1
|
Hu H, Zhou F, Ma X, Brokstad KA, Kolmar L, Girardot C, Benes V, Cox RJ, Merten CA. Targeted barcoding of variable antibody domains and individual transcriptomes of the human B-cell repertoire using Link-Seq. PNAS NEXUS 2025; 4:pgaf006. [PMID: 39867668 PMCID: PMC11759286 DOI: 10.1093/pnasnexus/pgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.7% correctly paired immunoglobulin heavy and light chains. Furthermore, we map the V(D)J usage and obtain sensitivities comparable with the current gold-standard 10× Genomics commercial systems while offering full flexibility in experimental setup and significant cost savings. A further unique feature of Link-Seq is the possibility of barcoding multiple target genes in a site-specific manner. Based on the open character of the platform and its conceptual advantages, we expect Link-Seq to become a versatile tool for single-cell analysis, especially for applications requiring additional processing steps that cannot be implemented on commercially available platforms.
Collapse
Affiliation(s)
- Hongxing Hu
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Fan Zhou
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
| | - Xiaoli Ma
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karl Albert Brokstad
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences (HVL), Bergen, N5020, Norway
| | - Leonie Kolmar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Vladimir Benes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Rebecca J Cox
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, N5021, Norway
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Matz HC, Yu TG, Zhou JQ, Peyton L, Madsen A, Han F, Schmitz AJ, Horvath SC, Dixit K, Keplinger HK, Strnad BS, Hoegger MJ, Middleton WD, Klebert MK, Lin NH, Nachbagauer R, Paris R, Turner JS, Presti RM, Lee J, Ellebedy AH. mRNA-based influenza vaccine expands breadth of B cell response in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617255. [PMID: 39416092 PMCID: PMC11483064 DOI: 10.1101/2024.10.10.617255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Eliciting broad and durable antibody responses against rapidly evolving pathogens like influenza viruses remains a formidable challenge1,2. The germinal center (GC) reaction enables the immune system to generate broad, high-affinity, and durable antibody responses to vaccination3-5. mRNA-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines induce persistent GC B cell responses in humans6-9. Whether an mRNA-based influenza vaccine could induce a superior GC response in humans compared to the conventional inactivated influenza virus vaccine remains unclear. We assessed B cell responses in peripheral blood and draining lymph nodes in cohorts receiving the inactivated or mRNA-based quadrivalent seasonal influenza vaccine. Participants receiving the mRNA-based vaccine produced more robust plasmablast responses and higher antibody titers to H1N1 and H3N2 influenza A viruses and comparable antibody titers against influenza B virus strains. Importantly, mRNA-based vaccination stimulated robust recall B cell responses characterized by sustained GC reactions that lasted at least 26 weeks post-vaccination in three of six participants analyzed. In addition to promoting the maturation of responding B cell clones, these sustained GC reactions resulted in enhanced engagement of low-frequency pre-existing memory B cells, expanding the landscape of vaccine-elicited B cell clones. This translated to expansion of the serological repertoire and increased breadth of serum antibody responses. These findings reveal an important role for the induction of persistent GC responses to influenza vaccination in humans to broaden the repertoire of vaccine-induced antibodies.
Collapse
Affiliation(s)
- Hanover C. Matz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Tae-Geun Yu
- Thayer School of Engineering, Dartmouth College; Hanover, NH 03755, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Lowrey Peyton
- Quantitative Biomedical Sciences Program, Dartmouth College; Lebanon, NH 03756, USA
| | - Anders Madsen
- Influenza Centre, Department of Clinical Science, University of Bergen; 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Fangjie Han
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kritika Dixit
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hunter K. Keplinger
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St Louis, MO 63110, USA
| | - Mark J. Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St Louis, MO 63110, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St Louis, MO 63110, USA
| | - Michael K. Klebert
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St Louis, MO 63110, USA
| | | | | | | | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Rachel M. Presti
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St Louis, MO 63110, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College; Hanover, NH 03755, USA
- Quantitative Biomedical Sciences Program, Dartmouth College; Lebanon, NH 03756, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
5
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|
6
|
Curtis NC, Shin S, Hederman AP, Connor RI, Wieland-Alter WF, Ionov S, Boylston J, Rose J, Sakharkar M, Dorman DB, Dessaint JA, Gwilt LL, Crowley AR, Feldman J, Hauser BM, Schmidt AG, Ashare A, Walker LM, Wright PF, Ackerman ME, Lee J. Characterization of SARS-CoV-2 Convalescent Patients' Serological Repertoire Reveals High Prevalence of Iso-RBD Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556349. [PMID: 37745524 PMCID: PMC10515772 DOI: 10.1101/2023.09.08.556349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.
Collapse
|
7
|
Park M, de Villavicencio Diaz TN, Lange V, Wu L, Le Bihan T, Ma B. Exploring the sheep (Ovis aries) immunoglobulin repertoire by next generation sequencing. Mol Immunol 2023; 156:20-30. [PMID: 36867981 DOI: 10.1016/j.molimm.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the way we determine the antibody repertoires encoded by B cells in the blood or lymphoid organs and transformed our understanding of adaptive immune responses in many species. Sheep (Ovis aries) have been widely used as a host for therapeutic antibody production since the early 1980s, however, little is known about their immune repertoires or immunological processes affecting the antibody generation. The objective of this study was to employ NGS for a comprehensive analysis of immunoglobulin heavy and light chain repertoires in four healthy sheep. We obtained > 90 % complete antibody sequences and nearly 130,000, 48,000 and 218,000 unique CDR3 reads for the heavy chain (IGH), kappa chain (IGK), and lambda chain (IGL) loci, respectively. Consistent with other species, we observed biased usage of germline variable (V), diversity (D) and joining (J) genes in the heavy and kappa loci, but not in the lambda loci. Moreover, the enormous diversity of CDR3 sequences was observed through sequence clustering and convergent recombination. These data will build a foundation for future studies investigating immune repertoires in health and disease as well as contribute to further refinement of ovine-derived therapeutic antibody drugs.
Collapse
Affiliation(s)
| | | | | | - Lin Wu
- Rapid Novor Inc., Kitchener, Ontario, Canada
| | | | - Bin Ma
- Rapid Novor Inc., Kitchener, Ontario, Canada
| |
Collapse
|
8
|
Miller RA, Luke JJ, Hu S, Mahabhashyam S, Jones WB, Marron T, Merchan JR, Hughes BGM, Willingham SB. Anti-CD73 antibody activates human B cells, enhances humoral responses and induces redistribution of B cells in patients with cancer. J Immunother Cancer 2022; 10:jitc-2022-005802. [PMID: 36600561 PMCID: PMC9723961 DOI: 10.1136/jitc-2022-005802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CD73 is widely expressed on immune cells playing a critical role in immunomodulatory functions including cell adhesion and migration, as a costimulatory molecule for T cells and in production of adenosine. The function of CD73 expressed on B cells has not been fully characterized. Mupadolimab is an anti-human CD73 antibody that activates B cells. We evaluated the characteristics of this antibody and its effects on immune cells in vitro and in vivo. METHODS Mupadolimab binding to CD73, inhibition of CD73 enzymatic activity, and effects on lymphocyte activation were evaluated in vitro by measuring changes in immunophenotype by flow cytometry. Cryogenic-transmission electron microscopy was used to determine epitope binding. Effects on human B cells in vivo were evaluated in immunodeficient NSG-SGM3 mice immunized with SARS-CoV-2 and influenza viral antigens. Safety and immune effects were evaluated in the completed dose escalation portion of a phase 1 trial conducted in patients with cancer. RESULTS Mupadolimab binds to a unique epitope on CD73POS B cells resulting in their activation and differentiation through B cell receptor signaling pathways. Mupadolimab induces expression of CD69, CD83, CD86 and MHC class II on B cells along with morphological transformation into plasmablasts and expression of CD27, CD38 and CD138. These effects are independent of adenosine. Mupadolimab binds to the N-terminal of CD73 in the closed position and competitively inhibits substrate binding. Mupadolimab enhanced antigen specific antibody response to SARS-CoV-2 spike protein and influenza hemagglutinin in humanized mouse models. Mupadolimab was evaluated as a monotherapy in a phase 1 trial (NCT03454451) in 34 patients with advanced cancer and demonstrated binding to CD73POS circulating cells and transient reduction in the number of B cells, with return of CD73NEG B cells with memory phenotype. No dose-limiting toxicities or changes in serum immunoglobulins were seen. CONCLUSIONS Mupadolimab activates B cells and stimulates the production of antigen specific antibodies. The effects in patients with cancer suggest that activated, CD69POS B cells redistribute to lymphoid tissues. Minor tumor regression was observed in several patients. These results support further investigation of mupadolimab as an immunotherapy for cancer and its potential use as a vaccine adjuvant. TRIAL REGISTRATION NUMBER NCT03454451.
Collapse
Affiliation(s)
| | - Jason John Luke
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Shenshen Hu
- Corvus Pharmaceuticals Inc, Burlingame, California, USA
| | | | | | - Thomas Marron
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Brett G M Hughes
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia,The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | | |
Collapse
|
9
|
Jung J, Mundle ST, Ustyugova IV, Horton AP, Boutz DR, Pougatcheva S, Prabakaran P, McDaniel JR, King GR, Park D, Person MD, Ye C, Tan B, Tanno Y, Kim JE, Curtis NC, DiNapoli J, Delagrave S, Ross TM, Ippolito GC, Kleanthous H, Lee J, Georgiou G. Influenza vaccination in the elderly boosts antibodies against conserved viral proteins and egg-produced glycans. J Clin Invest 2021; 131:148763. [PMID: 34196304 PMCID: PMC8245176 DOI: 10.1172/jci148763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galβ1-4GalNAcβ), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sophia T. Mundle
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Irina V. Ustyugova
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | | | - Ponraj Prabakaran
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | - Daechan Park
- Institute for Cellular and Molecular Biology, and
| | - Maria D. Person
- Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas, USA
| | - Congxi Ye
- Department of Molecular Biosciences
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Bing Tan
- Department of Chemical Engineering
| | | | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas C. Curtis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua DiNapoli
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Simon Delagrave
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Gregory C. Ippolito
- Department of Molecular Biosciences
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Harry Kleanthous
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - George Georgiou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering
- Department of Molecular Biosciences
- Institute for Cellular and Molecular Biology, and
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Voss WN, Hou YJ, Johnson NV, Delidakis G, Kim JE, Javanmardi K, Horton AP, Bartzoka F, Paresi CJ, Tanno Y, Chou CW, Abbasi SA, Pickens W, George K, Boutz DR, Towers DM, McDaniel JR, Billick D, Goike J, Rowe L, Batra D, Pohl J, Lee J, Gangappa S, Sambhara S, Gadush M, Wang N, Person MD, Iverson BL, Gollihar JD, Dye JM, Herbert AS, Finkelstein IJ, Baric RS, McLellan JS, Georgiou G, Lavinder JJ, Ippolito GC. Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science 2021; 372:1108-1112. [PMID: 33947773 PMCID: PMC8224265 DOI: 10.1126/science.abg5268] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody Affinity
- COVID-19/immunology
- COVID-19/prevention & control
- Epitopes/immunology
- Humans
- Immune Evasion
- Immunoglobulin G/blood
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/immunology
- Mice
- Mice, Inbred BALB C
- Mutation
- Protein Domains
- Proteomics
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - George Delidakis
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andrew P Horton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Foteini Bartzoka
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Chelsea J Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Yuri Tanno
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Shawn A Abbasi
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Whitney Pickens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Katia George
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- CCDC Army Research Laboratory-South, The University of Texas at Austin, Austin, TX, USA
| | - Dalton M Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Daniel Billick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jule Goike
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Lori Rowe
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Tulane National Primate Research Center Department of Microbiology 18703 Three Rivers Road Covington, LA, USA
| | - Dhwani Batra
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Justin Lee
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shivaprakash Gangappa
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michelle Gadush
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- CCDC Army Research Laboratory-South, The University of Texas at Austin, Austin, TX, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jason J Lavinder
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Mol Cell 2021; 81:2094-2111.e9. [PMID: 33878293 PMCID: PMC8239336 DOI: 10.1016/j.molcel.2021.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mickaël Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Mark E Robinson
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Supraja Saravanakumar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gal Lenz
- Department of Cancer Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhengshan Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Siddiqi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anne Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Jevon Cutler
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kadriye Nehir Cosgun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Lars Klemm
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Veronika Ecker
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Janet Winchester
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Dana Ghergus
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nora Heisterkamp
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vu Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lili Wang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Hassan Jumaa
- Department of Immunology, University of Ulm, Ulm, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Wing-Chung Chan
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry," Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France; Department of Clinical Immunology, Strasbourg University Hospital, Strasbourg, France.
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Cheng L, Li G, Pellegry CM, Yasui F, Li F, Zurawski SM, Zurawski G, Levy Y, Ting JPY, Su L. TLR9- and CD40-Targeting Vaccination Promotes Human B Cell Maturation and IgG Induction via pDC-Dependent Mechanisms in Humanized Mice. Front Immunol 2021; 12:672143. [PMID: 34093572 PMCID: PMC8169971 DOI: 10.3389/fimmu.2021.672143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mice reconstituted with a human immune system (humanized mice) provide a robust model to study human immunology, vaccinology, and human infectious diseases. However, the development and function of B cells in humanized mice is impaired. B cells from humanized mice are immature and are impaired in IgM to IgG isotype switch in response to infection or vaccination. In the present study we report that Toll-like receptor 9 (TLR9) agonist CpG-B combined with CD40-targeting vaccination triggered human B cell immunoglobin class-switch from IgM+ to IgG+ B cells in humanized mice. Human B cells from mice vaccinated with CpG-B as adjuvant were more mature in phenotype and produced significant levels of both total IgG and antigen-specific IgG. We found that CpG-B treatment activated human pDCs (plasmacytoid dendritic cells) in vivo to induce interferon-alpha (IFN-α)expression in humanized mice. Pre-depletion of human pDC in vivo abrogated the adjuvant effect of CpG-B. Our results indicate that TLR9 and CD40-targeting vaccination triggers human B cell maturation and immunoglobulin class-switch in a pDC-dependent manner in humanized mice. The findings also shed light on induction of human IgG antibodies in humanized mouse models.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Caroline Marnata Pellegry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fumihiko Yasui
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Feng Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sandra M Zurawski
- Baylor Institute for Immunology Research, Vaccine Research Institute, INSERM U955, Dallas, TX, United States
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Vaccine Research Institute, INSERM U955, Dallas, TX, United States
| | - Yves Levy
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.,Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Créteil, France
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Mian SA, Anjos-Afonso F, Bonnet D. Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Front Immunol 2021; 11:619236. [PMID: 33603749 PMCID: PMC7884350 DOI: 10.3389/fimmu.2020.619236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy has established itself as a promising tool for cancer treatment. There are many challenges that remain including lack of targets and some patients across various cancers who have not shown robust clinical response. One of the major problems that have hindered the progress in the field is the dearth of appropriate mouse models that can reliably recapitulate the complexity of human immune-microenvironment as well as the malignancy itself. Immunodeficient mice reconstituted with human immune cells offer a unique opportunity to comprehensively evaluate immunotherapeutic strategies. These immunosuppressed and genetically modified mice, with some overexpressing human growth factors, have improved human hematopoietic engraftment as well as created more functional immune cell development in primary and secondary lymphoid tissues in these mice. In addition, several new approaches to modify or to add human niche elements to further humanize these immunodeficient mice have allowed a more precise characterization of human hematopoiesis. These important refinements have opened the possibility to evaluate not only human immune responses to different tumor cells but also to investigate how malignant cells interact with their niche and most importantly to test immunotherapies in a more preclinically relevant setting, which can ultimately lead to better success of these drugs in clinical trials.
Collapse
Affiliation(s)
- Syed A Mian
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom.,Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
14
|
Rapid identification of anti-idiotypic mAbs with high affinity and diverse epitopes by rabbit single B-cell sorting-culture and cloning technology. PLoS One 2020; 15:e0244158. [PMID: 33347473 PMCID: PMC7751967 DOI: 10.1371/journal.pone.0244158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
The proactive generation of anti-idiotypic antibodies (anti-IDs) against therapeutic antibodies with desirable properties is an important step in pre-clinical and clinical assay development supporting their bioanalytical programs. Here, we describe a robust platform to generate anti-IDs using rabbit single B cell sorting-culture and cloning technology by immunizing rabbits with therapeutic drug Fab fragment and sorting complementarity determining regions (CDRs) specific B cells using designed framework control as a negative gate to exclude non-CDRs-specific B cells. The supernatants of cultured B cells were subsequently screened for binding to drug-molecule by enzyme-linked immunosorbent assay and the positive hits of B cell lysates were selected for cloning of their immunoglobulin G (IgG) variable regions. The recombinant monoclonal anti-IDs generated with this method have high affinity and specificity with broad epitope coverage and different types. The recombinant anti-IDs were available for assay development to support pharmacokinetic (PK) and immunogenicity studies within 12 weeks from the start of rabbit immunization. Using this novel rapid and efficient in-house approach we have generated a large panel of anti-IDs against a series of 11 therapeutic antibody drugs and successfully applied them to the clinical assay development.
Collapse
|
15
|
Voss WN, Hou YJ, Johnson NV, Kim JE, Delidakis G, Horton AP, Bartzoka F, Paresi CJ, Tanno Y, Abbasi SA, Pickens W, George K, Boutz DR, Towers DM, McDaniel JR, Billick D, Goike J, Rowe L, Batra D, Pohl J, Lee J, Gangappa S, Sambhara S, Gadush M, Wang N, Person MD, Iverson BL, Gollihar JD, Dye J, Herbert A, Baric RS, McLellan JS, Georgiou G, Lavinder JJ, Ippolito GC. Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398269 DOI: 10.1101/2020.12.20.423708] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.
Collapse
|
16
|
Shi B, Dong X, Ma Q, Sun S, Ma L, Yu J, Wang X, Pan J, He X, Su D, Yao X. The Usage of Human IGHJ Genes Follows a Particular Non-random Selection: The Recombination Signal Sequence May Affect the Usage of Human IGHJ Genes. Front Genet 2020; 11:524413. [PMID: 33363565 PMCID: PMC7753069 DOI: 10.3389/fgene.2020.524413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
The formation of the B cell receptor (BCR) heavy chain variable region is derived from the germline V(D)J gene rearrangement according to the “12/23” rule and the “beyond 12/23” rule. The usage frequency of each V(D)J gene in the peripheral BCR repertoires is related to the initial recombination, self-tolerance selection, and the clonal proliferative response. However, their specific differences and possible mechanisms are still unknown. We analyzed in-frame and out-of-frame BCR-H repertoires from human samples with normal physiological and various pathological conditions by high-throughput sequencing. Our results showed that IGHJ gene frequency follows a similar pattern which is previously known, where IGHJ4 is used at high frequency (>40%), IGHJ6/IGHJ3/IGHJ5 is used at medium frequencies (10∼20%), and IGH2/IGHJ1 is used at low frequency (<4%) under whether normal physiological or various pathological conditions. However, our analysis of the recombination signal sequences suggested that the conserved non-amer and heptamer and certain 23 bp spacer length may affect the initial IGHD-IGHJ recombination, which results in different frequencies of IGHJ genes among the initial BCR-H repertoire. Based on this “initial repertoire,” we recommend that re-evaluation and further investigation are needed when analyzing the significance and mechanism of IGHJ gene frequency in self-tolerance selection and the clonal proliferative response.
Collapse
Affiliation(s)
- Bin Shi
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaoheng Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Suhong Sun
- Department of Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jiang Yu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xiaomei Wang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Juan Pan
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xiaoyan He
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Danhua Su
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
18
|
Kreer C, Döring M, Lehnen N, Ercanoglu MS, Gieselmann L, Luca D, Jain K, Schommers P, Pfeifer N, Klein F. openPrimeR for multiplex amplification of highly diverse templates. J Immunol Methods 2020; 480:112752. [PMID: 31991148 DOI: 10.1016/j.jim.2020.112752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/19/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
To study the diversity of immune receptors and pathogens, multiplex PCR has become a central approach in research and diagnostics. However, insufficient primer design against highly diverse templates often prevents amplification and therefore limits the correct understanding of biological processes. Here, we present openPrimeR, an R-based tool for evaluating and designing multiplex PCR primers. openPrimeR provides a functional and intuitive interface and uses either a greedy algorithm or an integer linear program to compute the minimal set of primers that performs full target coverage. As proof of concept, we used openPrimeR to find optimal primer sets for the amplification of highly mutated immunoglobulins. Comprehensive analyses on specifically generated immunoglobulin variable gene segment libraries resulted in the composition of highly effective primer sets (oPR-IGHV, oPR-IGKV and oPR-IGLV) that demonstrated to be particularly suitable for the isolation of novel human antibodies.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Matthias Döring
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Nathalie Lehnen
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Domnica Luca
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Kanika Jain
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany; Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany; Medical Faculty, University of Tübingen, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
20
|
Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun 2019; 2:100021. [PMID: 32743507 PMCID: PMC7388352 DOI: 10.1016/j.jtauto.2019.100021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Autoimmune diseases evolve from complex interactions between the immune system and self-antigens and involve several genetic attributes, environmental triggers and diverse cell types. Research using experimental mouse models has contributed key knowledge on the mechanisms that underlie these diseases in humans, but differences between the mouse and human immune systems can and, at times, do undermine the translational significance of these findings. The use of human immune system (HIS) mice enables the utility of mouse models with greater relevance for human diseases. As the name conveys, these mice are reconstituted with mature human immune cells transferred directly from peripheral blood or via transplantation of human hematopoietic stem cells that nucleate the generation of a complex human immune system. The function of the human immune system in HIS mice has improved over the years with the stepwise development of better models. HIS mice exhibit key benefits of the murine animal model, such as small size, robust and rapid reproduction and ease of experimental manipulation. Importantly, HIS mice also provide an applicable in vivo setting that permit the investigation of the physiological and pathological functions of the human immune system and its response to novel treatments. With the gaining popularity of HIS mice in the last decade, the potential of this model has been exploited for research in basic science, infectious diseases, cancer, and autoimmunity. In this review we focus on the use of HIS mice in autoimmune studies to stimulate further development of these valuable models. Human immune system (HIS) mice bear components of the human immune system. HIS mice engraft with human blood or hematopoietic stem cells, and sometimes thymus. HIS mice are used to investigate development and function of the human immune system. Immunological tolerance and autoimmune responses can be studied in HIS mice. HIS models of autoimmunity vary in complexity and in ability to represent disease.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Corresponding author. University of Colorado School of Medicine, 12800 East 19th Avenue Mail Stop 8333, Aurora, CO, 80045-2508, USA.
| |
Collapse
|
21
|
Lindesmith LC, McDaniel JR, Changela A, Verardi R, Kerr SA, Costantini V, Brewer-Jensen PD, Mallory ML, Voss WN, Boutz DR, Blazeck JJ, Ippolito GC, Vinje J, Kwong PD, Georgiou G, Baric RS. Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity 2019; 50:1530-1541.e8. [PMID: 31216462 PMCID: PMC6591005 DOI: 10.1016/j.immuni.2019.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire—pre- and post-vaccination—and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen. Serum vaccine response is dominated by a small number of abundant antibody clonotypes Vaccine-boosted antibodies predominantly target conserved norovirus epitopes Identified cross-genogroup and strain-specific epitopes Discovered a pandemic-genotype neutralizing antibody recognizing a conserved epitope
Collapse
Affiliation(s)
- Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A Kerr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William N Voss
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - John J Blazeck
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jan Vinje
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Döring M, Kreer C, Lehnen N, Klein F, Pfeifer N. Modeling the Amplification of Immunoglobulins through Machine Learning on Sequence-Specific Features. Sci Rep 2019; 9:10748. [PMID: 31341211 PMCID: PMC6656877 DOI: 10.1038/s41598-019-47173-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
Successful primer design for polymerase chain reaction (PCR) hinges on the ability to identify primers that efficiently amplify template sequences. Here, we generated a novel Taq PCR data set that reports the amplification status for pairs of primers and templates from a reference set of 47 immunoglobulin heavy chain variable sequences and 20 primers. Using logistic regression, we developed TMM, a model for predicting whether a primer amplifies a template given their nucleotide sequences. The model suggests that the free energy of annealing, ΔG, is the key driver of amplification (p = 7.35e-12) and that 3' mismatches should be considered in dependence on ΔG and the mismatch closest to the 3' terminus (p = 1.67e-05). We validated TMM by comparing its estimates with those from the thermodynamic model of DECIPHER (DE) and a model based solely on the free energy of annealing (FE). TMM outperformed the other approaches in terms of the area under the receiver operating characteristic curve (TMM: 0.953, FE: 0.941, DE: 0.896). TMM can improve primer design and is freely available via openPrimeR ( http://openPrimeR.mpi-inf.mpg.de ).
Collapse
Affiliation(s)
- Matthias Döring
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123, Saarbrücken, Germany
| | - Christoph Kreer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Nathalie Lehnen
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
- German Center for Infection Research, Cologne-Bonn Partner Site, Cologne, Germany
| | - Florian Klein
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
- German Center for Infection Research, Cologne-Bonn Partner Site, Cologne, Germany
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123, Saarbrücken, Germany.
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
- Medical Faculty, Geissweg 5, University of Tübingen, 72076, Tübingen, Germany.
- German Center for Infection Research, Tübingen Partner Site, Tübingen, Germany.
| |
Collapse
|
23
|
Abstract
Therapeutic protein drugs have significantly improved the management of many severe and chronic diseases. However, their development and optimal clinical application are complicated by the induction of unwanted immune responses. Therapeutic protein-induced antidrug antibodies can alter drug pharmacokinetics and pharmacodynamics leading to impaired efficacy and occasionally serious safety issues. There has been a growing interest over the past decade in developing methods to assess the risk of unwanted immunogenicity during preclinical drug development, with the aim to mitigate the risk during the molecular design phase, clinical development and when products reach the market. Here, we discuss approaches to therapeutic protein immunogenicity risk assessment, with attention to assays and in vivo models used to mitigate this risk.
Collapse
|
24
|
Lee J, Paparoditis P, Horton AP, Frühwirth A, McDaniel JR, Jung J, Boutz DR, Hussein DA, Tanno Y, Pappas L, Ippolito GC, Corti D, Lanzavecchia A, Georgiou G. Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. Cell Host Microbe 2019; 25:367-376.e5. [PMID: 30795981 DOI: 10.1016/j.chom.2019.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
Humans are repeatedly exposed to influenza virus via infections and vaccinations. Understanding how multiple exposures and pre-existing immunity impact antibody responses is essential for vaccine development. Given the recent prevalence of influenza H1N1 A/California/7/2009 (CA09), we examined the clonal composition and dynamics of CA09 hemagglutinin (HA)-reactive IgG repertoire over 5 years in a donor with multiple influenza exposures. The anti-CA09 HA polyclonal response in this donor comprised 24 persistent antibody clonotypes, accounting for 72.6% ± 10.0% of the anti-CA09 HA repertoire over 5 years. These persistent antibodies displayed higher somatic hypermutation relative to transient serum antibodies detected at one time point. Additionally, persistent antibodies predominantly demonstrated cross-reactivity and potent neutralization toward a phylogenetically distant H5N1 A/Vietnam/1203/2004 (VT04) strain, a feature correlated with HA stem recognition. This analysis reveals how "serological imprinting" impacts responses to influenza and suggests that once elicited, cross-reactive antibodies targeting the HA stem can persist for years.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona 6500, Switzerland; Institute of Microbiology, ETH Zürich, Zürich 8093, Switzerland
| | - Andrew P Horton
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander Frühwirth
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Jonathan R McDaniel
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiwon Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel R Boutz
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dania A Hussein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuri Tanno
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Leontios Pappas
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona 6500, Switzerland; Institute of Microbiology, ETH Zürich, Zürich 8093, Switzerland
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Gawron MA, Duval M, Carbone C, Jaiswal S, Wallace A, Martin JC, Dauphin A, Brehm MA, Greiner DL, Shultz LD, Luban J, Cavacini LA. Human Anti-HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:799-804. [PMID: 30593536 PMCID: PMC6344273 DOI: 10.4049/jimmunol.1801085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Broadly neutralizing, anti-HIV-1 gp120 mAbs have been isolated from infected individuals, and there is considerable interest in developing these reagents for Ab-based immunoprophylaxis and treatment. As a means to identify potentially new anti-HIV Abs, we exploited humanized NOD-scid IL2rγnull mice systemically infected with HIV-1 to generate a wide variety of Ag-specific human mAbs. The Abs were encoded by a diverse range of variable gene families and Ig classes, including IgA, and several showed significant levels of somatic mutation. Moreover, the isolated Abs not only bound target Ags with similar affinity as broadly neutralizing Abs, they also demonstrated neutralizing ability against multiple HIV-1 clades. The use of humanized mice will allow us to use our knowledge of HIV-1 gp120 structure and function, and the immune response targeting this protein, to generate native human prophylactic Abs to reduce the infection and spread of HIV-1.
Collapse
Affiliation(s)
- Melissa A Gawron
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Mark Duval
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Smita Jaiswal
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Aaron Wallace
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Joseph C Martin
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | | | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lisa A Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126;
| |
Collapse
|
26
|
Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 2018; 10:1281-1290. [PMID: 30252602 PMCID: PMC6284603 DOI: 10.1080/19420862.2018.1518887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug's potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs' sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.
Collapse
Affiliation(s)
- Kannan Sankar
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kam Hon Hoi
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Yizhou Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Institute for Bioscience and Biotechnology Research, Biological Sciences Graduate Program, University of Maryland, Rockville, MD, USA
| | - Prasanna Ramachandran
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Nisana Andersen
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Amy Hilderbrand
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Paul McDonald
- Department of Purification Development and Bioprocess Development, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Qing Zhang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
27
|
Liu Y, McDaniel JR, Khan S, Campisi P, Propst EJ, Holler T, Grunebaum E, Georgiou G, Ippolito GC, Ehrhardt GRA. Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3962-3969. [PMID: 29703863 PMCID: PMC5988966 DOI: 10.4049/jimmunol.1701549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 01/02/2023]
Abstract
FCRL4, a low-affinity IgA Ab receptor with strong immunoregulatory potential, is an identifying feature of a tissue-based population of memory B cells (Bmem). We used two independent approaches to perform a comparative analysis of the Ag receptor repertoires of FCRL4+ and FCRL4- Bmem in human tonsils. We determined that FCRL4+ Bmem displayed lower levels of somatic mutations in their Ag receptors compared with FCRL4- Bmem but had similar frequencies of variable gene family usage. Importantly, Abs with reactivity to commensal microbiota were enriched in FCRL4+ cells, a phenotype not due to polyreactive binding characteristics. Our study links expression of the immunoregulatory FCRL4 molecule with increased recognition of commensal microbial Ags.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathan R McDaniel
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Theresa Holler
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - George Georgiou
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
28
|
D'Angelo S, Ferrara F, Naranjo L, Erasmus MF, Hraber P, Bradbury ARM. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol 2018; 9:395. [PMID: 29568296 PMCID: PMC5852061 DOI: 10.3389/fimmu.2018.00395] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with the same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.
Collapse
Affiliation(s)
| | | | | | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | |
Collapse
|
29
|
Bürckert JP, Dubois ARSX, Faison WJ, Farinelle S, Charpentier E, Sinner R, Wienecke-Baldacchino A, Muller CP. Functionally Convergent B Cell Receptor Sequences in Transgenic Rats Expressing a Human B Cell Repertoire in Response to Tetanus Toxoid and Measles Antigens. Front Immunol 2017; 8:1834. [PMID: 29312330 PMCID: PMC5743747 DOI: 10.3389/fimmu.2017.01834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
The identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT. We showed that these antigens impose a selective pressure causing the Ig heavy chain (IgH) repertoires of the rats to converge toward the expression of antibodies with highly similar IgH CDR3 amino acid sequences. We present a computational approach, similar to differential gene expression analysis, that selects for clusters of CDR3s with 80% similarity, significantly overrepresented within the different groups of immunized rats. These IgH clusters represent antigen-induced IgH signatures exhibiting stereotypic amino acid patterns including previously described TT- and measles-specific IgH sequences. Our data suggest that with the presented methodology, transgenic Ig rats can be utilized as a model to identify antigen-induced, human IgH signatures to a variety of different antigens.
Collapse
Affiliation(s)
- Jean-Philippe Bürckert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Axel R S X Dubois
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - William J Faison
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Emilie Charpentier
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Regina Sinner
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
30
|
Khavrutskii IV, Chaudhury S, Stronsky SM, Lee DW, Benko JG, Wallqvist A, Bavari S, Cooper CL. Quantitative Analysis of Repertoire-Scale Immunoglobulin Properties in Vaccine-Induced B-Cell Responses. Front Immunol 2017; 8:910. [PMID: 28855898 PMCID: PMC5557726 DOI: 10.3389/fimmu.2017.00910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
Recent advances in the next-generation sequencing of B-cell receptors (BCRs) enable the characterization of humoral responses at a repertoire-wide scale and provide the capability for identifying unique features of immune repertoires in response to disease, vaccination, or infection. Immunosequencing now readily generates 103–105 sequences per sample; however, statistical analysis of these repertoires is challenging because of the high genetic diversity of BCRs and the elaborate clonal relationships among them. To date, most immunosequencing analyses have focused on reporting qualitative trends in immunoglobulin (Ig) properties, such as usage or somatic hypermutation (SHM) percentage of the Ig heavy chain variable (IGHV) gene segment family, and on reducing complex Ig property distributions to simple summary statistics. However, because Ig properties are typically not normally distributed, any approach that fails to assess the distribution as a whole may be inadequate in (1) properly assessing the statistical significance of repertoire differences, (2) identifying how two repertoires differ, and (3) determining appropriate confidence intervals for assessing the size of the differences and their potential biological relevance. To address these issues, we have developed a technique that uses Wilcox’ robust statistics toolbox to identify statistically significant vaccine-specific differences between Ig repertoire properties. The advantage of this technique is that it can determine not only whether but also where the distributions differ, even when the Ig repertoire properties are non-normally distributed. We used this technique to characterize murine germinal center (GC) B-cell repertoires in response to a complex Ebola virus-like particle (eVLP) vaccine candidate with known protective efficacy. The eVLP-mediated GC B-cell responses were highly diverse, consisting of thousands of clonotypes. Despite this staggering diversity, we identified statistically significant differences between non-immunized, vaccine only, and vaccine-plus-adjuvant groups in terms of Ig properties, including IGHV-family usage, SHM percentage, and characteristics of the BCR complementarity-determining region. Most notably, our analyses identified a robust eVLP-specific feature—enhanced IGHV8-family usage in B-cell repertoires. These findings demonstrate the utility of our technique in identifying statistically significant BCR repertoire differences following vaccination. More generally, our approach is potentially applicable to a wide range of studies in infection, vaccination, auto-immunity, and cancer.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Sidhartha Chaudhury
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States
| | - Donald W Lee
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Jacqueline G Benko
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States
| |
Collapse
|
31
|
Shrivastava A, Tripathi NK, Dash PK, Parida M. Working towards dengue as a vaccine-preventable disease: challenges and opportunities. Expert Opin Biol Ther 2017; 17:1193-1199. [PMID: 28707486 DOI: 10.1080/14712598.2017.1356284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.
Collapse
Affiliation(s)
- Ambuj Shrivastava
- a Division of Virology , Defence Research and Development Establishment , Gwalior , India
| | - Nagesh K Tripathi
- a Division of Virology , Defence Research and Development Establishment , Gwalior , India
| | - Paban K Dash
- a Division of Virology , Defence Research and Development Establishment , Gwalior , India
| | - Manmohan Parida
- a Division of Virology , Defence Research and Development Establishment , Gwalior , India
| |
Collapse
|
32
|
Nogueira RT, Sahi V, Huang J, Tsuji M. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice. Immunol Lett 2017; 188:46-52. [PMID: 28610800 DOI: 10.1016/j.imlet.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/17/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination.
Collapse
Affiliation(s)
- Raquel Tayar Nogueira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Vincent Sahi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
33
|
LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 2017; 7:3572. [PMID: 28620237 PMCID: PMC5472587 DOI: 10.1038/s41598-017-03913-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023] Open
Abstract
Genetically engineered pigs are a promising source for islet cell transplantation in type 1 diabetes, but the strong human anti-pig immune response prevents its successful clinical application. Here we studied the efficacy of neonatal porcine islet-like cell clusters (NPICCs) overexpressing LEA29Y, a high-affinity variant of the T cell co-stimulation inhibitor CTLA-4Ig, to engraft and restore normoglycemia after transplantation into streptozotocin-diabetic NOD-SCID IL2rγ−/− (NSG) mice stably reconstituted with a human immune system. Transplantation of INSLEA29Y expressing NPICCs resulted in development of normal glucose tolerance (70.4%) and long-term maintenance of normoglycemia without administration of immunosuppressive drugs. All animals transplanted with wild-type NPICCs remained diabetic. Immunohistological examinations revealed a strong peri- and intragraft infiltration of wild-type NPICCs with human CD45+ immune cells consisting of predominantly CD4+ and CD8+ lymphocytes and some CD68+ macrophages and FoxP3+ regulatory T cells. Significantly less infiltrating lymphocytes and only few macrophages were observed in animals transplanted with INSLEA29Y transgenic NPICCs. This is the first study providing evidence that beta cell-specific LEA29Y expression is effective for NPICC engraftment in the presence of a humanized immune system and it has a long-lasting protective effect on inhibition of human anti-pig xenoimmunity. Our findings may have important implications for the development of a low-toxic protocol for porcine islet transplantation in patients with type 1 diabetes.
Collapse
|
34
|
Longo NS, Rogosch T, Zemlin M, Zouali M, Lipsky PE. Mechanisms That Shape Human Antibody Repertoire Development in Mice Transgenic for Human Ig H and L Chain Loci. THE JOURNAL OF IMMUNOLOGY 2017; 198:3963-3977. [PMID: 28438896 DOI: 10.4049/jimmunol.1700133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023]
Abstract
To determine the impact of the milieu on the development of the human B cell repertoire, we carried out a comprehensive analysis of productive and nonproductive Ig gene rearrangements from transgenic mice engineered to express single copies of the unrearranged human H chain and L chain Ig gene loci. By examining the nonproductive repertoire as an indication of the immediate product of the rearrangement machinery without an impact of selection, we discovered that the distribution of human rearrangements arising in the mouse was generally comparable to that seen in humans. However, differences between the distribution of nonproductive and productive rearrangements that reflect the impact of selection suggested species-specific selection played a role in shaping the respective repertoires. Although expression of some VH genes was similar in mouse and human (IGHV3-23, IGHV3-30, and IGHV4-59), other genes behaved differently (IGHV3-33, IGHV3-48, IGHV4-31, IGHV4-34, and IGHV1-18). Gene selection differences were also noted in L chains. Notably, nonproductive human VH rearrangements in the transgenic mice expressed shorter CDRH3 with less N addition. Even the CDRH3s in the productive rearrangements were shorter in length than those of the normal human productive repertoire. Amino acids in the CDRH3s in both species showed positive selection of tyrosines and glycines, and negative selection of leucines. The data indicate that the environment in which B cells develop can affect the expressed Ig repertoire by exerting influences on the distribution of expressed VH and VL genes and by influencing the amino acid composition of the Ag binding site.
Collapse
Affiliation(s)
- Nancy S Longo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tobias Rogosch
- Pediatric Immunology and Allergology, Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | - Michael Zemlin
- Klinik für Kinder-und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, D-35033 Marburg, Germany.,Department of General Pediatrics and Neonatology, Saarland University Medical School, D-66421 Homburg, Germany
| | - Moncef Zouali
- INSERM & Université Paris Diderot, Sorbonne Paris Cité Centre Viggo Petersen, Hôpital Lariboisière, 75475 Paris, France; and
| | | |
Collapse
|
35
|
Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother 2017; 13:1059-1072. [PMID: 28281864 DOI: 10.1080/21645515.2016.1261770] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.
Collapse
Affiliation(s)
- J Torresi
- a Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity, University of Melbourne , Parkville , Victoria , Australia
| | - G Ebert
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia
| | - M Pellegrini
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia.,c Department of Medical Biology , The University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
36
|
A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 2017; 129:959-969. [PMID: 28077418 DOI: 10.1182/blood-2016-04-709584] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023] Open
Abstract
Humanized mice are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, the existing models cannot support robust adaptive immune responses, especially the generation of class-switched, antigen-specific antibody responses. Here we describe a new mouse strain, in which human interleukin 6 (IL-6) gene encoding the cytokine that is important for B- and T-cell differentiation was knocked into its respective mouse locus. The provision of human IL-6 not only enhanced thymopoiesis and periphery T-cell engraftment, but also significantly increased class switched memory B cells and serum immunoglobulin G (IgG). In addition, immunization with ovalbumin (OVA) induced OVA-specific B cells only in human IL-6 knock-in mice. These OVA-specific antibodies displayed the highest frequency of somatic mutation, further suggesting that human IL-6 is important for efficient B-cell activation and selection. We conclude that human IL-6 knock-in mice represent a novel and improved model for human adaptive immunity without relying on complex surgery to transplant human fetal thymus and liver. These mice can therefore be used to exploit or evaluate immunization regimes that would be unethical or untenable in humans.
Collapse
|
37
|
Wu GC, Cheung NKV, Georgiou G, Marcotte EM, Ippolito GC. Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. Nat Commun 2016; 7:13838. [PMID: 28000661 PMCID: PMC5187582 DOI: 10.1038/ncomms13838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Plasma cells in human bone marrow (BM) are thought to be responsible for sustaining lifelong immunity, but its underlying basis is controversial. Here we use high-throughput sequence analysis of the same individual across 6.5 years to show that the BM plasma cell immunoglobulin heavy chain repertoire is remarkably stable over time. We find a nearly static bias in individual and combinatorial gene usage across time. Analysis of a second donor corroborates these observations. We also report the persistence of numerous BM plasma cell clonotypes (∼2%) identifiable at all points assayed across 6.5 years, supporting a model of serological memory based upon intrinsic longevity of human plasma cells. Donors were adolescents who completely recovered from neuroblastoma prior to the start of this study. Our work will facilitate differentiation between healthy and diseased antibody repertoires, by serving as a point of comparison with future deep-sequencing studies involving immune intervention.
Longevity of antibody responses has been attributed to persistence of plasma cells in mice. Here the authors provide human data in support of this model by immunoglobulin sequencing bone marrow sections from two human donors over 6.5 years to show temporal stability of plasma cell clonotypes, but not other B cells.
Collapse
Affiliation(s)
- Gabriel C Wu
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
38
|
Jangalwe S, Shultz LD, Mathew A, Brehm MA. Improved B cell development in humanized NOD -scid IL2Rγnull mice transgenically expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor and interleukin-3. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:427-440. [PMID: 27980777 PMCID: PMC5134721 DOI: 10.1002/iid3.124] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Introduction Immunodeficient mice engrafted with human immune systems support studies of human hematopoiesis and the immune response to human‐specific pathogens. A significant limitation of these humanized mouse models is, however, a severely restricted ability of human B cells to undergo class switching and produce antigen‐specific IgG after infection or immunization. Methods In this study, we have characterized the development and function of human B cells in NOD‐scid IL2Rγnull (NSG) mice transgenically expressing human stem cell factor (SCF), granulocyte macrophage colony‐stimulating factor (GM‐CSF), and IL‐3 (NSG‐SGM3) following engraftment with human hematopoietic stem cells, autologous fetal liver, and thymic tissues (bone marrow, liver, thymus or BLT model). The NSG‐SGM3 BLT mice engraft rapidly with human immune cells and develop T cells, B cells, and myeloid cells. Results A higher proportion of human B cells developing in NSG‐SGM3 BLT mice had a mature/naive phenotype with a corresponding decrease in immature/transitional human B cells as compared to NSG BLT mice. In addition, NSG‐SGM3 BLT mice have higher basal levels of human IgM and IgG as compared with NSG BLT mice. Moreover, dengue virus infection of NSG‐SGM3 BLT mice generated higher levels of antigen‐specific IgM and IgG, a result not observed in NSG BLT mice. Conclusions Our studies suggest that NSG‐SGM3 BLT mice show improved human B cell development and permit the generation of antigen‐specific antibody responses to viral infection.
Collapse
Affiliation(s)
- Sonal Jangalwe
- Program in Molecular Medicine, Diabetes Center of Excellence™ University of Massachusetts Medical School Worcester Massachusetts 01605 USA
| | | | - Anuja Mathew
- Department of Cell and Molecular Biology University of Rhode Island Providence Rhode Island 02903 USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence™ University of Massachusetts Medical School Worcester Massachusetts 01605 USA
| |
Collapse
|
39
|
Foster MH, Buckley ES, Chen BJ, Hwang KK, Clark AG. Uncommon structural motifs dominate the antigen binding site in human autoantibodies reactive with basement membrane collagen. Mol Immunol 2016; 76:123-33. [PMID: 27450516 PMCID: PMC4979994 DOI: 10.1016/j.molimm.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Autoantibodies mediate organ destruction in multiple autoimmune diseases, yet their origins in patients remain poorly understood. To probe the genetic origins and structure of disease-associated autoantibodies, we engrafted immunodeficient mice with human CD34+ hematopoietic stem cells and immunized with the non-collagenous-1 (NC1) domain of the alpha3 chain of type IV collagen. This antigen is expressed in lungs and kidneys and is targeted by autoantibodies in anti-glomerular basement membrane (GBM) nephritis and Goodpasture syndrome (GPS), prototypic human organ-specific autoimmune diseases. Using Epstein Barr virus transformation and cell fusion, six human anti-alpha3(IV)NC1 collagen monoclonal autoantibodies (mAb) were recovered, including subsets reactive with human kidney and with epitopes recognized by patients' IgG. Sequence analysis reveals a long to exceptionally long heavy chain complementarity determining region3 (HCDR3), the major site of antigen binding, in all six mAb. Mean HCDR3 length is 25.5 amino acids (range 20-36), generated from inherently long DH and JH genes and extended regions of non-templated N-nucleotides. Long HCDR3 are suited to forming noncontiguous antigen contacts and to binding recessed, immunologically silent epitopes hidden from conventional antibodies, as seen with self-antigen crossreactive broadly neutralizing anti-HIV Ig (bnAb). The anti-alpha3(IV)NC1 collagen mAb also show preferential use of unmutated variable region genes that are enriched among human chronic lymphocytic leukemia antibodies that share features with natural polyreactive Ig. Our findings suggest unexpected relationships between pathogenic anti-collagen Ig, bnAb, and autoreactive Ig associated with malignancy, all of which arise from B cells expressing unconventional structural elements that may require transient escape from tolerance for successful expansion.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Durham VA Medical Center, Durham, N.C., USA; Duke Cancer Institute, Duke University Medical Center, Durham, N.C., USA.
| | | | - Benny J Chen
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Duke Cancer Institute, Duke University Medical Center, Durham, N.C., USA.
| | - Kwan-Ki Hwang
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, N.C., USA.
| | - Amy G Clark
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Durham VA Medical Center, Durham, N.C., USA.
| |
Collapse
|
40
|
DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A 2016; 113:E2636-45. [PMID: 27114511 PMCID: PMC4868480 DOI: 10.1073/pnas.1525510113] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Collapse
Affiliation(s)
- Brandon J DeKosky
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Oana I Lungu
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Erik L Johnson
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | | | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
41
|
Avnir Y, Watson CT, Glanville J, Peterson EC, Tallarico AS, Bennett AS, Qin K, Fu Y, Huang CY, Beigel JH, Breden F, Zhu Q, Marasco WA. IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity. Sci Rep 2016; 6:20842. [PMID: 26880249 PMCID: PMC4754645 DOI: 10.1038/srep20842] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/08/2016] [Indexed: 01/06/2023] Open
Abstract
IGHV polymorphism provides a rich source of humoral immune system diversity. One important example is the IGHV1-69 germline gene where the biased use of alleles that encode the critical CDR-H2 Phe54 (F-alleles) to make broadly neutralizing antibodies (HV1-69-sBnAb) to the influenza A hemagglutinin stem domain has been clearly established. However, whether IGHV1-69 polymorphism can also modulate B cell function and Ab repertoire expression through promoter and copy number (CN) variations has not been reported, nor has whether IGHV1-69 allelic distribution is impacted by ethnicity. Here we studied a cohort of NIH H5N1 vaccinees and demonstrate for the first time the influence of IGHV1-69 polymorphism on V-segment usage, somatic hypermutation and B cell expansion that elucidates the dominance of F-alleles in HV1-69-sBnAbs. We provide evidence that Phe54/Leu54 (F/L) polymorphism correlates with shifted repertoire usage of other IGHV germline genes. In addition, we analyzed ethnically diverse individuals within the 1000 genomes project and discovered marked variations in F- and L- genotypes and CN among the various ethnic groups that may impact HV1-69-sBnAb responses. These results have immediate implications for understanding HV1-69-sBnAb responses at the individual and population level and for the design and implementation of "universal" influenza vaccine.
Collapse
Affiliation(s)
- Yuval Avnir
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Corey T. Watson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | - Eric C. Peterson
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Aimee S. Tallarico
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Andrew S. Bennett
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Kun Qin
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Ying Fu
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Chiung-Yu Huang
- Division of Biostatistics and Bioinformatics Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University 550 N. Broadway, Room 1103-A Baltimore, Maryland 21205-2013, USA
| | - John H. Beigel
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Quan Zhu
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
42
|
McDaniel JR, DeKosky BJ, Tanno H, Ellington AD, Georgiou G. Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nat Protoc 2016; 11:429-42. [PMID: 26844430 DOI: 10.1038/nprot.2016.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-throughput sequencing of the variable domains of immune receptors (antibodies and T cell receptors (TCRs)) is of key importance in the understanding of adaptive immune responses in health and disease. However, the sequencing of both immune receptor chains (VH+VL or TCRβ/δ+TCRα/γ) at the single-cell level for typical samples containing >10(4) lymphocytes is problematic, because immune receptors comprise two polypeptide chains that are encoded by separate mRNAs. Here we present a technology that allows rapid and low-cost determination of a paired immune receptor repertoire from millions of cells with high precision (>97%). Flow focusing is used to encapsulate single cells in emulsions containing magnetic beads for mRNA capture. The mRNA transcripts are then reverse-transcribed, physically linked to their partners by overlap extension PCR, and interrogated by high-throughput paired-end Illumina sequencing. This protocol describes the construction and operation of the flow-focusing device in detail, as well as the bioinformatics pipeline used to interpret the data. The entire procedure can be performed by a single researcher in under 12 h of effort per sample.
Collapse
Affiliation(s)
- Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Brandon J DeKosky
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
43
|
Chung YS, Son JK, Choi B, Park JB, Chang J, Kim SJ. Transplantation of human spleen into immunodeficient NOD/SCID IL2Rγ null mice generates humanized mice that improve functional B cell development. Clin Immunol 2015; 161:308-15. [DOI: 10.1016/j.clim.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/23/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022]
|
44
|
Abstract
During the past decade, the development of humanized mouse models and their general applications in biomedical research greatly accelerated the translation of outcomes obtained from basic research into potential diagnostic and therapeutic strategies in clinic. In this chapter, we firstly present an overview on the history and current progress of diverse humanized mouse models and then focus on those equipped with reconstituted human immune system. The update advancement in the establishment of humanized immune system mice and their applications in the studies of the development of human immune system and the pathogenesis of multiple human immune-related diseases are intensively reviewed here, while the shortcoming and perspective of these potent tools are discussed as well. As a valuable bridge across the gap between bench work and clinical trial, progressive humanized mouse models will undoubtedly continue to play an indispensable role in the wide area of biomedical research.
Collapse
|
45
|
Paciello G, Acquaviva A, Pighi C, Ferrarini A, Macii E, Zamo’ A, Ficarra E. VDJSeq-Solver: in silico V(D)J recombination detection tool. PLoS One 2015; 10:e0118192. [PMID: 25799103 PMCID: PMC4370828 DOI: 10.1371/journal.pone.0118192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022] Open
Abstract
In this paper we present VDJSeq-Solver, a methodology and tool to identify clonal lymphocyte populations from paired-end RNA Sequencing reads derived from the sequencing of mRNA neoplastic cells. The tool detects the main clone that characterises the tissue of interest by recognizing the most abundant V(D)J rearrangement among the existing ones in the sample under study. The exact sequence of the clone identified is capable of accounting for the modifications introduced by the enzymatic processes. The proposed tool overcomes limitations of currently available lymphocyte rearrangements recognition methods, working on a single sequence at a time, that are not applicable to high-throughput sequencing data. In this work, VDJSeq-Solver has been applied to correctly detect the main clone and identify its sequence on five Mantle Cell Lymphoma samples; then the tool has been tested on twelve Diffuse Large B-Cell Lymphoma samples. In order to comply with the privacy, ethics and intellectual property policies of the University Hospital and the University of Verona, data is available upon request to supporto.utenti@ateneo.univr.it after signing a mandatory Materials Transfer Agreement. VDJSeq-Solver JAVA/Perl/Bash software implementation is free and available at http://eda.polito.it/VDJSeq-Solver/.
Collapse
Affiliation(s)
- Giulia Paciello
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
- * E-mail:
| | - Andrea Acquaviva
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Chiara Pighi
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
- Department of Pathology, Children Hospital Boston, Harvard Medical School, Boston, USA
| | | | - Enrico Macii
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Alberto Zamo’
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
46
|
Ratliff ML, Ward JM, Merrill JT, James JA, Webb CF. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:940-9. [PMID: 25535283 PMCID: PMC4297684 DOI: 10.4049/jimmunol.1401941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although hematopoietic stem/progenitor cells (HSPCs) are used for transplantation, characterization of the multiple subsets within this population in humans has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in humans have not been defined. We previously showed increased numbers of ARID3a(+) B cells in nearly half of systemic lupus erythematosus (SLE) patients, and total numbers of ARID3a(+) B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HSPCs in either healthy controls or SLE patients. Numbers of ARID3a(+) HSPCs in SLE patients were increased over numbers of ARID3a(+) cells in healthy controls. Although all SLE-derived HSPCs exhibited poor colony formation in vitro compared with controls, SLE HSPCs with high numbers of ARID3a(+) cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HSPCs with high numbers of ARID3a(+) cells also more readily generated autoantibody-producing cells than HSPCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HSPCs could be informative for applications requiring transplantation of those cells.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Julie M Ward
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Joan T Merrill
- Clinical Pharmacology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Judith A James
- Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Carol F Webb
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
47
|
In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat Med 2014; 21:86-91. [PMID: 25501908 DOI: 10.1038/nm.3743] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022]
Abstract
High-throughput immune repertoire sequencing has emerged as a critical step in the understanding of adaptive responses following infection or vaccination or in autoimmunity. However, determination of native antibody variable heavy-light pairs (VH-VL pairs) remains a major challenge, and no technologies exist to adequately interrogate the >1 × 10(6) B cells in typical specimens. We developed a low-cost, single-cell, emulsion-based technology for sequencing antibody VH-VL repertoires from >2 × 10(6) B cells per experiment with demonstrated pairing precision >97%. A simple flow-focusing apparatus was used to sequester single B cells into emulsion droplets containing lysis buffer and magnetic beads for mRNA capture; subsequent emulsion RT-PCR generated VH-VL amplicons for next-generation sequencing. Massive VH-VL repertoire analyses of three human donors provided new immunological insights including (i) the identity, frequency and pairing propensity of shared, or 'public', VL genes, (ii) the detection of allelic inclusion (an implicated autoimmune mechanism) in healthy individuals and (iii) the occurrence of antibodies with features, in terms of gene usage and CDR3 length, associated with broadly neutralizing antibodies to rapidly evolving viruses such as HIV-1 and influenza.
Collapse
|
48
|
Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 2014; 24:112-20. [PMID: 25461729 DOI: 10.1016/j.cbpa.2014.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).
Collapse
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Andrew P Horton
- Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA.
| |
Collapse
|
49
|
Wege AK, Schmidt M, Ueberham E, Ponnath M, Ortmann O, Brockhoff G, Lehmann J. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies. MAbs 2014; 6:968-77. [PMID: 24870377 PMCID: PMC4171030 DOI: 10.4161/mabs.29111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/18/2022] Open
Abstract
Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγ(null) (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4(+) T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy.
Collapse
Affiliation(s)
- Anja K Wege
- Department of Gynecology and Obstetrics; University Medical Center Regensburg; Regensburg, Germany
| | - Marcus Schmidt
- Department of Obstetrics and Gynecology; University Hospital; Mainz, Germany
| | - Elke Ueberham
- Department of Cell Engineering/GLP; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig, Germany
| | - Marvin Ponnath
- Department of Gynecology and Obstetrics; University Medical Center Regensburg; Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics; University Medical Center Regensburg; Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics; University Medical Center Regensburg; Regensburg, Germany
| | - Jörg Lehmann
- Department of Cell Engineering/GLP; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig, Germany
| |
Collapse
|
50
|
Villaudy J, Schotte R, Legrand N, Spits H. Critical assessment of human antibody generation in humanized mouse models. J Immunol Methods 2014; 410:18-27. [PMID: 24952244 DOI: 10.1016/j.jim.2014.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/31/2022]
Abstract
Immunodeficient mice reconstituted with human hematopoietic stem cells provide a small-animal model for the study of development and function of human hematopoietic cells in vivo. However, in the current models, the immune response, and especially the humoral response by the human immune cells is far from optimal. The B cells found in these mice exhibit an immature and abnormal phenotype correlating with a reduced capacity to produce antigen-specific affinity matured antibodies upon infection or immunization. Herein, we review the current state of knowledge of development, function and antibody production of human B cells and discuss the obstacles for the improvement of these models.
Collapse
Affiliation(s)
- Julien Villaudy
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, Netherlands.
| | - Remko Schotte
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands.
| | - Nicolas Legrand
- AXENIS, Institut Pasteur, Centre Francois Jacob, 28, rue du Dr. Roux, 75015 Paris, France.
| | - Hergen Spits
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, Netherlands.
| |
Collapse
|