), and this group showed the lowest accuracy for sequence A (ps < 0.16). CONCLUSION A habitual nap time-in-bed of 60 or 90 min had better effects on declarative and procedural memory consolidation and better memory resistance against interference in procedural memory.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
- Department of Medical Psychology, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Yao Meng
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Ruike Zhang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Jing Du
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Yujia Huang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Siqi Zheng
- Shanghai Tongxinjici Health Counseling Center, Shanghai, People's Republic of China
| | - Shuyu Xu
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Lei Xiao
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Jingzhou Xu
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Hao Wang
- Department of Medical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China
| | - Tong Su
- Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China.
| | - Yunxiang Tang
- Faculty of Psychology, Naval Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Halonen R, Luokkala S, Kuula L, Antila M, Pesonen AK. Right-lateralized sleep spindles are associated with neutral over emotional bias in picture recognition: An overnight study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1445-1459. [PMID: 37308745 PMCID: PMC10260275 DOI: 10.3758/s13415-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
Sleep is especially important for emotional memories, although the mechanisms for prioritizing emotional content are insufficiently known. As during waking, emotional processing during sleep may be hemispherically asymmetric; right-lateralized rapid-eye movement (REM) sleep theta (~4-7 Hz) is reportedly associated with emotional memory retention. No research exists on lateralized non-REM sleep oscillations. However, sleep spindles, especially when coupled with slow oscillations (SOs), facilitate off-line memory consolidation.Our primary goal was to examine how the lateralization (right-to-left contrast) of REM theta, sleep spindles, and SO-spindle coupling is associated with overnight recognition memory in a task consisting of neutral and emotionally aversive pictures. Thirty-two healthy adults encoded 150 target pictures before overnight sleep. The recognition of target pictures among foils (discriminability, d') was tested immediately, 12 hours, and 24 hours after encoding.Recognition discriminability between targets and foils was similar for neutral and emotional pictures in immediate and 12-h retrievals. After 24 hours, emotional pictures were less accurately discriminated (p < 0.001). Emotional difference at 24-h retrieval was associated with right-to-left contrast in frontal fast spindle density (p < 0.001). The lateralization of SO-spindle coupling was associated with higher neutral versus emotional difference across all retrievals (p = 0.004).Our findings contribute to a largely unstudied area in sleep-related memory research. Hemispheric asymmetry in non-REM sleep oscillations may contribute to how neutral versus emotional information is processed. This is presumably underlain by both mechanistic offline memory consolidation and a trait-like cognitive/affective bias that influences memory encoding and retrieval. Methodological choices and participants' affective traits are likely involved.
Collapse
Affiliation(s)
- Risto Halonen
- SleepWell Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Sanni Luokkala
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Liisa Kuula
- SleepWell Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Minea Antila
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Wernette EMD, Fenn KM. Consolidation without intention: Sleep strengthens veridical and gist representations of information after incidental encoding. Psychon Bull Rev 2023; 30:1475-1483. [PMID: 36800068 DOI: 10.3758/s13423-023-02247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/18/2023]
Abstract
Sleep strengthens declarative memory, but research investigating the effect of sleep on memory for information that is not explicitly studied for a test is sparse. In two experiments, we investigated the effect of sleep on gist-based and veridical representations of incidentally encoded information. Participants rated words from Deese-Roediger-McDermott (DRM) lists in either a deep or shallow encoding task and completed a surprise memory test after either sleep or wake. In Experiment 1, words were presented in lists, in order of descending associativity with the unpresented critical lure. Memory for list words and critical lures in both encoding tasks was stronger after sleep than wake, suggesting that sleep consolidated gist-based memory. In Experiment 2, the same words were presented in a random order across the experiment to minimize gist-based processing. Sleep strengthened veridical memory for list words following deep, but not shallow, encoding and did not affect critical lures. These results suggest sleep consolidates gist and veridical representations of information after incidental encoding, and that sleep-dependent consolidation processes may depend on processes at encoding, such as overlapping context and the strength of veridical memory traces.
Collapse
Affiliation(s)
- Elle M D Wernette
- Department of Psychology, Michigan State University, 316 Physics Road, Room 213, East Lansing, MI, 48824, USA.
| | - Kimberly M Fenn
- Department of Psychology, Michigan State University, 316 Physics Road, Room 213, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Schimke EAE, Angwin AJ, Gomersall SR, Copland DA. The effect of sleep and semantic information on associative novel word learning. Memory 2023; 31:234-246. [PMID: 36341523 DOI: 10.1080/09658211.2022.2142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study investigated the effect of overnight sleep on associative novel word learning and examined whether the effects of sleep on word learning are modulated by the provision of semantic information. Seventy-five healthy young adults attended an initial word-learning session followed by a delayed testing session. An interval of overnight sleep (sleep group) or daytime wakefulness (wake group) separated the two sessions. At the initial learning session, participants learned three-word names of 20 novel objects, where half the names comprised a novel word and two semantic attributes (semantic condition), and half comprised a novel word and two meaningless proper names (name condition). Novel word cued-recall was measured at both the initial and the delayed session. Although both groups demonstrated similar cued-recall accuracy at the first session, by the delayed session the sleep group demonstrated superior cued-recall accuracy compared to the wake group. There was no influence of semantics on the sleep-dependent consolidation of the novel words. Overall, these findings suggest that novel words encoded with or without the provision of semantic information can benefit from an overnight sleep period for consolidation.
Collapse
Affiliation(s)
- Emma A E Schimke
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Anthony J Angwin
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Sjaan R Gomersall
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Queensland Aphasia Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Abstract
The restorative function of sleep is shaped by its duration, timing, continuity, subjective quality, and efficiency. Current sleep recommendations specify only nocturnal duration and have been largely derived from sleep self-reports that can be imprecise and miss relevant details. Sleep duration, preferred timing, and ability to withstand sleep deprivation are heritable traits whose expression may change with age and affect the optimal sleep prescription for an individual. Prevailing societal norms and circumstances related to work and relationships interact to influence sleep opportunity and quality. The value of allocating time for sleep is revealed by the impact of its restriction on behavior, functional brain imaging, sleep macrostructure, and late-life cognition. Augmentation of sleep slow oscillations and spindles have been proposed for enhancing sleep quality, but they inconsistently achieve their goal. Crafting bespoke sleep recommendations could benefit from large-scale, longitudinal collection of objective sleep data integrated with behavioral and self-reported data.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
9
|
Hanron O, Mason GM, Holmes JF, Spencer RMC. Early childhood naps initiate emotional memory processing in preparation for enhanced overnight consolidation. Child Dev 2023; 94:721-733. [PMID: 36593656 DOI: 10.1111/cdev.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early childhood naps support emotional memory, but benefits are only observed after overnight sleep. Whether emotional memory consolidation occurs during naps, or whether napping only prepares memories for overnight consolidation is unknown. We investigated whether naps protect emotional memories from interference, indicating consolidation. Between 2018 and 2020, 63 children in western Massachusetts preschools (30 female, 33 male; 33-67 months; 23.8% Hispanic, 87.3% White) learned faces paired with negative or neutral descriptions, followed by nap or wake. Before delayed recognition, half completed an interference task. Without interference, napping benefited recognition. With interference, children recognized fewer negative faces post-nap (compared to wake), with overnight sleep attenuating this difference. Results suggest that naps initially destabilize emotional memories, possibly reflecting partial processing that promotes long-term consolidation.
Collapse
Affiliation(s)
- Olivia Hanron
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Commonwealth Honors College, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gina M Mason
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Neuroscience & Behavior Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jennifer F Holmes
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Neuroscience & Behavior Program, University of Massachusetts, Amherst, Massachusetts, USA.,Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Talamini LM, van Moorselaar D, Bakker R, Bulath M, Szegedi S, Sinichi M, De Boer M. No evidence for a preferential role of sleep in episodic memory abstraction. Front Neurosci 2022; 16:871188. [PMID: 36570837 PMCID: PMC9780604 DOI: 10.3389/fnins.2022.871188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence suggests that sleep has a role in declarative memory consolidation. An influential notion holds that such sleep-related memory consolidation is associated with a process of abstraction. The neural underpinnings of this putative process are thought to involve a hippocampo-neocortical dialogue. Specifically, the idea is that, during sleep, the statistical contingencies across episodes are re-coded to a less hippocampus-dependent format, while at the same time losing configural information. Two previous studies from our lab, however, failed to show a preferential role of sleep in either episodic memory decontextualisation or the formation of abstract knowledge across episodic exemplars. Rather these processes occurred over sleep and wake time alike. Here, we present two experiments that replicate and extend these previous studies and exclude some alternative interpretations. The combined data show that sleep has no preferential function in this respect. Rather, hippocampus-dependent memories are generalised to an equal extent across both wake and sleep time. The one point on which sleep outperforms wake is actually the preservation of episodic detail of memories stored prior to sleep.
Collapse
Affiliation(s)
- Lucia M. Talamini
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| | - Dirk van Moorselaar
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Bakker
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Máté Bulath
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Steffie Szegedi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Mohammadamin Sinichi
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke De Boer
- Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- University of Amsterdam—Amsterdam Brain and Cognition, Amsterdam, Netherlands
| |
Collapse
|
11
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Sleep targets highly connected global and local nodes to aid consolidation of learned graph networks. Sci Rep 2022; 12:15086. [PMID: 36064730 PMCID: PMC9445065 DOI: 10.1038/s41598-022-17747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
Much of our long-term knowledge is organised in complex networks. Sleep is thought to be critical for abstracting knowledge and enhancing important item memory for long-term retention. Thus, sleep should aid the development of memory for networks and the abstraction of their structure for efficient storage. However, this remains unknown because past sleep studies have focused on discrete items. Here we explored the impact of sleep (night-sleep/day-wake within-subject paradigm with 25 male participants) on memory for graph-networks where some items were important due to dense local connections (degree centrality) or, independently, important due to greater global connections (closeness/betweenness centrality). A network of 27 planets (nodes) sparsely interconnected by 36 teleporters (edges) was learned via discrete associations without explicit indication of any network structure. Despite equivalent exposure to all connections in the network, we found that memory for the links between items with high local connectivity or high global connectivity were better retained after sleep. These results highlight that sleep has the capacity for strengthening both global and local structure from the world and abstracting over multiple experiences to efficiently form internal networks of knowledge.
Collapse
|
13
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
14
|
Reid A, Bloxham A, Carr M, van Rijn E, Basoudan N, Tulip C, Blagrove M. Effects of sleep on positive, negative and neutral valenced story and image memory. Br J Psychol 2022; 113:777-797. [PMID: 35253902 PMCID: PMC9545409 DOI: 10.1111/bjop.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Abstract
During sleep, emotional memories are preferentially strengthened. However, most studies on sleep and emotional memory focus on comparing negative valence with neutral valence stimuli. This study compared the sleep‐dependent memory effects for stories and images, each comprising negative, neutral, and positive stimuli. It was hypothesized that a sleep effect would be seen for negatively and positively valenced stimuli. A novel story memory task (comprising three stories), and photographs from the Nencki Affective Picture database were presented for learning to 61 healthy adults (ages 18–25). They were tested for memory on the two tasks immediately, and then again after either a 2‐hr nap (n = 31; 17 women, 14 men) or 2‐hr wake period (n = 30; 13 women, 17 men). At second testing, the sleep condition had significantly better recall compared to the wake condition on both tasks. There was a relationship with valence only for the story task, with better performance for the sleep condition on the negatively and positively valenced texts, but not on the neutral text. There were no significant relationships between memory measures and sleep‐stage duration and EEG power variables. The story memory findings support the hypothesis that memory consolidation prioritizes emotional memory, whether positively or negatively valenced.
Collapse
Affiliation(s)
- Alex Reid
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Anthony Bloxham
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Michelle Carr
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Elaine van Rijn
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Nasreen Basoudan
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Chloe Tulip
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| | - Mark Blagrove
- Sleep Laboratory, Faculty of Medicine, Health and Life Science, School of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
15
|
Borragán G, Benoit CE, Schul N, Strauss M, De Schepper M, Roekens V, Peigneux P. Impaired sequential but preserved motor memory consolidation in multiple sclerosis disease. Neuroscience 2022; 487:99-106. [DOI: 10.1016/j.neuroscience.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
|
16
|
The effect of sleep on novel word learning in healthy adults: A systematic review and meta-analysis. Psychon Bull Rev 2021; 28:1811-1838. [PMID: 34549375 DOI: 10.3758/s13423-021-01980-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
There is increasing evidence to indicate that sleep plays a role in language acquisition and consolidation; however, there has been substantial variability in methodological approaches used to examine this phenomenon. This systematic review and meta-analysis aimed to investigate the effect of sleep on novel word learning in adults, and explore whether these effects differed by retrieval domain (i.e., recall, recognition, and tests of lexical integration). Twenty-five unique studies met the inclusion criteria for the review, and 42 separate outcome measures were synthesized in the meta-analysis (k = 29 separate between-group comparisons, n = 1,396 participants). The results from the omnibus meta-analysis indicated that sleep was beneficial for novel word learning compared with wakefulness (g = 0.50). Effect sizes differed across the separate domain-specific meta-analyses, with moderate effects for recall (g = 0.57) and recognition memory (g = 0.52), and a small effect for tasks which measured lexical integration (g = 0.39). Overall, the results of this meta-analysis indicate that sleep generally benefits novel word acquisition and consolidation compared with wakefulness across differing retrieval domains. This systematic review highlights the potential for sleep to be used to improve second-language learning in healthy adults, and overall provides further insight into methods to facilitate language development.
Collapse
|
17
|
Carbone J, Bibián C, Reischl P, Born J, Forcato C, Diekelmann S. The effect of zolpidem on targeted memory reactivation during sleep. Learn Mem 2021; 28:307-318. [PMID: 34400532 PMCID: PMC8372567 DOI: 10.1101/lm.052787.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Carlos Bibián
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Reischl
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1106ACD, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Resurrected memories: Sleep-dependent memory consolidation saves memories from competition induced by retrieval practice. Psychon Bull Rev 2021; 28:2035-2044. [PMID: 34173188 PMCID: PMC8642353 DOI: 10.3758/s13423-021-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Retrieval practice improves retention of tested information, and it can either impair or facilitate retention of untested information. Here, we investigated how semantic relatedness, episodic context, and sleep-dependent memory consolidation determine the effects of retrieval practice on retention of untested items. Participants studied lists of scene-word associations. Each scene was associated with two different words (“pairmates”) that were either semantically related or unrelated and either in the same (temporally close) or different lists (temporally far). In three experiments, retrieval practice of scene-word associations facilitated retention of unpracticed, temporally close pairmates and impaired retention of temporally far, semantically unrelated pairmates. Critically, retrieval practice impaired retention of temporally far, semantically related pairmates if participants were unable to sleep during the retention interval, but it facilitated retention of these items if participants were able to sleep. Our findings suggest that sleep extends the benefits of testing to related information learned in temporally separate episodes.
Collapse
|
19
|
Nighttime sleep benefits the prospective component of prospective memory. Mem Cognit 2021; 49:1690-1704. [PMID: 34117634 PMCID: PMC8563623 DOI: 10.3758/s13421-021-01187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/08/2022]
Abstract
Studies suggest that sleep benefits event-based prospective memory, which involves carrying out intentions when particular events occur. Prospective memory has a prospective component (remembering that one has an intention), and a retrospective component (remembering when to carry it out). As effects of sleep on retrospective memory are well established, the effect of sleep on prospective memory may thus be due exclusively to an effect of sleep on its retrospective component. Therefore, the authors investigated whether nighttime sleep improves the prospective component of prospective memory, or a retrospective component, or both. In a first session, participants performed an event-based prospective-memory task (that was embedded in an ongoing task) 3 minutes after forming an intention and, in a second session, 12 hours after forming an intention. The sessions were separated by either nighttime sleep or daytime wakefulness. The authors disentangled prospective-memory performance into its retrospective and prospective components via multinomial processing tree modeling. There was no effect of sleep on the retrospective component, which may have been due to a time-of-day effect. The prospective component, which is the component unique to prospective memory, declined less strongly after a retention interval filled with sleep as compared with a retention interval filled with wakefulness. A hybrid interaction suggested that refreshed attention after sleep may account for this effect, but did not support the consolidation of the association between the intention and its appropriate context as a mechanism driving the effect.
Collapse
|
20
|
Abstract
This review will explore the role of memory consolidation in speech-motor learning. Existing frameworks of speech-motor control account for the protracted time course of building the speech-motor representation. These perspectives converge on the speech-motor representation as a multimodal unit that is comprised of auditory, motor, and linguistic information. Less is known regarding the memory mechanisms that support the emergence of a generalized speech-motor unit from instances of speech production. Here, we consider the broader learning and memory consolidation literature and how it may apply to speech-motor learning. We discuss findings from relevant domains on the stabilization, enhancement, and generalization of learned information. Based on this literature, we provide our predictions for the division of labor between conscious and unconscious memory systems in speech-motor learning, and the subsequent effects of time and sleep to memory consolidation. We identify both the methodological challenges, as well as the practical importance, of advancing this work empirically. This discussion provides a foundation for building a memory-based framework for speech-motor learning.
Collapse
|
21
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
22
|
Sleep reduces the semantic coherence of memory recall: An application of latent semantic analysis to investigate memory reconstruction. Psychon Bull Rev 2021; 28:1336-1343. [PMID: 33835404 DOI: 10.3758/s13423-021-01919-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
Sleep is thought to help consolidate hippocampus-dependent memories by reactivating previously encoded neural representations, promoting both quantitative and qualitative changes in memory representations. However, the qualitative nature of changes to memory representations induced by sleep remains largely uncharacterized. In this study, we investigated how memories are reconstructed by hypothesizing that semantic coherence, defined as conceptual relatedness between statements of free-recall texts and quantified using latent semantic analysis (LSA), is affected by post-encoding sleep. Short naturalistic videos of events featuring six animals were presented to 115 participants who were randomly assigned to either 12- or 24-h delay groups featuring sleep or wakefulness. Participants' free-recall responses were analyzed to test for an effect of sleep on semantic coherence between adjacent statements, and overall. The presence of sleep reduced both forms of semantic coherence, compared to wakefulness. This change was robust and not due to shifts in conciseness or repetitiveness with sleep. These findings support the notion that sleep-dependent consolidation qualitatively changes the features of reconstructed memory representations by reducing semantic coherence.
Collapse
|
23
|
Richter J, Seffen A, Benedict T, Gast A. No evidence of consolidation of evaluative conditioning during waking rest and sleep. Cogn Emot 2021; 35:844-858. [PMID: 33715590 DOI: 10.1080/02699931.2021.1896992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Research on evaluative conditioning (EC) shows that attitudes can emerge from co-occurrences of stimuli, and accumulating evidence suggests that EC usually depends on memory for these stimulus contingencies. Therefore, processes known to aid memory retention may be relevant for the development of stable attitudes. One such process may be memory consolidation, assumed to be promoted by waking rest and sleep. In two pre-registered experiments, we investigated whether waking rest (vs. cognitive activity, Experiment 1) and sleep (vs. wakefulness, Experiment 2) in between conditioning and measurement of EC, consolidate contingency memory and EC. Contrary to our predictions, waking rest (vs. cognitive activity) promoted neither contingency memory nor EC effects. Sleep (vs. wakefulness) decreased forgetting of contingency memory but crucially, it did not attenuate the impact of counterconditioning on contingency memory. Sleep also did not influence EC effects, nor the reduction of EC by counterconditioning. EC effects in both experiments were predicted by contingency memory. Yet, unexpectedly, EC effects occurred in the absence of contingency memory after waking rest, but neither after sleep nor in the active control conditions. Our findings emphasise a role of contingency memory in EC, but it remains unclear whether this role changes during waking rest.
Collapse
Affiliation(s)
- Jasmin Richter
- Department of Psychology, University of Cologne, Cologne, Germany
| | - Alice Seffen
- Department of Psychology, University of Cologne, Cologne, Germany
| | - Taylor Benedict
- Department of Psychology, University of Cologne, Cologne, Germany
| | - Anne Gast
- Department of Psychology, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Beijamini F, Valentin A, Jäger R, Born J, Diekelmann S. Sleep Facilitates Problem Solving With No Additional Gain Through Targeted Memory Reactivation. Front Behav Neurosci 2021; 15:645110. [PMID: 33746720 PMCID: PMC7965947 DOI: 10.3389/fnbeh.2021.645110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
According to the active systems consolidation theory, memories undergo reactivation during sleep that can give rise to qualitative changes of the representations. These changes may generate new knowledge such as gaining insight into solutions for problem solving. targeted memory reactivation (TMR) uses learning-associated cues, such as sounds or odors, which have been shown to improve memory consolidation when re-applied during sleep. Here we tested whether TMR during slow wave sleep (SWS) and/or rapid eye movement (REM) sleep increases problem solving. Young healthy volunteers participated in one of two experiments. Experiment 1 tested the effect of natural sleep on problem solving. Subjects were trained in a video game-based problem solving task until being presented with a non-solved challenge. Followed by a ~10-h incubation interval filled with nocturnal sleep or daytime wakefulness, subjects were tested on the problem solving challenge again. Experiment 2 tested the effect of TMR on problem solving, with subjects receiving auditory TMR either during SWS (SWSstim), REM sleep (REMstim), or wakefulness (Wakestim). In Experiment 1, sleep improved problem solving, with 62% of subjects from the Sleep group solving the problem compared to 24% of the Wake group. Subjects with higher amounts of SWS in the Sleep group had a higher chance to solve the problem. In Experiment 2, TMR did not change the sleep effect on problem solving: 56 and 58% of subjects from the SWSstim and REMstim groups solved the problem compared to 57% from the Wakestim group. These findings indicate that sleep, and particularly SWS, facilitates problem solving, whereas this effect is not further increased by TMR.
Collapse
Affiliation(s)
- Felipe Beijamini
- Federal University of Fronteira Sul, Realeza, Brazil.,Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anthony Valentin
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Roland Jäger
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
26
|
Henry M, Thomas KGF, Ross IL. Sleep, Cognition and Cortisol in Addison's Disease: A Mechanistic Relationship. Front Endocrinol (Lausanne) 2021; 12:694046. [PMID: 34512546 PMCID: PMC8429905 DOI: 10.3389/fendo.2021.694046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific literature suggests there are mechanistic relations between sleep disruption and memory deficits, and that varying concentrations of cortisol may play an important role in mediating those relations. Patients with Addison's disease (AD) experience consistent and predictable periods of sub- and supra-physiological cortisol concentrations due to lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep and impaired memory. These disruptions and impairments may be related to the failure of replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available data provides support for existing theoretical frameworks which postulate that in AD and other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an important biological mechanism that underlies, at least partially, the memory impairments that patients frequently report experiencing. Given the literature linking sleep disruption and cognitive impairment in AD, future initiatives should aim to improve patients' cognitive performance (and, indeed, their overall quality of life) by prioritizing and optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and the role that cortisol concentrations play in the relationship between the two.
Collapse
Affiliation(s)
- Michelle Henry
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
- *Correspondence: Michelle Henry,
| | | | - Ian Louis Ross
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Petzka M, Charest I, Balanos GM, Staresina BP. Does sleep-dependent consolidation favour weak memories? Cortex 2021; 134:65-75. [PMID: 33259969 PMCID: PMC7805594 DOI: 10.1016/j.cortex.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Sleep stabilizes newly acquired memories, a process referred to as memory consolidation. According to recent studies, sleep-dependent consolidation processes might be deployed to different extents for different types of memories. In particular, weaker memories might benefit greater from post-learning sleep than stronger memories. However, under standard testing conditions, sleep-dependent consolidation effects for stronger memories might be obscured by ceiling effects. To test this possibility, we devised a new memory paradigm (Memory Arena) in which participants learned temporospatial arrangements of objects. Prior to a delay period spent either awake or asleep, training thresholds were controlled to yield relatively weak or relatively strong memories. After the delay period, retrieval difficulty was controlled via the presence or absence of a retroactive interference task. Under standard testing conditions (no interference), a sleep-dependent consolidation effect was indeed observed for weaker memories only. Critically though, with increased retrieval demands, sleep-dependent consolidation effects were seen for both weaker and stronger memories. These results suggest that all memories are consolidated during sleep, but that memories of different strengths require different testing conditions to unveil their benefit from post-learning sleep.
Collapse
Affiliation(s)
- Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
The association between sleep-wake ratio and overnight picture recognition is moderated by BDNF genotype. Neurobiol Learn Mem 2020; 177:107353. [PMID: 33253827 DOI: 10.1016/j.nlm.2020.107353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A wealth of studies supports the role of sleep in memory performance. Experimentally controlled studies indicate that prolonged wake after memory encoding is detrimental for memory outcome whereas sleep protects from wake-time interference and promotes memory consolidation. We examined how the natural distribution of wake and sleep between encoding and retrieval associated with overnight picture recognition accuracy among 161 adolescents following their typical sleep schedule with an in-home polysomnography. The memorized pictures varied in their level of arousal (calm to exciting) and valence (negative to positive). Suspecting genotypic influence on the sensitivity for sleep/wake dynamics, we also assessed if these associations were affected by known gene polymorphisms involved in neural plasticity and sleep homeostasis: brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-methyltransferase (COMT) Val158Met. In the whole sample, overnight recognition accuracy was associated with the levels of arousal and valence of the pictures, but not with sleep percentage (i.e. the percentage of time spent asleep between memory encoding and retrieval). While the allelic status of BDNF or COMT did not have any main effect on recognition accuracy, a significant moderation by BDNF Val66Met was found (p = .004): the subgroup homozygous for valine allele showed positive association between sleep percentage and recognition accuracy. This was underlain by detrimental influence of wake, rather than by any memory benefit of sleep. Our results complement the mounting evidence that the relation between sleep and memory performance is moderated by BDNF Val66Met. Further studies are needed to clarify the specific mechanisms.
Collapse
|
29
|
Cordi MJ, Rasch B. How robust are sleep-mediated memory benefits? Curr Opin Neurobiol 2020; 67:1-7. [PMID: 32711356 DOI: 10.1016/j.conb.2020.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023]
Abstract
Memories benefit from a retention interval filled with sleep. Current theories assume that this beneficial effect relies on consolidation processes occurring during slow-wave sleep (SWS). However, in the last years, several key findings supporting these theories could not be replicated or occurred only under certain conditions, suggesting that effects of sleep on memory are smaller, more task-dependent, less SWS-related, less robust and less long-lasting than previously assumed. In this review, we summarize recent replication failures, null-findings, meta-analyses and studies reporting important boundary conditions for the effect of sleep on declarative memory. We argue that more attempts to replicate and meta-analytic approaches together with higher standards for reproducible science are critical to advance the field of sleep and memory.
Collapse
Affiliation(s)
- Maren Jasmin Cordi
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
30
|
Peiffer A, Brichet M, De Tiège X, Peigneux P, Urbain C. The power of children's sleep - Improved declarative memory consolidation in children compared with adults. Sci Rep 2020; 10:9979. [PMID: 32561803 PMCID: PMC7305149 DOI: 10.1038/s41598-020-66880-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Post-learning slow wave sleep (SWS) is known to support declarative memory consolidation. As SWS is more abundant in young population, we suggested that sleep-dependent memory consolidation processes could occur at a faster pace in school-aged children. After learning new associations between non-objects and their functions, retrieval performance was tested in 30 children (7–12 years) and 34 adults (20–30 years) during an immediate (IR) and a delayed retrieval (DR) session separated by either a Sleep or a Wake condition. Sleep led to stabilized memory retrieval performance only in children, not in adults, whereas no age-related difference was observed after a similar period of wakefulness. Hence, our results suggest more efficient sleep-dependent declarative memory consolidation processes in children compared with adults, an effect potentially ascribed to more abundant and deeper SWS during childhood.
Collapse
Affiliation(s)
- Anna Peiffer
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium. .,Neuropsychology and Functional Imaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Maud Brichet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Neuropsychology and Functional Imaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Imaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Charline Urbain
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium. .,Neuropsychology and Functional Imaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
31
|
Pöhlchen D, Pawlizki A, Gais S, Schönauer M. Evidence against a large effect of sleep in protecting verbal memories from interference. J Sleep Res 2020; 30:e13042. [PMID: 32311167 DOI: 10.1111/jsr.13042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023]
Abstract
The human brain has evolved to acquire novel information rapidly while serving the need to store long-term memories in a stable and lasting form. Presenting interfering information directly after learning can lead to forgetting of the original material. It has been suggested that sleep aids the stabilization of new memories and protects them from interference. Here, we aim to replicate in two separate experiments the claim that sleep protects memories from retroactive interference (Current Biology, 16, 2006 and 1290; PLoS ONE, 4, 2009 and e4117). We let participants study wordlists before letting them sleep for an afternoon nap or for a full night. In a control condition, subjects stayed awake for the same amount of time. After the consolidation interval, participants learnt an interfering wordlist and were tested on memory of the original wordlist. Sleep did not stabilize memory for the original wordlist in either study. We discuss our findings in the light of recent advances in computational neuroscience, and conclude that the stabilizing effect of sleep against interference has been overestimated.
Collapse
Affiliation(s)
- Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany.,International Max Planck Research School - Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Annedore Pawlizki
- Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany.,Department of Psychology, Princeton University, Princeton, NJ, USA.,Institute of Neuropsychology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Conte F, Cerasuolo M, Giganti F, Ficca G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J Sleep Res 2020; 29:e13034. [DOI: 10.1111/jsr.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Conte
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| | | | | | - Gianluca Ficca
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| |
Collapse
|
33
|
Bailes C, Caldwell M, Wamsley EJ, Tucker MA. Does sleep protect memories against interference? A failure to replicate. PLoS One 2020; 15:e0220419. [PMID: 32053586 PMCID: PMC7018054 DOI: 10.1371/journal.pone.0220419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/22/2020] [Indexed: 11/19/2022] Open
Abstract
Across a broad spectrum of memory tasks, retention is superior following a night of sleep compared to a day of wake. However, this result alone does not clarify whether sleep merely slows the forgetting that would otherwise occur as a result of information processing during wakefulness, or whether sleep actually consolidates memories, protecting them from subsequent retroactive interference. Two influential studies suggested that sleep protects memories against the subsequent retroactive interference that occurs when participants learn new yet overlapping information (interference learning). In these studies, interference learning was much less detrimental to memory following a night of sleep compared to a day of wakefulness, an indication that sleep supports this important aspect of memory consolidation. In the current replication study, we repeated the protocol of and, additionally, we examined the impact of intrinsic motivation on performance in sleep and wake participants. We were unable to replicate the finding that sleep protects memories against retroactive interference, with the detrimental effects of interference learning being essentially the same in wake and sleep participants. We also found that while intrinsic motivation benefitted task acquisition it was not a modulator of sleep-wake differences in memory processing. Although we cannot accept the null hypothesis that sleep has no role to play in reducing the negative impact of interference, the findings draw into question prior evidence for sleep’s role in protecting memories against interference. Moreover, the current study highlights the importance of replicating key findings in the study of sleep’s impact on memory processing before drawing strong conclusions that set the direction of future research.
Collapse
Affiliation(s)
- Carrie Bailes
- University of South Carolina School of Medicine Greenville, Greenville, South Carolina
| | - Mary Caldwell
- University of South Carolina School of Medicine Greenville, Greenville, South Carolina
| | - Erin J. Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina
| | - Matthew A. Tucker
- University of South Carolina School of Medicine Greenville, Greenville, South Carolina
- * E-mail:
| |
Collapse
|
34
|
Tucker MA, Humiston GB, Summer T, Wamsley E. Comparing the Effects of Sleep and Rest on Memory Consolidation. Nat Sci Sleep 2020; 12:79-91. [PMID: 32099493 PMCID: PMC7007500 DOI: 10.2147/nss.s223917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION There is ample evidence that overnight sleep and daytime naps benefit memory retention, compared to comparable amounts of active wakefulness. Yet recent evidence also suggests that a period of post-training rest (eg, quiet wakefulness with eyes closed) provides a similar memory benefit compared to wake. However, the relative benefits of sleep vs quiet waking rest on memory remain poorly understood. Here, we assessed the extent to which sleep provides a unique memory benefit, above and beyond that conferred by quiet waking rest. METHODS In a sample of healthy undergraduate students (N=83), we tested the effect of 30 mins of post-learning sleep, rest, or active wake on concept learning (dot pattern classification) and declarative memory (word pair associates) across a 4-hr daytime training-retest interval. RESULTS AND CONCLUSIONS Contrary to our hypotheses, we found no differences in performance between the three conditions for either task. The findings are interpreted with reference to methodological considerations including the length of the experimental interval, the nature of the tasks used, and challenges inherent in creating experimental conditions that can be executed by participants.
Collapse
Affiliation(s)
- Matthew A Tucker
- University of South Carolina School of Medicine, Department of Biomedical Sciences, Greenville, SC, USA
| | - Graelyn B Humiston
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| | - Theodore Summer
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| | - Erin Wamsley
- Furman University, Department of Psychology and Program in Neuroscience, Greenville, SC, USA
| |
Collapse
|
35
|
Lipinska G, Thomas KGF. The Interaction of REM Fragmentation and Night-Time Arousal Modulates Sleep-Dependent Emotional Memory Consolidation. Front Psychol 2019; 10:1766. [PMID: 31428021 PMCID: PMC6688536 DOI: 10.3389/fpsyg.2019.01766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022] Open
Abstract
The sleep-to-forget, sleep-to-remember (SFSR) hypothesis states that the neurobiological environment provided by rapid-eye movement (REM)-rich sleep decouples the content of an emotional memory from its attendant emotional arousal. This decoupling allows divergent attenuation and enhancement effects (i.e., erosion of the memory’s emotional tone and simultaneous strengthening of its content). However, support for this proposal is mixed. An alternative account suggests there might be convergent attenuation and enhancement (i.e., elevated emotional arousal is positively coupled with enhanced emotional memory). We tested predictions emerging from the SFSR hypothesis using (a) individuals diagnosed with post-traumatic stress disorder (PTSD; n = 21), (b) trauma-exposed non-PTSD individuals (n = 19), and (c) healthy controls (n = 20). We included PTSD-diagnosed individuals because they typically experience altered REM sleep, impaired emotional memory, and heightened emotional arousal in response to threatening stimuli. Participants were assessed before and after both an 8-h period of polysomnographically monitored sleep and an 8-h period of waking activity. The assessment included exposure to negatively valenced, positively valenced, and neutral pictures before the 8-h delay, and a recognition task afterward. We measured emotional arousal by recording psychophysiological responses to the pictures, both pre- and post-delay. Results indicated no significant between-group differences in emotional memory accuracy or arousal. However, after a sleep-filled delay, pictures of all categories were recognized with equal accuracy, whereas after a wake-filled delay, negative pictures were recognized preferentially. Furthermore, the findings demonstrated that a sleep-filled delay was associated with attenuated emotional arousal to pictures of all categories, whereas a wake-filled delay was associated with a rise in emotional arousal across the day. Intriguingly, poorer recognition accuracy for valenced (but not neutral) pictures was predicted by an interaction of increased REM fragmentation and increased emotional arousal. In summary, we found some support for the SFSR hypothesis in the way it describes the REM- and arousal-based mechanisms that process emotional material. We also, however, found disconfirming evidence regarding the outcome of that process (i.e., sleep did not favor consolidation of emotional over neutral memory), and we demonstrated a convergence between attenuation of emotional arousal and weakening of emotional content relative to neutral content.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Kevin G F Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Cousins JN, Fernández G. The impact of sleep deprivation on declarative memory. PROGRESS IN BRAIN RESEARCH 2019; 246:27-53. [PMID: 31072562 DOI: 10.1016/bs.pbr.2019.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep plays a crucial role in memory stabilization and integration, yet many people obtain insufficient sleep. This review assesses what is known about the level of sleep deprivation that leads to impairments during encoding, consolidation and retrieval of declarative memories, and what can be determined about the underlying neurophysiological processes. Neuroimaging studies that deprived sleep after learning have provided some of the most compelling evidence for sleep's role in the long-term reorganization of memories in the brain (systems consolidation). However, the behavioral consequences of losing sleep after learning-shown by increased forgetting-appear to recover over time and are unaffected by more common forms of partial sleep restriction across several nights. The capacity to encode new memories is the most vulnerable to sleep loss, since long-term deficits have been observed after total and partial sleep deprivation, while retrieval mechanisms are relatively unaffected. The negative impact of sleep loss on memory has been explored extensively after a night of total sleep deprivation, but further research is needed on the consequences of partial sleep loss over many days so that impairments may be generalized to more common forms of sleep loss.
Collapse
Affiliation(s)
- James N Cousins
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Shanahan LK, Gjorgieva E, Paller KA, Kahnt T, Gottfried JA. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife 2018; 7:e39681. [PMID: 30560782 PMCID: PMC6298770 DOI: 10.7554/elife.39681] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023] Open
Abstract
Slow-wave sleep is an optimal opportunity for memory consolidation: when encoding occurs in the presence of a sensory cue, delivery of that cue during sleep enhances retrieval of associated memories. Recent studies suggest that cues might promote consolidation by inducing neural reinstatement of cue-associated content during sleep, but direct evidence for such mechanisms is scant, and the relevant brain areas supporting these processes are poorly understood. Here, we address these gaps by combining a novel olfactory cueing paradigm with an object-location memory task and simultaneous EEG-fMRI recording in human subjects. Using pattern analysis of fMRI ensemble activity, we find that presentation of odor cues during sleep promotes reactivation of category-level information in ventromedial prefrontal cortex that significantly correlates with post-sleep memory performance. In identifying the potential mechanisms by which odor cues selectively modulate memory in the sleeping brain, these findings bring unique insights into elucidating how and what we remember.
Collapse
Affiliation(s)
- Laura K Shanahan
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Eva Gjorgieva
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Ken A Paller
- Department of Psychology, Weinberg College of Arts and SciencesNorthwestern UniversityEvanstonUnited States
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Psychology, Weinberg College of Arts and SciencesNorthwestern UniversityEvanstonUnited States
| | - Jay A Gottfried
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Psychology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
38
|
Herszage J, Censor N. Modulation of Learning and Memory: A Shared Framework for Interference and Generalization. Neuroscience 2018; 392:270-280. [DOI: 10.1016/j.neuroscience.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
|
39
|
Lau EYY, McAteer S, Leung CNW, Tucker MA, Li C. Beneficial effects of a daytime nap on verbal memory in adolescents. J Adolesc 2018; 67:77-84. [PMID: 29929055 DOI: 10.1016/j.adolescence.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 11/25/2022]
Abstract
This study aimed to examine the sleep-dependent memory consolidation of verbal declarative memory in Chinese adolescents in a naturalistic experimental setting. Thirty-nine healthy boarding school students (ages 15-18, 70% female) were randomized to either a one-hour afternoon nap or wake group between the baseline and the retest sessions of three verbal declarative memory tasks: a Prose Stories Recall task, a Word Pair Associates task, and Rey Auditory Verbal Learning Test. Results showed that the nap group performed better than the no-nap group on both the Prose Stories Recall task and the Word Pair Associates task, but not on list learning. Our findings suggest that napping is beneficial to verbal declarative memory in adolescents, providing ecologically-valid empirical support for the sleep-dependent memory consolidation hypothesis using a napping paradigm in participants' naturalistic habitat. Our results demonstrate the potential importance of napping as a practical mnemonic intervention/compensatory strategy for student populations.
Collapse
Affiliation(s)
- Esther Yuet Ying Lau
- Department of Psychology, The Education University of Hong Kong, Hong Kong; Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong.
| | - Susan McAteer
- Department of Psychology, The University of Hong Kong, Hong Kong
| | | | | | - Cheng Li
- Department of Psychology, The Education University of Hong Kong, Hong Kong; Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
van Schalkwijk FJ, Sauter C, Hoedlmoser K, Heib DPJ, Klösch G, Moser D, Gruber G, Anderer P, Zeitlhofer J, Schabus M. The effect of daytime napping and full-night sleep on the consolidation of declarative and procedural information. J Sleep Res 2017; 28:e12649. [PMID: 29271015 PMCID: PMC6378597 DOI: 10.1111/jsr.12649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023]
Abstract
Many studies investigating sleep and memory consolidation have evaluated full-night sleep rather than alternative sleep periods such as daytime naps. This multi-centre study followed up on, and was compared with, an earlier full-night study (Schabus et al., 2004) investigating the relevance of daytime naps for the consolidation of declarative and procedural memory. Seventy-six participants were randomly assigned to a nap or wake group, and performed a declarative word-pair association or procedural mirror-tracing task. Performance changes from before to after a 90-min retention interval filled with sleep or quiet wakefulness were evaluated between groups. Associations between performance changes, sleep architecture, spindles, and slow oscillations were investigated. For the declarative task we observed a trend towards stronger forgetting across a wake period compared with a nap period, and a trend towards memory increase over the full-night. For the procedural task, accuracy was significantly decreased following daytime wakefulness, showed a trend to increase with a daytime nap, and significantly increased across full-night sleep. For the nap protocol, neither sleep stages, spindles, nor slow oscillations predicted performance changes. A direct comparison of day and nighttime sleep revealed that daytime naps are characterized by significantly lower spindle density, but higher spindle activity and amplitude compared with full-night sleep. In summary, data indicate that daytime naps protect procedural memories from deterioration, whereas full-night sleep improves performance. Given behavioural and physiological differences between day and nighttime sleep, future studies should try to characterize potential differential effects of full-night and daytime sleep with regard to sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Cornelia Sauter
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Competence Center of Sleep Medicine, Charité - University Medicine, Berlin, Germany
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Dominik P J Heib
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Gerhard Klösch
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Josef Zeitlhofer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
41
|
Sleep in Humans Stabilizes Pattern Separation Performance. J Neurosci 2017; 37:12238-12246. [PMID: 29118106 DOI: 10.1523/jneurosci.1189-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Replay of hippocampal neural representations during sleep is thought to promote systems consolidation of declarative memory. How this reprocessing of memory during sleep affects the hippocampal representation itself, is unclear. Here we tested hippocampal stimulus processing (i.e., pattern separation) before and after periods of sleep and wakefulness in humans (female and male participants). Pattern separation deteriorated across the wake period but remained stable across sleep (p = 0.013) with this sleep-wake difference being most pronounced for stimuli with low similarity to targets (p = 0.006). Stimuli with the highest similarity showed a reversed pattern with reduced pattern separation performance after sleep (p = 0.038). Pattern separation performance was positively correlated with sleep spindle density, slow oscillation density, and theta power phase-locked to slow oscillations. Sleep, presumably by neural memory replay, shapes hippocampal representations and enhances computations of pattern separation to subsequent presentation of similar stimuli.SIGNIFICANCE STATEMENT The consolidation of hippocampus-dependent memories is causally related to reactivation during sleep of previously encoded representations. Here, we show that reactivation-based consolidation processes during sleep shape the hippocampal representation itself. We studied the effect of sleep and wakefulness on pattern separation (i.e., orthogonalization of similar representations) and completion performance (i.e., recall of a memory in light of noisy input) that are essential cognitive elements of encoding and retrieval of information by the hippocampus. Our results demonstrate that pattern separation was stabilized after sleep but diminished after wakefulness. We further showed that pattern separation was related to EEG oscillatory parameters of non-REM sleep serving as markers of sleep-dependent memory consolidation and hippocampal reactivation.
Collapse
|
42
|
Leminen MM, Virkkala J, Saure E, Paajanen T, Zee PC, Santostasi G, Hublin C, Müller K, Porkka-Heiskanen T, Huotilainen M, Paunio T. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep. Sleep 2017; 40:2965202. [PMID: 28364428 PMCID: PMC5806588 DOI: 10.1093/sleep/zsx003] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction: Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Aims: Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Methods: Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results: Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. Conclusions: We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future.
Collapse
Affiliation(s)
- Miika M Leminen
- Finnish Institute of Occupational Health, Helsinki, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jussi Virkkala
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Emma Saure
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Phyllis C Zee
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Giovanni Santostasi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Kiti Müller
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Minna Huotilainen
- Finnish Institute of Occupational Health, Helsinki, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cicero Learning Network, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Finnish Institute of Occupational Health, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
43
|
Schoch SF, Cordi MJ, Rasch B. Modulating influences of memory strength and sensitivity of the retrieval test on the detectability of the sleep consolidation effect. Neurobiol Learn Mem 2017; 145:181-189. [PMID: 29030296 DOI: 10.1016/j.nlm.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a "selective" benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this "selective" benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test.
Collapse
Affiliation(s)
- Sarah F Schoch
- University of Zurich, CRPP Sleep and Health, Zurich, Switzerland
| | - Maren J Cordi
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, Zurich, Switzerland; University of Fribourg, Department of Psychology, Division of Cognitive Biopsychology and Methods, Fribourg, Switzerland
| | - Björn Rasch
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, Zurich, Switzerland; University of Fribourg, Department of Psychology, Division of Cognitive Biopsychology and Methods, Fribourg, Switzerland.
| |
Collapse
|
44
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
45
|
Stepan ME, Dehnke TM, Fenn KM. Sleep and eyewitness memory: Fewer false identifications after sleep when the target is absent from the lineup. PLoS One 2017; 12:e0182907. [PMID: 28877169 PMCID: PMC5587105 DOI: 10.1371/journal.pone.0182907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Inaccurate eyewitness identifications are the leading cause of known false convictions in the United States. Moreover, improving eyewitness memory is difficult and often unsuccessful. Sleep consistently strengthens and protects memory from interference, particularly when a recall test is used. However, the effect of sleep on recognition memory is more equivocal. Eyewitness identification tests are often recognition based, thus leaving open the question of how sleep affects recognition performance in an eyewitness context. In the current study, we investigated the effect of sleep on eyewitness memory. Participants watched a video of a mock-crime and attempted to identify the perpetrator from a simultaneous lineup after a 12-hour retention interval that either spanned a waking day or night of sleep. In Experiment 1, we used a target-present lineup and, in Experiment 2, we used a target-absent lineup in order to investigate correct and false identifications, respectively. Sleep reduced false identifications in the target-absent lineup (Experiment 2) but had no effect on correct identifications in the target-present lineup (Experiment 1). These results are discussed with respect to memory strength and decision making strategies.
Collapse
Affiliation(s)
- Michelle E. Stepan
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| | - Taylor M. Dehnke
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
| | - Kimberly M. Fenn
- Department of Psychology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
46
|
Frost RLA, Monaghan P. Sleep-Driven Computations in Speech Processing. PLoS One 2017; 12:e0169538. [PMID: 28056104 PMCID: PMC5215958 DOI: 10.1371/journal.pone.0169538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022] Open
Abstract
Acquiring language requires segmenting speech into individual words, and abstracting over those words to discover grammatical structure. However, these tasks can be conflicting-on the one hand requiring memorisation of precise sequences that occur in speech, and on the other requiring a flexible reconstruction of these sequences to determine the grammar. Here, we examine whether speech segmentation and generalisation of grammar can occur simultaneously-with the conflicting requirements for these tasks being over-come by sleep-related consolidation. After exposure to an artificial language comprising words containing non-adjacent dependencies, participants underwent periods of consolidation involving either sleep or wake. Participants who slept before testing demonstrated a sustained boost to word learning and a short-term improvement to grammatical generalisation of the non-adjacencies, with improvements after sleep outweighing gains seen after an equal period of wake. Thus, we propose that sleep may facilitate processing for these conflicting tasks in language acquisition, but with enhanced benefits for speech segmentation.
Collapse
Affiliation(s)
- Rebecca L. A. Frost
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Padraic Monaghan
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
47
|
Lukács Á, Kemény F, Lum JAG, Ullman MT. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment. PLoS One 2017; 12:e0169474. [PMID: 28046095 PMCID: PMC5207735 DOI: 10.1371/journal.pone.0169474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/17/2016] [Indexed: 01/10/2023] Open
Abstract
We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI.
Collapse
Affiliation(s)
- Ágnes Lukács
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Kemény
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Psychology, University of Graz, Graz, Austria
| | - Jarrad A. G. Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Michael T. Ullman
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
48
|
Abstract
Psychometric intelligence (g) is often conceptualized as the capability for online information processing but it is also possible that intelligence may be related to offline processing of information. Here, we investigated the relationship between psychometric g and sleep-dependent memory consolidation. Participants studied paired-associates and were tested after a 12-hour retention interval that consisted entirely of wake or included a regular sleep phase. We calculated the number of word-pairs that were gained and lost across the retention interval. In a separate session, participants completed a battery of cognitive ability tests to assess g. In the wake group, g was not correlated with either memory gain or memory loss. In the sleep group, we found that g correlated positively with memory gain and negatively with memory loss. Participants with a higher level of general intelligence showed more memory gain and less memory loss across sleep. Importantly, the correlation between g and memory loss was significantly stronger in the sleep condition than in the wake condition, suggesting that the relationship between g and memory loss across time is specific to time intervals that include sleep. The present research suggests that g not only reflects the capability for online cognitive processing, but also reflects capability for offline processes that operate during sleep.
Collapse
|
49
|
Cairney SA, Lindsay S, Sobczak JM, Paller KA, Gaskell MG. The Benefits of Targeted Memory Reactivation for Consolidation in Sleep are Contingent on Memory Accuracy and Direct Cue-Memory Associations. Sleep 2016; 39:1139-50. [PMID: 26856905 DOI: 10.5665/sleep.5772] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/12/2016] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To investigate how the effects of targeted memory reactivation (TMR) are influenced by memory accuracy prior to sleep and the presence or absence of direct cue-memory associations. METHODS 30 participants associated each of 50 pictures with an unrelated word and then with a screen location in two separate tasks. During picture-location training, each picture was also presented with a semantically related sound. The sounds were therefore directly associated with the picture locations but indirectly associated with the words. During a subsequent nap, half of the sounds were replayed in slow wave sleep (SWS). The effect of TMR on memory for the picture locations (direct cue-memory associations) and picture-word pairs (indirect cue-memory associations) was then examined. RESULTS TMR reduced overall memory decay for recall of picture locations. Further analyses revealed a benefit of TMR for picture locations recalled with a low degree of accuracy prior to sleep, but not those recalled with a high degree of accuracy. The benefit of TMR for low accuracy memories was predicted by time spent in SWS. There was no benefit of TMR for memory of the picture-word pairs, irrespective of memory accuracy prior to sleep. CONCLUSIONS TMR provides the greatest benefit to memories recalled with a low degree of accuracy prior to sleep. The memory benefits of TMR may also be contingent on direct cue-memory associations.
Collapse
Affiliation(s)
- Scott A Cairney
- Department of Psychology, University of York, United Kingdom
| | - Shane Lindsay
- Department of Psychology, University of Hull, United Kingdom
| | | | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL
| | | |
Collapse
|
50
|
Jurewicz K, Cordi MJ, Staudigl T, Rasch B. No Evidence for Memory Decontextualization across One Night of Sleep. Front Hum Neurosci 2016; 10:7. [PMID: 26858622 PMCID: PMC4727184 DOI: 10.3389/fnhum.2016.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep after learning strengthens memory consolidation. According to the active system consolidation hypothesis, sleep supports the integration of newly acquired memories into cortical knowledge networks, presumably accompanied by a process of decontextualization of the memory trace (i.e., a gradual loss of memory for the learning context). However, the availability of contextual information generally facilitates memory recall and studies on the interaction of sleep and context on memory retrieval have revealed inconsistent results. Here, we do not find any evidence for a role of sleep in the decontextualization of newly learned declarative memories. In two separate studies, 104 healthy young adults incidentally learned words associated with a context. After a 12 h retention interval filled with either sleep or wakefulness, recall (Experiment 1) or recognition (Experiment 2) was tested with the same or different context. Overall, memory retrieval was significantly improved when the learning context was reinstated, as compared to a different context. However, this context effect of memory was not modulated by sleep vs. wakefulness. These findings argue against a decontextualization of memories, at least across a single night of sleep.
Collapse
Affiliation(s)
- Katarzyna Jurewicz
- Department of Neurophysiology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Maren Jasmin Cordi
- Division of Biopsychology, Institute of Psychology, University of ZurichZurich, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), University of ZurichZurich, Switzerland
| | - Tobias Staudigl
- Department of Psychology, University of KonstanzKonstanz, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands
| | - Björn Rasch
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of ZurichZurich, Switzerland; Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourg, Switzerland
| |
Collapse
|