1
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Howell GE, Young D. Effects of an environmentally relevant mixture of organochlorine pesticide compounds on adipogenesis and adipocyte function in an immortalized human adipocyte model. Toxicol In Vitro 2024; 98:105831. [PMID: 38648980 DOI: 10.1016/j.tiv.2024.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Exposure to persistent organic pollutants (POPs), including organochlorine (OC) pesticide POPs, has been associated with the increased prevalence of obesity and type 2 diabetes. However, the underlying mechanisms through which exposure to these compounds may promote obesity and metabolic dysfunction remain an area of active investigation. To this end, the concentration dependent effects of an environmentally relevant mixture of OC pesticide POPs on adipocyte function was explored utilizing a translationally relevant immortalized human subcutaneous preadipocyte/adipocyte model. Briefly, immortalized human preadipocytes/adipocytes were exposed to a mixture of dichlorodiphenyldichloroethylene (DDE), trans-nonachlor, and oxychlordane (DTO) then key indices of preadipocyte/adipocyte function were assessed. Exposure to DTO did not alter adipogenesis. However, in mature adipocytes, exposure to DTO slightly increased fatty acid uptake whereas isoproterenol stimulated lipolysis, basal and insulin stimulated glucose uptake, mitochondrial membrane potential, and cellular ATP levels were all significantly decreased. DTO significantly increased Staphylococcus aureus infection induced increases in expression of pro-inflammatory cytokines IL-6, IL-1β, and Mcp-1 as well as the adipokine resistin. Taken together, the present data demonstrated exposure to an environmentally relevant mixture of OC pesticide compounds can alter mature adipocyte function in a translationally relevant human adipocyte model which further supports the adipose tissue as an effector site of OC pesticide POPs action.
Collapse
Affiliation(s)
- George E Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA.
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
3
|
Niu H, Xu M, Tu P, Xu Y, Li X, Xing M, Chen Z, Wang X, Lou X, Wu L, Sun S. Emerging Contaminants: An Emerging Risk Factor for Diabetes Mellitus. TOXICS 2024; 12:47. [PMID: 38251002 PMCID: PMC10819641 DOI: 10.3390/toxics12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.
Collapse
Affiliation(s)
- Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Manjin Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Pengcheng Tu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Yunfeng Xu
- School of Public Health, Xiamen University, Xiang’an South Road, Xiang’an District, Xiamen 361102, China; (M.X.); (Y.X.)
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China; (H.N.); (P.T.); (X.L.); (M.X.); (Z.C.); (X.W.); (X.L.)
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Fjære E, Secher Myrmel L, Rasinger JD, Bernhard A, Frøyland L, Madsen L. Refined mackerel oil increases hepatic lipid accumulation and reduces choline and choline-containing metabolites in the liver tissue in mice fed a Western diet. Food Res Int 2023; 173:113450. [PMID: 37803779 DOI: 10.1016/j.foodres.2023.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, Bergen, Norway.
| | | | | | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
5
|
Lee H, Yoon S, Park YH, Lee JS, Rhyu DY, Kim KT. Microbiota dysbiosis associated with type 2 diabetes-like effects caused by chronic exposure to a mixture of chlorinated persistent organic pollutants in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122108. [PMID: 37422083 DOI: 10.1016/j.envpol.2023.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Mixtures of chlorinated persistent organic pollutants (C-POPs-Mix) are chemically related risk factors for type 2 diabetes mellitus (T2DM); however, the effects of chronic exposure to C-POPs-Mix on microbial dysbiosis remain poorly understood. Herein, male and female zebrafish were exposed to C-POPs-Mix at a 1:1 ratio of five organochlorine pesticides and Aroclor 1254 at concentrations of 0.02, 0.1, and 0.5 μg/L for 12 weeks. We measured T2DM indicators in blood and profiled microbial abundance and richness in the gut as well as transcriptomic and metabolomic alterations in the liver. Exposure to C-POPs-Mix significantly increased blood glucose levels while decreasing the abundance and alpha diversity of microbial communities only in females at concentrations of 0.02 and 0.1 μg/L. The majorly identified microbial contributors to microbial dysbiosis were Bosea minatitlanensis, Rhizobium tibeticum, Bifidobacterium catenulatum, Bifidobacterium adolescentis, and Collinsella aerofaciens. PICRUSt results suggested that altered pathways were associated with glucose and lipid production and inflammation, which are linked to changes in the transcriptome and metabolome of the zebrafish liver. Metagenomics outcomes revealed close relationships between intestinal and liver disruptions to T2DM-related molecular pathways. Thus, microbial dysbiosis in T2DM-triggered zebrafish occurred as a result of chronic exposure to C-POPs-Mix, indicating strong host-microbiome interactions.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sojeong Yoon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
6
|
McDevitt E, Henein L, Crawford A, Kondakala S, Young D, Meek E, Howell GE. Alterations of Systemic and Hepatic Metabolic Function Following Exposure to Trans-nonachlor in Low and High Fat Diet Fed Male Sprague Dawley Rats. Int J Toxicol 2023; 42:407-419. [PMID: 37126671 PMCID: PMC10530595 DOI: 10.1177/10915818231170527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The overall prevalence of metabolic diseases such as type 2 diabetes (T2D) and associated co-morbidities have increased at an alarming rate in the United States and worldwide. There is a growing body of epidemiological evidence implicating exposure to persistent organic pollutants (POPs), including legacy organochlorine (OC) pesticides and their bioaccumulative metabolites, in the pathogenesis of metabolic diseases. Therefore, the goal of the present study was to determine if exposure to trans-nonachlor, a bioaccumulative OC pesticide contaminant, in concert with high fat diet intake induced metabolic dysfunction. Briefly, male Sprague Dawley rats were exposed to trans-nonachlor (.5 or 5 ppm) in either a low fat (LFD) or high fat diet (HFD) for 16 weeks. At 8 weeks of intake, trans-nonachlor decreased serum triglyceride levels in LFD and HFD fed animals and at 16 weeks compared to LFD fed animals. Interestingly, serum glucose levels were decreased by trans-nonachlor (5 ppm) in LFD fed animals at 16 weeks. Serum free fatty acids were increased by trans-nonachlor exposure (5 ppm) in LFD fed animals at 16 weeks. HFD fed animals displayed signs of hepatic steatosis including elevated liver triglycerides, liver enzymes, and liver lipid peroxidation which were not significantly altered by trans-nonachlor exposure. However, there was a trans-nonachlor mediated increase in expression of fatty acid synthase in livers of LFD fed animals and not HFD fed animals. Thus, the present data indicate exposure to trans-nonachlor in conjunction with LFD or HFD intake produces both diet and exposure dependent effects on lipid and glucose metabolism.
Collapse
Affiliation(s)
- Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
- University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Anna Crawford
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Sandeep Kondakala
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - Edward Meek
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| | - George E. Howell
- Mississippi State University College of Veterinary Medicine, Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University, MS, USA
| |
Collapse
|
7
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
9
|
Siddique S, Chaudhry MN, Ahmad SR, Nazir R, Zhao Z, Javed R, Alghamdi HA, Mahmood A. Ecological and human health hazards; integrated risk assessment of organochlorine pesticides (OCPs) from the Chenab River, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163504. [PMID: 37080307 DOI: 10.1016/j.scitotenv.2023.163504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic hazards to human health were investigated through oral and dermal exposure to organochlorine pesticides (OCPs) from water samples (n = 120) of River Chenab, Pakistan. The Pioneering study aimed to employ an integrated geographic information system (GIS) based geostatistical method for the determination of pollution load by GC-ECD from water of River Chenab. The residual levels of OCPs detected from water samples ranged from 0.54 to 122 ng L-1 with significant prevalence of DDE and α-HCH. Results of the Nemerrow pollution index (NeI), single pollution index (SPI), and comprehensive pollution index (CPI) reflected the downstream zone a stern pollution risk zone. The spatial distribution pattern through geostatistical approaches also revealed significantly higher (p < 0.05) OCP levels in the downstream zone. Risk quotient (RQCCC) of surface water quality with respect to heptachlor epitomized a high level of risk (RQCCC > 1). Non-carcinogenic human health risk (Σ HQ) assessment ranged from 8.39 × 10-9 to 1.7 × 10-3, which represented a marginal risk through oral and dermal exposure. However, carcinogenic risks by oral exposure route were ranged from 3.57 × 10-11 to 4.46 × 10-6. Estimated cancer risk (ΣCR) exhibited a considerable carcinogenic risk posed by heptachlor, α-HCH and dieldrin. It is suggested to employ an immediate mitigation strategy for the constant discharge of OCPs in the studied area.
Collapse
Affiliation(s)
- Sidra Siddique
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - M Nawaz Chaudhry
- Department of Environmental Science and Policy, Faculty of Basic Sciences, Lahore School of Economics, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Rabia Nazir
- Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, 201306 Shanghai, PR China
| | - Rimsha Javed
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan.
| |
Collapse
|
10
|
Lee H, Gao Y, Kim JK, Shin S, Choi M, Hwang Y, Lee S, Rhyu DY, Kim KT. Synergetic effects of concurrent chronic exposure to a mixture of OCPs and high-fat diets on type 2 diabetes and beneficial effects of caloric restriction in female zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130659. [PMID: 36587596 DOI: 10.1016/j.jhazmat.2022.130659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the relationship among chronic exposure to a low concentration of organochlorine pesticides (OCPs), high-fat diet (HFD)-induced obesity, and caloric restriction in type 2 diabetes (T2D). Thus, female zebrafish were divided into four groups and treated for 12 weeks as follows: (i) negative control, (ii) HFD (obesity) control, (iii) obesity + a mixture of OCPs (OP), and (iv) obesity + a mixture of OCPs + caloric restriction (OPR). We then assessed T2D-related effects via hematological analysis, histopathology, mitochondrial evaluation, and multiomics analyses. The OP group showed a significant increase in glucose levels, whereas the OPR group maintained glucose at nonsignificant levels. Multiomics analyses revealed that the exacerbated metabolic effects in the OP group were associated with molecular alterations in oxidative stress, inflammation, nucleotide metabolism, and glucose/lipid homeostasis. These alterations were histologically verified by the increased numbers of hypertrophic adipocytes and inflammatory cells observed. Caloric restriction activated pathways related to antioxidant response, mitochondrial fatty acid oxidation, and energy metabolism in zebrafish, leading to preserved glucose homeostasis. In conclusion, this study identified molecular mechanisms underlying the synergistic effect of concurrent exposure to a mixture of OCPs and HFD as well as shed light on the beneficial effect of regular caloric restriction in T2D development.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Core Analytical Service, Wuxi AppTec, Shanghai 200131, China
| | - Jae Kwan Kim
- Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Sooim Shin
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngja Hwang
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong City 30019, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
11
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
12
|
Yipei Y, Zhilin L, Yuhong L, Meng W, Huijun W, Chang S, Yan H. Assessing the risk of diabetes in participants with DDT DDE exposure- A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:113018. [PMID: 35227676 DOI: 10.1016/j.envres.2022.113018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We have performed a systematic review and meta-analysis of the association between DDT/DDE and diabetes, searching PubMed, Embase, and Cochrane for relevant articles published up to August 30, 2021, and eventually including 43 publications. Our researchers evaluate included studies' quality and risk of bias via the recommended tool. This study uses meta-analyses of random effects of each exposure and outcome to estimate combined odds ratios (ORs) and 95% confidence intervals (CIs). Our research identified 43 cross-sectional, case-control, and cohort studies, including 40,141 individuals in America, Europe, Asia, and Africa. The summary ORs (95% CIs) of incident diabetes were 1.61 (1.10-2.39) for DDT, 1.67 (1.41-1.98) for DDE. The subgroup analysis indicated that the association is significantly higher in the region of Asia for both DDT (OR = 2.73) and DDE (OR = 2.62). Besides, we also tried various types of stratification to identify the more influential confounding factors, among which regional factors have a significant influence. Study evidence suggests that exposure to DDT and its breakdown product, DDE, might be associated with the risk of incident diabetes. Among Asian patients, DDT/DDE concentrations are more closely associated with diabetes. Further studies in specific regions will be considered in the future.
Collapse
Affiliation(s)
- Yu Yipei
- Peking University Health Science Center, China.
| | - Liu Zhilin
- Peking University Health Science Center, China.
| | - Lu Yuhong
- Peking University Health Science Center, China.
| | | | - Wang Huijun
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Su Chang
- Chinese Center for Disease Control and Prevention National Institute for Nutrition and Health Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, China.
| | - Hou Yan
- Peking University Health Science Center, China.
| |
Collapse
|
13
|
Bresson SE, Isom S, Jensen ET, Huber S, Oulhote Y, Rigdon J, Lovato J, Liese AD, Pihoker C, Dabelea D, Ehrlich S, Ruzzin J. Associations between persistent organic pollutants and type 1 diabetes in youth. ENVIRONMENT INTERNATIONAL 2022; 163:107175. [PMID: 35303528 DOI: 10.1016/j.envint.2022.107175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diabetes affects millions of people worldwide with a continued increase in incidence occurring within the pediatric population. The potential contribution of persistent organic pollutants (POPs) to diabetes in youth remains poorly known, especially regarding type 1 diabetes (T1D), generally the most prevalent form of diabetes in youth. OBJECTIVES We investigated the associations between POPs and T1D in youth and studied the impacts of POPs on pancreatic β-cell function and viability in vitro. METHODS We used data and plasma samples from the SEARCH for Diabetes in Youth Case Control Study (SEARCH-CC). Participants were categorized as Controls, T1D with normal insulin sensitivity (T1D/IS), and T1D with insulin resistance (T1D/IR). We assessed plasma concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides and estimated the odds of T1D through multivariable logistic regression. In addition, we performed in vitro experiments with the INS-1E pancreatic β-cells. Cells were treated with PCB-153 or p,p'-DDE at environmentally relevant doses. We measured insulin production and secretion and assessed the mRNA expression of key regulators involved in insulin synthesis (Ins1, Ins2, Pdx1, Mafa, Pcsk1/3, and Pcsk2), glucose sensing (Slc2a2 and Gck), and insulin secretion (Abcc8, Kcnj11, Cacna1d, Cacna1b, Stx1a, Snap25, and Sytl4). Finally, we assessed the effects of PCB-153 and p,p'-DDE on β-cell viability. RESULTS Among 442 youths, 112 were controls, 182 were classified with T1D/IS and 148 with T1D/IR. The odds ratios (OR) of T1D/IS versus controls were statistically significant for p,p'-DDE (OR 2.0, 95% confidence interval (CI) 1.0, 3.8 and 2.4, 95% CI 1.2, 5.0 for 2nd and 3rd tertiles, respectively), trans-nonachlor (OR 2.5, 95% CI 1.3, 5.0 and OR 2.3, 95% CI 1.1, 5.1 for 2nd and 3rd tertiles, respectively), and PCB-153 (OR 2.3, 95% CI 1.1, 4.6 for 3rd tertile). However, these associations were not observed in participants with T1D/IR. At an experimental level, treatment with p,p'-DDE or PCB-153, at concentrations ranging from 1 × 10-15 M to 5 × 10-6 M, impaired the ability of pancreatic β-cells to produce and secrete insulin in response to glucose. These failures were paralleled by impaired Ins1 and Ins2 mRNA expression. In addition, among different targeted genes, PCB-153 significantly reduced Slc2a2 and Gck mRNA expression whereas p,p'-DDE mainly affected Abcc8 and Kcnj11. While treatment with PCB-153 or p,p'-DDE for 2 days did not affect β-cell viability, longer treatment progressively killed the β-cells. CONCLUSION These results support a potential role of POPs in T1D etiology and demonstrate a high sensitivity of pancreatic β-cells to POPs.
Collapse
Affiliation(s)
- Sophie E Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Scott Isom
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Joseph Rigdon
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James Lovato
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Angela D Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, SC, USA
| | - Catherine Pihoker
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center and Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shelley Ehrlich
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical center, Cincinnati, OH, USA; Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Type 2 Diabetes Induced by Changes in Proteomic Profiling of Zebrafish Chronically Exposed to a Mixture of Organochlorine Pesticides at Low Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094991. [PMID: 35564385 PMCID: PMC9100612 DOI: 10.3390/ijerph19094991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
Effect of organochlorine pesticides (OCPs) mixtures on development of type 2 diabetes mellitus (T2DM) and the underlying mechanism, especially at protein levels, are largely unknown. We exposed a mixture of five OCPs to zebrafish at concentrations of 0, 0.05, 0.25, 2.5, and 25 μg/L for 12 weeks. Differentially expressed proteins (DEPs) were quantitatively identified in female zebrafish livers, and its functional study was conducted. The significantly high glucose and low insulin levels were observed only at 0.05 μg/L, linking to the different pattern of DEPs than other concentrations. A total of 1082 proteins was quantified, of which 321 proteins formed 6 clusters in protein dynamics analysis. The enriched pathways in cluster 3 showing distinct pattern of DEPs could explain the nonlinear response at 0.05 μg/L, indicating that OCP mixtures adversely affected proteins associated with mitochondrial function and energy metabolism. We proposed a feasible mechanism that decrease in expression of aldehyde dehydrogenase led to abnormal accumulation of aldehydes, reducing expression of glyceraldehyde 3-phosphate dehydrogenase, and resulting in disruption of glucose homeostasis. Our findings help to better understand the causality of T2DM by exposure to OCP mixtures and to identify biomarkers in the protein expression level.
Collapse
|
16
|
Wu Q, Du X, Feng X, Cheng H, Chen Y, Lu C, Wu M, Tong H. Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112739. [PMID: 34481351 DOI: 10.1016/j.ecoenv.2021.112739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The incidence of metabolic diseases is increasing every year, and several studies have highlighted the activity of persistent organic pollutants (POPs) in causing hyperlipidemia and diabetes, and these compounds are considered to be endocrine disrupting chemicals (EDCs). Chlordane is classified as an endocrine disruptor, but the mechanism of how it functions is still unclear. This study investigates the effects of chlordane exposure on Drosophila larvae. Drosophila was cultured in diet containing 0.01 μM, 0.1 μM, 1 μM, 5 μM, and 10 μM chlordane, and the toxicity of chlordane, the growth and development of Drosophila, the homeostasis of glucose and lipid metabolism and insulin signaling pathway, lipid peroxidation-related indicators and Nrf2 signaling pathway were evaluated. We here found that exposure to high concentrations of chlordane decreased the survival rate of Drosophila and that exposure to low concentrations of chlordane caused disruption of glucose and lipid metabolism, increased insulin secretion and impairment of insulin signaling. Notably, it also led to massive ROS production and lipid peroxidation despite of the activation of Nrf2 signaling pathway, an important pathway for maintaining redox homeostasis. Collectively, chlordane causes lipid peroxidation and disrupts redox homeostasis, which may be a potential mechanism leading to impaired insulin signaling and the metabolism of glucose and lipid, ultimately affects Drosophila development.
Collapse
Affiliation(s)
- Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xucong Feng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huimin Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yingjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenying Lu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
17
|
Lee DH. Can Environmental Pollutants Be a Factor Linking Obesity and COVID-19? J Korean Med Sci 2021; 36:e305. [PMID: 34751012 PMCID: PMC8575764 DOI: 10.3346/jkms.2021.36.e305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
18
|
Silva JF, Moreira BP, Rato L, de Lourdes Pereira M, Oliveira PF, Alves MG. Is Technical-Grade Chlordane an Obesogen? Curr Med Chem 2021; 28:548-568. [PMID: 31965937 DOI: 10.2174/0929867327666200121122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity has tripled in recent decades and is now considered an alarming public health problem. In recent years, a group of endocrine disruptors, known as obesogens, have been directly linked to the obesity epidemic. Its etiology is generally associated with a sedentary lifestyle, a high-fat diet and genetic predisposition, but environmental factors, such as obesogens, have also been reported as contributors for this pathology. In brief, obesogens are exogenous chemical compounds that alter metabolic processes and/or energy balance and appetite, thus predisposing to weight gain. Although this theory is still recent, the number of compounds with suspected obesogenic activity has steadily increased over the years, though many of them remain a matter of debate. Technical-grade chlordane is an organochlorine pesticide widely present in the environment, albeit at low concentrations. Highly lipophilic compounds can be metabolized by humans and animals into more toxic and stable compounds that are stored in fat tissue and consequently pose a danger to the human body, including the physiology of adipose tissue, which plays an important role in weight regulation. In addition, technical-grade chlordane is classified as a persistent organic pollutant, a group of chemicals whose epidemiological studies are associated with metabolic disorders, including obesity. Herein, we discuss the emerging roles of obesogens as threats to public health. We particularly discuss the relevance of chlordane persistence in the environment and how its effects on human and animal health provide evidence for its role as an endocrine disruptor with possible obesogenic activity.
Collapse
Affiliation(s)
- Juliana F Silva
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Luís Rato
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, P.O. Box 4050-313, Porto, Portugal
| |
Collapse
|
19
|
Vega N, Pinteur C, Buffelan G, Loizon E, Vidal H, Naville D, Le Magueresse-Battistoni B. Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. CHEMOSPHERE 2021; 262:127841. [PMID: 32784060 DOI: 10.1016/j.chemosphere.2020.127841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 μg/kg bw/d) and bisphenol A (40 μg/kg bw/d). In female mice fed a standard diet (ST), we observed a decrease in plasma levels of leptin as well as a reduced expression of corticoid receptors Nr3c1 and Nr3c2, of leptin and of various canonical genes related to the circadian clock machinery in visceral (VAT) but not subcutaneous (SAT) adipose tissue. However, Nr3c1 and Nr3c2 mRNA levels did not change in high-fat-fed females exposed to pollutants. In ST-fed males, pollutants caused the same decrease of Nr3c1 mRNA levels in VAT observed in ST-fed females but levels of Nr3c2 and other clock-related genes found to be down-regulated in female VAT were enhanced in male SAT and not affected in male VAT. The expression of corticoid receptors was not affected in the livers of both sexes in response to pollutants. In summary, exposure to a mixture of pollutants at doses lower than the no-observed adverse effect levels (NoAELs) resulted in sex-dependent glucocorticoid signaling disturbances and clock-related gene expression modifications in the adipose tissue of ST-fed mice.
Collapse
Affiliation(s)
- Nathalie Vega
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Gaël Buffelan
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Danielle Naville
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | | |
Collapse
|
20
|
Yan J, Wang D, Meng Z, Yan S, Teng M, Jia M, Li R, Tian S, Weiss C, Zhou Z, Zhu W. Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115697. [PMID: 33070067 DOI: 10.1016/j.envpol.2020.115697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.
Collapse
Affiliation(s)
- Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
22
|
Pavlikova N, Sramek J, Jelinek M, Halada P, Kovar J. Markers of acute toxicity of DDT exposure in pancreatic beta-cells determined by a proteomic approach. PLoS One 2020; 15:e0229430. [PMID: 33104727 PMCID: PMC7588079 DOI: 10.1371/journal.pone.0229430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many compounds have the potential to harm pancreatic beta-cells; organochlorine pollutants belong to those compounds. In this work, we aimed to find markers of acute toxicity of p,p'-DDT exposure among proteins expressed in NES2Y human pancreatic beta-cells employing 2-D electrophoresis. We exposed NES2Y cells to a high concentration (150 μM, LC96 after 72 hours) of p,p'-DDT for 24 and 30 hours and determined proteins with changed expression using 2-D electrophoresis. We have found 22 proteins that changed their expression. They included proteins involved in ER stress (GRP78, and endoplasmin), mitochondrial proteins (GRP75, ECHM, IDH3A, NDUS1, and NDUS3), proteins involved in the maintenance of the cell morphology (EFHD2, TCPA, NDRG1, and ezrin), and some other proteins (HNRPF, HNRH1, K2C8, vimentin, PBDC1, EF2, PCNA, biliverdin reductase, G3BP1, FRIL, and HSP27). The proteins we have identified may serve as indicators of p,p'-DDT toxicity in beta-cells in future studies, including long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Nela Pavlikova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Sramek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Jelinek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- BioCeV–Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Kovar
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
23
|
Cano-Sancho G, Casas M. Interactions between environmental pollutants and dietary nutrients: current evidence and implications in epidemiological research. J Epidemiol Community Health 2020; 75:108-113. [PMID: 33023970 DOI: 10.1136/jech-2020-213789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 11/04/2022]
Abstract
Environmental pollutants and nutrients may be present in the same foodstuffs or dietary patterns; share internal mechanisms of transport, metabolism and cellular uptake; or target the same molecular signalling pathways and biological functions. Lipophilic pollutants and nutrients, like dioxins and polyunsaturated fatty acids, may often converge at all aforementioned levels and thus the interactions become more likely. Despite this fact, the topic seems overlooked in mainstream epidemiological research. In this essay, we illustrate different levels of documented interactions between pollutants and nutrients with experimental, interventional and epidemiological evidence, paying special attention to lipophilic chemicals. We first describe common pollutants and nutrients encountered in diets and the internal lipophilic interface such as adipose tissue and serum lipids. Next, we discuss the preventive effects of nutrients against absorption and the toxic effects of pollutants, as well as the pollutant-induced perturbation of nutrient metabolism. Finally, we discuss the implications of nutrient-pollutant interactions in epidemiology, providing some examples of negative confounding, modification effect and statistical interactions reported for different outcomes including fetal growth, diabetes and cancer. The evidence discussed in this essay supports that the health impacts of chemicals have likely been underestimated due to the high risk of residual and coexposure confounding in diseases where interactions between pollutants and nutrients may occur.
Collapse
Affiliation(s)
| | - Maribel Casas
- ISGlobal, Barcelona, Spain.,Pompeu Fabra University, Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
24
|
Herst PM, Aars J, Joly Beauparlant C, Bodein A, Dalvai M, Gagné D, Droit A, Bailey JL, Routti H. Adipose Tissue Transcriptome Is Related to Pollutant Exposure in Polar Bear Mother-Cub Pairs from Svalbard, Norway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11365-11375. [PMID: 32808525 DOI: 10.1021/acs.est.0c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.
Collapse
Affiliation(s)
- Pauline M Herst
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Antoine Bodein
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Mathieu Dalvai
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Dominic Gagné
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Janice L Bailey
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
25
|
Montory M, Habit E, Fernandez P, Grimalt JO, Kolok AS, Barra RO, Ferrer J. Biotransport of persistent organic pollutants in the southern Hemisphere by invasive Chinook salmon (Oncorhynchus tshawytscha) in the rivers of northern Chilean Patagonia, a UNESCO biosphere reserve. ENVIRONMENT INTERNATIONAL 2020; 142:105803. [PMID: 32563009 DOI: 10.1016/j.envint.2020.105803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Biotransport is often associated with migration patterns of species, including large, anadromous salmonids. Several studies have reported biotransport of persistent organic pollutants in the Northern Hemisphere, but there is no published information on biotransport ocurring south of the equator. Chile's Patagonia is one of the last largely intact natural areas in the world. The objective of this study was to determine whether persistent organic pollutants are transported by the invasive Pacific Chinook salmon (O. tshawytscha) from the Pacific Ocean to Chilean Patagonia. Samples of juvenile and adult Chinook salmon were analyzed for polychlorinated biphenyls, pesticides and polybrominated diphenyl ethers. The results revealed that concentrations of POPs in adults migrating into Patagonian rivers were significantly higher than those found in juveniles migrating seaward. A mass balance analysis indicates that Chinook salmon are a source of persistent organic pollutants to Chilean Patagonia inland waters. Capsule: Biotransport of Persistent Organic Pollutants (POPs) by Chinook salmon (O. tshawytscha) from the Pacific Ocean to Chilean Patagonia has been confirmed by mass balance of POPs.
Collapse
Affiliation(s)
- Mónica Montory
- Hydro-environmental Biotechnology Laboratory, Department of Water Resources, Faculty of Agricultural Engineering, University of Concepción, Chile.
| | - Evelyn Habit
- Faculty of Environmental Sciences/EULA-Chile Centre, Department of Aquatic Systems, University of Concepción, Barrio Universitario S/N, PO Box 160-C Concepción, Chile
| | - Pilar Fernandez
- Institute of Environmental Assessment and Water Research (IDAEA), Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA), Barcelona, Spain
| | - Alan S Kolok
- Idaho Water Research Resources Institute, University of Idaho, Moscow, ID, USA
| | - Ricardo O Barra
- Faculty of Environmental Sciences/EULA-Chile Centre, Department of Aquatic Systems, University of Concepción, Barrio Universitario S/N, PO Box 160-C Concepción, Chile
| | - Javier Ferrer
- Hydro-environmental Biotechnology Laboratory, Department of Water Resources, Faculty of Agricultural Engineering, University of Concepción, Chile.
| |
Collapse
|
26
|
Peshdary V, Styles G, Rigden M, Caldwell D, Kawata A, Sorisky A, Atlas E. Exposure to Low Doses of Dechlorane Plus Promotes Adipose Tissue Dysfunction and Glucose Intolerance in Male Mice. Endocrinology 2020; 161:5859548. [PMID: 32556108 DOI: 10.1210/endocr/bqaa096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
The prevalence of type 2 diabetes (T2D) continues to increase worldwide. It is well established that genetic susceptibility, obesity, overnutrition and a sedentary life style are risk factors for the development of T2D. However, more recently, studies have also proposed links between exposure to endocrine-disrupting chemicals (EDCs) and altered glucose metabolism. Human exposure to environmental pollutants that are suspected to have endocrine disruptor activity is ubiquitous. One such chemical is Dechlorane Plus (DP), a flame retardant, that is now detected in humans and the environment. Here we show that exposure of mice to low, environmentally relevant doses of DP promoted glucose intolerance in mice fed a high-fat diet independent of weight gain. Furthermore, DP had pronounced effects on the adipose tissue, where it induced the development of hypertrophied white adipose tissue (WAT), and increased serum levels of resistin, leptin, and plasminogen activator inhibitor-1. In addition, DP exposure induced "whitening" of brown adipose tissue (BAT), and reduced BAT uncoupling protein 1 expression. Importantly, some of these effects occurred even when the mice were fed a regular, low-fat, diet. Finally, WAT adipogenic markers were reduced with DP treatment in the WAT. We also show that DP directly inhibited insulin signaling in murine adipocytes and human primary subcutaneous adipocytes in vitro. Taken together, our results show that the exposure to low and environmentally relevant levels of DP may contribute to the development of T2D.
Collapse
Affiliation(s)
- Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada
- Departments of Medicine and of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - George Styles
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada
| | - Marc Rigden
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada
| | - Don Caldwell
- Scientific Services Division, Health Products and Foods Branch, Health Canada, Ottawa, Ontario, Canada
| | - Alice Kawata
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada
| | - Alexander Sorisky
- Departments of Medicine and of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada
- Departments of Medicine and of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
Ko E, Choi M, Shin S. Bottom-line mechanism of organochlorine pesticides on mitochondria dysfunction linked with type 2 diabetes. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122400. [PMID: 32135367 DOI: 10.1016/j.jhazmat.2020.122400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/19/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Environmental pollution by anthropogenic chemicals has become a considerable problem. Organochlorine pesticides (OCPs), a subclass of persistent organic pollutants, are used as insecticides and industrial chemicals. They are lipophilic and minimally degradable, and they easily accumulate in the environment and human body. Epidemiological studies have demonstrated that exposure to OCPs strongly correlates with the development of type 2 diabetes, which involves mitochondrial dysfunction. To clarify their effects, OCP mixtures (β-hexachlorocyclohexane, heptachlor, hexachlorobenzene, 4,4'-DDT, and chlordane) were used to treat mitochondria from zebrafish livers. Results showed that as OCP concentrations increased, Ca2+ intake into the mitochondria rose, which increased the activity of mitochondrial complexes I, II, IV, and citrate synthase. Complex III yielded the opposite result because the OCP mixture mimicked decylubiquinol, a natural substrate of complex III. Our results reflect the actual state of toxins, non-monotonic, in the environment, which is important for determining the consequences of OCPs on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun Ko
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Convergence Institute of Biomaterials and Bioengineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
28
|
Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders of glucose metabolism. Toxicol In Vitro 2020; 65:104767. [DOI: 10.1016/j.tiv.2020.104767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
29
|
Lee D, Jacobs DR, Lind L, Lind PM. Lipophilic Environmental Chemical Mixtures Released During Weight‐Loss: The Need to Consider Dynamics. Bioessays 2020; 42:e1900237. [DOI: 10.1002/bies.201900237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Duk‐Hee Lee
- Department of Preventive MedicineSchool of MedicineKyungpook National University Daegu 41944 Korea
| | - David R Jacobs
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of Minnesota Minneapolis Minnesota 55454 USA
| | - Lars Lind
- Department of Medical SciencesCardiovascular EpidemiologyUppsala University Uppsala 75237 Sweden
| | - P. Monica Lind
- Department of Medical SciencesOccupational and Environmental MedicineUppsala University Uppsala 75185 Sweden
| |
Collapse
|
30
|
Donat-Vargas C, Moreno-Franco B, Laclaustra M, Sandoval-Insausti H, Jarauta E, Guallar-Castillon P. Exposure to dietary polychlorinated biphenyls and dioxins, and its relationship with subclinical coronary atherosclerosis: The Aragon Workers' Health Study. ENVIRONMENT INTERNATIONAL 2020; 136:105433. [PMID: 31918334 DOI: 10.1016/j.envint.2019.105433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Experimental evidence has revealed that exposure to polychlorinated biphenyls (PCBs) and dioxins directly impairs endothelial function and induces atherosclerosis progression. In the general population, despite a small number of recent studies finding a link between PCBs, and stroke and myocardial infraction, the association with early coronary atherosclerosis has not been examined yet. OBJECTIVE To examine whether dietary exposure to PCBs and dioxins is associated with subclinical coronary atherosclerosis in a middle-aged men. DESIGN Cross-sectional analysis comprising 1844 men in their 50 s and free of cardiovascular disease, who participated in the Aragon Workers' Health Study (AWHS). Individual dietary exposures to PCBs and dioxins were estimated by the contaminant's concentration in food coupled with the corresponding consumption and then participants were classified into quartiles of consumption. Coronary artery calcium score (CACS) was assessed by computerized tomography. We conducted ordered logistic regressions to estimate the odds ratio (OR) and 95% confidence intervals (CIs) for progression to the categories of more coronary artery calcium, adjusting for potential confounders. RESULTS Among the participants, coronary calcium was not shown in 60.1% (n = 1108), 29.8% had a CACS > 0 and <100 (n = 550), and the remaining 10.1% (n = 186) had a CACS ≥ 100. Compared with those in the first quartile of PCBs exposure, those in the fourth one had an increased odds for having coronary calcium (OR 2.02, 95% CI [1.18, 3.47], p trend 0.019) and for having progressed to categories of more intense calcification (OR 2.03, 95% CI [1.21, 3.40], p trend 0.012). However, no association was found between dietary dioxins exposure and prevalent coronary artery calcium. CONCLUSIONS In this general male population, dietary exposure to PCBs, but not to dioxins, was associated with a higher prevalence of coronary calcium and to more intense subclinical coronary atherosclerosis. PCBs exposure seems to increase the risk of coronary disease in men from the very early stages.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain; Unit of Nutritional and Cardiovascular Epidemiology, Environmental Medicine Institute (IMM), Karolinska Institutet, Stockholm, Sweden; CIBERESP (CIBER of Epidemiology and Public Health) Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Moreno-Franco
- IIS Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Spain; CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Laclaustra
- IIS Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Spain; CIBERCV Instituto de Salud Carlos III, Madrid, Spain; Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Helena Sandoval-Insausti
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain
| | - Estibaliz Jarauta
- IIS Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Spain; CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Guallar-Castillon
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health) Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación IdiPaz, Madrid, Spain; IMDEA-Food Institute, Madrid, Spain.
| |
Collapse
|
31
|
Lee YM, Park SH, Lee DH. Intensive weight loss and cognition: The dynamics of persistent organic pollutants in adipose tissue can explain the unexpected results from the Action for Health in Diabetes (Look AHEAD) study. Alzheimers Dement 2020; 16:696-703. [PMID: 32096335 DOI: 10.1002/alz.12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this paper is to propose a new hypothesis for the role of lipophilic chemical mixtures stored in adipose tissue in the development of dementia. Specifically, we present how the dynamics of these chemicals can explain the unexpected findings from the Action for Health in Diabetes (Look AHEAD) study, which failed to show long-term benefits of intentional weight loss on cognition, despite substantial improvements in many known risk factors for dementia. Moreover, we discuss how the role of obesity in the risk of dementia can change depending on the dynamics of these chemicals in adipose tissue. NEW HYPOTHESIS Human adipose tissue is widely contaminated with various neurotoxic chemicals. Typical examples are persistent organic pollutants (POPs), strong lipophilic chemicals with long half-lives. Both unintentional and intentional weight loss increases the release of POPs from adipocytes into the circulation. As POPs in the blood can easily reach the brain, the intentional weight-loss group of the Look AHEAD study may have experienced an unappreciated and long-term disadvantage on their cognition. Additionally, POPs may be involved in the link between obesity and dementia, as dysfunctional hypertrophic adipocytes enhance the release of POPs from adipocytes to the circulation through uncontrolled lipolysis. In contrast, metabolically healthy obese people may have a low risk of dementia because the safe storage of POPs in adipose tissue would decrease the amount of POPs reaching the brain. MAJOR CHALLENGES FOR THE HYPOTHESIS In human studies, there are practical difficulties involved with measuring POPs in the blood, including high costs and complex assays. As the serum concentrations of POPs are continuously affected by weight loss and gain, prospective studies may require serial measurements of POPs. In in-vitro and in-vivo experimental studies, how to simulate the exposure dose, duration, and mixture patterns in humans would be critical. LINKAGE TO OTHER MAJOR THEORIES Even though POPs are direct neurotoxins at a high dosage, low-dose POPs are mitochondrial toxins. Therefore, chronic exposure to low-dose POPs is linked to known key interrelated mechanisms in the pathogenesis of dementia, such as mitochondrial dysfunction and neuroinflammation.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
32
|
Young D, Worrell A, McDevitt E, Henein L, Howell GE. Alterations in macrophage phagocytosis and inflammatory tone following exposure to the organochlorine compounds oxychlordane and trans-nonachlor. Toxicol In Vitro 2020; 65:104791. [PMID: 32057836 DOI: 10.1016/j.tiv.2020.104791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
The role of macrophages in the innate immune response cannot be underscored however recent studies have demonstrated that both resident and recruited macrophages have critical roles in the pathogenesis of metabolic dysfunction. Given the recent data implicating exposure to persistent organic pollutants (POPs) in the pathogenesis of metabolic diseases, the current study was designed to examine the effects of the highly implicated organochlorine (OC) compounds oxychlordane and trans-nonachlor on overall macrophage function. Murine J774A.1 macrophages were exposed to trans-nonachlor or oxychlordane (0 - 20 µM) for 24 hours then phagocytosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential, caspase activities, pro-inflammatory cytokine production, and macrophage plasticity were assessed. Overall, exposure to oxychlordane significantly decreased macrophage phagocytosis while both OC compounds significantly increased ROS generation. Exposure to trans-nonachlor significantly increased secretion of tumor necrosis factor alpha (TNFα) and interleukin-6 whereas oxychlordane had a biphasic effect on TNFα secretion. However, both oxychlordane and trans-nonachlor decreased basal expression of the M1 pro-inflammatory marker cyclooxygenase 2. Taken together, these data indicate that exposure to these two OC compounds have both compound and concentration dependent effects on macrophage function which may alter both the innate immune response and impact metabolic function of key organs involved in metabolic diseases.
Collapse
Affiliation(s)
- Darian Young
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Aren Worrell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA
| | - George E Howell
- Mississippi State University College of Veterinary Medicine, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, USA..
| |
Collapse
|
33
|
Mustieles V, Arrebola JP. How polluted is your fat? What the study of adipose tissue can contribute to environmental epidemiology. J Epidemiol Community Health 2020; 74:401-407. [DOI: 10.1136/jech-2019-213181] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The study of the potential contribution of low-dose exposure to environmental chemicals on the development of chronic conditions in human populations is often hampered by methodological issues, including exposure misclassification and the inability to assess biological effects in target organs. White adipose tissue (WAT) presents the unique feature of being both an advantageous matrix for assessing long-term exposure to mixtures of persistent organic pollutants and an interesting tissue to investigate early preclinical effects. Moreover, other lipophilic non-persistent chemicals and heavy metals have been recently quantified in fat, suggesting that human WAT contains chemical mixtures more complex than initially thought. However, WAT has been scarcely used in environmental epidemiology due to collection difficulties. In this essay we discuss the potential of using human WAT as a source of both exposure and effect biomarkers, with the aim of advancing the epidemiological research of obesity-related diseases, including metabolic syndrome and cancer. Overall, we discuss the implications of investigating WAT in a multidisciplinary framework combining toxicological and epidemiological knowledge in order to improve the inference of causal relationships in observational settings. We finalise by suggesting feasible designs and scenarios in which WAT samples may be reasonably collected.
Collapse
|
34
|
|
35
|
Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p'-DDT and p,p'-DDE. Sci Rep 2019; 9:18026. [PMID: 31792309 PMCID: PMC6889289 DOI: 10.1038/s41598-019-54579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent organochlorine pollutants (POPs) gradually accumulate in the human organism due to their presence in the environment. Some studies have described a correlation between the level of POPs in the human body and the incidence of diabetes, but we know little about the direct effect of POPs on pancreatic beta-cells. We exposed pancreatic beta-cells INS1E to non-lethal concentrations of p,p′-DDT (1,1′-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene)) and p,p′-DDE (1,1′-(2,2-dichloroethene-1,1-diyl)bis(4-chlorobenzene)) for 1 month, and assessed changes in protein expression and the intracellular insulin level. 2-D electrophoresis revealed 6 proteins with changed expression in cells exposed to p,p′-DDT or p,p′-DDE. One of the detected proteins – vitamin D-binding protein (VDBP) – was upregulated in both cells exposed to p,p′-DDT, and cells exposed to p,p′-DDE. Both exposures to pollutants reduced the intracellular level of insulin mRNA, proinsulin, and insulin monomer; p,p′-DDT also slightly reduced the level of hexameric insulin. Overexpression of VDBP caused by the stable transfection of beta-cells with the gene for VDBP decreased both the proinsulin and hexameric insulin level in beta-cells similarly to the reduction detected in cells exposed to p,p′-DDT. Our data suggest that in the cells exposed to p,p′-DDT and p,p′-DDE, the increased VDBP protein level decreased the proinsulin expression in an unknown mechanism.
Collapse
|
36
|
Brown RH, Ng DK, Steele K, Schweitzer M, Groopman JD. Mobilization of Environmental Toxicants Following Bariatric Surgery. Obesity (Silver Spring) 2019; 27:1865-1873. [PMID: 31689012 DOI: 10.1002/oby.22618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/22/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Persistent organic pollutants (POPs) are lipophilic environmental toxicants that accumulate in adipose tissue. Weight loss leads to mobilization and increased redistribution of these toxicants. Many are obesogens and endocrine disruptors. Increased exposure could pose long-term health risks. The study objective was to measure the changes in serum concentrations of lipophilic POPs during significant weight loss. METHODS This study enrolled 27 patients at a university hospital in a longitudinal, 6-month, observational study examining changes in POP blood levels after bariatric surgery. The primary outcome was the changes in the concentrations of 24 polychlorinated biphenyls (PCBs), 9 organochlorine pesticides (OCPs), 11 polybrominated diphenyl ethers, 2,2',4,4',5,5'-hexabromobiphenyl, and 4 perfluorochemicals (PFCs). RESULTS Older adults (those born before 1976) had baseline levels of PCBs, OCPs, and PFCs that were two- to fivefold higher than younger adults (those born after 1976). Older adults had greater increases in PCBs, OCPs, and polybrominated diphenyl ethers associated with weight loss. Conversely, younger adults had greater increases in PFCs associated with weight loss. On average, blood POP levels increased as weight loss occurred. CONCLUSIONS Although weight loss is considered beneficial, the release and redistribution of POPs to other lipid-rich organs such as the brain, kidneys, and liver warrant further investigation. Interventions should be considered to limit organ exposure to POPs when weight loss interventions are planned.
Collapse
Affiliation(s)
- Robert H Brown
- Departments of Anesthesiology, Medicine, and Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Derek K Ng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kimberley Steele
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Schweitzer
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Coole JB, Burr SS, Kay AM, Singh JA, Kondakala S, Yang E, Kaplan BLF, Howell GE, Stewart JA. Persistent organic pollutants (POPs) increase rage signaling to promote downstream cardiovascular remodeling. ENVIRONMENTAL TOXICOLOGY 2019; 34:1149-1159. [PMID: 31313498 PMCID: PMC6771979 DOI: 10.1002/tox.22817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/16/2023]
Abstract
Exposure to environmental contaminants and consumption of a high, saturated fatty diet has been demonstrated to promote precursors for metabolic syndrome (hyperglycemia, hyperinsulinemia, and hypertriglyceridemia). The purpose of this study was to determine if exposure to the most prevalent environmental persistent organic pollutants (POPs) would act as causative agents to promote metabolic syndrome independent of dietary intake. We hypothesized that POPs will activate the advanced glycated end-product (AGE)-and receptor for AGE (RAGE) signaling cascade to promote downstream signaling modulators of cardiovascular remodeling and oxidative stress in the heart. At 5-weeks of age nondiabetic (WT) and diabetic (ob/ob) mice were exposed POPs mixtures by oral gavage twice a week for 6-weeks. At the end of 6-weeks, animals were sacrificed and the hearts were taken for biochemical analysis. Increased activation of the AGE-RAGE signaling cascade via POPs exposure resulted in elevated levels of fibroblast differentiation (α-smooth muscle actin) and RAGE expression indicated maladaptive cardiac remodeling. Conversely, the observed decreased superoxide dismutase-1 and -2 (SOD-1 and SOD-2) expression may exacerbate the adverse changes occurring as a result of POPs treatment to reduce innate cardioprotective mechanisms. In comparison, ventricular collagen levels were decreased in mice exposed to POPs. In conclusion, exposure to organic environmental pollutants may intensify oxidative and inflammatory stressors to overwhelm protective mechanisms allowing for adverse cardiac remodeling.
Collapse
Affiliation(s)
- Jackson B. Coole
- Department of Biological Sciences, College of Arts and SciencesMississippi State UniversityStarkvilleMississippi
| | - Stephanie S. Burr
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| | - Amber M. Kay
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| | - Jaime A. Singh
- Virginia Commonwealth University Health SystemsRichmondVirginia
| | - Sandeep Kondakala
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - Eun‐Ju Yang
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - Barbara L. F. Kaplan
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - George E. Howell
- Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityStarkvilleMississippi
| | - James A. Stewart
- Department of BioMolecular Sciences, School of PharmacyUniversity of MississippiOxfordMississippi
| |
Collapse
|
38
|
Rodríguez-Moro G, Abril N, Jara-Biedma R, Ramírez-Acosta S, Gómez-Ariza JL, García-Barrera T. Metabolic Impairments Caused by a "Chemical Cocktail" of DDE and Selenium in Mice Using Direct Infusion Triple Quadrupole Time-of-Flight and Gas Chromatography-Mass Spectrometry. Chem Res Toxicol 2019; 32:1940-1954. [PMID: 31532635 DOI: 10.1021/acs.chemrestox.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among organic contaminants, pesticides are one of the most important groups of chemicals due to their persistent character and toxicity. However, the biological systems are exposed to a complex environment in which the contaminants can interact in a synergistic/antagonistic fashion, and for this reason, the study of "chemical cocktails" is of great interest to fully understand the final biological effect. In this way, selenium is known for its antagonistic action against several toxicants. In this paper, metabolic impairments caused by the joint exposure of p,p'-dichloro diphenyl trichloroethane (DDE) and selenium (Se) have been issued for the first time. A metabolomic workflow was applied to mice fed DDE and DDE with Se diet, on the basis of the complementary use of two organic mass spectrometric techniques, combining direct infusion mass spectrometry (DI-ESI-QqQ-TOF MS) and gas chromatography-mass spectrometry (GC-MS). The results show a good classification between the studied groups caused by about 70 altered metabolites in the liver, kidney, or brain, including the pathways of energy metabolism, degradation of phospholipidic membrane, β-oxidation, and oxidative stress, which confirm the potential of combined metabolomic platforms in environmental studies.
Collapse
Affiliation(s)
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, International Agrofood Campus of Excellence International ceiA3 , University of Córdoba , Campus de Rabanales, Edificio Severo Ochoa , E-14071 Córdoba , Spain
| | | | | | | | | |
Collapse
|
39
|
Maternal folic acid supplementation does not counteract the deleterious impact of prenatal exposure to environmental pollutants on lipid homeostasis in male rat descendants. J Dev Orig Health Dis 2019; 11:427-437. [DOI: 10.1017/s2040174419000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractPrenatal exposure to persistent organic pollutants (POPs) has been associated with the development of metabolic syndrome-related diseases in offspring. According to epidemiological studies, father’s transmission of environmental effects in addition to mother’s can influence offspring health. Moreover, maternal prenatal dietary folic acid (FA) may beneficially impact offspring health. The objective is to investigate whether prenatal FA supplementation can overcome the deleterious effects of prenatal exposure to POPs on lipid homeostasis and inflammation in three generations of male rat descendants through the paternal lineage. Female Sprague-Dawley rats (F0) were exposed to a POPs mixture (or corn oil) +/− FA supplementation for 9 weeks before and during gestation. F1 and F2 males were mated with untreated females. Plasma and hepatic lipids were measured in F1, F2, and F3 males after 12-h fast. Gene expression of inflammatory cytokines was determined by qPCR in epididymal adipose tissue. In F1 males, prenatal POPs exposure increased plasma lipids at 14 weeks old and hepatic lipids at 28 weeks old and prenatal FA supplementation decreased plasma total cholesterol at 14 weeks old. Prenatal POPs exposure decreased plasma triglycerides at 14 weeks old in F2 males. No change was observed in inflammatory markers. Our results show an impact of the paternal lineage on lipid homeostasis in rats up to the F2 male generation. FA supplementation of the F0 diet, regardless of POPs exposure, lowered plasma cholesterol in F1 males but failed to attenuate the deleterious effects of prenatal POPs exposure on plasma and hepatic lipids in F1 males.
Collapse
|
40
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
41
|
Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.
Collapse
|
42
|
Kim YA, Park JB, Woo MS, Lee SY, Kim HY, Yoo YH. Persistent Organic Pollutant-Mediated Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E448. [PMID: 30717446 PMCID: PMC6388367 DOI: 10.3390/ijerph16030448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
Abstract
Persistent organic pollutants (POPs) such as organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) have become wide-spread environmental contaminants as a consequence of their extensive use, long-range transport, and persistence. Because POPs are highly resistant to metabolic degradation, humans bioaccumulate these lipophilic and hydrophobic pollutants in fatty tissues for many years. Previous studies have demonstrated that POPs including PCBs are involved in the development of diabetes mellitus (DM) type 2 and insulin resistance. Numerous epidemiological studies suggest an association between POP burden and DM type 2/metabolic syndrome. In addition, several experimental studies have provided additional evidence supporting the association between POP exposure and DM type 2 or insulin resistance. Epidemiological and experimental studies have provided compelling evidence indicating that exposure to POPs increases the risk of developing insulin resistance and metabolic disorders. However, the detailed molecular mechanism underlying POP-induced insulin resistance is yet to be elucidated. In this article, we review literature that has reported on the association between POP burden and insulin resistance and the mechanism underlying POP-induced insulin resistance, and discuss implications for public health.
Collapse
Affiliation(s)
- Yeon A Kim
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 49201, Korea.
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea.
- Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea.
| | - Joon Beom Park
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Min Seok Woo
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea.
| | - Sang Yeob Lee
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 49201, Korea.
- Department of Rheumatology, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Hye Young Kim
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 49201, Korea.
| |
Collapse
|
43
|
Suarez-Lopez JR, Clemesha CG, Porta M, Gross MD, Lee DH. Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:24-35. [PMID: 30594847 DOI: 10.1016/j.etap.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Some evidence in humans suggests that persistent organic pollutants (POPs), including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), may alter the blood lipid composition. This study analyzed associations between serum POPs concentrations in young adulthood with blood lipid levels up to 23 years later. METHODS Serum POPs were measured in year 2 of follow-up (n = 180 men and women, ages: 20-32y), and plasma lipids in follow-up years 2, 7, 10, 15, 20 and 25. 32 POPs were detectable in ≥75% of participants (23 PCBs, 8 OCPs and PBB-153). We created summary scores for PCBs and OCPs for both wet-weight, and lipid standardized (LP) concentrations. We used repeated measures regression adjusting for demographic factors, BMI, smoking, diabetes status, among others. RESULTS We observed positive associations of the 23 LP-PCB score with total cholesterol (βper SD increase [95%CI]: 5.0 mg/dL [0.7, 9.2]), triglycerides (7.8 mg/dL [-0.9, 16.5]), LDL (4.2 mg/dL [0.2, 8.2]), oxidized LDL 3.4 U/L (-0.05, 6.8), and cholesterol/HDL ratio (0.2 [0.02, 0.3]). The associations for triglycerides (14.7 mg/dL [0.4, 20.1]), cholesterol/HDL (0.33 [0.09, 0.56]) and, to some extent, LDL (4.7 md/dL [-1.6, 10.9]) were only observed among participants in the upper 50th percentile of BMI. Non-dioxin-like PCBs had stronger associations that dioxin-like PCBs. OCPs and PBB-s had positive associations with most outcomes. CONCLUSIONS PCBs and PBB-153 measured in young adulthood were positively associated with prospective alterations in most blood lipid components, with evidence of effect modification by BMI. Further longitudinal studies with multiple measures of POPs overtime are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Chase G Clemesha
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Miquel Porta
- Hospital del Mar Institute of Medical Research (IMIM), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Carrer del Dr. Aiguader, 88, E-08003 Barcelona, Catalonia, Spain.
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609 Mayo 8609, 420 Delaware, Minneapolis, MN 55455, USA.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, 101 Dongin-dong, Jung-gu, Daegu, 700-422, Republic of Korea.
| |
Collapse
|
44
|
Yang C, Lee HK, Kong APS, Lim LL, Cai Z, Chung AC. Early-life exposure to endocrine disrupting chemicals associates with childhood obesity. Ann Pediatr Endocrinol Metab 2018; 23:182-195. [PMID: 30599479 PMCID: PMC6312913 DOI: 10.6065/apem.2018.23.4.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
Increasing prevalence of childhood obesity poses threats to the global health burden. Because this rising prevalence cannot be fully explained by traditional risk factors such as unhealthy diet and physical inactivity, early-life exposure to endocrine disrupting chemicals (EDCs) is recognized as emerging novel risk factors for childhood obesity. EDCs can disrupt the hormone-mediated metabolic pathways, affect children's growth and mediate the development of childhood obesity. Many organic pollutants are recently classified to be EDCs. In this review, we summarized the epidemiological and laboratory evidence related to EDCs and childhood obesity, and discussed the possible mechanisms underpinning childhood obesity and early-life exposure to non-persistent organic pollutants (phthalates, bisphenol A, triclosan) and persistent organic pollutants (dichlorodiphenyltrichloroethane, polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances). Understanding the relationship between EDCs and childhood obesity helps to raise public awareness and formulate public health policy to protect the youth from exposure to the harmful effects of EDCs.
Collapse
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lee Ling Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Asia Diabetes Foundation, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Arthur C.K. Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
45
|
Howell GE, McDevitt E, Henein L, Mulligan C, Young D. Alterations in cellular lipid metabolism produce neutral lipid accumulation following exposure to the organochlorine compound trans-nonachlor in rat primary hepatocytes. ENVIRONMENTAL TOXICOLOGY 2018; 33:962-971. [PMID: 29964320 PMCID: PMC6105551 DOI: 10.1002/tox.22583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 05/16/2023]
Abstract
Recent epidemiological studies have revealed significant positive associations between exposure to organochlorine (OC) pesticides and occurrence of the metabolic syndrome and there are a growing number of animal-based studies to support causality. However, the cellular mechanisms linking OC compound exposure and metabolic dysfunction remain elusive. Therefore, the present study was designed to determine if direct exposure to three highly implicated OC compounds promoted hepatic steatosis, the hepatic ramification of the metabolic syndrome. First, the steatotic effect of p,p'-dichlorodiphenyldichloroethylene (DDE), oxychlordane, and trans-nonachlor was determined in freshly isolated rat primary hepatocytes. Exposure to trans-nonachlor significantly increased neutral lipid accumulation as opposed to DDE and oxychlordane. To determine possible mechanisms governing increased fatty acid availability, the effects of trans-nonachlor exposure on fatty acid uptake, de novo lipogenesis, triglyceride secretion, and fatty acid oxidation were explored. Trans-nonachlor did not significantly alter fatty acid uptake. However, insulin-stimulated de novo lipogenesis as well as basal expression of fatty acid synthase, a major regulator of lipogenesis were significantly increased following trans-nonachlor exposure. Interestingly, there was a significant decrease in fatty acid oxidation following trans-nonachlor exposure. This decrease in fatty acid oxidation was accompanied by a slight, but significant increase in oleic acid-induced cellular triglyceride secretion. Therefore, taken together, the present data indicate direct exposure to trans-nonachlor has a more potent pro-steatotic effect than exposure to DDE or oxychlordane. This pro-steatotic effect of trans-nonachlor appears to be predominately mediated via increased de novo lipogenesis and decreased fatty acid oxidation.
Collapse
Affiliation(s)
- George Eli Howell
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762
- Corresponding author: George Eli Howell III, Ph.D, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, MS 39762, Phone: 601-420-4707, Fax: 662-325-1031,
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762
| | - Charlee Mulligan
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762
| |
Collapse
|
46
|
Howell GE, McDevitt E, Henein L, Mulligan C, Young D. "Trans-nonachlor increases extracellular free fatty acid accumulation and de novo lipogenesis to produce hepatic steatosis in McArdle-RH7777 cells". Toxicol In Vitro 2018; 50:285-292. [PMID: 29654899 DOI: 10.1016/j.tiv.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Recent studies suggest there may be an environmental exposure component to the development and progression of non-alcoholic fatty liver disease (NAFLD) involving the organochlorine (OC) pesticides or their metabolites. However, the roles of OC compounds in the development of NAFLD has not been fully elucidated. Therefore, the current study was designed to determine if exposure to trans-nonachlor, a prevalent OC compound, could promote hepatocyte lipid accumulation and determine potential pro-steatotic mechanisms. McArdle-RH7777 (McA) hepatoma cells were incubated with trans-nonachlor for 24 h then neutral lipid accumulation was determined by Oil Red O staining. Exposure to trans-nonachlor produced a concentration dependent increase in neutral lipid accumulation. Trans-nonachlor also increased extracellular free fatty acid-induced neutral lipid accumulation which appears to be due at least in part to increased free fatty acid accumulation as evident by increased accumulation of Bodipy labeled dodecanoic acid. Additionally, 14C-acetate incorporation into total cellular lipids was increased by trans-nonachlor implicating increased de novo lipogenesis (DNL) as a potential mediator of trans-nonachlor-induced neutral lipid accumulation. Taken together, the present data indicate exposure to trans-nonachlor has a direct, pro-steatotic effect on hepatocytes to increase lipid accumulation through the combinatorial actions of extracellular free fatty acid accumulation and increased DNL.
Collapse
Affiliation(s)
- George Eli Howell
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States.
| | - Erin McDevitt
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Lucie Henein
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Charlee Mulligan
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| | - Darian Young
- Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, Mississippi State, MS 39762, United States
| |
Collapse
|
47
|
Marushka L, Hu X, Batal M, Sadik T, Schwartz H, Ing A, Fediuk K, Tikhonov C, Chan HM. The Relationship between Persistent Organic Pollutants Exposure and Type 2 Diabetes among First Nations in Ontario and Manitoba, Canada: A Difference in Difference Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E539. [PMID: 29562596 PMCID: PMC5877084 DOI: 10.3390/ijerph15030539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
We previously studied the association between fish consumption and prevalence of type 2 diabetes (T2D) in Manitoba and Ontario First Nations (FNs), Canada and found different results. In this study, we used a difference in difference model to analyze the data. Dietary and health data from the First Nations Food Nutrition and Environment Study, a cross-sectional study of 706 Manitoba and 1429 Ontario FNs were analyzed. The consumption of fish was estimated using a food frequency questionnaire. Fish samples were analyzed for dichloro diphenyldichloro ethylene (DDE) and polychlorinated biphenyls (PCBs) content. Difference in difference model results showed that persistent organic pollutant (POP) exposure was positively associated with T2D in a dose-response manner. Stronger positive associations were found among females (OR = 14.96 (3.72-60.11)) than in males (OR = 2.85 (1.14-8.04)). The breakpoints for DDE and PCB intake were 2.11 ng/kg/day and 1.47 ng/kg/day, respectively. Each further 1 ng/kg/day increase in DDE and PCB intake increased the risk of T2D with ORs 2.29 (1.26-4.17) and 1.44 (1.09-1.89), respectively. Our findings suggest that the balance of risk and benefits associated with fish consumption is highly dependent on the regional POP concentrations in fish.
Collapse
Affiliation(s)
- Lesya Marushka
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Xuefeng Hu
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Malek Batal
- Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, 2405 Côte-Sainte-Catherine Street, Montreal, QC H3T 1A8, Canada.
| | - Tonio Sadik
- Assembly of First Nations, 55 Metcalfe St #1600, Ottawa, ON K1P 6L5, Canada.
| | - Harold Schwartz
- Health Canada, Environmental Public Health Division, First Nations and Inuit Health Branch (FNIHB), Room 2000A Jeanne Mance Bldg. AL 1920A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Amy Ing
- Nutrition Department, Faculty of Medicine, Université de Montréal, Pavillon Liliane de Stewart, 2405 Côte-Sainte-Catherine Street, Montreal, QC H3T 1A8, Canada.
| | - Karen Fediuk
- Dietitian and Nutrition Researcher, Victoria, BC V8Y2V8, Canada.
| | - Constantine Tikhonov
- Health Canada, Environmental Public Health Division, First Nations and Inuit Health Branch (FNIHB), Room 2000A Jeanne Mance Bldg. AL 1920A, Tunney's Pasture, Ottawa, ON K1A 0K9, Canada.
| | - Hing Man Chan
- Biology Department, University of Ottawa, 180 Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
48
|
Lee YM, Jacobs Jr. DR, Lee DH. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front Endocrinol (Lausanne) 2018; 9:712. [PMID: 30542326 PMCID: PMC6277786 DOI: 10.3389/fendo.2018.00712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Low dose persistent organic pollutants (POPs) have emerged as a new risk for type 2 diabetes (T2D). Despite substantial evidence from human and experimental studies, there are several critical issues which have not been properly addressed by POPs researchers. First, as POPs exist as mixtures, findings about POPs from human studies should be interpreted from the viewpoint of lipophilic chemical mixtures which include both measured and unmeasured POPs. Second, as POPs can directly reduce insulin secretion of beta cells, the role of POPs may be more prominent in the development of beta-cell dysfunction-dominant T2D rather than insulin resistance-dominant T2D. Third, there are multidimensional interrelationships between POPs and adipose tissue. Even though POPs are now considered as a new risk factor for T2D, independent of obesity, POPs and obesity are mechanistically linked to each other. POPs are involved in key mechanisms linking obesity and T2D, such as chronic inflammation of adipose tissue and lipotoxicity with ectopic fat accumulation. Also, POPs can explain puzzling human findings which suggest benefits of obesity because healthy adipose tissue can be protective by reducing the amount of POPs reaching other organs. Fourth, non-linear dose-response relationships between POPs and T2D are biologically possible. Although POPs are well-known endocrine disrupting chemicals (EDCs), mitochondrial dysfunction may be a more plausible mechanism due to unpredictability of EDC mixtures. As adipose tissue plays a role as an internal exposure source of POPs, how to manage POPs inside us may be essential to protect against harms of POPs.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - David R. Jacobs Jr.
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, DaeguSouth Korea
- *Correspondence: Duk-Hee Lee
| |
Collapse
|
49
|
Le Magueresse-Battistoni B, Vidal H, Naville D. Environmental Pollutants and Metabolic Disorders: The Multi-Exposure Scenario of Life. Front Endocrinol (Lausanne) 2018; 9:582. [PMID: 30333793 PMCID: PMC6176085 DOI: 10.3389/fendo.2018.00582] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity and diabetes have reached epidemic proportions the past few decades and continue to progress worldwide with no clear sign of decline of the epidemic. Obesity is of high concern because it is the main risk factor for a number of non-communicable diseases such as cardiovascular diseases and type 2 diabetes. Metabolic diseases constitute a major challenge as they are associated with an overall reduced quality of life and impose a heavy economic burden on countries. These are multifactorial diseases and it is now recognized that environmental exposure to man-made chemical pollutants is part of the equation. Yet, risk assessment procedures are based on a one-by-one chemical evaluation which does not meet the specificities of the multi-exposure scenario of life, e.g., a combined and long-term exposure to even the smallest amounts of chemicals. Indeed, it is assumed that environmental exposure to chemicals will be negligible based on the low potency of each chemical and that they do not interact. Within this mini-review, strong evidences are brought that exposure to low levels of multiple chemicals especially those shown to interfere with hormonal action, the so-called endocrine disrupting compounds do trigger metabolic disturbances in conditions in which no effect was expected if considering the concentration of each individual chemical in the mixture. This is known as the cocktail effect. It means that risk assessment procedures are not protective enough and thus that it should be revisited for the sake of Public Health.
Collapse
|
50
|
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol 2017; 8:1047. [PMID: 29311977 PMCID: PMC5742165 DOI: 10.3389/fphys.2017.01047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022] Open
Abstract
The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.
Collapse
Affiliation(s)
- Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|