1
|
Basra M, Miceli L, Mundra V, Stern-Harbutte A, Patel H, Haynes J, Parmar MS. Exploring the neurotoxic effects of microbial metabolites: A potential link between p-Cresol and autism spectrum disorders? Brain Res 2025; 1850:149427. [PMID: 39732158 DOI: 10.1016/j.brainres.2024.149427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex etiology, including genetic and environmental factors. A growing body of evidence (preclinical and clinical studies) implicates a potential role of gut microbiome dysregulation in ASD pathophysiology. This review focuses on the microbial metabolite p-Cresol, produced by certain gut bacteria such as Clostridium, and its potential role in ASD. The review summarizes studies investigating the gut microbiome composition in ASD patients, particularly the increased abundance of Clostridium species and associated gastrointestinal symptoms. The potential neurotoxic effects of p-Cresol are explored, including its influence on neurotransmitter metabolism (especially dopamine), neuroinflammation, and brain development. The mechanistic findings from the preclinical studies of p-Cresol's induction of ASD-like behaviors and its impact on the dopaminergic system are discussed. Literature studies indicated increased levels of p-Cresol in the urine of patients with ASD. This increasing evidence suggests that p-Cresol may serve as a crucial biomarker for understanding the relationship between gut microbiota and ASD, opening avenues for potential diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Mahi Basra
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Lauren Miceli
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Vatsala Mundra
- University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Alison Stern-Harbutte
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | - Hemangi Patel
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States
| | | | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, United States.
| |
Collapse
|
2
|
Chen HD, Yi B, Ma ZS. Resilience of human gut microbiomes in autism spectrum disorder: measured using stiffness network analysis. Microbiol Spectr 2025:e0107824. [PMID: 39902951 DOI: 10.1128/spectrum.01078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/03/2024] [Indexed: 02/06/2025] Open
Abstract
Autism spectrum disorder (ASD) affects an estimated 1%-2% of children worldwide, but its specific etiology remains unclear. In recent years, the gut microbiome's role in ASD pathogenesis has garnered increasing attention. However, the exact relationship between microbiota and ASD-such as which microbial species significantly impact disease onset and progression-remains unresolved, and effective methods to measure microbial interactions are still lacking. In this study, we introduce an innovative stiffness network analysis (SNA) method to quantify changes in microbial network structure and identify disease-specific microbial bacteria theoretically. The SNA method was applied to reanalyze eight ASD gut microbiome data sets, encompassing 898 ASD samples and 467 healthy control (HC) samples from 16S-rRNA sequencing data. Key findings include the following: (i) an "allies" biomarker subgroup consisting of Bacteroides plebeius, Sutterella, Lachnospira, and Prevotella copri was identified; (ii) a profile monitoring score of 0.72 for the biomarker subgroup, indicating significant relationship changes between HC and ASD states, and (iii) a P/N ratio of biomarker subgroup in ASD-associated gut bacteria that was three times higher than that of HC microbiomes. Additionally, we discuss the non-monotonic relationship alterations within microbial sub-communities in the ASD gut microbiome.IMPORTANCEIt is crucial to assess alterations in network structure in different biological states in order to promote health. The stiffness network allows for the exploration of species interactions and the measurement of resilience in complex microbial networks. The objective of this study was to develop a stiffness network analysis (SNA) method for evaluating the contribution of microbial bacteria in differentiating disease samples from healthy control samples by examining changes in network stiffness parameters. Furthermore, the SNA method was employed on both simulated and real autism spectrum disorder gut microbiome data sets to identify potential microbial biomarker subgroups, with a particular focus on the relationship alterations within microbial networks.
Collapse
Affiliation(s)
- Hongju Daisy Chen
- School of Mathematics and Statistics, Guilin University of Technology, Guilin, China
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bin Yi
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Kacena C. Effects of the Curcuminoid and Non-Curcuminoid Compounds of Turmeric on the Gut Microbiome and Inflammation: Potential Use in the Treatment and Prevention of Disease. Nutr Rev 2025:nuae221. [PMID: 39873671 DOI: 10.1093/nutrit/nuae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The gut microbiome is a complex system that directly interacts with and influences many systems in the body. This delicate balance of microbiota plays an important role in health and disease and is highly influenced by lifestyle factors and the surrounding environment. As further research emerges, understanding the full potential of the gut microbiome and the impact of using nutraceuticals to positively influence its function may open the door to greater therapeutic outcomes in the treatment and prevention of disease. Curcumin, a bioactive compound derived from the turmeric rhizome, has been studied in depth for its influence on human health as a potent anti-inflammatory and antioxidant properties. However, the therapeutic activity of curcumin is limited by its low oral bioavailability. While most available research has primarily focused on the curcuminoid compounds of turmeric, the non-curcuminoid compounds hold promise to offer therapeutic benefits while synergistically enhancing the bioavailability of curcumin and supporting the gut microbiome. This review summarizes current knowledge of the relationship between the gut and the various systems within the body, and how dysbiosis, or disruption in the gut microbial balance, leads to inflammation and increased risk of chronic disease. The review also summarizes recent research that focuses on the bioactivity of both the curcuminoid and non-curcuminoid compounds that comprise the whole turmeric root and their synergistic role in enhancing bioavailability to support a healthy gut microbiome and promising use in the treatment and prevention of disease.
Collapse
|
4
|
Ying J, Zhang MW, Wei KC, Wong SH, Subramaniam M. Influential articles in autism and gut microbiota: bibliometric profile and research trends. Front Microbiol 2025; 15:1401597. [PMID: 39850141 PMCID: PMC11755156 DOI: 10.3389/fmicb.2024.1401597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Increasing evidence suggests that it is potentially related to gut microbiota, but no prior bibliometric analysis has been performed to explore the most influential works in the relationships between ASD and gut microbiota. In this study, we conducted an in-depth analysis of the most-cited articles in this field, aiming to provide insights to the existing body of research and guide future directions. Methods A search strategy was constructed and conducted in the Web of Science database to identify the 100 most-cited papers in ASD and gut microbiota. The Biblioshiny package in R was used to analyze and visualize the relevant information, including citation counts, country distributions, authors, journals, and thematic analysis. Correlation and comparison analyses were performed using SPSS software. Results The top 100 influential manuscripts were published between 2000 and 2021, with a total citation of 40,662. The average number of citations annually increased over the years and was significantly correlated to the year of publication (r = 0.481, p < 0.01, Spearman's rho test). The United States was involved in the highest number of publications (n = 42). The number of publications in the journal was not significantly related to the journal's latest impact factor (r = 0.016, p > 0.05, Spearman's rho test). Co-occurrence network and thematic analysis identified several important areas, such as microbial metabolites of short-chain fatty acids and overlaps with irritable bowel syndrome. Conclusion This bibliometric analysis provides the key information of the most influential studies in the area of ASD and gut microbiota, and suggests the hot topics and future directions. The findings of this study can serve as a valuable reference for researchers and policymakers, guiding the development and implementation of the scientific research strategies in this area.
Collapse
Affiliation(s)
- Jiangbo Ying
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | | | - Ker-Chiah Wei
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
5
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
6
|
Öztürk E, Aslan Çin NN, Cansu A, Akyol A. Ketogenic diet as a therapeutic approach in autism spectrum disorder: a narrative review. Metab Brain Dis 2024; 40:67. [PMID: 39692905 DOI: 10.1007/s11011-024-01506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The ketogenic diet (KD) originated in the 1920s. It is a dietary model that is low in carbohydrates, adequate in protein, and high in fat content. The diet mimics starvation and increases the production of ketone bodies, leading to ketosis in metabolism. KD is used as an anticonvulsant treatment approach in patients with drug-resistant epilepsy. In addition, it is thought that a KD may have therapeutic potential in the treatment of neurological disorders, including autism spectrum disorders (ASD). Numerous recent studies have demonstrated that a KD can improve behavioural parameters in individuals with ASD. This review aims to address the potential mechanisms of action of the KD and to examine the effects of the KD on individuals diagnosed with ASD. It is likely that this role is mediated through improvements in energy metabolism, reduction of pro-inflammatory cytokine levels, control of neurotransmitters, gene expression and modulation of the gut microbiota. Based on the available evidence, a KD appears to be a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Elif Öztürk
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karadeniz Technical University, Trabzon, Türkiye.
| | - Nazlı Nur Aslan Çin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Karadeniz Technical University, Trabzon, Türkiye
| | - Ali Cansu
- Faculty of Medicine, Department of Pediatric Diseases, Karadeniz Technical University, Trabzon, Turkey
| | - Aslı Akyol
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
8
|
Gerges P, Bangarusamy DK, Bitar T, Alameddine A, Nemer G, Hleihel W. Turicibacter and Catenibacterium as potential biomarkers in autism spectrum disorders. Sci Rep 2024; 14:23184. [PMID: 39369020 PMCID: PMC11455930 DOI: 10.1038/s41598-024-73700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by social, behavioral, and cognitive impairments. Several comorbidities, including gastrointestinal (GI) dysregulations, are frequently reported in ASD children. Although studies in animals have shown the crucial role of the microbiota in key aspects of neurodevelopment, there is currently no consensus on how the alteration of microbial composition affects the pathogenesis of ASD. Moreover, disruption of the gut-brain axis (GBA) has been reported in ASD although with limited studies conducted on the Mediterranean population. In our study, we aimed to investigate gut microbiota composition in Lebanese ASD subjects, their unaffected siblings, and a control group from various regions in Lebanon using the 16 S-rRNA sequencing (NGS). Our study revealed a lower abundance of Turicibacter and a significant enrichment on Proteobacteria in the ASD and siblings' groups compared to the controls, indicating that gut microbiota is probably affected by dietary habits, living conditions together with host genetic factors. The study also showed evidence of changes in the gut microbiome of ASD children compared to their siblings and the unrelated control. Bacteroidetes revealed a lower abundance in the ASD group compared to controls and siblings, conversely, Catenibacterium and Tenericutes revealed an increased abundance in the ASD group. Notably, our study identifies alterations in the abundance of Turicibacter and Catenibacterium in ASD children suggesting a possible link between these bacterial taxa and ASD and contributing to the growing body of evidence linking the microbiome to ASD.
Collapse
Affiliation(s)
- Perla Gerges
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| | | | - Tania Bitar
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon.
| | - Abbas Alameddine
- North Autism Center (NAC), Zgharta, 1304, Lebanon
- Department of Psychiatry, Hôtel-Dieu de France Hospital, A. Naccache Avenue - Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Walid Hleihel
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| |
Collapse
|
9
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Liu S, Xi H, Xue X, Sun X, Huang H, Fu D, Mi Y, He Y, Yang P, Tang Y, Zheng P. Clostridium butyricum regulates intestinal barrier function via trek1 to improve behavioral abnormalities in mice with autism spectrum disorder. Cell Biosci 2024; 14:95. [PMID: 39034406 PMCID: PMC11265103 DOI: 10.1186/s13578-024-01278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that has been found to be associated with dysregulation of gastrointestinal functions and gut microbial homeostasis (the so-called "gut-brain axis"). ASD is often accompanied by poor performances in social interaction and repetitive behaviors. Studies on the gut-brain axis provide novel insights and candidate targets for ASD therapeutics and diagnosis. Based on the ASD mice model, this work aims to reveal the mechanisms behind the interaction of intestinal barrier function and probiotics in ASD mouse models. RESULTS We found an altered intestinal barrier in both BTBR T+ Itpr3tf/J (BTBR) and valproic acid (VPA) mice, including increased intestinal permeability, decreased expression of intestinal tight junction proteins (claudin1, claudin3, and occludin), and increased levels of IL-6, TNF-α, and IFN-γ. Based on intestinal microbial alternation, C. butyricum can drive reduced expression of histone deacetylases 1 (HDAC1) and enhanced intestinal barrier function, significantly promoting behavioral abnormalities of ASD in BTBR mice. In parallel, we confirmed that C. butyricum was involved in the regulation of intestinal function by the Trek1 channel, indicating that it is a target of C. butyricum/butyric acid to improve intestinal barrier function in ASD mice. CONCLUSIONS Our finding provides solid evidence for the gut microbiota involved in ASD through the brain-gut axis. In addition, the probiotics C. butyricum hold promise to improve gut health and ameliorate behavioral abnormalities associated with ASD.
Collapse
Affiliation(s)
- Simeng Liu
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Xiangyu Medical CO., LTD, Anyang, 456300, Henan, China.
| | - Huayuan Xi
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xia Xue
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiangdong Sun
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huang Huang
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongjun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Mi
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongzheng He
- Xiangyu Medical CO., LTD, Anyang, 456300, Henan, China
| | - Pingchang Yang
- Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Zimmermann-Rösner A, Prehn-Kristensen A. The Microbiome in Child and Adolescent Psychiatry. ZEITSCHRIFT FUR KINDER- UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2024; 52:213-226. [PMID: 38240707 DOI: 10.1024/1422-4917/a000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Recent research has increasingly emphasized the function of the microbiome in human health. The gut microbiome is essential for digesting food and seems to play a vital role in mental health as well. This review briefly overviews the gut microbiome and its interplay with the central nervous system. We then summarize some of the latest findings on the possible role of the microbiome in psychiatric disorders in children and adolescents. In particular, we focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, anorexia nervosa, bipolar disorder, and major depressive disorder. Although the role of microbiota in mental development and health still needs to be researched intensively, it has become increasingly apparent that the impact of microbiota must be considered to better understand psychiatric disorders.
Collapse
Affiliation(s)
| | - Alexander Prehn-Kristensen
- Institute for Child and Adolescent Psychiatry, Center of Integrative Psychiatry GmbH, Kiel, Germany
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| |
Collapse
|
12
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
13
|
De Sales-Millán A, Reyes-Ferreira P, Aguirre-Garrido JF, Corral-Guillé I, Barrientos-Ríos R, Velázquez-Aragón JA. Comprehensive Analysis of Gut Microbiota Composition and Functional Metabolism in Children with Autism Spectrum Disorder and Neurotypical Children: Implications for Sex-Based Differences and Metabolic Dysregulation. Int J Mol Sci 2024; 25:6701. [PMID: 38928411 PMCID: PMC11203636 DOI: 10.3390/ijms25126701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to investigate the gut microbiota composition in children with autism spectrum disorder (ASD) compared to neurotypical (NT) children, with a focus on identifying potential differences in gut bacteria between these groups. The microbiota was analyzed through the massive sequencing of region V3-V4 of the 16S RNA gene, utilizing DNA extracted from stool samples of participants. Our findings revealed no significant differences in the dominant bacterial phyla (Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Verrucomicrobiota) between the ASD and NT groups. However, at the genus level, notable disparities were observed in the abundance of Blautia, Prevotella, Clostridium XI, and Clostridium XVIII, all of which have been previously associated with ASD. Furthermore, a sex-based analysis unveiled additional discrepancies in gut microbiota composition. Specifically, three genera (Megamonas, Oscilibacter, Acidaminococcus) exhibited variations between male and female groups in both ASD and NT cohorts. Particularly noteworthy was the exclusive presence of Megamonas in females with ASD. Analysis of predicted metabolic pathways suggested an enrichment of pathways related to amine and polyamine degradation, as well as amino acid degradation in the ASD group. Conversely, pathways implicated in carbohydrate biosynthesis, degradation, and fermentation were found to be underrepresented. Despite the limitations of our study, including a relatively small sample size (30 ASD and 31 NT children) and the utilization of predicted metabolic pathways derived from 16S RNA gene analysis rather than metagenome sequencing, our findings contribute to the growing body of evidence suggesting a potential association between gut microbiota composition and ASD. Future research endeavors should focus on validating these findings with larger sample sizes and exploring the functional significance of these microbial differences in ASD. Additionally, there is a critical need for further investigations to elucidate sex differences in gut microbiota composition and their potential implications for ASD pathology and treatment.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico;
| | - Paulina Reyes-Ferreira
- Departamento de Salud Mental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico;
| | - Ismene Corral-Guillé
- Centro de Investigación del Neurodesarrollo, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | | | | |
Collapse
|
14
|
Phan J, Calvo DC, Nair D, Jain S, Montagne T, Dietsche S, Blanchard K, Treadwell S, Adams J, Krajmalnik-Brown R. Precision synbiotics increase gut microbiome diversity and improve gastrointestinal symptoms in a pilot open-label study for autism spectrum disorder. mSystems 2024; 9:e0050324. [PMID: 38661344 PMCID: PMC11097633 DOI: 10.1128/msystems.00503-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The efficacy of prebiotics and probiotics (synbiotics when combined) to improve symptoms associated with autism spectrum disorder (ASD) has shown considerable inter-study variation, likely due to the complex, heterogeneous nature of the disorder and its associated behavioral, developmental, and gastrointestinal symptoms. Here, we present a precision synbiotic supplementation study in 296 children and adults diagnosed with ASD versus 123 age-matched neurotypical controls. One hundred seventy ASD participants completed the study. Baseline and post-synbiotic assessment of ASD and gastrointestinal (GI) symptoms and deep metagenomic sequencing were performed. Within the ASD cohort, there were significant differences in microbes between subpopulations based on the social responsiveness scale (SRS2) survey (Prevotella spp., Bacteroides, Fusicatenibacter, and others) and gluten and dairy-free diets (Bifidobacterium spp., Lactococcus, Streptococcus spp., and others). At the baseline, the ASD cohort maintained a lower taxonomic alpha diversity and significant differences in taxonomic composition, metabolic pathways, and gene families, with a greater proportion of potential pathogens, including Shigella, Klebsiella, and Clostridium, and lower proportions of beneficial microbes, including Faecalibacterium compared to controls. Following the 3-month synbiotic supplementation, the ASD cohort showed increased taxonomic alpha diversity, shifts in taxonomy and metabolic pathway potential, and improvements in some ASD-related symptoms, including a significant reduction in GI discomfort and overall improved language, comprehension, cognition, thinking, and speech. However, the open-label study design may include some placebo effects. In summary, we found that precision synbiotics modulated the gut microbiome and could be used as supplementation to improve gastrointestinal and ASD-related symptoms. IMPORTANCE Autism spectrum disorder (ASD) is prevalent in 1 out of 36 children in the United States and contributes to health, financial, and psychological burdens. Attempts to identify a gut microbiome signature of ASD have produced varied results. The limited pre-clinical and clinical population sizes have hampered the success of these trials. To understand the microbiome associated with ASD, we employed whole metagenomic shotgun sequencing to classify microbial composition and genetic functional potential. Despite being one of the most extensive ASD post-synbiotic assessment studies, the results highlight the complexity of performing such a case-control supplementation study in this population and the potential for a future therapeutic approach in ASD.
Collapse
Affiliation(s)
- Joann Phan
- Sun Genomics, Inc., San Diego, California, USA
| | - Diana C. Calvo
- Department of Civil Engineering, Construction Management, and Environmental Engineering, Northern Arizona University, Flagstaff, Arizona, USA
| | - Divya Nair
- Sun Genomics, Inc., San Diego, California, USA
| | - Suneer Jain
- Sun Genomics, Inc., San Diego, California, USA
| | | | | | | | | | - James Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
15
|
Wang Y, Ullah H, Deng T, Ren X, Zhao Z, Xin Y, Qiu J. Social isolation induces intestinal barrier disorder and imbalances gut microbiota in mice. Neurosci Lett 2024; 826:137714. [PMID: 38479554 DOI: 10.1016/j.neulet.2024.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Social isolation, a known stressor, can have detrimental effects on both physical and mental health. Recent scientific attention has been drawn to the gut-brain axis, a bidirectional communication system between the central nervous system and gut microbiota, suggesting that gut microbes may influence brain function. This study aimed to explore the impact of social isolation on the intestinal barrier and gut microbiota. 40 male BALB/c mice were either individually housed or kept in groups for 8 and 15 weeks. Socially isolated mice exhibited increased anxiety-like behavior, with significant differences between the 8-week and 15-week isolation groups (P < 0.05). After 8 weeks of isolation, there was a reduction in tight junction protein expression in the intestinal mechanical barrier. Furthermore, after 15 weeks of isolation, both tight junction protein and mucin expression, key components of the intestinal chemical barrier, decreased. This was accompanied by a substantial increase in inflammatory cytokines (IL-6 mRNA, IL-10, and TNF-α) in colon tissue in the 15-week isolated group (P < 0.05). Additionally, Illumina MiSequencing revealed significant alterations in the gut microbiota of socially isolated mice, including reduced Firmicutes and Bacteroides compared to the control group. Lactobacillus levels also decreased in the socially isolated mice.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Hidayat Ullah
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Ting Deng
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Xinxiu Ren
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Albers J, Bagos-Estevez A, Snyder LG, Tsalatsanis A, Boehme A, Bain JM. Gastrointestinal symptoms have a non-temporal association with regression in a cohort with autism spectrum disorder using the simons simplex collection. RESEARCH IN AUTISM SPECTRUM DISORDERS 2024; 111:102326. [DOI: 10.1016/j.rasd.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Feng P, Zhang Y, Zhao Y, Zhao P, Li E. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol 2024; 15:1341404. [PMID: 38455067 PMCID: PMC10918007 DOI: 10.3389/fimmu.2024.1341404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by enduring impairments in social communication and interaction together with restricted repetitive behaviors, interests, and activities. No targeted pharmacological or physical interventions are currently available for ASD. However, emerging evidence has indicated a potential association between the development of ASD and dysregulation of the gut-brain axis. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and therapeutic approach, has demonstrated positive outcomes in diverse psychiatric disorders; however, its efficacy in treating ASD and its accompanying gastrointestinal effects, particularly the effects on the gut-brain axis, remain unclear. Hence, this review aimed to thoroughly examine the existing research on the application of rTMS in the treatment of ASD. Additionally, the review explored the interplay between rTMS and the gut microbiota in children with ASD, focusing on the gut-brain axis. Furthermore, the review delved into the integration of rTMS and gut microbiota modulation as a targeted approach for ASD treatment based on recent literature. This review emphasizes the potential synergistic effects of rTMS and gut microbiota interventions, describes the underlying mechanisms, and proposes a potential therapeutic strategy for specific subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The American Psychiatric Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Li Y, Hu W, Lin B, Ma T, Zhang Z, Hu W, Zhou R, Kwok LY, Sun Z, Zhu C, Zhang H. Omic characterizing and targeting gut dysbiosis in children with autism spectrum disorder: symptom alleviation through combined probiotic and medium-carbohydrate diet intervention - a pilot study. Gut Microbes 2024; 16:2434675. [PMID: 39632378 PMCID: PMC11622613 DOI: 10.1080/19490976.2024.2434675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Autism spectrum disorder (ASD) currently lacks effective diagnostic and therapeutic approaches. Disruptions in the gut ecosystem have been observed in individuals with ASD, suggesting that targeting gut microbiota through probiotic and dietary supplementation may serve as a potential treatment strategy. This two-phase study aimed to characterize the fecal metagenome of children with ASD and investigate the beneficial effects of a combined probiotic and medium-carbohydrate intervention in ASD. Fecal metagenomes of children with ASD were compared to those of typically developing children, revealing intestinal dysbiosis in ASD, characterized by reduced levels of Prevotella sp. Dialister invisus, and Bacteroides sp. along with increased predicted abundances of inosine, glutamate, xanthine, and methylxanthine. The gut bacteriome and phageome exhibited high cooperativity. In a 3-month pilot study, Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) was administered alongside a medium-carbohydrate diet to Chinese children with ASD. The primary endpoint was the Childhood Autism Rating Scale (CARS), while the secondary endpoint was the Gastrointestinal Symptom Rating Scale (GSRS). A total of 72 autistic children were initially recruited for the intervention study, but only 53 completed the intervention. Probio-M8, in combination with dietary intervention, significantly improved CARS and GSRS scores, increased fecal levels of Bifidobacterium animalis, Akkermansia muciniphila, Fusicatenibacter saccharivorans, and Sutterella sp. while also reducing Blautia obeum (Benjamini-Hochberg corrected p ≤ 0.05 for all cases). The intervention also modulated fecal metabolites associated with the metabolism of amino acids (lysine), neurotransmitters (glutamate, γ-aminobutyric acid), polyunsaturated fatty acids (arachidonate, myristic acid), and vitamin B3. In conclusion, Probio-M8 combined with medium-carbohydrate diet effectively improved ASD symptoms, with associated changes in the gut microbiome and metabolome, supporting its potential as an adjunctive therapy for ASD.
Collapse
Affiliation(s)
- Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weiwei Hu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bing Lin
- Department of Clinical Nutrition Shenzhen Hospital, Southern Medical University, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhentian Zhang
- Department of Clinical Nutrition Shenzhen Hospital, Southern Medical University, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Weiqian Hu
- Department of Clinical Nutrition Shenzhen Hospital, Southern Medical University, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Rui Zhou
- Department of Clinical Nutrition Shenzhen Hospital, Southern Medical University, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Cuifeng Zhu
- Department of Clinical Nutrition Shenzhen Hospital, Southern Medical University, Guangdong, China
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
21
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
22
|
Wu J, Hu Q, Rao X, Zhao H, Tang H, Wang Y. Gut microbiome and metabolic profiles of mouse model for MeCP2 duplication syndrome. Brain Res Bull 2024; 206:110862. [PMID: 38145758 DOI: 10.1016/j.brainresbull.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The extra copy of the methyl-CpG-binding protein 2 (MeCp2) gene causes MeCP2 duplication syndrome (MDS), a neurodevelopmental disorder characterized by intellectual disability and autistic phenotypes. However, the disturbed microbiome and metabolic profiling underlying the autistic-like behavioral deficits of MDS are rarely investigated. Here we aimed to understand the contributions of microbiome disruption and associated metabolic alterations, especially the disturbed neurotransmitters in MDS employing a transgenic mouse model with MeCP2 overexpression. We analyzed metabolic profiles of plasma, urine, and cecum content and microbiome profiles by both 16 s RNA and shotgun metagenomics sequence technology. We found the decreased levels of Firmicutes and increased levels of Bacteroides in the single MeCP2 gene mutation autism-like mouse model, demonstrating the importance of the host genome in a selection of microbiome, leading to the heterogeneity characteristics of microbiome in MDS. Furthermore, the changed levels of several neurotransmitters (such as dopamine, taurine, and glutamate) implied the excitatory-inhibitory imbalance caused by the single gene mutation. Concurrently, a range of microbial metabolisms of aromatic amino acids (such as tryptophan and phenylalanine) were identified in different biological matrices obtained from MeCP2 transgenic mice. Our investigation revealed the importance of genetic variation in accounting for the differences in microbiomes and confirmed the bidirectional regulatory axis of microbiota-gut-brain in studying the role of microbiome on MDS, which could be useful in deeply understanding the microbiome-based treatment in this autistic-like disease.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
23
|
Gupta S, Dinesh S, Sharma S. Bridging the Mind and Gut: Uncovering the Intricacies of Neurotransmitters, Neuropeptides, and their Influence on Neuropsychiatric Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:2-21. [PMID: 38265387 DOI: 10.2174/0118715249271548231115071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND The gut-brain axis (GBA) is a bidirectional signaling channel that facilitates communication between the gastrointestinal tract and the brain. Recent research on the gut-brain axis demonstrates that this connection enables the brain to influence gut function, which in turn influences the brain and its cognitive functioning. It is well established that malfunctioning of this axis adversely affects both systems' ability to operate effectively. OBJECTIVE Dysfunctions in the GBA have been associated with disorders of gut motility and permeability, intestinal inflammation, indigestion, constipation, diarrhea, IBS, and IBD, as well as neuropsychiatric and neurodegenerative disorders like depression, anxiety, schizophrenia, autism, Alzheimer's, and Parkinson's disease. Multiple research initiatives have shown that the gut microbiota, in particular, plays a crucial role in the GBA by participating in the regulation of a number of key neurochemicals that are known to have significant effects on the mental and physical well-being of an individual. METHODS Several studies have investigated the relationship between neuropsychiatric disorders and imbalances or disturbances in the metabolism of neurochemicals, often leading to concomitant gastrointestinal issues and modifications in gut flora composition. The interaction between neurological diseases and gut microbiota has been a focal point within this research. The novel therapeutic interventions in neuropsychiatric conditions involving interventions such as probiotics, prebiotics, and dietary modifications are outlined in this review. RESULTS The findings of multiple studies carried out on mice show that modulating and monitoring gut microbiota can help treat symptoms of such diseases, which raises the possibility of the use of probiotics, prebiotics, and even dietary changes as part of a new treatment strategy for neuropsychiatric disorders and their symptoms. CONCLUSION The bidirectional communication between the gut and the brain through the gut-brain axis has revealed profound implications for both gastrointestinal and neurological health. Malfunctions in this axis have been connected to a range of disorders affecting gut function as well as cognitive and neuropsychiatric well-being. The emerging understanding of the role of gut microbiota in regulating key neurochemicals opens up possibilities for novel treatment approaches for conditions like depression, anxiety, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, India
| |
Collapse
|
24
|
Gong J, Zhang Q, Hu R, Yang X, Fang C, Yao L, Lv J, Wang L, Shi M, Zhang W, Ma S, Xiang H, Zhang H, Hou DX, Yin Y, He J, Peng L, Wu S. Effects of Prevotella copri on insulin, gut microbiota and bile acids. Gut Microbes 2024; 16:2340487. [PMID: 38626129 PMCID: PMC11028016 DOI: 10.1080/19490976.2024.2340487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1β (IL-1β) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.
Collapse
Affiliation(s)
- Jiatai Gong
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chengkun Fang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liping Yao
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Lv
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wentao Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Siqi Ma
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongkun Xiang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongfu Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - De-Xing Hou
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Yulong Yin
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lijun Peng
- Children’s Healthcare Institute, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Vernocchi P, Marangelo C, Guerrera S, Del Chierico F, Guarrasi V, Gardini S, Conte F, Paci P, Ianiro G, Gasbarrini A, Vicari S, Putignani L. Gut microbiota functional profiling in autism spectrum disorders: bacterial VOCs and related metabolic pathways acting as disease biomarkers and predictors. Front Microbiol 2023; 14:1287350. [PMID: 38192296 PMCID: PMC10773764 DOI: 10.3389/fmicb.2023.1287350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder. Major interplays between the gastrointestinal (GI) tract and the central nervous system (CNS) seem to be driven by gut microbiota (GM). Herein, we provide a GM functional characterization, based on GM metabolomics, mapping of bacterial biochemical pathways, and anamnestic, clinical, and nutritional patient metadata. Methods Fecal samples collected from children with ASD and neurotypical children were analyzed by gas-chromatography mass spectrometry coupled with solid phase microextraction (GC-MS/SPME) to determine volatile organic compounds (VOCs) associated with the metataxonomic approach by 16S rRNA gene sequencing. Multivariate and univariate statistical analyses assessed differential VOC profiles and relationships with ASD anamnestic and clinical features for biomarker discovery. Multiple web-based and machine learning (ML) models identified metabolic predictors of disease and network analyses correlated GM ecological and metabolic patterns. Results The GM core volatilome for all ASD patients was characterized by a high concentration of 1-pentanol, 1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, octadecanal, tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole and skatole; and o-cymene. Patients were stratified based on age, GI symptoms, and ASD severity symptoms. Disease risk prediction allowed us to associate butanoic acid with subjects older than 5 years, indole with the absence of GI symptoms and low disease severity, propanoic acid with the ASD risk group, and p-cymene with ASD symptoms, all based on the predictive CBCL-EXT scale. The HistGradientBoostingClassifier model classified ASD patients vs. CTRLs by an accuracy of 89%, based on methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, ethanol, butanoic acid, octadecane, acetic acid, skatole, and tetradecanal features. LogisticRegression models corroborated methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, skatole, and acetic acid as ASD predictors. Conclusion Our results will aid the development of advanced clinical decision support systems (CDSSs), assisted by ML models, for advanced ASD-personalized medicine, based on omics data integrated into electronic health/medical records. Furthermore, new ASD screening strategies based on GM-related predictors could be used to improve ASD risk assessment by uncovering novel ASD onset and risk predictors.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Gianluca Ianiro
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Zheng X, Ma W, Wang Y, Wu C, Wang J, Ma Z, Wei Y, Cui C, Zhang S, Guan W, Chen F. Heat Stress-Induced Fetal Intrauterine Growth Restriction Is Associated with Elevated LPS Levels Along the Maternal Intestine-Placenta-Fetus Axis in Pregnant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19592-19609. [PMID: 38018895 DOI: 10.1021/acs.jafc.3c07058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The exacerbation of the greenhouse effect has made heat stress (HS) an important risk factor for the occurrence of intrauterine growth restriction (IUGR). The experiment aims to uncover the effects of maternal HS on IUGR and its mechanisms. The results showed that HS leads to decreased maternal and fetal birth weights, accompanied by increased serum oxidative stress and cortisol levels. Moreover, HS inflicted significant damage to both the intestinal and placental barriers, altering maternal gut microbiota and increasing intestinal LPS levels. As a result, LPS levels increased in maternal serum, placenta, and fetus. Furthermore, HS damaged the intestinal structure, intensifying inflammation and disrupting the redox balance. The placenta exposed to HS exhibited changes in the placental structure along with disrupted angiogenesis and decreased levels of nutritional transporters. Additionally, the leakage of LPS triggered placental JNK and ERK phosphorylation, ultimately inducing severe placental inflammation and oxidative stress. This study suggests that LPS translocation from the maternal intestine to the fetus, due to a disrupted gut microbiota balance and compromised intestinal and placental barrier integrity, may be the primary cause of HS-induced IUGR. Furthermore, increased LPS leakage leads to placental inflammation, redox imbalance, and impaired nutrient transport, further restricting fetal growth.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wen Ma
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Yibo Wang
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Caichi Wu
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Jun Wang
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Ziwei Ma
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Yulong Wei
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Chang Cui
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou, Guangdong Province 510642, China
| | - Wutai Guan
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou, Guangdong Province 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- College of Animal Science and National Engineering Research Center for Pig Breeding Industry, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
- Guangdong Laboratory of Modern Agriculture in Lingnan, Guangzhou, Guangdong Province 510642, China
| |
Collapse
|
27
|
Lagod PP, Naser SA. The Role of Short-Chain Fatty Acids and Altered Microbiota Composition in Autism Spectrum Disorder: A Comprehensive Literature Review. Int J Mol Sci 2023; 24:17432. [PMID: 38139261 PMCID: PMC10743890 DOI: 10.3390/ijms242417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA;
| |
Collapse
|
28
|
Li H, Liu C, Huang S, Wang X, Cao M, Gu T, Ou X, Pan S, Lin Z, Wang X, Zhu Y, Jing J. Multi-omics analyses demonstrate the modulating role of gut microbiota on the associations of unbalanced dietary intake with gastrointestinal symptoms in children with autism spectrum disorder. Gut Microbes 2023; 15:2281350. [PMID: 38010793 PMCID: PMC10730204 DOI: 10.1080/19490976.2023.2281350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Our previous work revealed that unbalanced dietary intake was an important independent factor associated with constipation and gastrointestinal (GI) symptoms in children with autism spectrum disorder (ASD). Growing evidence has shown the alterations in the gut microbiota and gut microbiota-derived metabolites in ASD. However, how the altered microbiota might affect the associations between unbalanced diets and GI symptoms in ASD remains unknown. We analyzed microbiome and metabolomics data in 90 ASD and 90 typically developing (TD) children based on 16S rRNA and untargeted metabolomics, together with dietary intake and GI symptoms assessment. We found that there existed 11 altered gut microbiota (FDR-corrected P-value <0.05) and 397 altered metabolites (P-value <0.05) in children with ASD compared with TD children. Among the 11 altered microbiota, the Turicibacter, Coprococcus 1, and Lachnospiraceae FCS020 group were positively correlated with constipation (FDR-corrected P-value <0.25). The Eggerthellaceae was positively correlated with total GI symptoms (FDR-corrected P-value <0.25). More importantly, three increased microbiota including Turicibacter, Coprococcus 1, and Eggerthellaceae positively modulated the associations of unbalanced dietary intake with constipation and total GI symptoms, and the decreased Clostridium sp. BR31 negatively modulated their associations in ASD children (P-value <0.05). Together, the altered microbiota strengthens the relationship between unbalanced dietary intake and GI symptoms. Among the altered metabolites, ten metabolites derived from microbiota (Turicibacter, Coprococcus 1, Eggerthellaceae, and Clostridium sp. BR31) were screened out, enriched in eight metabolic pathways, and were identified to correlate with constipation and total GI symptoms in ASD children (FDR-corrected P-value <0.25). These metabolomics findings further support the modulating role of gut microbiota on the associations of unbalanced dietary intake with GI symptoms. Collectively, our research provides insights into the relationship between diet, the gut microbiota, and GI symptoms in children with ASD.
Collapse
Affiliation(s)
- Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Churui Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China
| | - Muqing Cao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingfeng Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxuan Ou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Önal S, Sachadyn-Król M, Kostecka M. A Review of the Nutritional Approach and the Role of Dietary Components in Children with Autism Spectrum Disorders in Light of the Latest Scientific Research. Nutrients 2023; 15:4852. [PMID: 38068711 PMCID: PMC10708497 DOI: 10.3390/nu15234852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects several areas of mental development. The onset of ASD occurs in the first few years of life, usually before the age of 3 years. Proper nutrition is important to ensure that an individual's nutrient and energy requirements are met, and it can also have a moderating effect on the progression of the disorder. A systematic database search was conducted as a narrative review to determine whether nutrition and specific diets can potentially alter gastrointestinal symptoms and neurobehavioral disorders. Databases such as Science Direct, PubMed, Scopus, Web of Science (WoS), and Google Scholar were searched to find studies published between 2000 and September 2023 on the relationship between ASD, dietary approaches, and the role of dietary components. The review may indicate that despite extensive research into dietary interventions, there is a general lack of conclusive scientific data about the effect of therapeutic diets on ASD; therefore, no definitive recommendation can be made for any specific nutritional therapy as a standard treatment for ASD. An individualized dietary approach and the dietician's role in the therapeutic team are very important elements of every therapy. Parents and caregivers should work with nutrition specialists, such as registered dietitians or healthcare providers, to design meal plans for autistic individuals, especially those who would like to implement an elimination diet.
Collapse
Affiliation(s)
- Seda Önal
- Department of Nutrition and Dietetics, Health Sciences Institute, Ankara University, 06110 Ankara, Turkey;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Fırat University, 23200 Elazığ, Turkey
| | - Monika Sachadyn-Król
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kostecka
- Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
30
|
Chamtouri M, Gaddour N, Merghni A, Mastouri M, Arboleya S, de Los Reyes-Gavilán CG. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder. Sci Rep 2023; 13:18218. [PMID: 37880312 PMCID: PMC10600251 DOI: 10.1038/s41598-023-45534-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Alterations in gut microbiota and short chain fatty acids (SCFA) have been reported in autism spectrum disorder (ASD). We analysed the gut microbiota and fecal SCFA in Tunisian autistic children from 4 to 10 years, and results were compared to those obtained from a group of siblings (SIB) and children from the general population (GP). ASD patients presented different gut microbiota profiles compared to SIB and GP, with differences in the levels of Bifidobacterium and Collinsella occurring in younger children (4-7 years) and that tend to be attenuated at older ages (8-10 years). The lower abundance of Bifidobacterium is the key feature of the microbiota composition associated with severe autism. ASD patients presented significantly higher levels of propionic and valeric acids than GP at 4-7 years, but these differences disappeared at 8-10 years. To the best of our knowledge, this is the first study on the gut microbiota profile of Tunisian autistic children using a metataxonomic approach. This exploratory study reveals more pronounced gut microbiota alterations at early than at advanced ages in ASD. Although we did not account for multiple testing, our findings suggest that early interventions might mitigate gut disorders and cognitive and neurodevelopment impairment associated to ASD.
Collapse
Affiliation(s)
- Mariem Chamtouri
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Naoufel Gaddour
- Unit of Child Psychiatry, Monastir University Hospital, 5000, Monastir, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Spain.
- Diet, Microbiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
31
|
Matthews JS, Adams JB. Ratings of the Effectiveness of 13 Therapeutic Diets for Autism Spectrum Disorder: Results of a National Survey. J Pers Med 2023; 13:1448. [PMID: 37888059 PMCID: PMC10608557 DOI: 10.3390/jpm13101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
This study presents the results of the effectiveness of 13 therapeutic diets for autism spectrum disorder from 818 participants of a national survey, including benefits, adverse effects, and symptom improvements. The average Overall Benefit of diets was 2.36 (0 = no benefit, 4 = great benefit), which was substantially higher than for nutraceuticals (1.59/4.0) and psychiatric/seizure medications (1.39/4.0), p < 0.001. The average Overall Adverse Effects of diets was significantly lower than psychiatric/seizure medications (0.10 vs. 0.93, p < 0.001) and similar to nutraceuticals (0.16). Autism severity decreased slightly over time in participants who used diet vs. increasing slightly in those that did not (p < 0.001). Healthy and Feingold diets were the two top-rated diets by Overall Benefit; the ketogenic diet was the highest for nine symptoms (though had fewer respondents); and the gluten-free/casein-free diet was among the top for overall symptom improvements. Different diets were reported to affect different symptoms, suggesting that an individual's symptoms could be used to guide which diet(s) may be the most effective. The results suggest that therapeutic diets can be safe and effective interventions for improving some ASD-related symptoms with few adverse effects. We recommend therapeutic diets that include healthy foods and exclude problematic foods. Therapeutic diets are inexpensive treatments that we recommend for consideration by most people with ASD.
Collapse
Affiliation(s)
- Julie S. Matthews
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| | - James B. Adams
- School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Olaguez-Gonzalez JM, Chairez I, Breton-Deval L, Alfaro-Ponce M. Machine Learning Algorithms Applied to Predict Autism Spectrum Disorder Based on Gut Microbiome Composition. Biomedicines 2023; 11:2633. [PMID: 37893007 PMCID: PMC10604849 DOI: 10.3390/biomedicines11102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The application of machine learning (ML) techniques stands as a reliable method for aiding in the diagnosis of complex diseases. Recent studies have related the composition of the gut microbiota to the presence of autism spectrum disorder (ASD), but until now, the results have been mostly contradictory. This work proposes using machine learning to study the gut microbiome composition and its role in the early diagnosis of ASD. We applied support vector machines (SVMs), artificial neural networks (ANNs), and random forest (RF) algorithms to classify subjects as neurotypical (NT) or having ASD, using published data on gut microbiome composition. Naive Bayes, k-nearest neighbors, ensemble learning, logistic regression, linear regression, and decision trees were also trained and validated; however, the ones presented showed the best performance and interpretability. All the ML methods were developed using the SAS Viya software platform. The microbiome's composition was determined using 16S rRNA sequencing technology. The application of ML yielded a classification accuracy as high as 90%, with a sensitivity of 96.97% and specificity reaching 85.29%. In the case of the ANN model, no errors occurred when classifying NT subjects from the first dataset, indicating a significant classification outcome compared to traditional tests and data-based approaches. This approach was repeated with two datasets, one from the USA and the other from China, resulting in similar findings. The main predictors in the obtained models differ between the analyzed datasets. The most important predictors identified from the analyzed datasets are Bacteroides, Lachnospira, Anaerobutyricum, and Ruminococcus torques. Notably, among the predictors in each model, there is the presence of bacteria that are usually considered insignificant in the microbiome's composition due to their low relative abundance. This outcome reinforces the conventional understanding of the microbiome's influence on ASD development, where an imbalance in the composition of the microbiota can lead to disrupted host-microbiota homeostasis. Considering that several previous studies focused on the most abundant genera and neglected smaller (and frequently not statistically significant) microbial communities, the impact of such communities has been poorly analyzed. The ML-based models suggest that more research should focus on these less abundant microbes. A novel hypothesis explains the contradictory results in this field and advocates for more in-depth research to be conducted on variables that may not exhibit statistical significance. The obtained results seem to contribute to an explanation of the contradictory findings regarding ASD and its relation with gut microbiota composition. While some research correlates higher ratios of Bacillota/Bacteroidota, others find the opposite. These discrepancies are closely linked to the minority organisms in the microbiome's composition, which may differ between populations but share similar metabolic functions. Therefore, the ratios of Bacillota/Bacteroidota regarding ASD may not be determinants in the manifestation of ASD.
Collapse
Affiliation(s)
- Juan M. Olaguez-Gonzalez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
| | - Isaac Chairez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
- Consejo Nacional de Ciencia y Tecnologia, Mexico City 03940, Mexico
| | - Mariel Alfaro-Ponce
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico; (J.M.O.-G.); (I.C.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
33
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Zarezadeh M, Mahmoudinezhad M, Hosseini B, Khorraminezhad L, Razaghi M, Alvandi E, Saedisomeolia A. Dietary pattern in autism increases the need for probiotic supplementation: A comprehensive narrative and systematic review on oxidative stress hypothesis. Clin Nutr 2023; 42:1330-1358. [PMID: 37418842 DOI: 10.1016/j.clnu.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorders (ASDs) are associated with specific dietary habits, including limited food selection and gastrointestinal problems, resulting in an altered gut microbiota. Autistic patients have an elevated abundance of certain gut bacteria associated with increased oxidative stress in the gastrointestinal tract. Probiotic supplementation has been shown to decrease oxidative stress in a simulated gut model, but the antioxidant effects of probiotics on the oxidative stress of the gut in autistic patients have not been directly studied. However, it is speculated that probiotic supplementation may help decrease oxidative stress in the gastrointestinal tract of autistic patients due to their specific dietary habits altering the microbiota. PubMed, Scopus and Web of Science databases and Google Scholar were searched up to May 2023. This systematic-narrative review aims to present the latest evidence regarding the changes in eating habits of autistic children which may further increase the gut microbiota induced oxidative stress. Additionally, this review will assess the available literature on the effects of probiotic supplementation on oxidative stress parameters.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafshe Hosseini
- Clinical Research and Knowledge Transfer Unit on Childhood Asthma, Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada
| | - Leila Khorraminezhad
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | - Maryam Razaghi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Québec, Canada.
| |
Collapse
|
36
|
Srivastava K, Cao M, Fidan O, Shi Y, Yang N, Nowak-Wegrzyn A, Miao M, Zhan J, Sampson HA, Li XM. Berberine-containing natural-medicine with boiled peanut-OIT induces sustained peanut-tolerance associated with distinct microbiota signature. Front Immunol 2023; 14:1174907. [PMID: 37575233 PMCID: PMC10415201 DOI: 10.3389/fimmu.2023.1174907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background Gut microbiota influence food allergy. We showed that the natural compound berberine reduces IgE and others reported that BBR alters gut microbiota implying a potential role for microbiota changes in BBR function. Objective We sought to evaluate an oral Berberine-containing natural medicine with a boiled peanut oral immunotherapy (BNP) regimen as a treatment for food allergy using a murine model and to explore the correlation of treatment-induced changes in gut microbiota with therapeutic outcomes. Methods Peanut-allergic (PA) mice, orally sensitized with roasted peanut and cholera toxin, received oral BNP or control treatments. PA mice received periodic post-therapy roasted peanut exposures. Anaphylaxis was assessed by visualization of symptoms and measurement of body temperature. Histamine and serum peanut-specific IgE levels were measured by ELISA. Splenic IgE+B cells were assessed by flow cytometry. Fecal pellets were used for sequencing of bacterial 16S rDNA by Illumina MiSeq. Sequencing data were analyzed using built-in analysis platforms. Results BNP treatment regimen induced long-term tolerance to peanut accompanied by profound and sustained reduction of IgE, symptom scores, plasma histamine, body temperature, and number of IgE+ B cells (p <0.001 vs Sham for all). Significant differences were observed for Firmicutes/Bacteroidetes ratio across treatment groups. Bacterial genera positively correlated with post-challenge histamine and PN-IgE included Lachnospiraceae, Ruminococcaceae, and Hydrogenanaerobacterium (all Firmicutes) while Verrucromicrobiacea. Caproiciproducens, Enterobacteriaceae, and Bacteroidales were negatively correlated. Conclusions BNP is a promising regimen for food allergy treatment and its benefits in a murine model are associated with a distinct microbiota signature.
Collapse
Affiliation(s)
- Kamal Srivastava
- General Nutraceutical Technology, Elmsford, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Mingzhuo Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ozkan Fidan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
- Department of Bioengineering, Abdullah Gul University, Kayseri, Türkiye
| | - Yanmei Shi
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Nan Yang
- General Nutraceutical Technology, Elmsford, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Anna Nowak-Wegrzyn
- Hassenfeld Children’s Hospital, Department of Pediatrics, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
| | - Hugh A. Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
37
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
38
|
De Sales-Millán A, Aguirre-Garrido JF, González-Cervantes RM, Velázquez-Aragón JA. Microbiome-Gut-Mucosal-Immune-Brain Axis and Autism Spectrum Disorder (ASD): A Novel Proposal of the Role of the Gut Microbiome in ASD Aetiology. Behav Sci (Basel) 2023; 13:548. [PMID: 37503995 PMCID: PMC10376175 DOI: 10.3390/bs13070548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by deficits in social interaction and communication, as well as restricted and stereotyped interests. Due of the high prevalence of gastrointestinal disorders in individuals with ASD, researchers have investigated the gut microbiota as a potential contributor to its aetiology. The relationship between the microbiome, gut, and brain (microbiome-gut-brain axis) has been acknowledged as a key factor in modulating brain function and social behaviour, but its connection to the aetiology of ASD is not well understood. Recently, there has been increasing attention on the relationship between the immune system, gastrointestinal disorders and neurological issues in ASD, particularly in relation to the loss of specific species or a decrease in microbial diversity. It focuses on how gut microbiota dysbiosis can affect gut permeability, immune function and microbiota metabolites in ASD. However, a very complete study suggests that dysbiosis is a consequence of the disease and that it has practically no effect on autistic manifestations. This is a review of the relationship between the immune system, microbial diversity and the microbiome-gut-brain axis in the development of autistic symptoms severity and a proposal of a novel role of gut microbiome in ASD, where dysbiosis is a consequence of ASD-related behaviour and where dysbiosis in turn accentuates the autistic manifestations of the patients via the microbiome-gut-brain axis in a feedback circuit.
Collapse
Affiliation(s)
- Amapola De Sales-Millán
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | - Rina María González-Cervantes
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma 52006, Estado de Mexico, Mexico
| | | |
Collapse
|
39
|
Zou L, Tian Y, Wang Y, Chen D, Lu X, Zeng Z, Chen Z, Lin C, Liang Y. High-cholesterol diet promotes depression- and anxiety-like behaviors in mice by impact gut microbe and neuroinflammation. J Affect Disord 2023; 327:425-438. [PMID: 36738999 DOI: 10.1016/j.jad.2023.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric disorders, including anxiety and depression, are one of the most common mental illnesses worldwide. A growing body of evidence shows that there is a complex relationship between dietary patterns and mental health. In our study, C57BL/6J mice were divided into three groups: control diet group (CON, 10 % kcal fat), high-cholesterol diet model group (HCD, 42.0 % kcal fat + 1.25 % kcal Cholesterol), and chronic restraint stress group (CRS, 10 % kcal fat) which as a positive control group for the depression model. Six weeks later, depressive- and anxiety-like behavior were evaluated for using the OFT, SPT and TST. Glucose intolerance and liver fat were detected by IGTT and liver lipid kit. The expression of peripheral and central inflammation was detected by LEGEND plex kits. 5-HT (also named 5-hydroxytryptamine, 5-HT) and related receptors expression were monitored by ELISA, RT-PCR and Western blot. Meantime, gut microbe of stool samples was performed by 16S rRNA gene sequencing. Similar to CRS model, short-term HCD intervention induced anxiety and depression-like behavior behavioral abnormalities in mice. HCD consumption resulted in significantly increased body weight, liver fat (LDL-C, TC, TG), peripheral inflammation (IL-1β, MCP-1, IL-17A) and neuroinflammation (MCP-1). The concentration of 5-HT increased in the hippocampus, meanwhile, the expression of 5-HT receptor HTR2A was distinct in different regions of the brain tissue. More importantly, we found that compared with the CON diet, HCD induced the decrease of intestinal flora diversity, especially the decrease the relative abundance of Akkermansia_muciniphila, which was statistically significant. Further, Pearson correlation analysis showed that Akkermansia_muciniphila was significantly negatively correlated with the concentration of MCP-1, IL-17A in serum and 5-HT in hippocampus. Therefore, we speculated that the disorder of neuroinflammation induced by HCD consumption promotes depression- and anxiety-like behaviors in mice through the gut microbe.
Collapse
Affiliation(s)
- Lili Zou
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yaling Tian
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Dongliang Chen
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Ze Zeng
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Zumin Chen
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Chenli Lin
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China; Health Science Center, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China.
| | - Yinji Liang
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China; Health Science Center, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
40
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Sakai D, Konishi Y, Nishiyama T. Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells 2023; 12:1087. [PMID: 37048160 PMCID: PMC10093447 DOI: 10.3390/cells12071087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies show that genetic and environmental factors contribute to the onset and progression of neurodevelopmental disorders. Maternal immune activation (MIA) during gestation is considered one of the major environmental factors driving this process. The kynurenine pathway (KP) is a major route of the essential amino acid L-tryptophan (Trp) catabolism in mammalian cells. Activation of the KP following neuro-inflammation can generate various endogenous neuroactive metabolites that may impact brain functions and behaviors. Additionally, neurotoxic metabolites and excitotoxicity cause long-term changes in the trophic support, glutamatergic system, and synaptic function following KP activation. Therefore, investigating the role of KP metabolites during neurodevelopment will likely promote further understanding of additional pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). In this review, we describe the changes in KP metabolism in the brain during pregnancy and represent how maternal inflammation and genetic factors influence the KP during development. We overview the patients with ASD clinical data and animal models designed to verify the role of perinatal KP elevation in long-lasting biochemical, neuropathological, and behavioral deficits later in life. Our review will help shed light on new therapeutic strategies and interventions targeting the KP for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yukio Imamura
- Department of Architecture and Architectual Systems Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyotanabe 619-0225, Japan
- Healthcare and Medical Data Multi-Level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
41
|
A snapshot of gut microbiota data from murine models of Autism Spectrum Disorder: Still a blurred picture. Neurosci Biobehav Rev 2023; 147:105105. [PMID: 36804416 DOI: 10.1016/j.neubiorev.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by deficits in social communication and interaction and repetitive/stereotyped behaviors. In recent years, the role of microbiota-gut-brain axis in ASD pathogenesis received growing attention, appearing as an attractive therapeutic target. We provide a comprehensive overview of changes in microbiota composition in ASD murine models so far identified, and summarize the therapeutic approaches targeting the microbiota on ASD-like neurobehavioral profile. Although alterations in microbiota composition have been observed in both genetic and environmental murine models of ASD, a clear microbiota profile shared by different ASD murine models has not been identified. We documented substantial discrepancies among studies (often within the same model), likely due to several confounding factors (from sex and age of animals to housing conditions). Despite these limitations, ASD animal models (under standardized conditions) remain a useful tool to evaluate (i) the beneficial effects of manipulations of gut microbiota on behavioral abnormalities; (ii) underlying neurobiological mechanisms related to gut-brain axis; and (iii) to identify optimal time windows for therapeutic interventions.
Collapse
|
42
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:nu15071620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a “leaky gut.” A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota–gut–brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut–brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
|
43
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
44
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
45
|
Xu XJ, Lang JD, Yang J, Long B, Liu XD, Zeng XF, Tian G, You X. Differences of gut microbiota and behavioral symptoms between two subgroups of autistic children based on γδT cells-derived IFN-γ Levels: A preliminary study. Front Immunol 2023; 14:1100816. [PMID: 36875075 PMCID: PMC9975759 DOI: 10.3389/fimmu.2023.1100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Autism Spectrum Disorders (ASD) are defined as a group of pervasive neurodevelopmental disorders, and the heterogeneity in the symptomology and etiology of ASD has long been recognized. Altered immune function and gut microbiota have been found in ASD populations. Immune dysfunction has been hypothesized to involve in the pathophysiology of a subtype of ASD. Methods A cohort of 105 ASD children were recruited and grouped based on IFN-γ levels derived from ex vivo stimulated γδT cells. Fecal samples were collected and analyzed with a metagenomic approach. Comparison of autistic symptoms and gut microbiota composition was made between subgroups. Enriched KEGG orthologues markers and pathogen-host interactions based on metagenome were also analyzed to reveal the differences in functional features. Results The autistic behavioral symptoms were more severe for children in the IFN-γ-high group, especially in the body and object use, social and self-help, and expressive language performance domains. LEfSe analysis of gut microbiota revealed an overrepresentation of Selenomonadales, Negatiyicutes, Veillonellaceae and Verrucomicrobiaceae and underrepresentation of Bacteroides xylanisolvens and Bifidobacterium longum in children with higher IFN-γ level. Decreased metabolism function of carbohydrate, amino acid and lipid in gut microbiota were found in the IFN-γ-high group. Additional functional profiles analyses revealed significant differences in the abundances of genes encoding carbohydrate-active enzymes between the two groups. And enriched phenotypes related to infection and gastroenteritis and underrepresentation of one gut-brain module associated with histamine degradation were also found in the IFN-γ-High group. Results of multivariate analyses revealed relatively good separation between the two groups. Conclusions Levels of IFN-γ derived from γδT cell could serve as one of the potential candidate biomarkers to subtype ASD individuals to reduce the heterogeneity associated with ASD and produce subgroups which are more likely to share a more similar phenotype and etiology. A better understanding of the associations among immune function, gut microbiota composition and metabolism abnormalities in ASD would facilitate the development of individualized biomedical treatment for this complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xin-Jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China.,Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Dong Lang
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xu-Dong Liu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Geng Tian
- Precision Medicine Center, Geneis Beijing Co., Ltd., Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Autism Special Fund, Peking Union Medical Foundation, Beijing, China
| |
Collapse
|
46
|
Lu Z, Wang F, Xia Y, Cheng S, Zhang J, Qin X, Tian X, Wang B, Qiu J, Zou Z, Jiang X, Chen C. Involvement of gut-brain communication in arsenite-induced neurobehavioral impairments in adult male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114370. [PMID: 36508802 DOI: 10.1016/j.ecoenv.2022.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Arsenite is a well-documented neurotoxic metalloid that widely distributes in the natural environment. However, it remains largely unclear how arsenite affects neurological function. Therefore, in this study, the healthy adult male mice were exposed to 0.5 mg/L and 5 mg/L arsenite through drinking water for 30 and 90 days, respectively. Our results showed that there was no significant alteration in the intestine and brain for 30 days exposure, but exposure to arsenite for 90 days significantly induced a reduction of locomotor activity and anxiety-like behavior, caused pathological damage and inflammatory responses in the brain and intestine. We also found that arsenite remarkably disrupted intestinal barrier integrity, decreased the levels of lysozyme and digestive enzymes. Intriguingly, chronic exposure to arsenite significantly changed the levels of gut-brain peptides. Taken together, this study provides meaningful insights that gut-brain communication may involve in the neurobehavioral impairments of arsenite.
Collapse
Affiliation(s)
- Zhaohong Lu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Xuejun Jiang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
47
|
Alsubaiei SRM, Alfawaz HA, Almubarak AY, Alabdali NA, Ben Bacha A, El-Ansary A. Independent and Combined Effects of Probiotics and Prebiotics as Supplements or Food-Rich Diets on a Propionic-Acid-Induced Rodent Model of Autism Spectrum Disorder. Metabolites 2022; 13:metabo13010050. [PMID: 36676975 PMCID: PMC9863040 DOI: 10.3390/metabo13010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The link between nutrition and autism spectrum disorder (ASD) as a neurodevelopmental condition, which is clinically presented as significant delays or deviations in interaction and communication, has provided a fresh point of view and signals that nutrition may play a role in the etiology of ASD, as well as playing an effective role in treatment by improving symptoms. In this study, 36 male albino rat pups were used. They were randomly divided into five groups. The control group was fed only a standard diet and water for the 30 days of the experiment. The second group, which served as a propionic acid (PPA)-induced rodent model of ASD, received orally administered PPA (250 mg/kg body weight (BW)) for 3 days, followed by feeding with a standard diet until the end of the experiment. The three other groups were given PPA (250 mg/kg body weight (BW)) for 3 days and then fed a standard diet and orally administered yogurt (3 mL/kg BW/day), artichokes (400 mL/kg BW/day), and a combination of Lacticaseibacillus rhamnosus GG at 0.2 mL daily (1 × 109 CFU; as the probiotic of yogurt) and luteolin (50 mg/kg BW/day; as the major antioxidant and anti-inflammatory ingredient of artichokes) for 27 days. Biochemical markers, including gamma-aminobutyric acid (GABA), reduced glutathione (GSH), glutathione peroxidase (GPx1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were measured in brain homogenates in all groups. The data showed that while PPA demonstrated oxidative stress and neuroinflammation in the treated rats, yogurt, Lacticaseibacillus rhamnosus GG as a probiotic, and luteolin as a prebiotic ingredient in artichokes were effective in alleviating the biochemical features of ASD. In conclusion, nutritional supplementation seems to be a promising intervention strategy for ASD. A combined dietary approach using pro- and prebiotics resulted in significant amelioration of most of the measured variables, suggesting that multiple interventions might be more relevant for the improvement of biochemical autistic features, as well as psychological traits. Prospective controlled trials are needed before recommendations can be made regarding the ideal ASD diet.
Collapse
Affiliation(s)
- Sana Razhan M. Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| | - Abdullah Yaseen Almubarak
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Nouf Ahmed Alabdali
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| |
Collapse
|
48
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
49
|
Albers J, Kraja G, Eller D, Eck K, McBrian D, Bain JM. Assessing the feasibility of using the ketogenic diet in autism spectrum disorder. J Hum Nutr Diet 2022. [PMID: 36478324 DOI: 10.1111/jhn.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence demonstrating efficacy of dietary interventions for autism spectrum disorder (ASD) remains inconsistent. Recent research on the ketogenic diet (KD) for the treatment of ASD has suggested a benefit. Children with ASD often demonstrate ritualised food-specific behaviours, taste and texture aversions, and an increased prevalence of food restrictions and allergies. There is a need to investigate how these features contribute to initiation and adherence of the KD. Two surveys were administered to assess the feasibility of utilising the KD for ASD. METHODS First, paper surveys were given to caregivers of children presenting to outpatient neurology clinics. Next, experienced clinicians were recruited and surveyed online using Qualtrics. Chi-squared analysis was used to compare ASD and non-ASD caregiver responses. Descriptive metrics were used to present clinician responses. Responses to each question were evaluated individually. RESULTS One hundred and fourteen surveys were collected from caregivers. There were no significant differences in (1) stated feasibility of adopting a new diet, (2) a carbohydrate restricted diet, (3) diet restrictions, (4) documented allergies or (5) personal/cultural restrictions between groups with and without ASD. Seventy clinician responses were collected. The majority (67.4%) indicated that feasibility for a child with ASD to adopt a KD for any reason depends on ASD severity. Some respondents 73% rated adherence to the KD as more difficult compared to age-matched controls, whereas 26% considered it similar. Multiple familial and child characteristics were rated as increasing the difficulty of successful KD. CONCLUSIONS The results of the present study suggest that it is feasible for children with ASD to adopt a KD, and success is highly individualised to child and family.
Collapse
Affiliation(s)
- Jacob Albers
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA.,Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gearta Kraja
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Danielle Eller
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Karen Eck
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Danielle McBrian
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
50
|
Jendraszak M, Gałęcka M, Kotwicka M, Schwiertz A, Regdos A, Pazgrat-Patan M, Andrusiewicz M. Impact of Biometric Patient Data, Probiotic Supplementation, and Selected Gut Microorganisms on Calprotectin, Zonulin, and sIgA Concentrations in the Stool of Adults Aged 18-74 Years. Biomolecules 2022; 12:biom12121781. [PMID: 36551209 PMCID: PMC9775524 DOI: 10.3390/biom12121781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Alterations to the intestinal barrier may be involved in the pathogenesis of various chronic diseases. The diagnosis of mucosal barrier disruption has become a new therapeutic target for disease prevention. The aim of this study was to determine whether various patient demographic and biometric data, often not included in diagnostic analyses, may affect calprotectin, zonulin, and sIgA biomarker values. Stool markers' levels in 160 samples were measured colorimetrically. The analysis of twenty key bacteria (15 genera and 5 species) was carried out on the basis of diagnostic tests, including cultures and molecular tests. The concentrations of selected markers were within reference ranges for most patients. The sIgA level was significantly lower in participants declaring probiotics supplementation (p = 0.0464). We did not observe differences in gastrointestinal discomfort in participants. We found significant differences in the sIgA level between the 29-55 years and >55 years age-related intervals groups (p = 0.0191), together with a significant decreasing trend (p = 0.0337) in age-dependent sIgA concentration. We observed complex interdependencies and relationships between their microbiota and the analyzed biomarkers. For correct clinical application, standardized values of calprotectin and sIgA should be determined, especially in elderly patients. We observed a correlation between the composition of the gut community and biomarker levels, although it requires further in-depth analysis.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| | | | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | | | | | | | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| |
Collapse
|