1
|
Sen P, Hamers J, Sittig T, Shashikadze B, d'Ambrosio L, Stöckl JB, Bierschenk S, Zhang H, d'Alessio C, Zandbergen LM, Pauly V, Clauss S, Wolf E, Dendorfer A, Fröhlich T, Merkus D. Oxidative stress initiates hemodynamic change in CKD-induced heart disease. Basic Res Cardiol 2024; 119:957-971. [PMID: 39404904 PMCID: PMC11628585 DOI: 10.1007/s00395-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.
Collapse
Affiliation(s)
- Payel Sen
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Jules Hamers
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Theresa Sittig
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Laura d'Ambrosio
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Susanne Bierschenk
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Hengliang Zhang
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
| | - Chiara d'Alessio
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
| | - Lotte M Zandbergen
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Valerie Pauly
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Andreas Dendorfer
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany
| | | | - Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, Marchioninistrasse 68, 81377, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany.
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
3
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
4
|
Luizon MR, Pereira DA, Mamede I, Ceron CS, Cavalli RC, Palei AC, Sandrim VC. Antihypertensive therapy responsiveness and adverse outcomes in preeclampsia: insights into molecular mechanisms underlying cardiovascular and renal complications. Front Pharmacol 2023; 14:1281382. [PMID: 38074158 PMCID: PMC10702581 DOI: 10.3389/fphar.2023.1281382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024] Open
Affiliation(s)
- Marcelo R. Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Daniela A. Pereira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Mamede
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla S. Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ricardo C. Cavalli
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ana C. Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Valeria C. Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Hartley B, Bassiouni W, Schulz R, Julien O. The roles of intracellular proteolysis in cardiac ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:38. [PMID: 37768438 DOI: 10.1007/s00395-023-01007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia-reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia-reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia-reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia-reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia-reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
7
|
Bassiouni W, Valencia R, Mahmud Z, Seubert JM, Schulz R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial function during myocardial ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:29. [PMID: 37495895 DOI: 10.1007/s00395-023-00999-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1β in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
8
|
Patrichi G, Patrichi A, Satala CB, Sin AI. Matrix Metalloproteinases and Heart Transplantation-A Pathophysiological and Clinical View. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1295. [PMID: 37512106 PMCID: PMC10383867 DOI: 10.3390/medicina59071295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Heart transplantation is undergoing a continuous development, with rates of success increasing substantially due to advances in immunosuppressive therapy and surgical techniques. The most worrying complication occurring after cardiac transplantation is graft rejection, a phenomenon that is much affected by matrix metalloproteinases (MMPs), with the role of these proteases in the cardiac remodeling process being well established in the literature. A detailed investigation of the association between MMPs and cardiac rejection is necessary for the future development of more targeted therapies in transplanted patients, and to discover prognostic serum and immunohistochemical markers that will lead to more organized therapeutic management in these patients. The aim of this review is therefore to highlight the main MMPs relevant to cardiovascular pathology, with particular emphasis on those involved in complications related to heart transplantation, including cardiac graft rejection.
Collapse
Affiliation(s)
- Gabriela Patrichi
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Andrei Patrichi
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| | - Catalin-Bogdan Satala
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Anca Ileana Sin
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Pathology, Clinical County Emergency Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
9
|
Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 2023; 118:18. [PMID: 37160529 PMCID: PMC10169894 DOI: 10.1007/s00395-023-00987-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.
Collapse
Affiliation(s)
- Hanna Bräuninger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Krüger
- Clinic for Cardiology, University Heart and Vascular Centre Hamburg, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
10
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
11
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
12
|
Gonçalves PR, Nascimento LD, Gerlach RF, Rodrigues KE, Prado AF. Matrix Metalloproteinase 2 as a Pharmacological Target in Heart Failure. Pharmaceuticals (Basel) 2022; 15:ph15080920. [PMID: 35893744 PMCID: PMC9331741 DOI: 10.3390/ph15080920] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
Heart failure (HF) is an acute or chronic clinical syndrome that results in a decrease in cardiac output and an increase in intracardiac pressure at rest or upon exertion. The pathophysiology of HF is heterogeneous and results from an initial harmful event in the heart that promotes neurohormonal changes such as autonomic dysfunction and activation of the renin-angiotensin-aldosterone system, endothelial dysfunction, and inflammation. Cardiac remodeling occurs, which is associated with degradation and disorganized synthesis of extracellular matrix (ECM) components that are controlled by ECM metalloproteinases (MMPs). MMP-2 is part of this group of proteases, which are classified as gelatinases and are constituents of the heart. MMP-2 is considered a biomarker of patients with HF with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF). The role of MMP-2 in the development of cardiac injury and dysfunction has clearly been demonstrated in animal models of cardiac ischemia, transgenic models that overexpress MMP-2, and knockout models for this protease. New research to minimize cardiac structural and functional alterations using non-selective and selective inhibitors for MMP-2 demonstrates that this protease could be used as a possible pharmacological target in the treatment of HF.
Collapse
Affiliation(s)
- Pricila Rodrigues Gonçalves
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Lisandra Duarte Nascimento
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Raquel Fernanda Gerlach
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil;
| | - Keuri Eleutério Rodrigues
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
| | - Alejandro Ferraz Prado
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (P.R.G.); (L.D.N.); (K.E.R.)
- Correspondence:
| |
Collapse
|
13
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
14
|
Rodrigues KE, Azevedo A, Gonçalves PR, Pontes MHB, Alves GM, Oliveira RR, Amarante CB, Issa JPM, Gerlach RF, Prado AF. Doxycycline Decreases Atherosclerotic Lesions in the Aorta of ApoE-⁄- and Ovariectomized Mice with Correlation to Reduced MMP-2 Activity. Int J Mol Sci 2022; 23:ijms23052532. [PMID: 35269673 PMCID: PMC8910467 DOI: 10.3390/ijms23052532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Atherogenic events promote changes in vessel walls, with alteration of the redox state, and increased activity of matrix metalloproteinases (MMPs). Thus, this study aims to evaluate aortic remodeling, MMP activity, and reactive oxygen species (ROS) levels after treatment with doxycycline in ApoE-⁄- and ovariectomized mice (OVX). Female ApoE-⁄--knockout mice (5 weeks) were submitted to ovariectomy surgery to induce experimental menopause. They then received chow enriched with 1% cholesterol to induce hypercholesterolemia. The animals were divided into two experimental groups: ApoE-⁄-/OVX vehicle and ApoE-⁄-/OVX doxycycline (30 mg/kg) administered by gavage once a day for 28 days (15th to the 18th week of life). Blood samples were collected to measure total cholesterol and fractions. The aorta was used for morphometry and to measure the activity and expression of MMP-2 and ROS levels. The ApoE-⁄-/OVX doxycycline group showed no change in total and fraction cholesterol levels. However, there was a reduction in ROS levels, MMP-2 expression, and activity that correlated with a decrease in atherosclerotic lesions relative to the ApoE-⁄-/OVX vehicle (p > 0.05). Therefore, we conclude that doxycycline in ApoE-⁄-/OVX animals promotes a reduction in atherosclerotic lesions by reducing ROS and MMP-2 activity and expression.
Collapse
Affiliation(s)
- Keuri E. Rodrigues
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Aline Azevedo
- Department of Biomechanics, Medicine and Locomotor Apparatus Rehabilitation, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| | - Pricila R. Gonçalves
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Maria H. B. Pontes
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Gustavo M. Alves
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Ruan R. Oliveira
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
| | - Cristine B. Amarante
- Coordination of Earth Sciences and Ecology, Museu Paraense Emílio Goeldi, Belem 66077-830, PA, Brazil;
| | - João P. M. Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil; (J.P.M.I.); (R.F.G.)
| | - Raquel F. Gerlach
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo (FORP/USP), Ribeirao Preto 14040-904, SP, Brazil; (J.P.M.I.); (R.F.G.)
| | - Alejandro F. Prado
- Institute of Biological Sciences, Federal University of Pará, Cardiovascular System Pharmacology and Toxicology Laboratory, Belém 66075-110, PA, Brazil; (K.E.R.); (P.R.G.); (M.H.B.P.); (G.M.A.); (R.R.O.)
- Correspondence:
| |
Collapse
|
15
|
Sun J, Li L, Hu J, Gao Y, Song J, Zhang X, Hu H. Time-course RNA-Seq profiling reveals isoform-level gene expression dynamics of the cGAS-STING pathway. Comput Struct Biotechnol J 2022; 20:6490-6500. [PMCID: PMC9686058 DOI: 10.1016/j.csbj.2022.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The cGAS-STING pathway, orchestrating complicated transcriptome-wide immune responses, is essential for host antiviral defense but can also drive immunopathology in severe COVID-19. Here, we performed time-course RNA-Seq experiments to dissect the transcriptome expression dynamics at the gene-isoform level after cGAS-STING pathway activation. The in-depth time-course transcriptome after cGAS-STING pathway activation within 12 h enabled quantification of 48,685 gene isoforms. By employing regression models, we obtained 13,232 gene isoforms with expression patterns significantly associated with the process of cGAS-STING pathway activation, which were named activation-associated isoforms. The combination of hierarchical and k-means clustering algorithms revealed four major expression patterns of activation-associated isoforms, including two clusters with increased expression patterns enriched in cell cycle, autophagy, antiviral innate-immune functions, and COVID-19 coronavirus disease pathway, and two clusters showing decreased expression pattern that mainly involved in ncRNA metabolism, translation process, and mRNA processing. Importantly, by merging four clusters of activation-associated isoforms, we identified three types of genes that underwent isoform usage alteration during the cGAS-STING pathway activation. We further found that genes exhibiting protein-coding and non-protein-coding gene isoform usage alteration were strongly enriched for the factors involved in innate immunity and RNA splicing. Notably, overexpression of an enriched splicing factor, EFTUD2, shifted transcriptome towards the cGAS-STING pathway activated status and promoted protein-coding isoform abundance of several key regulators of the cGAS-STING pathway. Taken together, our results revealed the isoform-level gene expression dynamics of the cGAS-STING pathway and uncovered novel roles of splicing factors in regulating cGAS-STING pathway mediated immune responses.
Collapse
|
16
|
Laurent D, Small C, Lucke-Wold B, Dodd WS, Chalouhi N, Hu YC, Hosaka K, Motwani K, Martinez M, Polifka A, Koch M, Busl KM, Maciel CB, Hoh B. Understanding the genetics of intracranial aneurysms: A primer. Clin Neurol Neurosurg 2022; 212:107060. [PMID: 34863053 PMCID: PMC10116189 DOI: 10.1016/j.clineuro.2021.107060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 02/08/2023]
Abstract
The genetics of intracranial aneurysms is complex. Much work has been done looking at the extracellular matrix surrounding cerebral vasculature as well as the role of matrix metalloproteinases. This comprehensive review summarizes what is known to date about the important genetic components that predispose to aneurysm formation and critically discusses the published findings. We discuss promising pre-clinical models of aneurysm formation and subarachnoid hemorrhage, and highlight avenues for future discovery, while considering limitations in the research to date. This review will further serve as a comprehensive reference guide to understand the genetic underpinnings for aneurysm pathophysiology and act as a primer for further investigation.
Collapse
Affiliation(s)
- Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| | - Coulter Small
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Yin C Hu
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Melanie Martinez
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Adam Polifka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Matthew Koch
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Katharina M Busl
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Carolina B Maciel
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brian Hoh
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| |
Collapse
|
17
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
Rossano R, Larocca M, Macellaro M, Bilancia D, Riccio P. Unveiling a Hidden Biomarker of Inflammation and Tumor Progression: The 65 kDa Isoform of MMP-9 New Horizons for Therapy. Curr Issues Mol Biol 2021; 44:105-116. [PMID: 35723387 PMCID: PMC8929130 DOI: 10.3390/cimb44010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer metastasis is a stage of the disease where therapy is mostly ineffective; hence, the need to find reliable markers of its onset. The metalloproteinase-9 (MMP-9, gelatinase B) in its 82 kDa active form, is a good candidate, but here we show that the correspondent little known 65 kDa active MMP-9 isoform, often misrepresented with the other gelatinase MMP-2, is a more suitable marker. Sera from patients with lung and breast cancer were analyzed by bidimensional zymography to detect the activity of MMP-9 and MMP-2. Enzyme identity was confirmed by comparison with MMP-9 standards and by western blotting. The 65 kDa isoform of MMP-9 is a suitable biomarker to monitor tumor progression from tissue neoplasms to metastatic stage, as its activity begins to appear when disease severity increases and becomes very high in metastasis. Moreover, the 65 kDa MMP-9, which derives from the 82 kDa MMP-9, no longer responds to natural MMP-9 inhibitors. As its activity cannot be controlled, its appearance may warn that the pathological process is becoming irreversible. Identification and inhibition of the enzymes converting the inhibitor-sensitive 82 kDa MMP-9 into the corresponding “wild” 65 kDa MMP-9 may allow to develop therapies capable of blocking metastases.
Collapse
Affiliation(s)
- Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.L.); (M.M.); (P.R.)
- Correspondence: ; Tel.: +39-0971-20-5507
| | - Marilena Larocca
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.L.); (M.M.); (P.R.)
| | - Margherita Macellaro
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.L.); (M.M.); (P.R.)
| | - Domenico Bilancia
- Operating Unit, Medical Oncology, Hospital “Azienda Ospedaliera S. Carlo”, 85100 Potenza, Italy;
| | - Paolo Riccio
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.L.); (M.M.); (P.R.)
| |
Collapse
|
19
|
Bassiouni W, Seubert JM, Schulz R. Staurosporine-induced cleavage of apoptosis-inducing factor in human fibrosarcoma cells is independent of matrix metalloproteinase-2. Can J Physiol Pharmacol 2021; 100:184-191. [PMID: 34597523 DOI: 10.1139/cjpp-2021-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein which mediates staurosporine (STS)-induced cell death. AIF cleavage and translocation to the cytosol is thought to be calpain-1-dependent as calpain inhibitors reduced AIF proteolysis. However, many calpain inhibitors also inhibit matrix metalloproteinase-2 (MMP-2) activity, an intracellular and extracellular protease implicated in apoptosis. Here we investigated whether MMP-2 activity is affected in response to STS and if contributes to AIF cleavage. Human fibrosarcoma HT1080 cells were treated with STS (0.1 µM, 0.25-24 hr). A significant increase in cellular MMP-2 activity was seen by gelatin zymography after 6 hr STS treatment, prior to induction of cell necrosis. Western blot showed the time-dependent appearance of two forms of AIF (~60 and 45 kDa) in the cytosol which were significantly increased at 6 hr. Surprisingly, knocking down MMP-2 or inhibiting its activity with MMP-2 preferring inhibitors ARP-100 or ONO-4817, or inhibiting calpain activity with ALLM or PD150606, did not prevent the STS-induced increase in cytosolic AIF. These results show that although STS rapidly increases MMP-2 activity, the cytosolic release of AIF may be independent of the proteolytic activities of MMP-2 or calpain.
Collapse
Affiliation(s)
- Wesam Bassiouni
- University of Alberta Faculty of Medicine & Dentistry, 12357, Department of Pharmacology, Edmonton, Alberta, Canada;
| | - John M Seubert
- University of Alberta, Faculty of Pharmacy/Pharmaceutical Sciences, 3-142D Katz Group Centre for Pharmacy & Health Research, 11361 - 87 Ave., 2020M Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada, T6G 2E1;
| | - Richard Schulz
- University of Alberta, Pediatrics & Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, 462 HMRC, Edmonton, Alberta, Canada, T6G 2S2;
| |
Collapse
|
20
|
Diaz-Canestro C, Puspitasari YM, Liberale L, Guzik TJ, Flammer AJ, Bonetti NR, Wüst P, Costantino S, Paneni F, Akhmedov A, Varga Z, Ministrini S, Beer JH, Ruschitzka F, Hermann M, Lüscher TF, Sudano I, Camici GG. MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation. Cardiovasc Res 2021; 118:2385-2396. [PMID: 34586381 DOI: 10.1093/cvr/cvab300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. Age-dependent stiffening of large elastic arteries is primarily attributed to increased levels of matrix metalloproteinase-2 (MMP-2). However, the mechanistic link between age-dependent arterial stiffness and MMP-2 remains unclear. Thus, we aimed to investigate the efficacy of MMP-2 knockdown using small interfering RNA (siRNA) on age-dependent arterial stiffness. METHODS AND RESULTS Pulse wave velocity (PWV) was assessed in right carotid artery of wild type (WT) mice from different age groups. MMP-2 levels in the carotid artery and plasma of young (3 months) and old (20-25 months) WT mice were determined. Carotid PWV as well as vascular and circulating MMP-2 were elevated with increasing age in mice. Old WT mice (18-21-month-old) were treated for 4 weeks with either MMP-2 or scrambled (Scr) siRNA via tail vein injection. Carotid PWV was assessed at baseline, 2 and 4 weeks after start of the treatment. MMP-2 knockdown reduced vascular MMP-2 levels and attenuated age-dependent carotid stiffness. siMMP-2 treated mice showed increased elastin to collagen ratio, lower plasma desmosine (DES), enhanced phosphorylation of endothelial nitric oxide synthase (eNOS) and higher levels of vascular cyclic guanosine monophosphate (cGMP). An age-dependent increase in direct protein-protein interaction between MMP-2 and eNOS was also observed. Lastly, DES, an elastin breakdown product, was measured in a patient cohort (n = 64, 23-86 years old), where carotid-femoral PWV was also assessed; here, plasma levels of DES directly correlated with age and arterial stiffness. CONCLUSION MMP-2 knockdown attenuates age-dependent carotid stiffness by blunting elastin degradation and augmenting eNOS bioavailability. Given the increasing clinical use of siRNA technology, MMP2 knockdown should be investigated further as a possible strategy to mitigate age-dependent arterial stiffness and related CV diseases. TRANSLATIONAL PERSPECTIVE Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. This study provides translational evidence to support a key role for MMP-2 on the development of age-associated arterial stiffness. Silencing of MMP-2 using siRNA technology shows an effect on aged mice where it attenuates age-dependent carotid stiffness by reducing elastin degradation and increasing eNOS bioavailability. Additionally, in humans we show that elastin breakdown increases with age and increased PWV. These findings indicate MMP-2 knockdown as a promising novel strategy to attenuate age-dependent arterial stiffness and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Science, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.,Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Andreas J Flammer
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Patricia Wüst
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Hermann
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Royal Brompton & Harefield Hospitals and Imperial College London, United Kingdom
| | - Isabella Sudano
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Ceron CS, Pereira DA, Sandrim VC, Luizon MR. Potential roles of visfatin/NAMPT on endothelial dysfunction in preeclampsia and pathways underlying cardiac and vascular remodeling. J Cell Physiol 2021; 237:10-12. [PMID: 34486731 DOI: 10.1002/jcp.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela A Pereira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Parente JM, Blascke de Mello MM, Silva PHLD, Omoto ACM, Pernomian L, Oliveira ISD, Mahmud Z, Fazan R, Arantes EC, Schulz R, Castro MMD. MMP inhibition attenuates hypertensive eccentric cardiac hypertrophy and dysfunction by preserving troponin I and dystrophin. Biochem Pharmacol 2021; 193:114744. [PMID: 34453903 DOI: 10.1016/j.bcp.2021.114744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Cardiac transition from concentric (C-LVH) to eccentric left ventricle hypertrophy (E-LVH) is a maladaptive response of hypertension. Matrix metalloproteinases (MMPs), in particular MMP-2, may contribute to tissue remodeling by proteolyzing extra- and intracellular proteins. Troponin I and dystrophin are two potential targets of MMP-2 examined in this study and their proteolysis would impair cardiac contractile function. We hypothesized that MMP-2 contributes to the decrease in troponin I and dystrophin in the hypertensive heart and thereby controls the transition from C-LVH to E-LVH and cardiac dysfunction. METHODS Male Wistar rats were divided into sham or two kidney-1 clip (2K-1C) hypertensive groups and treated with water (vehicle) or doxycycline (MMP inhibitor, 15 mg/kg/day) by gavage from the tenth to the sixteenth week post-surgery. Tail-cuff plethysmography, echocardiography, gelatin zymography, confocal microscopy, western blot, mass spectrometry, in silico protein analysis and immunofluorescence were performed. RESULTS 6 out of 23 2K-1C rats (26%) had E-LVH followed by reduced ejection fraction. The remaining had C-LVH with preserved cardiac function. Doxycycline prevented the transition from C-LVH to E-LVH. MMP activity is increased in C-LVH and E-LVH hearts which was inhibited by doxycycline. This effect was associated with an increase in troponin I cleavage products and a decline in dystrophin in the left ventricle of E-LVH rats, which was prevented by doxycycline. CONCLUSION Hypertension causes increased cardiac MMP-2 activity which proteolyzes troponin I and dystrophin, contributing to the transition from C-LVH to E-LVH and cardiac dysfunction.
Collapse
Affiliation(s)
- Juliana Montenegro Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Marcela Maria Blascke de Mello
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Pedro Henrique Leite da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Ana Carolina Mieko Omoto
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Zabed Mahmud
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Center, T6G 2S2 Edmonton, AB, Canada
| | - Michele Mazzaron de Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
23
|
Abstract
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) belong to the metzincin family of zinc-containing multidomain molecules, and can act as soluble or membrane-bound proteases. These enzymes inactivate or activate other soluble or membrane-expressed mediator molecules, which enables them to control developmental processes, tissue remodelling, inflammatory responses and proliferative signalling pathways. The dysregulation of MMPs and ADAMs has long been recognized in acute kidney injury and in chronic kidney disease, and genetic targeting of selected MMPs and ADAMs in different mouse models of kidney disease showed that they can have detrimental and protective roles. In particular, MMP-2, MMP-7, MMP-9, ADAM10 and ADAM17 have been shown to have a mainly profibrotic effect and might therefore represent therapeutic targets. Each of these proteases has been associated with a different profibrotic pathway that involves tissue remodelling, Wnt-β-catenin signalling, stem cell factor-c-kit signalling, IL-6 trans-signalling or epidermal growth factor receptor (EGFR) signalling. Broad-spectrum metalloproteinase inhibitors have been used to treat fibrotic kidney diseases experimentally but more targeted approaches have since been developed, including inhibitory antibodies, to avoid the toxic side effects initially observed with broad-spectrum inhibitors. These advances not only provide a solid foundation for additional preclinical studies but also encourage further translation into clinical research.
Collapse
|
24
|
Carmelo-Luna FJ, Mendoza-Wilson AM, Ramos-Clamont Montfort G, Lizardi-Mendoza J, Madera-Santana T, Lardizábal-Gutiérrez D, Quintana-Owen P. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles. Bioorg Med Chem 2021; 42:116240. [PMID: 34116380 DOI: 10.1016/j.bmc.2021.116240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
In this research, sorghum procyanidins (PCs) and procyanidin B1 (PB1) were encapsulated in gelatin (Gel) to form nanoparticles as a strategy to maintain their stability and bioactivity and for possible applications as inhibitors of metalloproteinases (MMPs) of the gelatinase type. Encapsulation was carried out by adding either PCs or PB1 to an aqueous solution of A- or B-type Gel (GelA or GelB) at different concentrations and pH. Under this procedure, the nanoparticles PCs-GelA, PCs-GelB, PB1-GelA, and PB1-GelB were synthesized and subsequently characterized by experimental and computational methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that all types of nanoparticles had sizes in the range of 22-138 nm and tended to adopt an approximately spherical morphology with a smooth surface, and they were immersed in a Gel matrix. Spectral analysis indicated that the nanoparticles were synthesized by establishing hydrogen bonds and hydrophobic interactions betweenGel and the PCs or PB1. Study of simulated gastrointestinal digestion suggested that PCs were not released from the Gel nanoparticles, and they maintained their morphology (SEM analysis) and antioxidant activity determined by Trolox-equivalent antioxidant capacity (TEAC) assay. Computational characterization carried out through molecular docking studies of PB1 with Gel or (pro-)metalloproteinase-2 [(pro-)MMP-2], as a model representative of the PCs, showed very favorable binding energies (around -5.0 kcal/mol) provided by hydrogen bonds, van der Waals interactions, and desolvation. Additionally, it was found that PB1 could act as a selective inhibitor of (pro-)MMP-2.
Collapse
Affiliation(s)
- Francisco Javier Carmelo-Luna
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Ana María Mendoza-Wilson
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico.
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencias de los Alimentos, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Alimentos de Origen Animal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Tomás Madera-Santana
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, 83304 Hermosillo, Sonora, Mexico
| | - Daniel Lardizábal-Gutiérrez
- Centro de Investigación en Materiales Avanzados S.C., Departamento de Materiales Nanoestructurados, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua C.P. 31109, Chihuahua, Chihuahua, Mexico
| | - Patricia Quintana-Owen
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Carretera antigua a Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
25
|
Ganther S, Radaic A, Malone E, Kamarajan P, Chang NYN, Tafolla C, Zhan L, Fenno JC, Kapila YL. Treponema denticola dentilisin triggered TLR2/MyD88 activation upregulates a tissue destructive program involving MMPs via Sp1 in human oral cells. PLoS Pathog 2021; 17:e1009311. [PMID: 34255809 PMCID: PMC8301614 DOI: 10.1371/journal.ppat.1009311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/23/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Nai-Yuan Nicholas Chang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christian Tafolla
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - J. Christopher Fenno
- Department of Biological and Material Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
26
|
Yang LY, Bhaskar K, Thompson J, Duval K, Torbey M, Yang Y. Non-invasive vagus nerve stimulation reduced neuron-derived IL-1β and neuroinflammation in acute ischemic rat brain. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Prado AF, Batista RIM, Tanus-Santos JE, Gerlach RF. Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules 2021; 11:biom11040585. [PMID: 33923477 PMCID: PMC8074048 DOI: 10.3390/biom11040585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Various pathophysiological mechanisms have been implicated in hypertension, but those resulting in vascular dysfunction and remodeling are critical and may help to identify critical pharmacological targets. This mini-review article focuses on central mechanisms contributing to the vascular dysfunction and remodeling of hypertension, increased oxidative stress and impaired nitric oxide (NO) bioavailability, which enhance vascular matrix metalloproteinase (MMP) activity. The relationship between NO, MMP and oxidative stress culminating in the vascular alterations of hypertension is examined. While the alterations of hypertension are not fully attributable to these pathophysiological mechanisms, there is strong evidence that such mechanisms play critical roles in increasing vascular MMP expression and activity, thus resulting in abnormal degradation of extracellular matrix components, receptors, peptides, and intracellular proteins involved in the regulation of vascular function and structure. Imbalanced vascular MMP activity promotes vasoconstriction and impairs vasodilation, stimulating vascular smooth muscle cells (VSMC) to switch from contractile to synthetic phenotypes, thus facilitating cell growth or migration, which is associated with the deposition of extracellular matrix components. Finally, the protective effects of MMP inhibitors, antioxidants and drugs that enhance vascular NO activity are briefly discussed. Newly emerging therapies that address these essential mechanisms may offer significant advantages to prevent vascular remodeling in hypertensive patients.
Collapse
Affiliation(s)
- Alejandro F. Prado
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA 66075-110, Brazil;
| | - Rose I. M. Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; (R.I.M.B.); (J.E.T.-S.)
| | - Raquel F. Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
- Correspondence: ; Tel.: +55-16-33154065
| |
Collapse
|
28
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scarcella A, Nucera S, Scicchitano M, Ruga S, Bosco F, Maiuolo J, Macrì R, Zito MC, Oppedisano F, Guarnieri L, Mollace R, Palma E, Muscoli C, Mollace V. Paradoxical effect of fat diet in matrix metalloproteinases induced mitochondrial dysfunction in diabetic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2021; 22:268-278. [PMID: 33633042 DOI: 10.2459/jcm.0000000000001046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Diabetic cardiomyopathy represents the main cause of death among diabetic people. Despite this evidence, the molecular mechanisms triggered by impaired glucose and lipid metabolism inducing heart damage remain unclear. The aim of our study was to investigate the effect of altered metabolism on the early stages of cardiac injury in experimental diabetes. METHODS For this purpose, rats were fed a normocaloric diet (NPD) or a high fat diet (HFD) for up to 12 weeks. After the fourth week, streptozocin (35 mg/kg) was administered in a subgroup of both NPD and HFD rats to induce diabetes. Cardiac function was analysed by echocardiography. Matrix metalloproteinases (MMPs) activity and intracellular localization were assessed through zymography and immunofluorescence, whereas apoptotic and oxidative markers by immunohistochemistry and western blot. RESULTS Hyperglycaemia or hyperlipidaemia reduced ejection fraction and fractional shortening as compared with control. Unexpectedly, cardiac dysfunction was less marked in diabetic rats fed a hyperlipidaemic diet, suggesting an adaptive response of the myocardium to hyperglycaemia-induced injury. This response was characterized by the inhibition of N-terminal truncated-MMP-2 translocation from endoplasmic reticulum into mitochondria and by superoxide anion overproduction observed in cardiomyocytes under hyperglycaemia. CONCLUSION Overall, these findings suggest novel therapeutic targets aimed to counteract mitochondrial dysfunction in the onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Antonino Scarcella
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| |
Collapse
|
29
|
Nakkala JR, Yao Y, Zhai Z, Duan Y, Zhang D, Mao Z, Lu L, Gao C. Dimethyl Itaconate-Loaded Nanofibers Rewrite Macrophage Polarization, Reduce Inflammation, and Enhance Repair of Myocardic Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006992. [PMID: 33719217 DOI: 10.1002/smll.202006992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Indexed: 05/22/2023]
Abstract
Cellular metabolism plays a major role in the regulation of inflammation. The inflammatory macrophages undergo a wide-range of metabolic rewriting due to the production of significant amount of itaconate metabolite from cis-aconitate in the tricarboxylic acid cycle. This itaconate molecule has been recently described as a promising immunoregulator. However, its function and mode of action on macrophages and tissue repair and regeneration are yet unclear. Herein, the itaconate-derivative dimethyl itaconate (DMI) suppresses the IL-23/IL-17 inflammatory axis-associated genes and promotes antioxidant nuclear factor erythroid 2-related factor 2 target genes. The poly-ε-caprolactone (PCL)/DMI nanofibers implanted in mice initially maintain inflammation by suppressing anti-inflammatory activity and particular inflammation, while at later stage promotes anti-inflammatory activity for an appropriate tissue repair. Furthermore, the PCL/DMI nanofiber patches show an excellent myocardial protection by reducing infarct area and improving ventricular function via time-dependent regulation of myocardium-associated genes. This study unveils potential DMI macrophage modulatory functions in tissue microenvironment and macrophages rewriting for proper tissue repair.
Collapse
Affiliation(s)
- Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Linrong Lu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
30
|
Cruz JDO, Silva AO, Ribeiro JM, Luizon MR, Ceron CS. Epigenetic Regulation of the N-Terminal Truncated Isoform of Matrix Metalloproteinase-2 (NTT-MMP-2) and Its Presence in Renal and Cardiac Diseases. Front Genet 2021; 12:637148. [PMID: 33732288 PMCID: PMC7959838 DOI: 10.3389/fgene.2021.637148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Several clinical and experimental studies have documented a compelling and critical role for the full-length matrix metalloproteinase-2 (FL-MMP-2) in ischemic renal injury, progressive renal fibrosis, and diabetic nephropathy. A novel N-terminal truncated isoform of MMP-2 (NTT-MMP-2) was recently discovered, which is induced by hypoxia and oxidative stress by the activation of a latent promoter located in the first intron of the MMP2 gene. This NTT-MMP-2 isoform is enzymatically active but remains intracellular in or near the mitochondria. In this perspective article, we first present the findings about the discovery of the NTT-MMP-2 isoform, and its functional and structural differences as compared with the FL-MMP-2 isoform. Based on publicly available epigenomics data from the Encyclopedia of DNA Elements (ENCODE) project, we provide insights into the epigenetic regulation of the latent promoter located in the first intron of the MMP2 gene, which support the activation of the NTT-MMP-2 isoform. We then focus on its functional assessment by covering the alterations found in the kidney of transgenic mice expressing the NTT-MMP-2 isoform. Next, we highlight recent findings regarding the presence of the NTT-MMP-2 isoform in renal dysfunction, in kidney and cardiac diseases, including damage observed in aging, acute ischemia-reperfusion injury (IRI), chronic kidney disease, diabetic nephropathy, and human renal transplants with delayed graft function. Finally, we briefly discuss how our insights may guide further experimental and clinical studies that are needed to elucidate the underlying mechanisms and the role of the NTT-MMP-2 isoform in renal dysfunction, which may help to establish it as a potential therapeutic target in kidney diseases.
Collapse
Affiliation(s)
- Juliana de Oliveira Cruz
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra O Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Jessyca M Ribeiro
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
31
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
Euler G, Locquet F, Kociszewska J, Osygus Y, Heger J, Schreckenberg R, Schlüter KD, Kenyeres É, Szabados T, Bencsik P, Ferdinandy P, Schulz R. Matrix Metalloproteinases Repress Hypertrophic Growth in Cardiac Myocytes. Cardiovasc Drugs Ther 2021; 35:353-365. [PMID: 33400052 PMCID: PMC7994223 DOI: 10.1007/s10557-020-07138-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 12/14/2022]
Abstract
Purpose Matrix metalloproteinases (MMPs) are identified as modulators of the extracellular matrix in heart failure progression. However, evidence for intracellular effects of MMPs is emerging. Pro- and anti-hypertrophic cardiac effects are described. This may be due to the various sources of different MMPs in the heart tissue. Therefore, the aim of the present study was to determine the role of MMPs in hypertrophic growth of isolated rat ventricular cardiac myocytes. Methods Cardiomyocytes were isolated form ventricular tissues of the rat hearts by collagenase perfusion. RT-qPCR, western blots, and zymography were used for expression and MMP activity analysis. Cross-sectional area and the rate of protein synthesis were determined as parameters for hypertrophic growth. Results MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14 mRNAs were detected in cardiomyocytes, and protein expression of MMP-2, MMP-9, and MMP-14 was identified. Hypertrophic stimulation of cardiomyocytes did not enhance, but interestingly decreased expression of MMPs, indicating that downregulation of MMPs may promote hypertrophic growth. Indeed, the nonselective MMP inhibitors TAPI-0 or TIMP2 and the MMP-2-selective ARP-100 enhanced hypertrophic growth. Furthermore, TAPI-0 increased phosphorylation and thus activation of extracellular signaling kinase (ERK) and Akt (protein kinase B), as well as inhibition of glycogen synthase 3β (GSK3β). Abrogation of MEK/ERK- or phosphatidylinositol-3-kinase(PI3K)/Akt/GSK3β-signaling with PD98059 or LY290042, respectively, inhibited hypertrophic growth under TAPI-0. Conclusion MMPs’ inhibition promotes hypertrophic growth in cardiomyocytes in vitro. Therefore, MMPs in the healthy heart may be important players to repress cardiac hypertrophy.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany.
| | - Fabian Locquet
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Joanna Kociszewska
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Yvonne Osygus
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Éva Kenyeres
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig-Universität Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
33
|
Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Sergi C, Keschrumrus V, Churko JM, Granzier H, Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovasc Res 2021; 117:188-200. [PMID: 31995179 PMCID: PMC7797218 DOI: 10.1093/cvr/cvaa017] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix. METHODS AND RESULTS Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E'/A'. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817. CONCLUSIONS MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Woo Jung Cho
- Faculty of Medicine and Dentistry Cell Imaging Centre, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Poirier
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Vic Keschrumrus
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Richard Schulz
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
34
|
Li Y, Huang J, Zhou Y, Wu T, Ma P, Yuan C, Chen S, Hu Y. Structure-related differential proteins identification for sous-vide cooking hairtail ( Trichiurus lepturus) product. Food Funct 2020; 11:9960-9972. [PMID: 33112346 DOI: 10.1039/d0fo00866d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimal heating parameters for sous-vide cooking hairtail (Trichiurus lepturus) were selected and the differential proteins related to texture change were clarified using proteomics. Heating under 68 °C for 20 min was chosen to be the desirable heating parameter. Texture profile analysis (TPA) showed the texture of hairtail changed more severely during heat-up process than heating preservation process. Most of the high-content proteins did not change much during heating preservation. 169 kinds of proteins were identified as differential expressed proteins. Actin cytoplasmic 1, myosin heavy chain 1 and myosin heavy chain were the most variable structural proteins during heat-up process, with the change fold of 32.4, 29.1 and 18.8, respectively, while the highest structure proteins changing fold during heat preservation process were 16.7, 4.7 and 3.9, respectively, much lower than that of heat-up process. The partial deformation of structure-related proteins under sous-vide cooking was a vital factor in reserving the texture of hairtail.
Collapse
Affiliation(s)
- Yuan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scicchitano M, Ruga S, Zito MC, Nucera S, Bosco F, Maiuolo J, Macrì R, Guarnieri L, Mollace R, Coppoletta AR, Nicita C, Tavernese A, Palma E, Muscoli C, Mollace V. Role of TSPO/VDAC1 Upregulation and Matrix Metalloproteinase-2 Localization in the Dysfunctional Myocardium of Hyperglycaemic Rats. Int J Mol Sci 2020; 21:ijms21207432. [PMID: 33050121 PMCID: PMC7587933 DOI: 10.3390/ijms21207432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical management of diabetic cardiomyopathy represents an unmet need owing to insufficient knowledge about the molecular mechanisms underlying the dysfunctional heart. The aim of this work is to better clarify the role of matrix metalloproteinase 2 (MMP-2) isoforms and of translocator protein (TSPO)/voltage-dependent anion-selective channel 1 (VDAC1) modulation in the development of hyperglycaemia-induced myocardial injury. Hyperglycaemia was induced in Sprague-Dawley rats through a streptozocin injection (35 mg/Kg, i.p.). After 60 days, cardiac function was analysed by echocardiography. Nicotinamide Adenine Dinucleotide Phosphate NADPH oxidase and TSPO expression was assessed by immunohistochemistry. MMP-2 activity was detected by zymography. Superoxide anion production was estimated by MitoSOX™ staining. Voltage-dependent anion-selective channel 1 (VDAC-1), B-cell lymphoma 2 (Bcl-2), and cytochrome C expression was assessed by Western blot. Hyperglycaemic rats displayed cardiac dysfunction; this response was characterized by an overexpression of NADPH oxidase, accompanied by an increase of superoxide anion production. Under hyperglycaemia, increased expression of TSPO and VDAC1 was detected. MMP-2 downregulated activity occurred under hyperglycemia and this profile of activation was accompanied by the translocation of intracellular N-terminal truncated isoform of MMP-2 (NT-MMP-2) from mitochondria-associated membrane (MAM) into mitochondria. In the onset of diabetic cardiomyopathy, mitochondrial impairment in cardiomyocytes is characterized by the dysregulation of the different MMP-2 isoforms. This can imply the generation of a “frail” myocardial tissue unable to adapt itself to stress.
Collapse
Affiliation(s)
- Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Correspondence: ; Tel.: +39-0961-3694301
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Caterina Nicita
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Annamaria Tavernese
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| |
Collapse
|
36
|
Bi X, Yang C, Song Y, Yuan J, Cui J, Hu F, Qiao S. Matrix Metalloproteinases Increase Because of Hypoperfusion in Obstructive Hypertrophic Cardiomyopathy. Ann Thorac Surg 2020; 111:915-922. [PMID: 32738221 DOI: 10.1016/j.athoracsur.2020.05.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Myocardial fibrosis (MF) is considered a result of microvascular dysfunction in patients with hypertrophic cardiomyopathy. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), capable of degrading collagen, directly participate in the development of MF. First we investigated the relationships among MF, microvascular rarefaction, and MMPs. Then we assessed the prognostic value of MF-related circulating biomarkers. METHODS Fifty-five obstructive hypertrophic cardiomyopathy (HOCM) patients were enrolled after surgical myectomy. Myocardial samples were performed with Masson's trichrome staining and immunohistochemical procedures for collagen volume fraction and microvascular density, respectively. Enzyme-linked immunosorbent assays were used to assess myocardial and plasma of MMP-2, MMP-9, and TIMP-1 and plasma C-terminal propeptide of procollagen type Ⅰ (PICP) and C-terminal telopeptide of type Ⅰ collagen (ICTP) levels. The composite cardiovascular endpoint consisted of new-onset atrial fibrillation, heart failure requiring hospitalization, and all-cause death. RESULTS In HOCM patients microvascular density was associated with the myocardial MMP-2/TIMP-1 ratio (r = -0.348, P = .009), whereas no correlation was found between collagen volume fraction and myocardial MMPs. During the 44-month follow-up 6 patients experienced a cardiovascular endpoint. The plasma PICP/ICTP ratio and MMP-2/TIMP-1 ratio were the 2 strongest prognostic makers. In multivariable analyses high PICP/ICTP and MMP-2/TIMP-1 ratios remained independent predictors of cardiovascular outcomes after adjusting for clinical confounders (hazard ratios, 12.683 [P = .021] and 17.037 [P = .027], respectively). CONCLUSIONS In HOCM patients the myocardial MMP-2/TIMP-1 ratio was elevated because of microvascular rarefaction but may not be responsible for MF. High plasma PICP/ICTP and MMP-2/TIMP-1 ratios are independent predictors of adverse outcomes in HOCM patients.
Collapse
Affiliation(s)
- Xuanye Bi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengzhi Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunhu Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiansong Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingang Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenghuan Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shubin Qiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
37
|
Spaulding KA, Zhu Y, Takaba K, Ramasubramanian A, Badathala A, Haraldsson H, Collins A, Aguayo E, Shah C, Wallace AW, Ziats NP, Lovett DH, Baker AJ, Healy KE, Ratcliffe MB. Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility. J Biomed Mater Res A 2020; 108:1736-1746. [PMID: 32270584 DOI: 10.1002/jbm.a.36941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
The decrease in contractility in myocardium adjacent (border zone; BZ) to a myocardial infarction (MI) is correlated with an increase in reactive oxygen species (ROS). We hypothesized that injection of a thermoresponsive hydrogel, with ROS scavenging properties, into the MI would decrease ROS and improve BZ function. Fourteen sheep underwent antero-apical MI. Seven sheep had a comb-like copolymer synthesized from N-isopropyl acrylamide (NIPAAm) and 1500 MW methoxy poly(ethylene glycol) methacrylate, (NIPAAm-PEG1500), injected (20 × 0.5 mL) into the MI zone 40 min after MI (MI + NIPAAm-PEG1500) and seven sheep were MI controls. Cardiac MRI was performed 2 weeks before and 6 weeks after MI + NIPAAm-PEG1500. BZ wall thickness at end systole was significantly higher for MI + NIPAAm-PEG1500 (12.32 ± 0.51 mm/m2 MI + NIPAAm-PEG1500 vs. 9.88 ± 0.30 MI; p = .023). Demembranated muscle force development for BZ myocardium 6 weeks after MI was significantly higher for MI + NIPAAm-PEG1500 (67.67 ± 2.61 mN/m2 MI + NIPAAm-PEG1500 vs. 40.53 ± 1.04 MI; p < .0001) but not significantly different from remote myocardium or BZ or non-operated controls. Levels of ROS in BZ tissue were significantly lower in the MI + NIPAAm-PEG1500 treatment group (hydroxyl p = .0031; superoxide p = .0182). We conclude that infarct injection of the NIPAAm-PEG1500 hydrogel with ROS scavenging properties decreased ROS and improved contractile protein function in the border zone 6 weeks after MI.
Collapse
Affiliation(s)
| | - Yang Zhu
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Kiyoaki Takaba
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Anusuya Ramasubramanian
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | | | - Henrik Haraldsson
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | | | - Esteban Aguayo
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Curran Shah
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Arthur W Wallace
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David H Lovett
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| | - Kevin E Healy
- Department of Bioengineering and Materials Science and Engineering, University of California at Berkeley, California, USA
| | - Mark B Ratcliffe
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Anesthesiology, Medicine, Radiology, and Surgery, University of California at San Francisco, California, USA
| |
Collapse
|
38
|
Mendoza-Wilson AM, Balandrán-Quintana RR. Computational and Experimental Progress on the Structure and Chemical Reactivity of Procyanidins: Their Potential as Metalloproteinases Inhibitors. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180828114021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are enzymes involved in various physiological
processes essential for living beings, but the loss of the regulatory control by endogenous
inhibitors of MMPs, leads to the development of serious diseases such as cardiovascular
system affections, cancer, and metastasis. For these reasons, exogenous inhibitors
are required for these enzymes, which are able to control the proteolytic activity
and are selective towards the different MMPs, besides properties which, from the
pharmacological point of view, are necessary to be effective under physiological
conditions. Based on these expectations, some bioactive compounds that are abundant in
the human diet, like procyanidins (PCs) have emerged as potential exogenous inhibitors
of MMPs. This review presents the advances of experimental and computational investigations
carried out to date on the structure and chemical reactivity of PCs, to support the basis of their potential
use as MMP inhibitors. For such purpose, specific sites among MMPs identified for a selective inhibition, the
role of PCs in the regulation of MMPs by posttranscriptional mechanisms at the level of microRNAs, modulation
of reactive oxygen species (ROS), effects on tissue inhibitors of MMPs (TIMPs), the crosslinking of PCs
with the extracellular matrix proteins, as well as direct interaction between PCs and MMPs, are discussed.
Methods for isolation and synthesis of PCs, as well as hydrophilicity properties, bioavailability, and susceptibility
to be metabolized in oral intake, are also addressed. The information gathered in this review could additionally
help to visualize future research related to this topic.
Collapse
Affiliation(s)
- Ana María Mendoza-Wilson
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| | - René Renato Balandrán-Quintana
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| |
Collapse
|
39
|
Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus. PLoS One 2019; 14:e0221798. [PMID: 31461499 PMCID: PMC6713391 DOI: 10.1371/journal.pone.0221798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2019] [Indexed: 01/09/2023] Open
Abstract
Background Diabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content. Purpose We hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model. Methods Rat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes. Results Quantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization. Conclusion Two isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP.
Collapse
|
40
|
Maldonado M, Salgado-Aguayo A, Herrera I, Cabrera S, Ortíz-Quintero B, Staab-Weijnitz CA, Eickelberg O, Ramírez R, Manicone AM, Selman M, Pardo A. Upregulation and Nuclear Location of MMP28 in Alveolar Epithelium of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2019; 59:77-86. [PMID: 29373068 DOI: 10.1165/rcmb.2017-0223oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive aging-associated disease of unknown etiology. A growing body of evidence indicates that aberrant activated alveolar epithelial cells induce the expansion and activation of the fibroblast population, leading to the destruction of the lung architecture. Some matrix metalloproteinases (MMPs) are upregulated in IPF, indicating that they may be important in the pathogenesis and/or progression of IPF. In the present study, we examined the expression of MMP28 in this disease and evaluated its functional effects in two alveolar epithelial cell lines and in human primary bronchial epithelial cells. We found that the enzyme is expressed in bronchial (apical and cytoplasmic localization) and alveolar (cytoplasmic and nuclear localization) epithelial cells in two different groups of patients with IPF. In vitro MMP28 epithelial silencing decreased the proliferation rate and delayed wound closing, whereas overexpression showed opposite effects, protecting from apoptosis and enhanced epithelial-mesenchymal transition. Our findings demonstrate that MMP28 is upregulated in epithelial cells from IPF lungs, where it may play a role in increasing the proliferative and migratory phenotype in a catalysis-dependent manner.
Collapse
Affiliation(s)
- Mariel Maldonado
- 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfonso Salgado-Aguayo
- 2 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Iliana Herrera
- 2 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Sandra Cabrera
- 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Blanca Ortíz-Quintero
- 2 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Claudia A Staab-Weijnitz
- 3 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Oliver Eickelberg
- 3 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany.,4 Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado; and
| | - Remedios Ramírez
- 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Anne M Manicone
- 5 Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Moisés Selman
- 2 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Annie Pardo
- 1 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
41
|
Mitochondria-Associated Matrix Metalloproteinases 2 and 9 in Acute Renal Pathologies. Bull Exp Biol Med 2019; 166:334-338. [PMID: 30627903 DOI: 10.1007/s10517-019-04345-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 01/14/2023]
Abstract
Activities of MMP-2 and MMP-9 in the cytoplasm and mitochondria of kidney cells were evaluated on the models of acute renal pathologies: pyelonephritis, rhabdomyolysis, and ischemia/reperfusion of the kidney. In acute pyelonephritis, a significant increase in the level of MMP-2 and MMP-9 in kidney cells and the appearance of mitochondrial MMP-2 isoform with a lower molecular weight, but still exhibiting proteolytic activity were observed. A direct correlation between the level of MMP-2 and MMP-9 in the kidney and the severity of inflammation in pyelonephritis was revealed. Obviously, the appearance of active protease in the mitochondria of the kidney cells could have an impact on their functioning and, generally, on the fate of renal cells in this pathology.
Collapse
|
42
|
Lian YY, He HH, Zhang CZ, Li XC, Chen YH. Functional characterization of a matrix metalloproteinase 2 gene in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:404-413. [PMID: 30316944 DOI: 10.1016/j.fsi.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Matrix metalloproteinases (MMPs) contribute to both normal and pathological tissue remodeling. They act as regulatory molecules by working in enzyme cascades as well as processing matrix proteins, cytokines, growth factors and adhesion molecules to generate fragments with biological effects. So MMPs could play distrinct roles in the process of pathogen infection. In present study, we cloned a MMP-2 (LvMMP-2) gene from Litopenaeus vannamei. LvMMP-2, highly expressed in epidermis, located to endoplasmic reticulum in S2 cells. Results of real-time RT-PCR assay showed that LvMMP-2 was induced in shrimp hemocytes upon unfolded protein response or oxidative stress, but not via heat shock treatment. It is proved that the promoter activity of LvMMP-2 was enhanced by NF-E2-related factor 2 and AP-1 factor c-Jun. Further research showed that down-regulated LvMMP-2 contributing to oxidative stress injury, could reduce the cumulative mortality of shrimps under oxidative stress. Besides, our study also indicated that LvMMP-2 was accelerated by lipopolysaccharides injection. LvMMP-2 in S2 could increase the promoter activity of several antimicrobial peptide genes, and knocked-down expression of LvMMP-2 depressed the expression of penaeidin2 and β-Defensin. Moreover, we showed that down-regulated LvMMP-2 suppressed the cumulative mortality of shrimp infected with white spot syndrome virus (WSSV) or with Vibrio alginolyticus. Collecting results suggested that LvMMP-2 involves in shrimp innate immune response, and also contributes to tissue injury caused by WSSV infection.
Collapse
Affiliation(s)
- Yu-Ying Lian
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/ School of Marine Sciences, SunYat-senUniversity, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontro / Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, SunYat-senUniversity, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hong-Hui He
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontro / Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, SunYat-senUniversity, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chao-Zheng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, 160 QunXian Road, Guangzhou, 511430, PR China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
43
|
Munkanatta Godage DNP, VanHecke GC, Samarasinghe KTG, Feng HZ, Hiske M, Holcomb J, Yang Z, Jin JP, Chung CS, Ahn YH. SMYD2 glutathionylation contributes to degradation of sarcomeric proteins. Nat Commun 2018; 9:4341. [PMID: 30337525 PMCID: PMC6194001 DOI: 10.1038/s41467-018-06786-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/23/2018] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the etiology of multiple muscle-related diseases. There is emerging evidence that cellular stress can lead to destabilization of sarcomeres, the contractile unit of muscle. However, it is incompletely understood how cellular stress induces structural destabilization of sarcomeres. Here we report that glutathionylation of SMYD2 contributes to a loss of myofibril integrity and degradation of sarcomeric proteins mediated by MMP-2 and calpain 1. We used a clickable glutathione approach in a cardiomyocyte cell line and found selective glutathionylation of SMYD2 at Cys13. Biochemical analysis demonstrated that SMYD2 upon oxidation or glutathionylation at Cys13 loses its interaction with Hsp90 and N2A, a domain of titin. Upon dissociation from SMYD2, N2A or titin is degraded by activated MMP-2, suggesting a protective role of SMYD2 in sarcomere stability. Taken together, our results support that SMYD2 glutathionylation is a novel molecular mechanism by which ROS contribute to sarcomere destabilization.
Collapse
Affiliation(s)
| | - Garrett C VanHecke
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mark Hiske
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Charles S Chung
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
44
|
Chan BYH, Roczkowsky A, Moser N, Poirier M, Hughes BG, Ilarraza R, Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can J Physiol Pharmacol 2018; 96:1238-1245. [PMID: 30308129 DOI: 10.1139/cjpp-2018-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anthracyclines, such as doxorubicin, are commonly prescribed antineoplastic agents that cause irreversible cardiac injury. Doxorubicin cardiotoxicity is initiated by increased oxidative stress in cardiomyocytes. Oxidative stress enhances intracellular matrix metalloproteinase-2 (MMP-2) by direct activation of its full-length isoform and (or) de novo expression of an N-terminal-truncated isoform (NTT-MMP-2). As MMP-2 is localized to the sarcomere, we tested whether doxorubicin activates intracellular MMP-2 in neonatal rat ventricular myocytes (NRVM) and whether it thereby proteolyzes two of its identified sarcomeric targets, α-actinin and troponin I. Doxorubicin increased oxidative stress within 12 h as indicated by reduced aconitase activity. This was associated with a twofold increase in MMP-2 protein levels and threefold higher gelatinolytic activity. MMP inhibitors ARP-100 or ONO-4817 (1 μM) prevented doxorubicin-induced MMP-2 activation. Doxorubicin also increased the levels and activity of MMP-2 secreted into the conditioned media. Doxorubicin upregulated the mRNA expression of both full-length MMP-2 and NTT-MMP-2. α-Actinin levels remained unchanged, whereas doxorubicin downregulated troponin I in an MMP-independent manner. Doxorubicin induces oxidative stress and stimulates a robust increase in MMP-2 expression and activity in NRVM, including NTT-MMP-2. The sarcomeric proteins α-actinin and troponin I are, however, not targeted by MMP-2 under these conditions.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Nils Moser
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Bryan G Hughes
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Ramses Ilarraza
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
45
|
Rhee H, Han M, Kim SS, Kim IY, Lee HW, Bae SS, Ha HK, Jung ES, Lee MY, Seong EY, Lee DW, Lee SB, Lovett DH, Song SH. The expression of two isoforms of matrix metalloproteinase-2 in aged mouse models of diabetes mellitus and chronic kidney disease. Kidney Res Clin Pract 2018; 37:222-229. [PMID: 30254846 PMCID: PMC6147188 DOI: 10.23876/j.krcp.2018.37.3.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background This study was undertaken to explore the effects of aging on the kidneys in mouse models of diabetes and chronic kidney disease (CKD), and to compare the expression of two isoforms of matrix metalloproteinase-2 (MMP-2)–secretory full-length MMP-2 and intracellular N-terminal truncated MMP-2 (NTT-MMP-2)–in these models. Methods Two experimental ICR mouse models were used: a streptozotocin (STZ)-induced type 1 diabetes mellitus model and a 5/6 nephrectomized (5/6Nx) CKD model. The abundance of each isoform of MMP-2 was determined by quantitative polymerase chain reaction (qPCR), and functional analyses were conducted. Moreover, the protein levels of the two MMP-2 isoforms were determined semi-quantitatively by immunohistochemical staining, and their association with tissue damage was assessed. Results Both isoforms of MMP-2 were upregulated in the kidney tissues of STZ-induced diabetic mice and 5/6Nx mice, irrespective of age. Characteristically, NTT-MMP-2 protein expression was elevated in old control mice, in line with the qPCR results. NTT-MMP-2 expression was limited to the renal cortex, and to the tubulointerstitial area rather than the glomerular area. In terms of tissue damage, tubulointerstitial fibrosis was more severe in old 5/6Nx mice than in their young counterparts, whereas glomerulosclerosis was comparable in old and young 5/6Nx mice. Conclusion The intracellular isoform of MMP-2 was induced by ageing, irrespective of the presence of diabetes or CKD, and its induction may be related to tubulointerstitial fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Harin Rhee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Miyeun Han
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Sang Soo Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Il Young Kim
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye Won Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Sun Sik Bae
- Medical Research Center for Ischemic Tissue Regeneration, Medical Research Institute, Pusan National University, Yangsan, Korea.,Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hong Koo Ha
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Urology, Pusan National University Hospital, Busan, Korea
| | - Eun Soon Jung
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Min Young Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun Young Seong
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Dong Won Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Soo Bong Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - David H Lovett
- Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Sang Heon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
46
|
Kim IY, Kim SS, Lee HW, Bae SS, Ha HK, Jung ES, Lee MY, Han M, Rhee H, Seong EY, Lee DW, Lee SB, Lovett DH, Song SH. The two isoforms of matrix metalloproteinase- 2 have distinct renal spatial and temporal distributions in murine models of types 1 and 2 diabetes mellitus. BMC Nephrol 2018; 19:248. [PMID: 30253743 PMCID: PMC6156952 DOI: 10.1186/s12882-018-1029-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
Background We recently reported on the enhanced tubular expression of two discrete isoforms of the MMP-2 (full length and N-terminal truncated, FL-MMP-2, NTT-MMP-2) in a murine model and human diabetic kidneys. In the present study, we examined in more detail the temporal and spatial distributions of MMP-2 isoform expression in murine models of Type 1 and Type 2 diabetes mellitus. Methods Diabetic models were streptozotocin (STZ)-induced diabetes (Type 1 diabetes mellitus) and db/db mice (Type 2 diabetes mellitus). We quantified the abundance of two isoforms of MMP-2 transcripts by qPCR. A spatial distribution of two isoforms of MMP-2 was analyzed semi-quantitatively according to time after injection of STZ and with increasing age of db/db mice. Furthermore, immunohistochemistry for nitrotyrosine was performed to examine a potential association between oxidative stress and MMP-2 isoform expression. Results Both isoforms of MMP-2 were upregulated in whole kidneys from STZ and db/db mice. In the case of FL-MMP-2, mRNA levels significantly increased at 12 and 24 weeks in STZ mice, while the isoform expression was significantly increased only at 16 weeks, in the db/db mice. FL-MMP-2 protein levels increased in the cortices and outer medullae of both STZ and db/db mice as a function of the duration of diabetes. For NTT-MMP-2, mRNA levels increased earlier at 4 weeks in STZ mice and at 10 weeks of age in db/db mice. The expression of NTT-MMP-2 also increased, primarily in the cortices of STZ and db/db mice, as a function of the duration of diabetes. Quantitatively, these findings were consistent with the qPCR results in the case of NTT-MMP-2, respectively (STZ 24 weeks, 3.24 ± 3.70 fold; 16 weeks db/db, 4.49 ± 0.55 fold). In addition, nitrotyrosine was expressed primarily in cortex as compared to medulla as a function of the duration of diabetes similar to NTT-MMP-2 expression. Conclusions Two isoforms of MMP-2 are highly inducible in two diabetic murine models and become more abundant as a function of time. As the expression patterns were not the same in the two isoforms of MMP-2, it is possible that each isoform has a discrete role in the development of diabetic renal injury.
Collapse
Affiliation(s)
- Il Young Kim
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo, Republic of Korea
| | - Sang Soo Kim
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Hye Won Lee
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hong Koo Ha
- Biomedical Research Institute and Department of Urology, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Soon Jung
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Min Young Lee
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Miyeun Han
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Harin Rhee
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Eun Young Seong
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea
| | - Dong Won Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo, Republic of Korea
| | - Soo Bong Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo, Republic of Korea
| | - David H Lovett
- The Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, California, USA
| | - Sang Heon Song
- Biomedical Research Institute and Department of Internal Medicine, Pusan National University Hospital, Gudeok-ro 179 Seo-gu, Busan, 49241, Republic of Korea.
| |
Collapse
|
47
|
Francis CE, Bai Y. Differential expression of cyclosporine A-Induced calcineurin isoform-specific matrix metalloproteinase 9 (MMP-9) in renal fibroblasts. Biochem Biophys Res Commun 2018; 503:2549-2554. [PMID: 30007437 DOI: 10.1016/j.bbrc.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023]
Abstract
Long-term treatment with the potent immunosuppressive drug cyclosporine A (CsA) results in chronic nephrotoxicity. Its immunosuppressive properties are due to the inhibition of the calcium- and calmodulin-dependent phosphatase protein calcineurin A (CnA) which has three catalytic isoforms. Of those, the CnAα and β isoforms are ubiquitously expressed, particularly in the kidney. Additionally, chronic nephrotoxicity has been associated with an imbalance of extracellular matrix (ECM) synthesis and degradation resulting in an accumulation of ECM molecules. This study evaluates whether the expressions of matrix metalloproteinases (MMP-2 and MMP-9) induced by CsA are calcineurin isoform specific. Wild-type (WT), CnAα knockout (CnAα-/-) and CnAβ knockout (CnAβ-/-) kidney fibroblast cell lines (an in vitro innovative tool that was previously created in our lab) were treated with CsA at 10 ng/ml for 48 h. ELISA analysis demonstrated that the CsA-induced secretion profile of MMP-9 was highest in CnAα-/- cells and lowest in CnAβ-/- cells vs. WT cells. In contrast, CsA did not induce an increase in MMP-2 protein levels in WT, CnAα-/- nor CnAβ-/- renal fibroblasts. These results indicate that MMP-9 secretion is CnA-isoform specific, i.e. the CnAβ isoform contributes to the CsA-induced upregulation of MMP-9 while the CnAα does not. As such, understanding the role of calcineurin A isoforms in the regulation of the homeostasis of ECM degradation in the kidney after long-term CsA treatment needs to be further investigated.
Collapse
Affiliation(s)
- Cynthia E Francis
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| | - Yun Bai
- Department of Pharmaceutical Science, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA.
| |
Collapse
|
48
|
Prado AF, Pernomian L, Azevedo A, Costa RAP, Rizzi E, Ramos J, Paes Leme AF, Bendhack LM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinase-2-induced epidermal growth factor receptor transactivation impairs redox balance in vascular smooth muscle cells and facilitates vascular contraction. Redox Biol 2018; 18:181-190. [PMID: 30029165 PMCID: PMC6052251 DOI: 10.1016/j.redox.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022] Open
Abstract
Increased reactive oxygen species (ROS) formation may enhance matrix metalloproteinase (MMP)-2 activity and promote cardiovascular dysfunction. We show for the first time that MMP-2 is upstream of increased ROS formation and activates signaling mechanisms impairing redox balance. Incubation of vascular smooth muscle cells (VSMC) with recombinant MMP-2 increased ROS formation assessed with dihydroethidium (DHE) by flow cytometry. This effect was blocked by the antioxidant apocynin or by polyethylene glycol-catalase (PEG-catalase), and by MMP inhibitors (doxycycline or GM6001). Next, we showed in HEK293 cells that MMP-2 transactivates heparin-binding epidermal growth factor (HB-EGF) leading to EGF receptor (EGFR) activation and increased ROS concentrations. This effect was prevented by the EGFR kinase inhibitor Ag1478, and by phospholipase C (PLC) or protein kinase C (PKC) inhibitors (A778 or chelerythrine, respectively), confirming the involvement of EGFR pathway in MMP-2-induce responses. Next, we showed that intraluminal exposure of aortas to MMP-2 increased vascular MMP-2 levels detected by immunofluorescence and gelatinolytic activity (by in situ zimography) in association with increased ROS formation. This effect was inhibited by MMP inhibitors (phenanthroline or doxycycline) and by apocynin or PEG-catalase. MMP-2 also increased aortic contractility to phenylephrine and this effect was prevented by MMP inhibitor GM6001 and by apocynin or PEG-catalase, showing again that increased ROS formation mediates functional effects of MMP-2. These results show that MMP-2 activates the EGFR and triggers downstream signaling pathways increasing ROS formation and promoting vasoconstriction. These findings may have various implications for cardiovascular diseases. MMP-2 is activated by reactive oxygen species and promotes cardiovascular diseases. We show here that MMP-2 is upstream of reactive oxygen species formation. This effect involves epidermal growth factor receptor transactivation. MMP-2 impairs redox balance and contributes to vascular contraction.
Collapse
Affiliation(s)
- Alejandro F Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil
| | - Laena Pernomian
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil
| | - Aline Azevedo
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rute A P Costa
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Junia Ramos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil; Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil; Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
49
|
Shan X, Tomlinson L, Yang Q, Colognato H. Distinct Requirements for Extracellular and Intracellular MMP12 in the Development of the Adult V-SVZ Neural Stem Cell Niche. Stem Cell Reports 2018; 10:984-999. [PMID: 29503085 PMCID: PMC5918618 DOI: 10.1016/j.stemcr.2018.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms that control neural stem cell (NSC) activation in the adult ventricular-subventricular zone (V-SVZ) stem cell niche have been the focus of intense investigation, yet how the niche first develops and organizes is poorly understood. Here, we examined matrix metalloproteinases (MMPs) for potential roles in V-SVZ stem cell niche development. MMP12 was found to promote appropriate niche cellular arrangements, the formation of specialized niche extracellular matrix, and the translational planar cell polarity of ependymal cells that surround and support niche NSCs. Surprisingly, ependymal cells were found to have an intracellular pool of MMP12 that promoted ependymal cell ciliogenesis by upregulating FOXJ1. In addition, both extracellular and intracellular MMP12 were found to regulate V-SVZ niche output by promoting NSC quiescence. These findings reveal that extracellular and intracellular MMP12 have both unique and overlapping roles that help orchestrate the development of the adult V-SVZ stem cell niche.
Collapse
Affiliation(s)
- Xiwei Shan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lyl Tomlinson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qian Yang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
50
|
Short term doxycycline treatment induces sustained improvement in myocardial infarction border zone contractility. PLoS One 2018; 13:e0192720. [PMID: 29432443 PMCID: PMC5809072 DOI: 10.1371/journal.pone.0192720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/29/2018] [Indexed: 11/22/2022] Open
Abstract
Decreased contractility in the non-ischemic border zone surrounding a MI is in part due to degradation of cardiomyocyte sarcomeric components by intracellular matrix metalloproteinase-2 (MMP-2). We recently reported that MMP-2 levels were increased in the border zone after a MI and that treatment with doxycycline for two weeks after MI was associated with normalization of MMP-2 levels and improvement in ex-vivo contractile protein developed force in the myocardial border zone. The purpose of the current study was to determine if there is a sustained effect of short term treatment with doxycycline (Dox) on border zone function in a large animal model of antero-apical myocardial infarction (MI). Antero-apical MI was created in 14 sheep. Seven sheep received doxycycline 0.8 mg/kg/hr IV for two weeks. Cardiac MRI was performed two weeks before, and then two and six weeks after MI. Two sheep died prior to MRI at six weeks from surgical/anesthesia-related causes. The remaining 12 sheep completed the protocol. Doxycycline induced a sustained reduction in intracellular MMP-2 by Western blot (3649±643 MI+Dox vs 9236±114 MI relative intensity; p = 0.0009), an improvement in ex-vivo contractility (65.3±2.0 MI+Dox vs 39.7±0.8 MI mN/mm2; p<0.0001) and an increase in ventricular wall thickness at end-systole 1.0 cm from the infarct edge (12.4±0.6 MI+Dox vs 10.0±0.5 MI mm; p = 0.0095). Administration of doxycycline for a limited two week period is associated with a sustained improvement in ex-vivo contractility and an increase in wall thickness at end-systole in the border zone six weeks after MI. These findings were associated with a reduction in intracellular MMP-2 activity.
Collapse
|