1
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
2
|
Asadollahi E, Trevisiol A, Saab AS, Looser ZJ, Dibaj P, Ebrahimi R, Kusch K, Ruhwedel T, Möbius W, Jahn O, Lee JY, Don AS, Khalil MA, Hiller K, Baes M, Weber B, Abel ED, Ballabio A, Popko B, Kassmann CM, Ehrenreich H, Hirrlinger J, Nave KA. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat Neurosci 2024; 27:1934-1944. [PMID: 39251890 PMCID: PMC11452346 DOI: 10.1038/s41593-024-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Brain function requires a constant supply of glucose. However, the brain has no known energy stores, except for glycogen granules in astrocytes. In the present study, we report that continuous oligodendroglial lipid metabolism provides an energy reserve in white matter tracts. In the isolated optic nerve from young adult mice of both sexes, oligodendrocytes survive glucose deprivation better than astrocytes. Under low glucose, both axonal ATP levels and action potentials become dependent on fatty acid β-oxidation. Importantly, ongoing oligodendroglial lipid degradation feeds rapidly into white matter energy metabolism. Although not supporting high-frequency spiking, fatty acid β-oxidation in mitochondria and oligodendroglial peroxisomes protects axons from conduction blocks when glucose is limiting. Disruption of the glucose transporter GLUT1 expression in oligodendrocytes of adult mice perturbs myelin homeostasis in vivo and causes gradual demyelination without behavioral signs. This further suggests that the imbalance of myelin synthesis and degradation can underlie myelin thinning in aging and disease.
Collapse
Affiliation(s)
- Ebrahim Asadollahi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| | - Andrea Trevisiol
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Toronto, Sunnybrook Health Sciences Centre, Department of Physical Sciences, North York, Ontario, Canada
| | - Aiman S Saab
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Zoe J Looser
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Payam Dibaj
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Center for Rare Diseases Göttingen, Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | - Reyhane Ebrahimi
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Kathrin Kusch
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- University of Göttingen Medical School, Institute for Auditory Neuroscience and Inner Ear Lab, Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Neurobiology, Neuroproteomics Group, Göttingen, Germany
- University Medical Center Göttingen, Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, Göttingen, Germany
| | - Jun Yup Lee
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Don
- School of Medical Sciences and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michelle-Amirah Khalil
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, Braunschweig Integrated Center of System Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Brian Popko
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Celia M Kassmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
| | - Hannelore Ehrenreich
- Max Planck Institute for Multidisciplinary Sciences, Clinical Neuroscience, Göttingen, Germany
- Central Institute of Mental Health, Mannheim, Germany
| | - Johannes Hirrlinger
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Multidisciplinary Sciences, Department of Neurogenetics, Göttingen, Germany.
| |
Collapse
|
3
|
Abir AH, Weckwerth L, Wilhelm A, Thomas J, Reichardt CM, Munoz L, Völkl S, Appelt U, Mroz M, Niesner R, Hauser A, Sophie Fischer R, Pracht K, Jäck HM, Schett G, Krönke G, Mielenz D. Metabolic profiling of single cells by exploiting NADH and FAD fluorescence via flow cytometry. Mol Metab 2024; 87:101981. [PMID: 38971403 PMCID: PMC11300934 DOI: 10.1016/j.molmet.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
OBJECTIVE The metabolism of different cells within the same microenvironment can differ and dictate physiological or pathological adaptions. Current single-cell analysis methods of metabolism are not label-free. METHODS The study introduces a label-free, live-cell analysis method assessing endogenous fluorescence of NAD(P)H and FAD in surface-stained cells by flow cytometry. RESULTS OxPhos inhibition, mitochondrial uncoupling, glucose exposure, genetic inactivation of glucose uptake and mitochondrial respiration alter the optical redox ratios of FAD and NAD(P)H as measured by flow cytometry. Those alterations correlate strongly with measurements obtained by extracellular flux analysis. Consequently, metabolically distinct live B-cell populations can be resolved, showing that human memory B-cells from peripheral blood exhibit a higher glycolytic flexibility than naïve B cells. Moreover, the comparison of blood-derived B- and T-lymphocytes from healthy donors and rheumatoid arthritis patients unleashes rheumatoid arthritis-associated metabolic traits in human naïve and memory B-lymphocytes. CONCLUSIONS Taken together, these data show that the optical redox ratio can depict metabolic differences in distinct cell populations by flow cytometry.
Collapse
Affiliation(s)
- Ariful Haque Abir
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Clara M Reichardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Uwe Appelt
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Markus Mroz
- Flow cytometry core unit, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany
| | - Raluca Niesner
- Deutsches Rheumaforschungszentrum Berlin, Biophysikalische Analytik, Charitéplatz 1, 10117 Berlin, Germany; Freie Universität Berlin, Dynamisches und funktionelles in vivo Imaging, Adresse: Oertzenweg 19b, 14163 Berlin, Germany
| | - Anja Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin, Immundynamik, Charitéplatz 1, 10117 Berlin, Germany
| | - Rebecca Sophie Fischer
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Center, Glückstr. 6, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
5
|
Sellani TA, Tomaz SL, Gonçalves JM, Lima A, de Amat Herbozo CC, Silva GN, Gambero M, Longo-Maugéri IM, Simon KA, Monteiro HP, Rodrigues EG. Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2. Nitric Oxide 2024; 148:1-12. [PMID: 38636582 DOI: 10.1016/j.niox.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Epidemiological studies show a strong correlation between diabetes and the increased risk of developing different cancers, including melanoma. In the present study, we investigated the impact of a streptozotocin (STZ)-induced hyperglycemic environment on B16F10-Nex2 murine melanoma development. Hyperglycemic male C57Bl/6 mice showed increased subcutaneous tumor development, partially inhibited by metformin. Tumors showed increased infiltrating macrophages, and augmented IL-10 and nitric oxide (NO) concentrations. In vivo neutralization of IL-10, NO synthase inhibition, and depletion of macrophages reduced tumor development. STZ-treated TLR4 KO animals showed delayed tumor development; the transfer of hyperglycemic C57Bl/6 macrophages to TLR4 KO reversed this effect. Increased concentrations of IL-10 present in tumor homogenates of hyperglycemic mice induced a higher number of pre-angiogenic structures in vitro, and B16F10-Nex2 cells incubated with different glucose concentrations in vitro produced increased levels of IL-10. In summary, our findings show that a hyperglycemic environment stimulates murine melanoma B16F10-Nex2 primary tumor growth, and this effect is dependent on tumor cell stimulation, increased numbers of macrophages, and augmented IL-10 and NO concentrations. These findings show the involvement of tumor cells and other components of the tumor microenvironment in the development of subcutaneous melanoma under hyperglycemic conditions, defining novel targets for melanoma control in diabetic patients.
Collapse
Affiliation(s)
- Tarciso A Sellani
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Oncology Medical Science Liaison at GSK, Brazil
| | - Samanta L Tomaz
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jéssica M Gonçalves
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana Lima
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina C de Amat Herbozo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabrielli N Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Gambero
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Karin A Simon
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - CTCMol, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Zou J, Mai C, Lin Z, Zhou J, Lai G. Targeting metabolism of breast cancer and its implications in T cell immunotherapy. Front Immunol 2024; 15:1381970. [PMID: 38680483 PMCID: PMC11045902 DOI: 10.3389/fimmu.2024.1381970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer is a prominent health issue amongst women around the world. Immunotherapies including tumor targeted antibodies, adoptive T cell therapy, vaccines, and immune checkpoint blockers have rejuvenated the clinical management of breast cancer, but the prognosis of patients remains dismal. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. The deprivation uptake of nutrients (such as glucose, amino acid, and lipid) by breast cancer cells has a significant impact on tumor growth and microenvironment remodeling. In recent years, in-depth researches on the mechanism of metabolic reprogramming and immune escape have been extensively conducted, and targeting metabolic reprogramming has been proposed as a new therapeutic strategy for breast cancer. This article reviews the abnormal metabolism of breast cancer cells and its impact on the anti-tumor activity of T cells, and further explores the possibility of targeting metabolism as a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Jialuo Zou
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cunjun Mai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiqin Lin
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Guie Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Bierling TEH, Gumann A, Ottmann SR, Schulz SR, Weckwerth L, Thomas J, Gessner A, Wichert M, Kuwert F, Rost F, Hauke M, Freudenreich T, Mielenz D, Jäck HM, Pracht K. GLUT1-mediated glucose import in B cells is critical for anaplerotic balance and humoral immunity. Cell Rep 2024; 43:113739. [PMID: 38340319 DOI: 10.1016/j.celrep.2024.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
Collapse
Affiliation(s)
- Theresa E H Bierling
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Amelie Gumann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shannon R Ottmann
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Weckwerth
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Magdalena Wichert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frederic Kuwert
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Rost
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Freudenreich
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Pracht
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
10
|
Bakshi HA, Mkhael M, Faruck HL, Khan AU, Aljabali AAA, Mishra V, El-Tanani M, Charbe NB, Tambuwala MM. Cellular signaling in the hypoxic cancer microenvironment: Implications for drug resistance and therapeutic targeting. Cell Signal 2024; 113:110911. [PMID: 37805102 DOI: 10.1016/j.cellsig.2023.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
The rewiring of cellular metabolism is a defining characteristic of cancer, as tumor cells adapt to acquire essential nutrients from a nutrient-poor environment to sustain their viability and biomass. While hypoxia has been identified as a major factor depriving cancer cells of nutrients, recent studies have revealed that cancer cells distant from supporting blood vessels also face nutrient limitations. To overcome this challenge, hypoxic cancer cells, which heavily rely on glucose as an energy source, employ alternative pathways such as glycogen metabolism and reductive carboxylation of glutamine to meet their energy requirements for survival. Our preliminary studies, alongside others in the field, have shown that under glucose-deficient conditions, hypoxic cells can utilize mannose and maltose as alternative energy sources. This review aims to comprehensively examine the hypoxic cancer microenvironment, its association with drug resistance, and potential therapeutic strategies for targeting this unique niche. Furthermore, we will critically evaluate the current literature on hypoxic cancer microenvironments and explore state-of-the-art techniques used to analyze alternate carbohydrates, specifically mannose and maltose, in complex biological fluids. We will also propose the most effective analytical methods for quantifying mannose and maltose in such biological samples. By gaining a deeper understanding of the hypoxic cancer cell microenvironment and its role in drug resistance, novel therapeutic approaches can be developed to exploit this knowledge.
Collapse
Affiliation(s)
- Hamid A Bakshi
- Laboratory of Cancer Therapy Resistance and Drug Target Discovery, The Hormel Institute, University of Minnesota, Austin MN55912, USA; School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK.
| | - Michella Mkhael
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, BT521SA, UK
| | - Hakkim L Faruck
- Laboratory of Cell Signaling and Tumorigenesis, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Asad Ullah Khan
- Laboratory of Molecular Biology of Chronic Diseases, The Hormel Institute, University of Minnesota, Austin MN55912, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mohamed El-Tanani
- RAK Medical and Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
11
|
Daneshvar S, Zamanian MY, Ivraghi MS, Golmohammadi M, Modanloo M, Kamiab Z, Pourhosseini SME, Heidari M, Bazmandegan G. A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms. Food Sci Nutr 2023; 11:6789-6801. [PMID: 37970406 PMCID: PMC10630840 DOI: 10.1002/fsn3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 11/17/2023] Open
Abstract
Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/β-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.
Collapse
Affiliation(s)
- Siamak Daneshvar
- Department of General SurgerySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Yasin Zamanian
- Department of PhysiologySchool of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Mona Modanloo
- Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran
| | - Zahra Kamiab
- Clinical Research Development UnitAli‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Seyed Mohammad Ebrahim Pourhosseini
- Non‐Communicable Diseases Research CenterRafsanjan University of Medical SciencesRafsanjanIran
- Department of Internal MedicineSchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mahsa Heidari
- Department of BiochemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and PharmacologySchool of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
12
|
Wang Z, Wei D, Bin E, Li J, Jiang K, Lv T, Mao X, Wang F, Dai H, Tang N. Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell 2023; 30:1028-1042.e7. [PMID: 37541209 DOI: 10.1016/j.stem.2023.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Impaired differentiation of alveolar stem cells has been identified in a variety of acute and chronic lung diseases. In this study, we investigate the mechanisms that modulate alveolar regeneration and understand how aging impacts this process. We have discovered that the process of alveolar type II (AT2) cells differentiating into AT1 cells is an energetically costly process. During alveolar regeneration, activated AMPK-PFKFB2 signaling upregulates glycolysis, which is essential to support the intracellular energy expenditure that is required for cytoskeletal remodeling during AT2 cell differentiation. AT2 cells in aged lungs exhibit reduced AMPK-PFKFB2 signaling and ATP production, resulting in impaired alveolar regeneration. Activating AMPK-PFKFB2 signaling in aged AT2 cells can rescue defective alveolar regeneration in aged mice. Thus, beyond demonstrating that cellular energy metabolism orchestrates with stem cell differentiation during alveolar regeneration, our study suggests that modulating AMPK-PFKFB2 signaling promotes alveolar repair in aged lungs.
Collapse
Affiliation(s)
- Zheng Wang
- National Institute of Biological Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Dongdong Wei
- National Institute of Biological Sciences, Beijing, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Ennan Bin
- National Institute of Biological Sciences, Beijing, China
| | - Jiao Li
- National Institute of Biological Sciences, Beijing, China
| | - Kewu Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Tingting Lv
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxu Mao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Huaping Dai
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Wall SW, Sanchez L, Tuttle KS, Pearson SJ, Soma S, Wyatt GL, Carter HN, Jenschke RM, Tan L, Martinez SA, Lorenzi PL, Gohil VM, Rijnkels M, Porter WW. Noncanonical role of singleminded-2s in mitochondrial respiratory chain formation in breast cancer. Exp Mol Med 2023; 55:1046-1063. [PMID: 37121978 PMCID: PMC10238511 DOI: 10.1038/s12276-023-00996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.
Collapse
Affiliation(s)
- Steven W Wall
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | | | - Scott J Pearson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett L Wyatt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hannah N Carter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Ramsey M Jenschke
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Vishal M Gohil
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
East AK, Lee MC, Jiang C, Sikander Q, Chan J. Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes. J Am Chem Soc 2023; 145:7313-7322. [PMID: 36973171 PMCID: PMC10120057 DOI: 10.1021/jacs.2c13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qasim Sikander
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Cystathionine γ-lyase and hydrogen sulfide modulates glucose transporter Glut1 expression via NF-κB and PI3k/Akt in macrophages during inflammation. PLoS One 2022; 17:e0278910. [PMID: 36520801 PMCID: PMC9754168 DOI: 10.1371/journal.pone.0278910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a crucial role in inflammation, a defense mechanism of the innate immune system. Metabolic function powered by glucose transporter isoform 1 (Glut1) is necessary for macrophage activity during inflammation. The present study investigated the roles of cystathionine-γ-lyase (CSE) and its byproduct, hydrogen sulfide (H2S), in macrophage glucose metabolism to explore the mechanism by which H2S acts as an inflammatory regulator in lipopolysaccharide- (LPS) induced macrophages. Our results demonstrated that LPS-treated macrophages increased Glut1 expression. LPS-induced Glut1 expression is regulated via nuclear factor (NF)-κB activation and is associated with phosphatidylinositol-3-kinase PI3k activation. Small interfering (si) RNA-mediated silencing of CSE decreased the LPS-induced NF-κB activation and Glut1 expression, suggesting a role for H2S in metabolic function in macrophages during pro-inflammatory response. Confoundingly, treatment with GYY4137, an H2S-donor molecule, also displayed inhibitory effects upon LPS-induced NF-κB activation and Glut1 expression. Moreover, GYY4137 treatment increased Akt activation, suggesting a role in promoting resolution of inflammation. Our study provides evidence that the source of H2S, either endogenous (via CSE) or exogenous (via GYY4137), supports or inhibits the LPS-induced NF-κB activity and Glut1 expression, respectively. Therefore, H2S may influence metabolic programming in immune cells to alter glucose substrate availability that impacts the immune response.
Collapse
|
18
|
McMillin SL, Evans PL, Taylor WM, Weyrauch LA, Sermersheim TJ, Welc SS, Heitmeier MR, Hresko RC, Hruz PW, Koumanov F, Holman GD, Abel ED, Witczak CA. Muscle-Specific Ablation of Glucose Transporter 1 (GLUT1) Does Not Impair Basal or Overload-Stimulated Skeletal Muscle Glucose Uptake. Biomolecules 2022; 12:1734. [PMID: 36551162 PMCID: PMC9776291 DOI: 10.3390/biom12121734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.
Collapse
Affiliation(s)
- Shawna L. McMillin
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Parker L. Evans
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - William M. Taylor
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Luke A. Weyrauch
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Tyler J. Sermersheim
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven S. Welc
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Monique R. Heitmeier
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Richard C. Hresko
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Paul W. Hruz
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | | - Geoffrey D. Holman
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology & Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Carol A. Witczak
- Departments of Kinesiology, Biochemistry & Molecular Biology, and Physiology, Brody School of Medicine, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Mater Today Bio 2022; 17:100482. [DOI: 10.1016/j.mtbio.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
20
|
Daniele LL, Han JY, Samuels IS, Komirisetty R, Mehta N, McCord JL, Yu M, Wang Y, Boesze-Battaglia K, Bell BA, Du J, Peachey NS, Philp NJ. Glucose uptake by GLUT1 in photoreceptors is essential for outer segment renewal and rod photoreceptor survival. FASEB J 2022; 36:e22428. [PMID: 35766190 PMCID: PMC9438481 DOI: 10.1096/fj.202200369r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.
Collapse
Affiliation(s)
- Lauren L. Daniele
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - John Y.S. Han
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Ivy S. Samuels
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
| | - Ravikiran Komirisetty
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Nikhil Mehta
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Jessica L. McCord
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Minzhong Yu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, Penn Dental
Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania,
Philadelphia, PA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| |
Collapse
|
21
|
Li K, Ji X, Seeley R, Lee WC, Shi Y, Song F, Liao X, Song C, Huang X, Rux D, Cao J, Luo X, Anderson SM, Huang W, Long F. Impaired glucose metabolism underlies articular cartilage degeneration in osteoarthritis. FASEB J 2022; 36:e22377. [PMID: 35608871 DOI: 10.1096/fj.202200485r] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/09/2023]
Abstract
Osteoarthritis (OA) is the leading joint disease characterized by cartilage destruction and loss of mobility. Accumulating evidence indicates that the incidence and severity of OA increases with diabetes, implicating systemic glucose metabolism in joint health. However, a definitive link between cellular metabolism in articular cartilage and OA pathogenesis is not yet established. Here, we report that in mice surgically induced to develop knee OA through destabilization of medial meniscus (DMM), expression of the main glucose transporter Glut1 is notably reduced in joint cartilage. Inducible deletion of Glut1 specifically in the Prg4-expressing articular cartilage accelerates cartilage loss in DMM-induced OA. Conversely, forced expression of Glut1 protects against cartilage destruction following DMM. Moreover, in mice with type I diabetes, both Glut1 expression and the rate of glycolysis are diminished in the articular cartilage, and the diabetic mice exhibit more severe cartilage destruction than their nondiabetic counterparts following DMM. The results provide proof of concept that boosting glucose metabolism in articular chondrocytes may ameliorate cartilage degeneration in OA.
Collapse
Affiliation(s)
- Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xing Ji
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca Seeley
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Wen-Chih Lee
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu Shi
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Fangfang Song
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xueyang Liao
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chao Song
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiaobin Huang
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Danielle Rux
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoji Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven M Anderson
- Department of Pathology, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanxin Long
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Bie F, Zhang G, Yan X, Ma X, Zhan S, Qiu Y, Cao J, Ma Y, Ma M. β-Boswellic Acid Suppresses Breast Precancerous Lesions via GLUT1 Targeting-Mediated Glycolysis Inhibition and AMPK Pathway Activation. Front Oncol 2022; 12:896904. [PMID: 35712503 PMCID: PMC9194511 DOI: 10.3389/fonc.2022.896904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast carcinoma is a multistep progressive disease. Precancerous prevention seems to be crucial. β-Boswellic acid (β-BA), the main component of the folk medicine Boswellia serrata (B. serrata), has been reported to be effective in various diseases including tumors. In this work, we demonstrated that β-BA could inhibit breast precancerous lesions in rat disease models. Consistently, β-BA could suppress proliferation and induce apoptosis on MCF-10AT without significantly influencing MCF-10A. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that β-BA may interfere with the metabolic pathway. Metabolism-related assays showed that β-BA suppressed glycolysis and reduced ATP production, which then activated the AMPK pathway and inhibited the mTOR pathway to limit MCF-10AT proliferation. Further molecular docking analysis suggested that GLUT1 might be the target of β-BA. Forced expression of GLUT1 could rescue the glycolysis suppression and survival limitation induced by β-BA on MCF-10AT. Taken together, β-BA could relieve precancerous lesions in vivo and in vitro through GLUT1 targeting-induced glycolysis suppression and AMPK/mTOR pathway alterations. Here, we offered a molecular basis for β-BA to be developed as a promising drug candidate for the prevention of breast precancerous lesions.
Collapse
Affiliation(s)
- Fengjie Bie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyi Ma
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Sha Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yebei Qiu
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingyu Cao
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- The Oncology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Wu H, Zhou H, Zhang W, Jin P, Shi Q, Miao Z, Wang H, Zha Z. Three birds with one stone: co-encapsulation of diclofenac and DL-menthol for realizing enhanced energy deposition, glycolysis inhibition and anti-inflammation in HIFU surgery. J Nanobiotechnology 2022; 20:215. [PMID: 35524259 PMCID: PMC9074192 DOI: 10.1186/s12951-022-01437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 01/12/2023] Open
Abstract
Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradiated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins (HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflammation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by glycolysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.
Collapse
Affiliation(s)
- Haitao Wu
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hu Zhou
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China
| | - Wenjie Zhang
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China.
| | - Qianqian Shi
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hua Wang
- Department of Oncology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China.
| |
Collapse
|
24
|
Dabi YT, Andualem H, Degechisa ST, Gizaw ST. Targeting Metabolic Reprogramming of T-Cells for Enhanced Anti-Tumor Response. Biologics 2022; 16:35-45. [PMID: 35592358 PMCID: PMC9113448 DOI: 10.2147/btt.s365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Cancer immunotherapy is an effective treatment option against cancer. One of the approaches of cancer immunotherapy is the modification of T cell-based anti-tumor immune responses. T-cells, a type of adaptive immune response cells responsible for cell-mediated immunity, have long been recognized as key regulators of immune-mediated anti-tumor immunity. T-cell activities have been reported to be suppressed or enhanced by changes in cell metabolism. Moreover, metabolic reprogramming during activation of T cells is required for the development of distinct differentiation profiles of these cells, which may allow the development of long-term cell-mediated anti-tumor immunity. However, T cells have been shown to undergo metabolic exhaustion in tumor microenvironment (TME) as it poses several obstacles to their function. Applications of several mechanistic solutions to improve the efficacy of T cell-based therapies including chimeric antigen receptor (CAR) T cell therapy are yet to be determined. Modifying the metabolic properties of these cells and employing them in cancer immunotherapy is a potential strategy for improving their anti-tumor activity and therapeutic efficacy. To give an insight, in this review paper, we endeavoured to cover metabolic reprogramming in cancer and T cells, signalling mechanisms involved in immuno-metabolic regulation, the effects of the TME on T cell metabolic fitness, and targeting metabolic reprogramming of T cells for an enhanced anti-tumor response.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Tel +251911364465, Email
| | - Henok Andualem
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Decreased expression of ErbB2 on left ventricular epicardial cells in patients with diabetes mellitus. Cell Signal 2022; 96:110360. [PMID: 35609807 PMCID: PMC9671200 DOI: 10.1016/j.cellsig.2022.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
We investigated the cell surface expression of ErbB receptors on left ventricular (LV) epicardial endothelial cells and CD105+ cells obtained from cardiac biopsies of patients undergoing coronary artery bypass grafting surgery (CABG). Endothelial cells and CD105+ non-endothelial cells were freshly isolated from LV epicardial biopsies obtained from 15 subjects with diabetes mellitus (DM) and 8 controls. The expression of ErbB receptors was examined using flow cytometry. We found that diabetes mellitus (DM) and high levels of hemoglobin A1C are associated with reduced expression of ErbB2. To determine if the expression of ErbB2 receptors is regulated by glucose levels, we examined the effect of high Glucose in human microvascular endothelial cells (HMEC-1) and CD105+ non-endothelial cells, using a novel flow cytometric approach to simultaneously determine the total level, cell surface expression, and phosphorylation of ErbB2. Incubation of cells in the presence of 25 mM d-glucose resulted in decreased cell surface but not total levels of ErbB2. The level of ErbB2 at the cell surface is controlled by disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) that is expressed on LV epicardial cells. Inhibition of ADAM10 prevented the high glucose-dependent decrease in the cell surface expression of ErbB2. We suggest that high Glucose depresses ErbB receptor signaling in endothelial cells and cardiac progenitor cells via the promotion of ADAM10-dependent cleavage of ErbB2 at the cell surface, thus contributing to vascular dysfunction and adverse remodeling seen in diabetic patients.
Collapse
|
26
|
α-Arrestins and Their Functions: From Yeast to Human Health. Int J Mol Sci 2022; 23:ijms23094988. [PMID: 35563378 PMCID: PMC9105457 DOI: 10.3390/ijms23094988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the β-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate’s targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.
Collapse
|
27
|
Huang Y, Zou Y, Jiao Y, Shi P, Nie X, Huang W, Xiong C, Choi M, Huang C, Macintyre AN, Nichols A, Li F, Li CY, MacIver NJ, Cardona D, Brennan TV, Li Z, Chao NJ, Rathmell J, Chen BJ. Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft- Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Front Immunol 2022; 13:751296. [PMID: 35296079 PMCID: PMC8920494 DOI: 10.3389/fimmu.2022.751296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023] Open
Abstract
Alloreactive donor T cells undergo extensive metabolic reprogramming to become activated and induce graft-versus-host disease (GVHD) upon alloantigen encounter. It is generally thought that glycolysis, which promotes T cell growth and clonal expansion, is employed in this process. However, conflicting data have been reported regarding the requirement of glycolysis to induce T cell-mediated GVHD due to the lack of T cell-specific treatments using glycolysis inhibitors. Importantly, previous studies have not evaluated whether graft-versus-leukemia (GVL) activity is preserved in donor T cells deficient for glycolysis. As a critical component affecting the clinical outcome, it is necessary to assess the anti-tumor activity following treatment with metabolic modulators in preclinical models. In the present study, we utilized T cells selectively deficient for glucose transporter 1 (Glut1T-KO), to examine the role of glycolysis exclusively in alloreactive T cells without off-targeting effects from antigen presenting cells and other cell types that are dependent on glycolysis. We demonstrated that transfer of Glut1T-KO T cells significantly improved acute GVHD outcomes through increased apoptotic rates, impaired expansion, and decreased proinflammatory cytokine production. In addition to impaired GVHD development, donor Glut1T-KO T cells mediated sufficient GVL activity to protect recipients from tumor development. A clinically relevant approach using donor T cells treated with a small molecule inhibitor of glycolysis, 2-Deoxy-D-glucose ex vivo, further demonstrated protection from tumor development. These findings indicate that treatment with glycolysis inhibitors prior to transplantation selectively eliminates alloreactive T cells, but spares non-alloreactive T cells including those that protect against tumor growth. The present study has established a definitive role for glycolysis in acute GVHD and demonstrated that acute GVHD can be selectively prevented through targeting glycolysis.
Collapse
Affiliation(s)
- Ying Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Peijie Shi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Xiaoli Nie
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Chuanfeng Xiong
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael Choi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Andrew N. Macintyre
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Amanda Nichols
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Chuan-Yuan Li
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Dermatology, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nancie J. MacIver
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Pediatrics, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Todd V. Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Departments of Pathology, Microbiology, and Immunology, Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benny J. Chen
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,*Correspondence: Benny J. Chen,
| |
Collapse
|
28
|
He Q, Zhang Y, Ma D, Zhang W, Zhang H. Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways. Eur J Nutr 2022; 61:2003-2014. [PMID: 34984487 DOI: 10.1007/s00394-021-02764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Obesity is a major risk factor for various metabolic diseases, including metabolic syndrome and type-2 diabetes. Glucose transporter 1 (GLUT1) impairment has been proposed as a mechanism of fat accumulation and glucose tolerance. Our aims were to determine the role of intestinal epithelial glut1 activity in obesity and the mechanism of anti-obesity effect of Lactobacillus casei Zhang (LCZ) intervention in the absence of gut villi-specific glut1 expression. METHODS This study compared the body weight, intestinal microbiota perturbations, fat mass accumulation, and glucose tolerance (by oral glucose tolerance test) between high-fat diet fed villi-specific glut1 knockout (KO) mice and control mice (glut1 flox/flox) with/without LCZ intervention. The intestinal microbiota was evaluated by metagenomic sequencing. RESULTS Our results showed that villi-specific glut1 KO mice had more fat deposition at the premetaphase stage, impaired glucose tolerance, and obvious alterations in gut microbiota compared to control mice. Probiotic administration significantly lowered the body weight, the weights of mesenteric and perirenal white adipose tissues (WAT), and mediated gut microbiota modulation in both types of KO and control mice. The species Barnesiella intestinihominis and Faecalibaculum rodentium might contribute to fasting fat mass accumulation associated with gut-specific glut1 inactivation, while the probiotic-mediated anti-obesity effect was linked to members of the Bacteroides genera, Odoribacter genera and Alistipes finegoldii. CONCLUSION Our study demonstrated that abrogating gut epithelial GLUT1 activity affected the gut microbiota, fat mass accumulation, and glucose tolerance; and LCZ administration reduced fat mass accumulation and central obesity.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
29
|
Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021; 81:3731-3748. [PMID: 34547236 DOI: 10.1016/j.molcel.2021.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Nutrient supply and demand delineate cell behavior in health and disease. Mammalian cells have developed multiple strategies to secure the necessary nutrients that fuel their metabolic needs. This is more evident upon disruption of homeostasis in conditions such as cancer, when cells display high proliferation rates in energetically challenging conditions where nutritional sources may be scarce. Here, we summarize the main routes of nutrient acquisition that fuel mammalian cells and their implications in tumorigenesis. We argue that the molecular mechanisms of nutrient acquisition not only tip the balance between nutrient supply and demand but also determine cell behavior upon nutrient limitation and energetic stress and contribute to nutrient partitioning and metabolic coordination between different cell types in inflamed or tumorigenic environments.
Collapse
Affiliation(s)
- Vasileios Papalazarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Oliver D K Maddocks
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
30
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Ding J, Gou Q, Jia X, Liu Q, Jin J, Shi J, Hou Y. AMPK phosphorylates PPARδ to mediate its stabilization, inhibit glucose and glutamine uptake and colon tumor growth. J Biol Chem 2021; 297:100954. [PMID: 34270958 PMCID: PMC8397901 DOI: 10.1016/j.jbc.2021.100954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a nuclear receptor transcription factor that plays an important role in the regulation of metabolism, inflammation, and cancer. In addition, the nutrient-sensing kinase 5'AMP-activated protein kinase (AMPK) is a critical regulator of cellular energy in coordination with PPARδ. However, the molecular mechanism of the AMPK/PPARδ pathway on cancer progression is still unclear. Here, we found that activated AMPK induced PPARδ-S50 phosphorylation in cancer cells, whereas the PPARδ/S50A (nonphosphorylation mimic) mutant reversed this event. Further analysis showed that the PPARδ/S50E (phosphorylation mimic) but not the PPARδ/S50A mutant increased PPARδ protein stability, which led to reduced p62/SQSTM1-mediated degradation of misfolded PPARδ. Furthermore, PPARδ-S50 phosphorylation decreased PPARδ transcription activity and alleviated PPARδ-mediated uptake of glucose and glutamine in cancer cells. Soft agar and xenograft tumor model analysis showed that the PPARδ/S50E mutant but not the PPARδ/S50A mutant inhibited colon cancer cell proliferation and tumor growth, which was associated with inhibition of Glut1 and SLC1A5 transporter protein expression. These findings reveal a new mechanism of AMPK-induced PPARδ-S50 phosphorylation, accumulation of misfolded PPARδ protein, and inhibition of PPARδ transcription activity contributing to the suppression of colon tumor formation.
Collapse
Affiliation(s)
- Jiajun Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Gou
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Xiao Jia
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Liu
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| |
Collapse
|
32
|
Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res 2021; 9:38. [PMID: 34426569 PMCID: PMC8382841 DOI: 10.1038/s41413-021-00153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glucose metabolism is fundamental for the functions of all tissues, including cartilage. Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development, little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis. We show here that genetic deletion of the glucose transporter Glut1 in postnatal cartilage impairs cell proliferation and matrix production in growth plate (GPs) but paradoxically increases cartilage remnants in the metaphysis, resulting in shortening of long bones. On the other hand, articular cartilage (AC) with Glut1 deficiency presents diminished cellularity and loss of proteoglycans, which ultimately progress to cartilage fibrosis. Moreover, predisposition to Glut1 deficiency severely exacerbates injury-induced osteoarthritis. Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions, both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability. However, uncontrolled glutamine flux causes collagen overmodification, thus affecting extracellular matrix remodeling in both cartilage compartments. These results uncover the pivotal and distinct roles of Glut1-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.
Collapse
|
33
|
Ancey PB, Contat C, Boivin G, Sabatino S, Pascual J, Zangger N, Perentes JY, Peters S, Abel ED, Kirsch DG, Rathmell JC, Vozenin MC, Meylan E. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Res 2021; 81:2345-2357. [PMID: 33753374 PMCID: PMC8137580 DOI: 10.1158/0008-5472.can-20-2870] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Neutrophils are the most abundant circulating leucocytes and are essential for innate immunity. In cancer, pro- or antitumor properties have been attributed to tumor-associated neutrophils (TAN). Here, focusing on TAN accumulation within lung tumors, we identify GLUT1 as an essential glucose transporter for their tumor supportive behavior. Compared with normal neutrophils, GLUT1 and glucose metabolism increased in TANs from a mouse model of lung adenocarcinoma. To elucidate the impact of glucose uptake on TANs, we used a strategy with two recombinases, dissociating tumor initiation from neutrophil-specific Glut1 deletion. Loss of GLUT1 accelerated neutrophil turnover in tumors and reduced a subset of TANs expressing SiglecF. In the absence of GLUT1 expression by TANs, tumor growth was diminished and the efficacy of radiotherapy was augmented. Our results demonstrate the importance of GLUT1 in TANs, which may affect their pro- versus antitumor behavior. These results also suggest targeting metabolic vulnerabilities to favor antitumor neutrophils. SIGNIFICANCE: Lung tumor support and radiotherapy resistance depend on GLUT1-mediated glucose uptake in tumor-associated neutrophils, indicating that metabolic vulnerabilities should be considered to target both tumor cells as well as innate immune cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2345/F1.large.jpg.
Collapse
Affiliation(s)
- Pierre-Benoit Ancey
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Caroline Contat
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Gael Boivin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Laboratory of Radiation Oncology, Department of Radiation Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Silvia Sabatino
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Justine Pascual
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Nadine Zangger
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Solange Peters
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marie-Catherine Vozenin
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Laboratory of Radiation Oncology, Department of Radiation Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland
| |
Collapse
|
34
|
He J, Li CF, Lee HJ, Shin DH, Chern YJ, Pereira De Carvalho B, Chan CH. MIG-6 is essential for promoting glucose metabolic reprogramming and tumor growth in triple-negative breast cancer. EMBO Rep 2021; 22:e50781. [PMID: 33655623 PMCID: PMC8097377 DOI: 10.15252/embr.202050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen‐inducible gene‐6 (MIG‐6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG‐6 is upregulated in TNBC and that MIG‐6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG‐6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG‐6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α‐regulated glycolytic genes, substantiating the comprehensive regulation of MIG‐6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG‐6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG‐6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.
Collapse
Affiliation(s)
- Jiabei He
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Pathology, Chi-Mei Foundational Medical Center, Tainan, Taiwan
| | - Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Dong-Hui Shin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Jye Chern
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
35
|
Woźniak M, Pastuch-Gawołek G, Makuch S, Wiśniewski J, Krenács T, Hamar P, Gamian A, Szeja W, Szkudlarek D, Krawczyk M, Agrawal S. In Vitro and In Vivo Efficacy of a Novel Glucose-Methotrexate Conjugate in Targeted Cancer Treatment. Int J Mol Sci 2021; 22:ijms22041748. [PMID: 33572433 PMCID: PMC7916191 DOI: 10.3390/ijms22041748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Methotrexate (MTX) is a commonly used antimetabolite, which inhibits folate and DNA synthesis to be effective in the treatment of various malignancies. However, MTX therapy is hindered by the lack of target tumor selectivity. We have designed, synthesized and evaluated a novel glucose–methotrexate conjugate (GLU–MTX) both in vitro and in vivo, in which a cleavable linkage allows intracellular MTX release after selective uptake through glucose transporter−1 (GLUT1). GLU–MTX inhibited the growth of colorectal (DLD-1), breast (MCF-7) and lung (A427) adenocarcinomas, squamous cell carcinoma (SCC-25), osteosarcoma (MG63) cell lines, but not in WI-38 healthy fibroblasts. In tumor cells, GLU–MTX uptake increased 17-fold compared to unconjugated MTX. 4,6-O-ethylidene-α-D-glucose (EDG), a GLUT1 inhibitor, significantly interfered with GLU–MTX induced growth inhibition, suggesting a glucose-mediated drug uptake. Glu-MTX also caused significant tumor growth delay in vivo in breast cancer-bearing mice. These results show that our GLUT-MTX conjugate can be selectively uptake by a range of tumor cells to cause their significant growth inhibition in vitro, which was also confirmed in a breast cancer model in vivo. GLUT1 inhibitor EDG interfered with these effects verifying the selective drug uptake. Accordingly, GLU–MTX offers a considerable tumor selectivity and may offer cancer growth inhibition at reduced toxicity.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (D.S.)
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (D.S.)
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Wiesław Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
| | - Danuta Szkudlarek
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (D.S.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.K.); (S.A.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (D.S.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (M.K.); (S.A.)
| |
Collapse
|
36
|
Tang M, Park SH, Petri S, Yu H, Rueda CB, Abel ED, Kim CY, Hillman EM, Li F, Lee Y, Ding L, Jagadish S, Frankel WN, De Vivo DC, Monani UR. An early endothelial cell-specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight 2021; 6:145789. [PMID: 33351789 PMCID: PMC7934852 DOI: 10.1172/jci.insight.145789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell–specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.
Collapse
Affiliation(s)
- Maoxue Tang
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - Sarah H Park
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - Sabrina Petri
- Department of Genetics & Development and the Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Hang Yu
- Departments of Biomedical Engineering and Radiology, Mortimer B. Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, New York, USA
| | - Carlos B Rueda
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carla Y Kim
- Departments of Biomedical Engineering and Radiology, Mortimer B. Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, New York, USA
| | - Elizabeth Mc Hillman
- Departments of Biomedical Engineering and Radiology, Mortimer B. Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, New York, USA
| | - Fanghua Li
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - Yeojin Lee
- Columbia Stem Cell Initiative and Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Lei Ding
- Columbia Stem Cell Initiative and Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Smitha Jagadish
- Rare & Neurological Diseases Research, Sanofi Genzyme, Framingham, Massachusetts, USA
| | - Wayne N Frankel
- Department of Genetics & Development and the Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA
| | - Umrao R Monani
- Department of Neurology and.,Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
37
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
38
|
Alternative Splicing and Cleavage of GLUT8. Mol Cell Biol 2020; 41:MCB.00480-20. [PMID: 33077497 DOI: 10.1128/mcb.00480-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
The GLUT (SLC2) family of membrane-associated transporters are described as glucose transporters. However, this family is divided into three classes and, though the regulated transporter activity of class I proteins is becoming better understood, class III protein functions continue to be obscure. We have cataloged the relative expression and splicing of SLC2 mRNA isomers in tumors and normal tissues, with a focus on breast tumors and cell lines. mRNA for the class III protein GLUT8 is the predominant SLC2 species expressed alongside GLUT1 in many tissues, but GLUT8 mRNA exists mostly as an untranslated splice form in tumors. We confirm that GLUT8 is not presented at the cell surface and does not transport glucose directly. However, we reveal a lysosome-dependent reaction that cleaves the GLUT8 protein and releases the carboxy-terminal peptide to a separate vesicle population. Given the localization of GLUT8 at a major metabolic hub (the late endosomal/lysosomal interface) and its regulated cleavage reaction, we evaluated TXNIP-mediated hexosamine homeostasis and speculate that GLUT8 may function as a sensory component of this reaction.
Collapse
|
39
|
Yoo J, Seo BK, Park EK, Kwon M, Jeong H, Cho KR, Woo OH, Song SE, Cha J. Tumor stiffness measured by shear wave elastography correlates with tumor hypoxia as well as histologic biomarkers in breast cancer. Cancer Imaging 2020; 20:85. [PMID: 33256820 PMCID: PMC7706221 DOI: 10.1186/s40644-020-00362-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Shear wave elastography (SWE) is an ultrasound technique for the noninvasive quantification of tissue stiffness. The hypoxic tumor microenvironment promotes tumor stiffness and is associated with poor prognosis in cancer. We aimed to investigate the correlation between tumor hypoxia and histologic biomarkers and tumor stiffness measured by SWE in breast cancer. Methods From June 2016 to January 2018, 82 women with invasive breast cancer who underwent SWE before treatment were enrolled. Average tumor elasticity (Eaverage) and tumor-to-fat elasticity ratio (Eratio) were extracted from SWE. Immunohistochemical staining of glucose transporter 1 (GLUT1) was used to assess tumor hypoxia in breast cancer tissues and automated digital image analysis was performed to assess GLUT1 activities. Spearman correlation and logistic regression analyses were performed to identify associations between GLUT1 expression and SWE values, histologic biomarkers, and molecular subtypes. The Mann–Whitney U test, t test, or Kruskal–Wallis test was used to compare SWE values and histologic features according to the GLUT1 expression (≤the median vs > median). Results Eaverage (r = 0.676) and Eratio (r = 0.411) correlated significantly with GLUT1 expression (both p < 0.001). Eaverage was significantly higher in cancers with estrogen receptor (ER)–, progesterone receptor (PR)–, Ki67+, and high-grade (p < 0.05). Eratio was higher in cancers with Ki67+, lymph node metastasis, and high-grade (p < 0.05). Cancers with high GLUT1 expression (>median) had higher Eaverage (mean, 85.4 kPa vs 125.5 kPa) and Eratio (mean, 11.7 vs 17.9), and more frequent ER– (21.7% vs 78.3%), PR– (26.4% vs 73.1%), Ki67+ (31.7%% vs 68.3%), human epidermal growth factor receptor 2 (HER2) + (25.0% vs 75.0%), high-grade (28.6% vs 71.4%), and HER2-overexpressing (25.0% vs 75.0%) and triple-negative (23.1% vs 76.9%) subtypes (p < 0.05). Multivariable analysis showed that Eaverage was independently associated with GLUT1 expression (p < 0.001). Conclusions Tumor stiffness on SWE is significantly correlated with tumor hypoxia as well as histologic biomarkers. In particular, Eaverage on SWE has independent prognostic significance for tumor hypoxia in the multivariable analysis and can potentially be used as a noninvasive imaging biomarker to predict prognosis and pretreatment risk stratification in breast cancer patients.
Collapse
Affiliation(s)
- Joonghyun Yoo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea.
| | - Eun Kyung Park
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Myoungae Kwon
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Hoiseon Jeong
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Ok Hee Woo
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Sung Eun Song
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 15355, South Korea
| |
Collapse
|
40
|
Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2020; 122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenbo Zhang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
42
|
Gopu V, Fan L, Shetty RS, Nagaraja M, Shetty S. Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 2020; 5:137969. [PMID: 32841217 PMCID: PMC7566714 DOI: 10.1172/jci.insight.137969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Increased metabolism distinguishes myofibroblasts or fibrotic lung fibroblasts (fLfs) from the normal lung fibroblasts (nLfs). The mechanism of metabolic activation in fLfs has not been fully elucidated. Furthermore, the antifibrogenic effects of caveolin-1 scaffolding domain peptide CSP/CSP7 involving metabolic reprogramming in fLfs are unclear. We therefore analyzed lactate and succinate levels, as well as the expression of glycolytic enzymes and hypoxia inducible factor-1α (HIF-1α). Lactate and succinate levels, as well as the basal expression of glycolytic enzymes and HIF-1α, were increased in fLfs. These changes were reversed following restoration of p53 or its transcriptional target microRNA-34a (miR-34a) expression in fLfs. Conversely, inhibition of basal p53 or miR-34a increased glucose metabolism, glycolytic enzymes, and HIF-1α in nLfs. Treatment of fLfs or mice having bleomycin- or Ad-TGF-β1-induced lung fibrosis with CSP/CSP7 reduced the expression of glycolytic enzymes and HIF-1α. Furthermore, inhibition of p53 or miR-34a abrogated CSP/CSP7-mediated restoration of glycolytic flux in fLfs in vitro and in mice with pulmonary fibrosis and lacking p53 or miR-34a expression in fibroblasts in vivo. Our data indicate that dysregulation of glucose metabolism in fLfs is causally linked to loss of basal expression of p53 and miR-34a. Treatment with CSP/CSP7 constrains aberrant glucose metabolism through restoration of p53 and miR-34a.
Collapse
|
43
|
Doss DM, Nirmal M, Veeravarmal, Saravanan R, Venkatesh A. Evaluating the expression of GLUT-1 in oral leukoplakia. J Oral Maxillofac Pathol 2020; 24:308-314. [PMID: 33456240 PMCID: PMC7802877 DOI: 10.4103/jomfp.jomfp_220_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/14/2019] [Indexed: 11/29/2022] Open
Abstract
Aim: The aim of the present study is to analyze the role of GLUT-1 in detection of early alterations occurring in oral leukoplakia. This study was to evaluate the expression of GLUT-1 in normal oral epithelium, the expression of GLUT-1 levels in the tissue samples of oral leukoplakia and to statistically compare the expression of GLUT-1 in normal epithelium and oral leukoplakia. Materials and Methods: The study sample comprised formalin-fixed and paraffin-embedded tissue specimens from 23 cases of histopathologically diagnosed oral leukoplakia and formalin-fixed paraffin-embedded tissue specimens from 10 cases of normal oral mucosa. Sections were mounted on glass slide coated with Aminopropyltriethoxysilane (APES; Sigma chemical co., USA) and processed for subsequent immunohistochemical study to demonstrate GLUT-1. Results: GLUT-1 expression in normal oral mucosa revealed weak positivity in all 10 cases (100%). The oral leukoplakia cases showed immunopositivity in all 23 cases (100%) of which 10 cases (39.14%) demonstrated focal positivity and 13 cases (60.86%) of diffuse positivity. The results were compared statistically using ANOVA test was significant at P = 0.002. Conclusion: The present study shows expression of GLUT-1 in leukoplakia may be used as a reliable marker to identify the high risk group for malignant transformation.
Collapse
Affiliation(s)
- Daffney Mano Doss
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Science and Research Centre, Madurai, Tamil Nadu, India
| | - Madhava Nirmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - Veeravarmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Chidambaram, Tamil Nadu, India
| | - R Saravanan
- Department of Pedodontics, CSI College of Dental Science and Research Centre, Madurai, Tamil Nadu, India
| | - A Venkatesh
- Department of Conservative Dentistry and Endodontics, Sri Balaji Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
44
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
45
|
The Emerging Role of PPAR Beta/Delta in Tumor Angiogenesis. PPAR Res 2020; 2020:3608315. [PMID: 32855630 PMCID: PMC7443046 DOI: 10.1155/2020/3608315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in the review.
Collapse
|
46
|
Li B, Lee WC, Song C, Ye L, Abel ED, Long F. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J 2020; 34:11058-11067. [PMID: 32627870 DOI: 10.1096/fj.202000771r] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
Excessive bone resorption over bone formation is the root cause for bone loss leading to osteoporotic fractures. Development of new antiresorptive therapies calls for a holistic understanding of osteoclast differentiation and function. Although much has been learned about the molecular regulation of osteoclast biology, little is known about the metabolic requirement and bioenergetics during osteoclastogenesis. Here, we report that glucose metabolism through oxidative phosphorylation (OXPHOS) is the predominant bioenergetic pathway to support osteoclast differentiation. Meanwhile, increased lactate production from glucose, known as aerobic glycolysis when oxygen is abundant, is also critical for osteoclastogenesis. Genetic deletion of Glut1 in osteoclast progenitors reduces aerobic glycolysis without compromising OXPHOS, but nonetheless diminishes osteoclast differentiation in vitro. Glut1 deficiency in the progenitors leads to osteopetrosis due to fewer osteoclasts specifically in the female mice. Thus, Glut1-mediated glucose metabolism through both lactate production and OXPHOS is necessary for normal osteoclastogenesis.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Wen-Chih Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chao Song
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Li P, Yang L, Li T, Bin S, Sun B, Huang Y, Yang K, Shan D, Gu H, Li H. The Third Generation Anti-HER2 Chimeric Antigen Receptor Mouse T Cells Alone or Together With Anti-PD1 Antibody Inhibits the Growth of Mouse Breast Tumor Cells Expressing HER2 in vitro and in Immune Competent Mice. Front Oncol 2020; 10:1143. [PMID: 32766150 PMCID: PMC7381237 DOI: 10.3389/fonc.2020.01143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cells have great efficacy against CD19+ leukemia but little success for solid tumors. This study explored the effectiveness of third generation anti-HER2 CAR-T cells alone or in combination with anti-PD1 antibody on breast tumor cells expressing HER2 in vitro and in immune competent mouse model. The PDL1-positive mouse mammary tumor cell line 4T1 engineered to express luciferase and human HER2 was used as the target cell line (4T1-Luc-HER2). Anti-HER2 CAR-T cells were generated by transducing mouse spleen T cells with recombinant lentiviruses. ELISA analysis showed that IL-2 and IFN-γ secretion was increased in CAR-T cells co-cultured with the target cells, and the secretion of these two cytokines was increased further with the addition of anti-PD1 antibody. Lactate dehydrogenase assay revealed that CAR-T cells displayed a potent cytotoxicity against the target cells, and the addition of anti-PD1 antibody further enhanced the cytotoxicity. At the effector: target ratio of 16:1, cytotoxicity was 39.8% with CAR-T cells alone, and increased to 49.5% with the addition of anti-PD1 antibody. In immune competent syngeneic mouse model, CAR-T cells were found to be present in tumor stroma, inhibited tumor growth and increased tumor apoptosis significantly. Addition of anti-PD1 antibody further enhanced these anti-tumor activities. Twenty-one days after treatment, tumor weight was reduced by 50.0% and 73.3% in CAR-T group and CAR-T plus anti-PD1 group compared with blank T group. Our results indicate that anti-PD1 antibody can greatly increase the efficacy of anti-HER2 CAR-T against HER2-positive solid tumors.
Collapse
Affiliation(s)
- Panyuan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingcong Yang
- The Third People's Hospital of Dalian, Dalian, China
| | - Tong Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shufang Bin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bohao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuting Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiyan Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daming Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Gu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Contat C, Ancey PB, Zangger N, Sabatino S, Pascual J, Escrig S, Jensen L, Goepfert C, Lanz B, Lepore M, Gruetter R, Rossier A, Berezowska S, Neppl C, Zlobec I, Clerc-Rosset S, Knott GW, Rathmell JC, Abel ED, Meibom A, Meylan E. Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. eLife 2020; 9:e53618. [PMID: 32571479 PMCID: PMC7311173 DOI: 10.7554/elife.53618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose utilization increases in tumors, a metabolic process that is observed clinically by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). However, is increased glucose uptake important for tumor cells, and which transporters are implicated in vivo? In a genetically-engineered mouse model of lung adenocarcinoma, we show that the deletion of only one highly expressed glucose transporter, Glut1 or Glut3, in cancer cells does not impair tumor growth, whereas their combined loss diminishes tumor development. 18F-FDG-PET analyses of tumors demonstrate that Glut1 and Glut3 loss decreases glucose uptake, which is mainly dependent on Glut1. Using 13C-glucose tracing with correlated nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy, we also report the presence of lamellar body-like organelles in tumor cells accumulating glucose-derived biomass, depending partially on Glut1. Our results demonstrate the requirement for two glucose transporters in lung adenocarcinoma, the dual blockade of which could reach therapeutic responses not achieved by individual targeting.
Collapse
Affiliation(s)
- Caroline Contat
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| | - Pierre-Benoit Ancey
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| | - Nadine Zangger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
- Bioinformatics Core Facility, Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Silvia Sabatino
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| | - Justine Pascual
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Louise Jensen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Christine Goepfert
- Institute of Animal Pathology (COMPATH), University of Bern, CH-3012 Bern, and Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Mario Lepore
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Anouk Rossier
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| | | | | | - Inti Zlobec
- Institute of Pathology, University of BernBernSwitzerland
| | - Stéphanie Clerc-Rosset
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Graham William Knott
- BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical CenterNashvilleUnited States
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Center for Advanced Surface Analysis, Faculty of Geosciences and Environment, University of LausanneLausanneSwitzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Cancer Center LémanLausanneSwitzerland
| |
Collapse
|
49
|
Flynn MC, Kraakman MJ, Tikellis C, Lee MKS, Hanssen NMJ, Kammoun HL, Pickering RJ, Dragoljevic D, Al-Sharea A, Barrett TJ, Hortle F, Byrne FL, Olzomer E, McCarthy DA, Schalkwijk CG, Forbes JM, Hoehn K, Makowski L, Lancaster GI, El-Osta A, Fisher EA, Goldberg IJ, Cooper ME, Nagareddy PR, Thomas MC, Murphy AJ. Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circ Res 2020; 127:877-892. [PMID: 32564710 DOI: 10.1161/circresaha.120.316653] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Michelle C Flynn
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Michael J Kraakman
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York (M.J.K.)
| | - Christos Tikellis
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Man K S Lee
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Nordin M J Hanssen
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, the Netherlands (N.M.J.H., C.G.S.)
| | - Helene L Kammoun
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Raelene J Pickering
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Dragana Dragoljevic
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Annas Al-Sharea
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Tessa J Barrett
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Fiona Hortle
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Frances L Byrne
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Ellen Olzomer
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Domenica A McCarthy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia (D.A.M., J.M.F.)
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, the Netherlands (N.M.J.H., C.G.S.)
| | - Josephine M Forbes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia (D.A.M., J.M.F.)
| | - Kyle Hoehn
- Division of Endocrinology, Diabetes and Metabolism (F.L.B., E.O., K.H.), New York University School of Medicine
| | - Liza Makowski
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia (L.M.)
| | - Graeme I Lancaster
- From the Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia (M.C.F., M.J.K., M.K.S.L., H.L.K., D.D., A.A.-S., F.H., G.I.L., A.J.M.), Monash University, Melbourne, Australia.,Department of Immunology (M.C.F., M.K.S.L., H.L.K., G.I.L., A.J.M.), Monash University, Melbourne, Australia
| | - Assam El-Osta
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia.,Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis (A.E.-O.).,Department of Medicine and Therapeutics (A.E.-O.), The Chinese University of Hong Kong.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital (A.E.-O.), The Chinese University of Hong Kong.,Li Ka Shing Institute of Health Sciences (A.E.-O.), The Chinese University of Hong Kong
| | - Edward A Fisher
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Ira J Goldberg
- Division of Cardiology (T.J.B., E.A.F., I.J.G.), New York University School of Medicine
| | - Mark E Cooper
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | | | - Merlin C Thomas
- Diabetes (C.T., R.J.P., A.E.-O., M.E.C., M.C.T.), Monash University, Melbourne, Australia
| | - Andrew J Murphy
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia (A.J.M.)
| |
Collapse
|
50
|
GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers. Cancer Lett 2020; 485:45-55. [PMID: 32428663 DOI: 10.1016/j.canlet.2020.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Castration-resistant prostate cancer (CRPC) displays a higher 18F-FDG PET SUVmax than hormone-sensitive prostate cancer, which suggests a greater need for glucose metabolism in CRPC. Targeting glucose metabolism in cancer cells remains attractive for cancer treatment. Glucose transporters (GLUTs) meditate the first and rate-limiting step of glucose metabolism. Here, we investigated the key mediator of glucose transporters and evaluated its therapeutic value in a preclinical model of CRPC. 18F-FDG PET showed a higher SUVmax in CRPC than in hormone-sensitive prostate cancer, and GLUT1 expression positively correlated with SUVmax and was associated with a worse CRPC outcome. GLUT1 inhibition significantly suppressed cell growth, glycolysis and tumor volume in a xenograft model both in CRPC and enzalutamide-resistant prostate cancer. Chromatin immunoprecipitation and dual luciferase reporter assay showed that androgen receptor (AR) directly bound to the GLUT1 gene promoter to promote GLUT1 transcription. Combining GLUT1 inhibition and enzalutamide remarkably suppressed proliferation and glycolysis and induced apoptosis in CRPC cells. Our results suggest that GLUT1 is an AR target and displays synergistic effects with enzalutamide. GLUT1 may act as a promising therapeutic target in CRPC and enzalutamide-resistant prostate cancer.
Collapse
|