1
|
Rahman FA, Hian-Cheong DJ, Boonstra K, Ma A, Thoms JP, Zago AS, Quadrilatero J. Augmented mitochondrial apoptotic signaling impairs C2C12 myoblast differentiation following cellular aging through sequential passaging. J Cell Physiol 2024; 239:e31155. [PMID: 38212955 DOI: 10.1002/jcp.31155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.
Collapse
Affiliation(s)
- Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kristen Boonstra
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Andrew Ma
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - James P Thoms
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Anderson S Zago
- Department of Physical Education, School of Sciences, Sao Paulo State University, Bauru, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Gabr MM, El-Halawani SM, Refaie AF, Khater SM, Ismail AM, Karras MS, Magar RW, Sayed SE, Kloc M, Uosef A, Sabek OM, Ghoneim MA. Modulation of naïve mesenchymal stromal cells by extracellular vesicles derived from insulin-producing cells: an in vitro study. Sci Rep 2024; 14:17844. [PMID: 39090166 PMCID: PMC11294623 DOI: 10.1038/s41598-024-68104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.
Collapse
Affiliation(s)
- Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Shorouk El Sayed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Omaima M Sabek
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
4
|
Vong CT, Tan D, Liao F, Chen Z, Chen Z, Tseng HHL, Cheang WS, Wang S, Wang Y. Ginsenoside Rk1 Ameliorates ER Stress-Induced Apoptosis through Directly Activating IGF-1R in Mouse Pancreatic [Formula: see text]-Cells and Diabetic Pancreas. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1195-1211. [PMID: 38798150 DOI: 10.1142/s0192415x24500484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hyperglycemia induces chronic stresses, such as oxidative stress and endoplasmic reticulum (ER) stress, which can result in [Formula: see text]-cell dysfunction and development of Type 2 Diabetes Mellitus (T2DM). Ginsenoside Rk1 is a minor ginsenoside isolated from Ginseng. It has been shown to exert anti-cancer, anti-inflammatory, anti-oxidant, and neuroprotective effects; however, its effects on pancreatic cells in T2DM have never been studied. This study aims to examine the novel effects of Ginsenoside Rk1 on ER stress-induced apoptosis in a pancreatic [Formula: see text]-cell line MIN6 and HFD-induced diabetic pancreas, and their underlying mechanisms. We demonstrated that Ginsenoside Rk1 alleviated ER stress-induced apoptosis in MIN6 cells, which was accomplished by directly targeting and activating insulin-like growth factor 1 receptor (IGF-1R), thus activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Bcl-2-associated agonist of cell death (Bad)-B-cell lymphoma-2 (Bcl-2) pathway. This pathway was also confirmed in an HFD-induced diabetic pancreas. Meanwhile, the use of the IGF-1R inhibitor PQ401 abolished this anti-apoptotic effect, confirming the role of IGF-1R in mediating anti-apoptosis effects exerted by Ginsenoside Rk1. Besides, Ginsenoside Rk1 reduced pancreas weights and increased pancreatic insulin contents, suggesting that it could protect the pancreas from HFD-induced diabetes. Taken together, our study provided novel protective effects of Ginsenoside Rk1 on ER stress-induced [Formula: see text]-cell apoptosis and HFD-induced diabetic pancreases, as well as its direct target with IGF-1R, indicating that Ginsenoside Rk1 could be a potential drug for the treatment of T2DM.
Collapse
Affiliation(s)
- Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Fengyun Liao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Zhejie Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nuclei Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhangmei Chen
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Hisa Hui Ling Tseng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Shengpeng Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P. R. China
| |
Collapse
|
5
|
Melchiorre CK, Lynes MD, Bhandari S, Su SC, Potts CM, Thees AV, Norris CE, Liaw L, Tseng YH, Lynes MA. Extracellular metallothionein as a therapeutic target in the early progression of type 1 diabetes. Cell Stress Chaperones 2024; 29:312-325. [PMID: 38490439 PMCID: PMC10990868 DOI: 10.1016/j.cstres.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by lymphocyte infiltration into the pancreatic islets of Langerhans, leading to the destruction of insulin-producing beta cells and uncontrolled hyperglycemia. In the nonobese diabetic (NOD) murine model of T1D, the onset of this infiltration starts several weeks before glucose dysregulation and overt diabetes. Recruitment of immune cells to the islets is mediated by several chemotactic cytokines, including CXCL10, while other cytokines, including SDF-1α, can confer protective effects. Global gene expression studies of the pancreas from prediabetic NOD mice and single-cell sequence analysis of human islets from prediabetic, autoantibody-positive patients showed an increased expression of metallothionein (MT), a small molecular weight, cysteine-rich metal-binding stress response protein. We have shown that beta cells can release MT into the extracellular environment, which can subsequently enhance the chemotactic response of Th1 cells to CXCL10 and interfere with the chemotactic response of Th2 cells to SDF-1α. These effects can be blocked in vitro with a monoclonal anti-MT antibody, clone UC1MT. When administered to NOD mice before the onset of diabetes, UC1MT significantly reduces the development of T1D. Manipulation of extracellular MT may be an important approach to preserving beta cell function and preventing the development of T1D.
Collapse
Affiliation(s)
- Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Sadikshya Bhandari
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Sheng-Chiang Su
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Christian M Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Amy V Thees
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Carol E Norris
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Shiwarski DJ, Hudson AR, Tashman JW, Bakirci E, Moss S, Coffin BD, Feinberg AW. 3D Bioprinting of Collagen-based Microfluidics for Engineering Fully-biologic Tissue Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577422. [PMID: 38352326 PMCID: PMC10862740 DOI: 10.1101/2024.01.26.577422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microfluidic and organ-on-a-chip devices have improved the physiologic and translational relevance of in vitro systems in applications ranging from disease modeling to drug discovery and pharmacology. However, current manufacturing approaches have limitations in terms of materials used, non-native mechanical properties, patterning of extracellular matrix (ECM) and cells in 3D, and remodeling by cells into more complex tissues. We present a method to 3D bioprint ECM and cells into microfluidic collagen-based high-resolution internally perfusable scaffolds (CHIPS) that address these limitations, expand design complexity, and simplify fabrication. Additionally, CHIPS enable size-dependent diffusion of molecules out of perfusable channels into the surrounding device to support cell migration and remodeling, formation of capillary-like networks, and integration of secretory cell types to form a glucose-responsive, insulin-secreting pancreatic-like microphysiological system.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samuel Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brian D. Coffin
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Hung YH, Kim Y, Mitchell SB, Thorn TL, Aydemir TB. Absence of Slc39a14/Zip14 in mouse pancreatic beta cells results in hyperinsulinemia. Am J Physiol Endocrinol Metab 2024; 326:E92-E105. [PMID: 38019082 PMCID: PMC11193513 DOI: 10.1152/ajpendo.00117.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Zinc is an essential component of the insulin protein complex synthesized in β cells. The intracellular compartmentalization and distribution of zinc are controlled by 24 transmembrane zinc transporters belonging to the ZnT or Zrt/Irt-like protein (ZIP) family. Downregulation of SLC39A14/ZIP14 has been reported in pancreatic islets of patients with type 2 diabetes (T2D) as well as mouse models of high-fat diet (HFD)- or db/db-induced obesity. Our previous studies observed mild hyperinsulinemia in mice with whole body knockout of Slc39a14 (Zip14 KO). Based on our current secondary data analysis from an integrative single-cell RNA-seq dataset of human whole pancreatic tissue, SLC39A14 (coding ZIP14) is the only other zinc transporter expressed abundantly in human β cells besides well-known zinc transporter SLC30A8 (coding ZnT8). In the present work, using pancreatic β cell-specific knockout of Slc39a14 (β-Zip14 KO), we investigated the role of SLC39A14/ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses. Glucose-stimulated insulin secretion, zinc concentrations, and cellular localization of ZIP14 were assessed using in vivo, ex vivo, and in vitro assays using β-Zip14 KO, isolated islets, and murine cell line MIN6. Metabolic evaluations were done on both chow- and HFD-fed mice using time-domain nuclear magnetic resonance and a comprehensive laboratory animal monitoring system. ZIP14 localizes on the endoplasmic reticulum regulating intracellular zinc trafficking in β cells and serves as a negative regulator of glucose-stimulated insulin secretion. Deletion of Zip14 resulted in greater glucose-stimulated insulin secretion, increased energy expenditure, and shifted energy metabolism toward fatty acid utilization. HFD caused β-Zip14 KO mice to develop greater islet hyperplasia, compensatory hyperinsulinemia, and mild insulin resistance and hyperglycemia. This study provided new insights into the contribution of metal transporter ZIP14-mediated intracellular zinc trafficking in glucose-stimulated insulin secretion and subsequent metabolic responses.NEW & NOTEWORTHY Metal transporter SLC39A14/ZIP14 is downregulated in pancreatic islets of patients with T2D and mouse models of HFD- or db/db-induced obesity. However, the function of ZIP14-mediated intracellular zinc trafficking in β cells is unknown. Our analyses revealed that SLC39A14 is the only Zn transporter expressed abundantly in human β cells besides SLC30A8. Within the β cells, ZIP14 is localized on the endoplasmic reticulum and serves as a negative regulator of insulin secretion, providing a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Yu-Han Hung
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
- Department of College of Veterinary Medicine, Cornell University, Ithaca, New York, United States
| | - Yongeun Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Samuel Blake Mitchell
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Trista Lee Thorn
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Tolunay Beker Aydemir
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
8
|
Porter JM, Yitayew M, Tabrizian M. Renewable Human Cell Model for Type 1 Diabetes Research: EndoC- βH5/HUVEC Coculture Spheroids. J Diabetes Res 2023; 2023:6610007. [PMID: 38162632 PMCID: PMC10757655 DOI: 10.1155/2023/6610007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
In vitro drug screening for type 1 diabetes therapies has largely been conducted on human organ donor islets for proof of efficacy. While native islets are the ultimate target of these drugs (either in situ or for transplantation), significant benefit can be difficult to ascertain due to the highly heterogeneous nature of individual donors and the overall scarcity of human islets for research. We present an in vitro coculture model based on immortalized insulin-producing beta-cell lines with human endothelial cells in 3D spheroids that aims to recapitulate the islet morphology in an effort towards developing a standardized cell model for in vitro diabetes research. Human insulin-producing immortalized EndoC-βH5 cells are cocultured with human endothelial cells in varying ratios to evaluate 3D cell culture models for type 1 diabetes research. Insulin secretion, metabolic activity, live cell fluorescence staining, and gene expression assays were used to compare the viability and functionality of spheroids composed of 100% beta-cells, 1 : 1 beta-cell/endothelial, and 1 : 3 beta-cell/endothelial. Monoculture and βH5/HUVEC cocultures formed compact spheroids within 7 days, with average diameter ~140 μm. This pilot study indicated that stimulated insulin release from 0 to 20 mM glucose increased from ~8-fold for monoculture and 1 : 1 coculture spheroids to over 20-fold for 1 : 3 EndoC-βH5/HUVEC spheroids. Metabolic activity was also ~12% higher in the 1 : 3 EndoC-βH5/HUVEC group compared to other groups. Stimulating monoculture beta-cell spheroids with 20 mM glucose +1 μg/mL glycine-modified INGAP-P increased the insulin stimulation index ~2-fold compared to glucose alone. Considering their availability and consistent phenotype, EndoC-βH5-based spheroids present a useful 3D cell model for in vitro testing and drug screening applications.
Collapse
Affiliation(s)
- James M. Porter
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Michael Yitayew
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada H3A 0G4
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada H3A 1G1
| |
Collapse
|
9
|
Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H, Ge RS. Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal 2023:110791. [PMID: 37406786 DOI: 10.1016/j.cellsig.2023.110791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE Curcumin has been shown to have anti-tumor proliferative properties, but its clinical application is limited by its low bioavailability, etc. Derivatives of curcumin have been developed and tested to improve its therapeutic efficacy. Derivative NL01 could induce ferroptosis through the HCAR1/MCT1 pathway. METHOD CCK-8 was used to detect curcumin and derivative IC50, crystalline violet staining was used to detect the proliferation inhibition effect of NL01 in ovarian cancer, western blot and qPCR were used to detect downstream related molecular expression changes, Transwell and survival curve assays were used to detect malignant phenotypic. RESULTS NL01 inhibited cell growth of Anglne and HO8910PM ovarian cancer cells by 13 times more potent than curcumin and induced ferroptosis of these two cells. we found that NL01 was able to reduce the expression of HCAR1/MCT1 and activate the AMPK signaling pathway, which in turn induced cellular ferroptosis via SREBP1 pathway. Knock-down HCAR1 expression revealed similar phenotype and pathway alterations to NL01 treatment. HCAR1 overexpression promoted a malignant phenotype and resistance to cisplatin in both cancer cells, whereas knockdown of HCAR1 showed the opposite phenotype. Subcutaneous transplantation tumor experiments in nude mice also showed that NL01 induced iron death and inhibited ovarian cancer proliferation. Further study showed that NL01 promoted the downregulation of GPX4 expression, which is related to ferroptosis, and that addition of ferrostatin-1 partially reversed NL01-mediated inhibition of the growth of two cell lines. CONCLUSION NL01 exhibits better anti-tumor growth properties than curcumin, and NL01 induces ferroptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Mengna Shi
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min-Jie Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China
| | - Yang Yu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
10
|
Juang JH, Chen CL, Kao CW, Chen CY, Shen CR, Wang JJ, Tsai ZT, Chu IM. The Image-Histology Correlation of Subcutaneous mPEG-poly(Ala) Hydrogel-Embedded MIN6 Cell Grafts in Nude Mice. Polymers (Basel) 2023; 15:2584. [PMID: 37376231 DOI: 10.3390/polym15122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 106 cells in the 100 μL hydrogel solution were injected subcutaneously into each nude mouse. Grafts were removed and examined the vascularization, cell growth and proliferation with anti-CD31, SMA, insulin and ki67 antibodies, respectively, at 8, 14, 21, 29 and 36 days after transplantation. All grafts were well-vascularized with prominent CD31 and SMA staining at all time points. Interestingly, insulin-positive cells and iron-positive cells were scattered in the graft at 8 and 14 days; while clusters of insulin-positive cells without iron-positive cells appeared in the grafts at 21 days and persisted thereafter, indicating neogrowth of MIN6 cells. Moreover, proliferating MIN6 cells with strong ki67 staining was observed in 21-, 29- and 36-day grafts. Our results indicate that the originally transplanted MIN6 cells proliferated from 21 days that presented distinctive bioluminescence and MR images.
Collapse
Affiliation(s)
- Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chen-Ling Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chen-Wei Kao
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chen-Yi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine and Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Zei-Tsan Tsai
- Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
11
|
Pucelik B, Barzowska A, Czarna A. DYRK1A inhibitors leucettines and TGF-β inhibitor additively stimulate insulin production in beta cells, organoids, and isolated mouse islets. PLoS One 2023; 18:e0285208. [PMID: 37195917 PMCID: PMC10191338 DOI: 10.1371/journal.pone.0285208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
The decreased β-cell mass and impaired β-cell functionality are the primary causes of diabetes mellitus (DM). Nevertheless, the underlying molecular mechanisms by which β-cell growth and function are controlled are not fully understood. In this work, we show that leucettines, known to be DYRK1A kinase inhibitors, can improve glucose-stimulated insulin secretion (GSIS) in rodent β-cells and isolated islets, as well as in hiPSC-derived β-cells islets. We confirm that DYRK1A is expressed in murine insulinoma cells MIN6. In addition, we found that treatment with selected leucettines stimulates proliferation of β-cells and promotes MIN6 cell cycle progression to the G2/M phase. This effect is also confirmed by increased levels of cyclin D1, which is highly responsive to proliferative signals. Among other leucettines, leucettine L43 had a negligible impact on β-cell proliferation, but markedly impair GSIS. However, leucettine L41, in combination with LY364947, a, a potent and selective TGF-β type-I receptor, significantly promotes GSIS in various cellular diabetic models, including MIN6 and INS1E cells in 2D and 3D culture, iPSC-derived β-cell islets derived from iPSC, and isolated mouse islets, by increased insulin secretion and decreased glucagon level. Our findings confirm an important role of DYRK1A inhibitors as modulators of β-cells function and suggested a new potential target for antidiabetic therapy. Moreover, we show in detail that leucettine derivatives represent promising antidiabetic agents and are worth further evaluation, especially in vivo.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Krakow, Poland
| |
Collapse
|
12
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Ho KH, Jayathilake A, Yagan M, Nour A, Osipovich AB, Magnuson MA, Gu G, Kaverina I. CAMSAP2 localizes to the Golgi in islet β-cells and facilitates Golgi-ER trafficking. iScience 2023; 26:105938. [PMID: 36718359 PMCID: PMC9883185 DOI: 10.1016/j.isci.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glucose stimulation induces the remodeling of microtubules, which potentiates insulin secretion in pancreatic β-cells. CAMSAP2 binds to microtubule minus ends to stabilize microtubules in several cultured clonal cells. Here, we report that the knockdown of CAMSAP2 in primary β-cells reduces total insulin content and attenuates GSIS without affecting the releasability of insulin vesicles. Surprisingly, CAMSAP2 knockdown does not change microtubule stability. Unlike in cultured insulinoma cells, CAMSAP2 in primary β-cells predominantly localizes to the Golgi apparatus instead of microtubule minus ends. This novel localization is specific to primary β- but not α-cells and is independent of microtubule binding. Consistent with its specific localization at the Golgi, CAMSAP2 promotes efficient Golgi-ER trafficking in primary β-cells. Moreover, primary β-cells and insulinoma cells likely express different CAMSAP2 isoforms. We propose that a novel CAMSAP2 isoform in primary β-cells has a non-canonical function, which promotes Golgi-ER trafficking to support efficient production of insulin and secretion.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anissa Jayathilake
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mahircan Yagan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Aisha Nour
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Ching C, Iich E, Teo AKK. Harnessing Human Pluripotent Stem Cell-Derived Pancreatic In Vitro Models for High-Throughput Toxicity Testing and Diabetes Drug Discovery. Handb Exp Pharmacol 2023; 281:301-332. [PMID: 37306817 DOI: 10.1007/164_2023_655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The long-standing goals in diabetes research are to improve β-cell survival, functionality and increase β-cell mass. Current strategies to manage diabetes progression are still not ideal for sustained maintenance of normoglycemia, thereby increasing demand for the development of novel drugs. Available pancreatic cell lines, cadaveric islets, and their culture methods and formats, either 2D or 3D, allow for multiple avenues of experimental design to address diverse aims in the research setting. More specifically, these pancreatic cells have been employed in toxicity testing, diabetes drug screens, and with careful curation, can be optimized for use in efficient high-throughput screenings (HTS). This has since spearheaded the understanding of disease progression and related mechanisms, as well as the discovery of potential drug candidates which could be the cornerstone for diabetes treatment. This book chapter will touch on the pros and cons of the most widely used pancreatic cells, including the more recent human pluripotent stem cell-derived pancreatic cells, and HTS strategies (cell models, design, readouts) that can be used for the purpose of toxicity testing and diabetes drug discovery.
Collapse
Affiliation(s)
- Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elhadi Iich
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Akter S, Afrin S, Kim J, Kang J, Razzak MA, Berggren PO, Hwang I. Production of active Exendin-4 in Nicotiana benthamiana and its application in treatment of type-2 diabetics. FRONTIERS IN PLANT SCIENCE 2022; 13:1062658. [PMID: 36618620 PMCID: PMC9812950 DOI: 10.3389/fpls.2022.1062658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
GLP-1 (Glucagon-like peptide-1) is a peptide that stimulates insulin secretion from the β-cell for glycemic control of the plasma blood glucose level. Its mimetic exenatide (synthetic Exendin-4) with a longer half-life of approximately 3.3-4 h is widely used in clinical application to treat diabetes. Currently, exenatide is chemically synthesized. In this study, we report that the GLP-1 analogue recombinant Exendin-4 (Exdn-4) can be produced at a high level in Nicotiana benthamiana, with an estimated yield of 50.0 µg/g fresh biomass. For high-level expression, we generated a recombinant gene, B:GB1:ddCBD1m:8xHis : Exendin-4 (BGC : Exdn-4), for the production of Exendin-4 using various domains such as the BiP signal peptide, the GB1 domain (B1 domain of streptococcal G protein), a double cellulose binding domain 1 (CBD1), and 8 His residues (8xHis) to the N-terminus of Exendin-4. GB1 was used to increase the expression, whereas double CBD1 and 8xHis were included as affinity tags for easy purification using MCC beads and Ni2+-NTA resin, respectively. BGC : Exdn-4 was purified by single-step purification to near homogeneity using both Ni2+-NTA resin and microcrystalline cellulose (MCC) beads. Moreover, Exdn-4 without any extra residues was produced from BGC : Exdn-4 bound onto MCC beads by treating with enterokinase. Plant-produced Exdn-4 (Exendin-4) was as effective as chemically synthesized Exendin-4 in glucose-induced insulin secretion (GIIS) from mouse MIN6m9 cells a pancreatic beta cell line.
Collapse
Affiliation(s)
- Shammi Akter
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Shajia Afrin
- Department of Research and Development, BioN Inc., Pohang, South Korea
| | - Jaeyoon Kim
- Department of Research and Development, BioN Inc., Pohang, South Korea
| | - Joohyun Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Md Abdur Razzak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
16
|
Yang L, Fye MA, Yang B, Tang Z, Zhang Y, Haigh S, Covington BA, Bracey K, Taraska JW, Kaverina I, Qu S, Chen W. Genome-wide CRISPR screen identified a role for commander complex mediated ITGB1 recycling in basal insulin secretion. Mol Metab 2022; 63:101541. [PMID: 35835371 PMCID: PMC9304790 DOI: 10.1016/j.molmet.2022.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Pancreatic beta cells secrete insulin postprandially and during fasting to maintain glucose homeostasis. Although glucose-stimulated insulin secretion (GSIS) has been extensively studied, much less is known about basal insulin secretion. Here, we performed a genome-wide CRISPR/Cas9 knockout screen to identify novel regulators of insulin secretion. METHODS To identify genes that cell autonomously regulate insulin secretion, we engineered a Cas9-expressing MIN6 subclone that permits irreversible fluorescence labeling of exocytic insulin granules. Using a fluorescence-activated cell sorting assay of exocytosis in low glucose and high glucose conditions in individual cells, we performed a genome-wide CRISPR/Cas9 knockout screen. RESULTS We identified several members of the COMMD family, a conserved family of proteins with central roles in intracellular membrane trafficking, as positive regulators of basal insulin secretion, but not GSIS. Mechanistically, we show that the Commander complex promotes insulin granules docking in basal state. This is mediated, at least in part, by its function in ITGB1 recycling. Defective ITGB1 recycling reduces its membrane distribution, the number of focal adhesions and cortical ELKS-containing complexes. CONCLUSIONS We demonstrated a previously unknown function of the Commander complex in basal insulin secretion. We showed that by ITGB1 recycling, Commander complex increases cortical adhesions, which enhances the assembly of the ELKS-containing complexes. The resulting increase in the number of insulin granules near the plasma membrane strengthens basal insulin secretion.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Margret A Fye
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sander Haigh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kai Bracey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Petry SF, Römer A, Rawat D, Brunner L, Lerch N, Zhou M, Grewal R, Sharifpanah F, Sauer H, Eckert GP, Linn T. Loss and Recovery of Glutaredoxin 5 Is Inducible by Diet in a Murine Model of Diabesity and Mediated by Free Fatty Acids In Vitro. Antioxidants (Basel) 2022; 11:antiox11040788. [PMID: 35453472 PMCID: PMC9025089 DOI: 10.3390/antiox11040788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Free fatty acids (FFA), hyperglycemia, and inflammatory cytokines are major mediators of β-cell toxicity in type 2 diabetes mellitus, impairing mitochondrial metabolism. Glutaredoxin 5 (Glrx5) is a mitochondrial protein involved in the assembly of iron–sulfur clusters required for complexes of the respiratory chain. We have provided evidence that islet cells are deprived of Glrx5, correlating with impaired insulin secretion during diabetes in genetically obese mice. In this study, we induced diabesity in C57BL/6J mice in vivo by feeding the mice a high-fat diet (HFD) and modelled the diabetic metabolism in MIN6 cells through exposure to FFA, glucose, or inflammatory cytokines in vitro. qRT-PCR, ELISA, immunohisto-/cytochemistry, bioluminescence, and respirometry were employed to study Glrx5, insulin secretion, and mitochondrial biomarkers. The HFD induced a depletion of islet Glrx5 concomitant with an obese phenotype, elevated FFA in serum and reactive oxygen species in islets, and impaired glucose tolerance. Exposure of MIN6 cells to FFA led to a loss of Glrx5 in vitro. The FFA-induced depletion of Glrx5 coincided with significantly altered mitochondrial biomarkers. In summary, we provide evidence that Glrx5 is regulated by FFA in type 2 diabetes mellitus and is linked to mitochondrial dysfunction and blunted insulin secretion.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
- Correspondence: ; Tel.: +49-641-985-57010
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Divya Rawat
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Lara Brunner
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Nina Lerch
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| | - Rekha Grewal
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Fatemeh Sharifpanah
- Faculty of Medicine, Philipps University, 35037 Marburg, Germany;
- Cyntegrity Germany GmbH, 60438 Frankfurt, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Gunter Peter Eckert
- Laboratory for Nutrition in Prevention & Therapy, Department of Nutritional Sciences, Justus Liebig University, 35392 Giessen, Germany; (R.G.); (G.P.E.)
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany; (A.R.); (D.R.); (L.B.); (N.L.); (M.Z.); (T.L.)
| |
Collapse
|
18
|
Hagenlocher C, Siebert R, Taschke B, Wieske S, Hausser A, Rehm M. ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells. Cell Death Dis 2022; 8:34. [PMID: 35075141 PMCID: PMC8786928 DOI: 10.1038/s41420-022-00830-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
AbstractProlonged ER stress and the associated unfolded protein response (UPR) can trigger programmed cell death. Studies in cancer cell lines demonstrated that the intracellular accumulation of TRAIL receptor-2 (TRAIL-R2) and the subsequent activation of caspase-8 contribute significantly to apoptosis induction upon ER stress. While this might motivate therapeutic strategies that promote cancer cell death through ER stress-induced caspase-8 activation, it could also support the unwanted demise of non-cancer cells. Here, we therefore investigated if TRAIL-R2 dependent signaling towards apoptosis can be induced in pancreatic β cells, whose loss by prolonged ER stress is associated with the onset of diabetes. Interestingly, we found that elevated ER stress in these cells does not result in TRAIL-R2 transcriptional induction or elevated protein levels, and that the barely detectable expression of TRAIL-R2 is insufficient to allow TRAIL-induced apoptosis to proceed. Overall, this indicates that apoptotic cell death upon ER stress most likely proceeds independent of TRAIL-R2 in pancreatic β cells. Our findings therefore point to differences in ER stress response and death decision-making between cancer cells and pancreatic β cells and also have implications for future targeted treatment strategies that need to differentiate between ER stress susceptibility of cancer cells and pancreatic β cells.
Collapse
|
19
|
Ahmed SS, Al Nohair SF, Abdulmonem WA, Alhomaidan HT, Rasheed N, Ismail MS, Albatanony MA, Rasheed Z. Honey polyphenolic fraction inhibits cyclooxygenase-2 expression via upregulation of microRNA-26a-5p expression in pancreatic islets. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Honey total polyphenolic fraction (HTPF) is reported to have anti-disease potential, however the role of HTPF in the regulation of microRNAs (miRNAs) has never been investigated. This study was undertaken to investigate the potential of HTPF against inflammation via regulation of miRNAs in pancreatic islets of Langerhans. Methods Pancreatic islets were isolated from C57BL/6 mice and HTPF was purified from honey. Bioinformatics algorithms were used to determine miRNA target genes. Expression of miRNA and mRNA was determined using their specific taqman assays. Pairing between miRNA and 3′ untranslated region (3′UTR) of mRNA was confirmed using luciferase reporter clone containing the 3′UTR of mRNA sequences and results were verified by transfection of mouse pancreatic β-cell line Min6 with miRNA inhibitors. Results The data showed that mmu-miR-26a-5p is a direct regulator of cyclooxygenase-2 (COX-2) expression and HTPF inhibits COX-2 expression or prostaglandin E2 (PGE2) production via up-regulating mmu-miR-26a-5p expression. Transfection of islets with anti-miR-26a-5p significantly enhanced COX-2 expression and PGE2 production ( p < .01), while HTPF treatment significantly inhibited anti-miR-26a-5p transfection-induced COX-2 expression or PGE2 production ( p < .05). These findings were further verified in pancreatic β-cells Min6. Moreover, the data also determined that HTPF also inhibits glucose-induced nuclear transcription factor (NF)-κB activity. Conclusion HTPF suppresses glucose-induced PGE2 production and activation of NF-κB via negative regulation of COX-2 and mmu-miR26a-5p. These novel pharmacological actions of HTPF on glucose-stimulated pancreatic islets provide new suggestions that HTPF or HTPF-derived compounds inhibit glucose induced inflammation in pancreas by up-regulating the expression of microRNAs.
Collapse
Affiliation(s)
- Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Homaidan T Alhomaidan
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohamed S Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Manal A Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
20
|
Al-Ghafari A, Elmorsy EM, Doghaither HA, Fahmy E. Cyclic AMP and calcium signaling are involved in antipsychotic-induced diabetogenic effects in isolated pancreatic β cells of CD1 mice. Int J Health Sci (Qassim) 2022; 16:9-20. [PMID: 36101852 PMCID: PMC9441645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Antipsychotics (APs) are medications used for different psychological disorders. They can introduce diabetogenic effects through different mechanisms, including cyclic adenosine monophosphate (cAMP) and calcium (Ca2+) signaling pathways. However, this effect is poorly understood. Therefore, this study aimed to evaluate the effect of three widely used APs (chlorpromazine, haloperidol, and clozapine) on cAMP and Ca2+ signaling. METHODS The local bioethics committee of Northern Border University approved the study. Pancreatic β-cells were isolated from male CD1 mice, and three drug stock solutions were made in different concentrations (0.1, 1, 10, and 100 μM). The levels of glucose-stimulated insulin secretion (GSIS) and cAMP as well as the activities of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), guanine-nucleotide exchange protein activated by cAMP (Epac 1 and 2), Ca2+ mobilization, and Ca2+/calmodulin kinase II (CaMKII) were then determined using different methods. RESULTS APs were found to be cytotoxic to pancreatic β cells and caused a parallel and significant decrease in GSIS. APs significantly reduced the levels of cAMP in the treated cells, with an associated reduction in ATP production, CaMKII, PKA, and transmembrane AC activities as well as Ca2+ mobilization to variable extents. In addition, the gene expression results showed that APs significantly decreased the expression of both the active subunits AC1 and AC8, the PKA α and β subunits, Epac1 and Epac2 as well as the four main subunits of CaMKII to variable extents. CONCLUSION AP-induced alterations in the cAMP and Ca2+ signaling pathways can play a significant role in their diabetogenic potential.
Collapse
Affiliation(s)
- Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Scientific Research Center, Dar Al-Hekma University, Jeddah, Saudi Arabia,Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy Mahmoud Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia,Address for correspondence: Ekramy Mahmoud Elmorsy, Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt/Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia. Phone: +966501275835. E-mail:
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eslam Fahmy
- Department of Physiology, College of Medicine, Zagazig University, Egypt,Department of Physiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
21
|
Chen SM, Hee SW, Chou SY, Liu MW, Chen CH, Mochly-Rosen D, Chang TJ, Chuang LM. Activation of Aldehyde Dehydrogenase 2 Ameliorates Glucolipotoxicity of Pancreatic Beta Cells. Biomolecules 2021; 11:biom11101474. [PMID: 34680107 PMCID: PMC8533366 DOI: 10.3390/biom11101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023] Open
Abstract
Chronic hyperglycemia and hyperlipidemia hamper beta cell function, leading to glucolipotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies reactive aldehydes, such as methylglyoxal (MG) and 4-hydroxynonenal (4-HNE), derived from glucose and lipids, respectively. We aimed to investigate whether ALDH2 activators ameliorated beta cell dysfunction and apoptosis induced by glucolipotoxicity, and its potential mechanisms of action. Glucose-stimulated insulin secretion (GSIS) in MIN6 cells and insulin secretion from isolated islets in perifusion experiments were measured. The intracellular ATP concentrations and oxygen consumption rates of MIN6 cells were assessed. Furthermore, the cell viability, apoptosis, and mitochondrial and intracellular reactive oxygen species (ROS) levels were determined. Additionally, the pro-apoptotic, apoptotic, and anti-apoptotic signaling pathways were investigated. We found that Alda-1 enhanced GSIS by improving the mitochondrial function of pancreatic beta cells. Alda-1 rescued MIN6 cells from MG- and 4-HNE-induced beta cell death, apoptosis, mitochondrial dysfunction, and ROS production. However, the above effects of Alda-1 were abolished in Aldh2 knockdown MIN6 cells. In conclusion, we reported that the activator of ALDH2 not only enhanced GSIS, but also ameliorated the glucolipotoxicity of beta cells by reducing both the mitochondrial and intracellular ROS levels, thereby improving mitochondrial function, restoring beta cell function, and protecting beta cells from apoptosis and death.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Shih-Yun Chou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Meng-Wei Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (C.-H.C.); (D.M.-R.)
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 66217)
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (S.-M.C.); (S.-W.H.); (S.-Y.C.); (M.-W.L.); (L.-M.C.)
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1861. [PMID: 34361247 PMCID: PMC8308343 DOI: 10.3390/nano11071861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
23
|
Roberts S, Khera E, Choi C, Navaratna T, Grimm J, Thurber GM, Reiner T. Optoacoustic Imaging of Glucagon-like Peptide-1 Receptor with a Near-Infrared Exendin-4 Analog. J Nucl Med 2021; 62:839-848. [PMID: 33097631 PMCID: PMC8729860 DOI: 10.2967/jnumed.120.252262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Limitations in current imaging tools have long challenged the imaging of small pancreatic islets in animal models. Here, we report the first development and in vivo validation testing of a broad-spectrum and high-absorbance near-infrared optoacoustic contrast agent, E4x12-Cy7. Our near-infrared tracer is based on the amino acid sequence of exendin-4 and targets the glucagon-like peptide-1 receptor (GLP-1R). Cell assays confirmed that E4x12-Cy7 has a high-binding affinity (dissociation constant, Kd, 4.6 ± 0.8 nM). Using the multispectral optoacoustic tomography, we imaged E4x12-Cy7 and optoacoustically visualized β-cell insulinoma xenografts in vivo for the first time. In the future, similar optoacoustic tracers that are specific for β-cells and combines optoacoustic and fluorescence imaging modalities could prove to be important tools for monitoring the pancreas for the progression of diabetes.
Collapse
Affiliation(s)
- Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Crystal Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tejas Navaratna
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Program of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Pharmacology Program, Weill Cornell Medical College, New York, New York
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
24
|
Anacleto SL, Milenkovic D, Kroon PA, Needs PW, Lajolo FM, Hassimotto NMA. Citrus flavanone metabolites protect pancreatic-β cells under oxidative stress induced by cholesterol. Food Funct 2021; 11:8612-8624. [PMID: 32959863 DOI: 10.1039/d0fo01839b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is one of the triggers of oxidative stress in the pancreatic-β cell, generating high levels of reactive oxygen species, which leads to impairment of insulin synthesis and secretion. Bioactive compounds, such as citrus flavanones, which possess anti-inflammatory and antioxidant activities, could reduce oxidative stress in β-cells and improve their function. We describe for the first time the protective effects of the phase-II flavanone metabolites [naringenin 7-O-glucuronide, hesperetin 3'-O-glucuronide, and hesperetin 7-O-glucuronide], and two flavanones-catabolites derived from gut microbiota metabolism [hippuric acid and 3-(4-hydroxyphenyl)propionic acid], on pancreatic β-cell line MIN6 under oxidative stress, at physiologically relevant concentration. Cholesterol reduced cell viability in a dose and time-dependent manner, with an improvement in the presence of the metabolites. Moreover, flavanone metabolites attenuated oxidative stress by reducing levels of lipid peroxides, superoxide anions, and hydrogen peroxide. In response to the reduction of reactive oxygen species, a decrease in superoxide dismutase and glutathione peroxidase activities was observed; these activities were elevated by cholesterol. Moreover, all the flavanone metabolites improved mitochondrial function and insulin secretion, and reduced apoptosis. Flavanone metabolites were found uptake by β-cells, and therefore could be responsible for the observed protective effects. These results demonstrated that circulating phase-II hesperetin and naringenin metabolites, and also phenolics derived from gut microbiota, protect pancreatic-β cells against oxidative stress, leading to an improvement in β-cell function and could be the bioactive molecules derived from the citrus consumption.
Collapse
Affiliation(s)
- Sara L Anacleto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Dragan Milenkovic
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, 451 East Health Sciences Drive, 95616, Davis, California, USA and Unité de Nutrition Humaine, INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Franco Maria Lajolo
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Midha A, Pan H, Abarca C, Andle J, Carapeto P, Bonner-Weir S, Aguayo-Mazzucato C. Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes 2021; 70:1098-1116. [PMID: 33674410 PMCID: PMC8173799 DOI: 10.2337/db20-0553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
The aging of pancreatic β-cells may undermine their ability to compensate for insulin resistance, leading to the development of type 2 diabetes (T2D). Aging β-cells acquire markers of cellular senescence and develop a senescence-associated secretory phenotype (SASP) that can lead to senescence and dysfunction of neighboring cells through paracrine actions, contributing to β-cell failure. In this study, we defined the β-cell SASP signature based on unbiased proteomic analysis of conditioned media of cells obtained from mouse and human senescent β-cells and a chemically induced mouse model of DNA damage capable of inducing SASP. These experiments revealed that the β-cell SASP is enriched for factors associated with inflammation, cellular stress response, and extracellular matrix remodeling across species. Multiple SASP factors were transcriptionally upregulated in models of β-cell senescence, aging, insulin resistance, and T2D. Single-cell transcriptomic analysis of islets from an in vivo mouse model of reversible insulin resistance indicated unique and partly reversible changes in β-cell subpopulations associated with senescence. Collectively, these results demonstrate the unique secretory profile of senescent β-cells and its potential implication in health and disease.
Collapse
Affiliation(s)
- Ayush Midha
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Boston, MA
| | - Cristian Abarca
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Joshua Andle
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Priscila Carapeto
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | | |
Collapse
|
26
|
Sui L, Xin Y, Du Q, Georgieva D, Diedenhofen G, Haataja L, Su Q, Zuccaro MV, Kim J, Fu J, Xing Y, He Y, Baum D, Goland RS, Wang Y, Oberholzer J, Barbetti F, Arvan P, Kleiner S, Egli D. Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight 2021; 6:141553. [PMID: 33529174 PMCID: PMC8022502 DOI: 10.1172/jci.insight.141553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Limitations in cell proliferation are important for normal function of differentiated tissues and essential for the safety of cell replacement products made from pluripotent stem cells, which have unlimited proliferative potential. To evaluate whether these limitations can be established pharmacologically, we exposed pancreatic progenitors differentiating from human pluripotent stem cells to small molecules that interfere with cell cycle progression either by inducing G1 arrest or by impairing S phase entry or S phase completion and determined growth potential, differentiation, and function of insulin-producing endocrine cells. We found that the combination of G1 arrest with a compromised ability to complete DNA replication promoted the differentiation of pancreatic progenitor cells toward insulin-producing cells and could substitute for endocrine differentiation factors. Reduced replication fork speed during differentiation improved the stability of insulin expression, and the resulting cells protected mice from diabetes without the formation of cystic growths. The proliferative potential of grafts was proportional to the reduction of replication fork speed during pancreatic differentiation. Therefore, a compromised ability to enter and complete S phase is a functionally important property of pancreatic endocrine differentiation, can be achieved by reducing replication fork speed, and is an important determinant of cell-intrinsic limitations of growth.
Collapse
Affiliation(s)
- Lina Sui
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Qian Du
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Daniela Georgieva
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Giacomo Diedenhofen
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Bambino Gesù Children's Hospital, Rome, Italy
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Michael V Zuccaro
- PhD program in the Department of Physiology and Cellular Biophysics, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Jiayu Fu
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Danielle Baum
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Fabrizio Barbetti
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Peter Arvan
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
27
|
Al Doghaither H, Elmorsy E, Al-Ghafari A, Ghulam J. Roles of oxidative stress, apoptosis, and inflammation in metal-induced dysfunction of beta pancreatic cells isolated from CD1 mice. Saudi J Biol Sci 2021; 28:651-663. [PMID: 33424352 PMCID: PMC7785459 DOI: 10.1016/j.sjbs.2020.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The diabetogenic effects of metals including lead (Pb), mercury (Hg), cadmium (Cd), and molybdenum (Mo) have been reported with poorly identified underlying mechanisms. The current study assessed the effect of metals on the roles of oxidative stress, apoptosis, and inflammation in beta pancreatic cells isolated from CD-1 mice, via different biochemical assays. Data showed that the tested metals were cytotoxic to the isolated cells with impaired glucose stimulated insulin secretion (GSIS). This was associated with increased reactive oxygen species (ROS) production, lipid peroxidation, antioxidant enzymes activities, active proapoptotic caspase-3 (cas-3), inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in the intoxicated cells. Furthermore, antioxidant-reduced glutathione (GSH-R), cas-3 inhibitor z-VAD-FMK, IL-6 inhibitor bazedoxifene (BZ), and TNF-α inhibitor etanercept (ET) were found to significantly decrease metal-induced cytotoxicity with improved GSIS in metals' intoxicated cells. In conclusion, oxidative stress, apoptosis, and inflammation can play roles in metals-induced diabetogenic effect.
Collapse
Affiliation(s)
- Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer Metabolism and Epigenetics Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jihan Ghulam
- General Education Department, Dar Al-Hekma University, Jeddah Saudi Arabia
| |
Collapse
|
28
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Ghulam J. Effects of environmental metals on mitochondrial bioenergetics of the CD-1 mice pancreatic beta-cells. Toxicol In Vitro 2020; 70:105015. [PMID: 33038468 DOI: 10.1016/j.tiv.2020.105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Environmental metals are believed to have diabetogenic effects without any clear underlying mechanisms. The study investigated the effects of metals, lead (Pb), mercury (Hg), cadmium (Cd), and molybdenum (Mo), on the bioenergetics of isolated pancreatic β-cells from CD-1 mice via different functional and structural techniques. The tested metals caused significant decrease in ATP production in concentration and exposure duration-dependent pattern; Cd was the most potent cytotoxic metal. In ATP assay estimated effective concentration 50 (EC50) (25, 40, 20, and 100 μM for Pb, Hg, Cd, and Mo, respectively), the metals also significantly inhibited the glucose-stimulated insulin secretion (GSIS), mitochondrial complexes activity, mitochondrial membranes potential, and oxygen consumption rates of the treated cells with parallel increases in their lactate production and in the mitochondrial swelling and permeation of their inner mitochondrial membranes to potassium (K+) and hydrogen (H+) ions. In addition, Cd, Pb, and Hg produced significant increases in mitochondrial membrane fluidity (MMF) with significant decreases in saturated/unsaturated fatty acid ratios. In 10 μM concentration, away from Mo, the three metals showed inhibitory effects on the mitochondrial functions to variable degrees. Only Cd showed significant effect on MMF and fatty acid ratios at a concentration of 10 μM. In conclusion, the tested metals significantly affected the bioenergetics of the pancreatic β-cells with significant effect on GSIS. Cd showed the most significant functional and structural effects on their mitochondria followed by Pb, then Hg, while Mo was almost safe up to 10 μM concentration. Hence, bioenergetic mitochondrial disruption can be considered as an underlying mechanism of the diabetogenic effects of the tested metals.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetics Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jihan Ghulam
- General Education Department, Dar Al-Hekma University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Elmorsy E, Alelwani W, Kattan S, Babteen N, Alnajeebi A, Ghulam J, Mosad S. Antipsychotics inhibit the mitochondrial bioenergetics of pancreatic beta cells isolated from CD1 mice. Basic Clin Pharmacol Toxicol 2020; 128:154-168. [PMID: 32860481 DOI: 10.1111/bcpt.13484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Antipsychotics (APs) are widely used medications with reported diabetogenic side effects. This study investigated the effect of commonly used APs, namely chlorpromazine (CPZ), haloperidol (HAL) and clozapine, on the bioenergetics of male CD1 mice isolated pancreatic beta cells as an underlying mechanism of their diabetogenic effects. The effect of APs on Alamar blue reduction, adenosine triphosphate (ATP) production and glucose-stimulated insulin secretion (GSIS) of isolated beta cells was evaluated. Then, the effects of APs on the activities of mitochondrial complexes and their common coding genes expression, oxygen consumption rate (OCR), mitochondrial membrane potential (MMP) and lactate production were investigated. The effects of APs on the mitochondrial membrane fluidity (MMF) and mitochondrial membrane fatty acid composition were also examined. Results showed that the tested APs significantly decreased cellular ATP production and GSIS of the beta cells. The APs significantly inhibited the activities of mitochondrial complexes and their coding gene expression, MMP and OCR of the treated cells, with a parallel increase in lactate production to different extents with the different APs. CPZ and HAL showed increased MMF and mitochondrial membrane polyunsaturated fatty acid content. In conclusion, the tested APs-induced mitochondrial disruption can play a role in their diabetogenic side effect.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Shahad Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Nouf Babteen
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afnan Alnajeebi
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Jihan Ghulam
- General Education Department, Dar Al-Hekma University, Jeddah, Saudi Arabia
| | - Soad Mosad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
30
|
Zakłos-Szyda M, Kowalska-Baron A, Pietrzyk N, Drzazga A, Podsędek A. Evaluation of Viburnum opulus L. Fruit Phenolics Cytoprotective Potential on Insulinoma MIN6 Cells Relevant for Diabetes Mellitus and Obesity. Antioxidants (Basel) 2020; 9:E433. [PMID: 32429334 PMCID: PMC7278587 DOI: 10.3390/antiox9050433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, the influence of guelder rose (Viburnum opulus) fruit fresh juice (FJ) and a phenolic-rich fraction (PRF) isolated from juice on mice insulinoma MIN6 cells activities was investigated. Extracts were able to decrease intracellular oxidative stress at the highest non-cytotoxic concentrations. They induced glucagon-like peptide-1 (GLP-1) secretion in the presence of an elevated glucose concentration, and they inhibited in vitro activity of the dipeptidyl peptidase-4 (DPP4) enzyme. Nonetheless, inhibition of glucose-stimulated insulin secretion was detected, which was accompanied by a decrease of cellular membrane fluidity and hyperpolarization effect. In addition, the increase of free fatty acid uptake and accumulation of lipid droplets in MIN6 cells were observed. Elevated extract concentrations induced cell apoptosis through the intrinsic mitochondrial pathway with activation of initiatory caspase-9 and downstream caspases-3/7. The fluorescence-quenching studies indicated that PRF extract has binding affinity to human serum albumin, which is one of the factors determining drug bioavailability. Taken together, despite the cytoprotective activity against generated intracellular oxidative stress, V. opulus revealed potential toxic effects as well as decreased insulin secretion from MIN6 cells. These findings are relevant in understanding V. opulus limitations in developing diet supplements designed for the prevention and treatment of postprandial glucose elevation.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Agnieszka Kowalska-Baron
- Institute of Natural Raw Materials and Cosmetics, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Nina Pietrzyk
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (N.P.); (A.D.); (A.P.)
| |
Collapse
|
31
|
Qian L, Zhu K, Lin Y, An L, Huang F, Yao Y, Ren L. Insulin secretion impairment induced by rosuvastatin partly though autophagy in INS-1E cells. Cell Biol Int 2020; 44:127-136. [PMID: 31342626 DOI: 10.1002/cbin.11208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/21/2019] [Indexed: 01/24/2023]
Abstract
Statins are used extensively for the clinical treatment of cardiovascular diseases. Recent studies suggest that statins increase the risk of new-onset diabetes mellitus (NODM). However, the mechanisms of statin-induced NODM remain unclear. The present study investigated the effects of autophagy on insulin secretion impairment induced by rosuvastatin (RS) in rat insulinoma cells (INS-1E) cells. INS-1E cells were cultured and treated with RS at different concentrations (0.2-20 μM) for 24 h. Insulin secretion in INS-1E cells was detected by enzyme-linked immunosorbent assay, and the co-localization of microtubule-associated protein light chain 3 (LC3) and lysosome-associated membrane protein 2 (LAMP-2) was observed by immunofluorescence staining. Western blotting was used to assess the conversion of LC3 and p62. The results showed that the insulin secretion and cell viability decrease induced by RS treatment for 24 h occurred in a dose-dependent manner in INS-1E cells. RS significantly inhibited the expression of LC3-II but increased the protein expression of p62. Simultaneously, RS diminished the co-localization of LC3-II and LAMP-2 fluorescence signals. These results suggested that RS-inhibited autophagy in INS-1E cells. Rapamycin, an autophagy agonist, reversed the insulin secretion and cell viability suppression induced by RS in INS-1E cells. RS also decreased the phosphorylation of the mammalian target of rapamycin (mTOR). The results indicated that RS impairs insulin secretion in INS-1E cells, which may be partly due to the inhibition of autophagy via an mTOR-dependent pathway.
Collapse
Affiliation(s)
- Linglin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kongbo Zhu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanshan Lin
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Li An
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Feiyang Huang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Liqun Ren
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
32
|
Zammit NW, Walters SN, Seeberger KL, O'Connell PJ, Korbutt GS, Grey ST. A20 as an immune tolerance factor can determine islet transplant outcomes. JCI Insight 2019; 4:131028. [PMID: 31581152 DOI: 10.1172/jci.insight.131028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
Islet transplantation can restore lost glycemic control in type 1 diabetes subjects but is restricted in its clinical application by a limiting supply of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signaling thresholds. Here, we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for ~45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin. Allograft survival was dependent upon Tregs and was antigen specific, and grafts showed reduced expression of inflammatory factors. Transplantation of islets with A20 containing a loss-of-function variant (I325N) resulted in increased RIPK1 ubiquitination and NF-κB signaling, graft hyperinflammation, and acute allograft rejection. Overexpression of A20 in human islets potently reduced expression of inflammatory mediators, with no impact on glucose-stimulated insulin secretion. Therapeutic administration of A20 raises inflammatory signaling thresholds to favor immune tolerance and promotes islet allogeneic survival. Clinically, this would allow for reduced immunosuppression and support the use of alternate islet sources.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Karen L Seeberger
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, NSW Australia
| | - Gregory S Korbutt
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
33
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
34
|
Synergic effects of oxygen supply and antioxidants on pancreatic β-cell spheroids. Sci Rep 2019; 9:1802. [PMID: 30755634 PMCID: PMC6372787 DOI: 10.1038/s41598-018-38011-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.
Collapse
|
35
|
Rajappa R, Sireesh D, Salai MB, Ramkumar KM, Sarvajayakesavulu S, Madhunapantula SV. Treatment With Naringenin Elevates the Activity of Transcription Factor Nrf2 to Protect Pancreatic β-Cells From Streptozotocin-Induced Diabetes in vitro and in vivo. Front Pharmacol 2019; 9:1562. [PMID: 30745874 PMCID: PMC6360183 DOI: 10.3389/fphar.2018.01562] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic hyperglycemia and unusually high oxidative stress are the key contributors for diabetes in humans. Since nuclear factor E2-related factor 2 (Nrf2) controls the expression of antioxidant- and detoxification genes, it is hypothesized that targeted activation of Nrf2 using phytochemicals is likely to protect pancreatic β-cells, from oxidative damage, thereby mitigates the complications of diabetes. Naringenin is one such activator of Nrf2. However, it is currently not known whether the protective effect of naringenin against streptozotocin (STZ) induced damage is mediated by Nrf2 activation. Hence, the potential of naringenin to activate Nrf2 and protect pancreatic β-cells from STZ-induced damage in MIN6 cells is studied. In MIN6 cells, naringenin could activate Nrf2 and its target genes GST and NQO1, thereby inhibit cellular apoptosis. In animals, administration of 50 mg/kg body weight naringenin, for 45 days, significantly decreased STZ-induced blood glucose levels, normalized the lipid profile, and augmented the levels of antioxidants in pancreatic tissues. Immunohistochemical analysis measuring the number of insulin-positive cells in pancreas showed restoration of insulin expression similar to control animals. Furthermore, naringenin promoted glycolysis while inhibiting gluconeogenesis. In conclusion, naringenin could be a good anti-diabetic agent, which works by promoting Nrf2 levels and by decreasing cellular oxidative stress.
Collapse
Affiliation(s)
- Rashmi Rajappa
- Department of Water & Health, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | | | - Magesh B. Salai
- Department of Water & Health, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | | | | | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology & Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
36
|
Ceasrine AM, Lin EE, Lumelsky DN, Iyer R, Kuruvilla R. Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature. eLife 2018; 7:39689. [PMID: 30303066 PMCID: PMC6200393 DOI: 10.7554/elife.39689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022] Open
Abstract
A better understanding of processes controlling the development and function of pancreatic islets is critical for diabetes prevention and treatment. Here, we reveal a previously unappreciated function for pancreatic β2-adrenergic receptors (Adrb2) in controlling glucose homeostasis by restricting islet vascular growth during development. Pancreas-specific deletion of Adrb2 results in glucose intolerance and impaired insulin secretion in mice, and unexpectedly, specifically in females. The metabolic phenotypes were recapitulated by Adrb2 deletion from neonatal, but not adult, β-cells. Mechanistically, Adrb2 loss increases production of Vascular Endothelial Growth Factor-A (VEGF-A) in female neonatal β-cells and results in hyper-vascularized islets during development, which in turn, disrupts insulin production and exocytosis. Neonatal correction of islet hyper-vascularization, via VEGF-A receptor blockade, fully rescues functional deficits in glucose homeostasis in adult mutant mice. These findings uncover a regulatory pathway that functions in a sex-specific manner to control glucose metabolism by restraining excessive vascular growth during islet development.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David N Lumelsky
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Radhika Iyer
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
37
|
Zhao X, Rong C, Pan F, Xiang L, Wang X, Hu Y. Expression characteristics of long noncoding RNA uc.322 and its effects on pancreatic islet function. J Cell Biochem 2018; 119:9239-9248. [PMID: 29953637 DOI: 10.1002/jcb.27191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) perform special biological functions by regulating gene expression through multiple pathways and molecular mechanisms. The aim of this study was to explore the expression characteristics of lncRNA uc.322 in pancreatic islet cells and its effects on the secretion function of islet cells. Bioinformatics analysis was used to detect the lncRNA uc.322 sequence, location, and structural features. Expression of lncRNA uc.322 in different tissues was detected by quantitative polymerase chain reaction analyses. Quantitative polymerase chain reaction, Western blot analysis, adenosine triphosphate determination, glucose-stimulated insulin secretion, and enzyme-linked immunosorbent assay were used to evaluate the effects of lncRNA uc.322 on insulin secretion. The results showed that the full-length of lncRNA uc.322 is 224 bp and that it is highly conserved in various species. Bioinformatics analysis revealed that lncRNA uc.322 is located on chr7:122893196-122893419 (GRCH37/hg19) within the SRY-related HMG-box 6 gene exon region. Compared with other tissues, lncRNA uc.322 is highly expressed in pancreatic tissue. Upregulation of lncRNA uc.322 expression increases the insulin transcription factors pancreatic and duodenal homeobox 1 and Forkhead box O1 expression, promotes insulin secretion in the extracellular fluid of Min6 cells, and increases the adenosine triphosphate concentration. On the other hand, knockdown of lncRNA uc.322 has opposite effects on Min6 cells. Overall, this study showed that upregulation of lncRNA uc.322 in islet β-cells can increase the expression of insulin transcription factors and promote insulin secretion, and it may be a new therapeutic target for diabetes.
Collapse
Affiliation(s)
- Xiaoqin Zhao
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Division of Endocrinology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Can Rong
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,The Department of Clinical Medicine, Jiangsu Health Vocational College
| | - Fenghui Pan
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Lizhi Xiang
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Xinlei Wang
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Division of Endocrinology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
de Souza Santos R, Frank AP, Clegg DJ. The impact of sex and sex hormones on cell function. Steroids 2017; 128:72-74. [PMID: 29104097 DOI: 10.1016/j.steroids.2017.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022]
Abstract
The influence of sex on cellular function and metabolism is often ill defined in many human and animal studies. The National Institute of Health (NIH) recognized this gap in scientific knowledge and mandated that sex be factored into the design and data analysis of all cell culture and animal studies. Therefore, it is critical to understand how to incorporate sex in pre-clinical and clinical research. Here, we discuss how the sexual identify of cells influences experimental responses in cell culture and we highlight the importance of the culture media and its constituents to the function of cells. We further discuss the importance of understanding the influence and interactions between sex hormones and sex chromosomes. A deeper understanding of how sex chromosomes and sex hormones function as variables in complex biological systems may lead to better, more personalized medical therapies.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Aaron P Frank
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
39
|
Li Y, Wu H, Liu N, Cao X, Yang Z, Lu B, Hu R, Wang X, Wen J. Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf‑1/ERK signaling pathway. Int J Mol Med 2017; 41:955-961. [PMID: 29207116 DOI: 10.3892/ijmm.2017.3305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The pineal hormone melatonin influences the secretion of insulin by pancreatic islets via the G‑protein‑coupled melatonin receptors 1 and 2 that are expressed in pancreatic β‑cells. Genome‑wide association studies indicate that melatonin receptor 1B (MTNR1B) single nucleotide polymorphisms are tightly associated with type 2 diabetes mellitus (T2DM). However, the underlying mechanism is unclear. Raf‑1 serves a critical role in the mitogen‑activated protein kinase (MAPK) pathways in β‑cell survival and proliferation and, therefore, may be involved in the mechanism by which melatonin impacts on T2DM through MTNR1B. In the present study, the mRNA expression of the two mouse insulin genes Ins1 and Ins2 was investigated in MIN6 cells treated with different concentrations of melatonin, and insulin secretion was detected under the same conditions. Following the overexpression or silencing of MTNR1B, the activities of components of the MAPK signaling pathway, including Raf‑1 and ERK, were evaluated. The impact of MTNR1B knockdown on the melatonin‑regulated insulin gene expression and insulin secretion were also investigated. The results demonstrated that exogenous melatonin inhibited the expression of insulin mRNA in the MIN6 cells. Insulin secretion by the MIN6 cells, however, was not affected by melatonin. The MAPK signaling pathway was inhibited in MIN6 cells by treatment with melatonin or the overexpression of MTNR1B. The knockdown of MTNR1B totally attenuated the regulating effect of melatonin on insulin gene expression. Additionally, the inductive effect of melatonin on the expression of insulin mRNA was attenuated when the activities of Raf‑1 or ERK were blocked using the chemical inhibitors GW5074 and U0126, respectively. It may be concluded that melatonin exerts an inhibitory effect on insulin transcription via MTNR1B and the downstream MAPK signaling pathway.
Collapse
Affiliation(s)
- Yanliang Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Naijia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xinyi Cao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Renming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xuanchun Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
40
|
Neelankal John A, Iqbal Z, Colley S, Morahan G, Makishima M, Jiang FX. Vitamin D receptor-targeted treatment to prevent pathological dedifferentiation of pancreatic β cells under hyperglycaemic stress. DIABETES & METABOLISM 2017; 44:269-280. [PMID: 28918929 DOI: 10.1016/j.diabet.2017.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Dedifferentiation has been identified as one of the causes of β-cell failure resulting in type 2 diabetes (T2D). This study tested whether increasing vitamin D receptor (VDR) expression prevents dedifferentiation of β cells in a high-glucose state in vitro. Culturing a mouse insulinoma cell line (MIN6) in a high-glucose environment decreased VDR expression. However, increased VDR following vitamin D3 (VD3) treatment improved insulin release of early-passage MIN6 and insulin index of db/- (heterozygous) islets to levels seen in normal functional islets. Treatment with VD3, its analogues and derivatives also increased the expression of essential transcription factors, such as Pdx1, MafA and VDR itself, ultimately increasing expression of Ins1 and Ins2, which might protect β cells against dedifferentiation. VD3 agonist lithocholic acid (LCA) propionate was the most potent candidate molecule for protecting against dedifferentiation, and an e-pharmacophore mapping model confirmed that LCA propionate exhibits a stabilizing conformation within the VDR binding site. This study concluded that treating db/+ islets with a VD3 analogue and/or derivatives can increase VDR activity, preventing the pathological dedifferentiation of β cells and the onset of T2D.
Collapse
Affiliation(s)
- A Neelankal John
- Harry-Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Verdun St, Perth, 6009 Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Z Iqbal
- Department of Chemistry, Quaid-I-Azam University Islamabad, Pakistan
| | - S Colley
- Harry-Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Verdun St, Perth, 6009 Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - G Morahan
- Harry-Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Verdun St, Perth, 6009 Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - M Makishima
- Division of Biochemistry, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Science, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - F-X Jiang
- Harry-Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Verdun St, Perth, 6009 Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
41
|
Kawada Y, Asahara SI, Sugiura Y, Sato A, Furubayashi A, Kawamura M, Bartolome A, Terashi-Suzuki E, Takai T, Kanno A, Koyanagi-Kimura M, Matsuda T, Hashimoto N, Kido Y. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells. PLoS One 2017; 12:e0184435. [PMID: 28886131 PMCID: PMC5590960 DOI: 10.1371/journal.pone.0184435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yukina Kawada
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yumiko Sugiura
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayaka Sato
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayuko Furubayashi
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mao Kawamura
- Medical Technology Major, Faculty of Health Sciences Major, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Alberto Bartolome
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Emi Terashi-Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Maki Koyanagi-Kimura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoko Hashimoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Kido
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
42
|
Assessment of Immune Isolation of Allogeneic Mouse Pancreatic Progenitor Cells by a Macroencapsulation Device. Transplantation 2017; 100:1211-8. [PMID: 26982952 DOI: 10.1097/tp.0000000000001146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Embryonic stem cell (ESC)-derived β cells hold the promise of providing a renewable source of tissue for the treatment of insulin-dependent diabetes. Encapsulation may allow ESC-derived β cells to be transplanted without immunosuppression, thus enabling wider application of this therapy. METHODS In this study, we investigated the immunogenicity of mouse pancreatic progenitor cells and efficacy of a new macroencapsulation device in protecting these cells against alloimmune and autoimmune responses in mouse models. RESULTS Mouse pancreatic progenitor cells activated the indirect but not the direct pathway of alloimmune response and were promptly rejected in immune competent hosts. The new macroencapsulation device abolished T cell activation induced by allogeneic splenocytes and protected allogeneic MIN6 β cells and pancreatic progenitors from rejection even in presensitized recipients. In addition, the device was effective in protecting MIN6 cells in spontaneously diabetic nonobese diabetic recipients against both alloimmune and recurring autoimmune responses. CONCLUSIONS Our results demonstrate that macroencapsulation can effectively prevent immune sensing and rejection of allogeneic pancreatic progenitor cells in fully sensitized and autoimmune hosts.
Collapse
|
43
|
Schifferer M, Yushchenko DA, Stein F, Bolbat A, Schultz C. A Ratiometric Sensor for Imaging Insulin Secretion in Single β Cells. Cell Chem Biol 2017; 24:525-531.e4. [PMID: 28366620 PMCID: PMC5404835 DOI: 10.1016/j.chembiol.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/14/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
Despite the urgent need for assays to visualize insulin secretion there is to date no reliable method available for measuring insulin release from single cells. To address this need, we developed a genetically encoded reporter termed RINS1 based on proinsulin superfolder GFP (sfGFP) and mCherry fusions for monitoring insulin secretion. RINS1 expression in MIN6 β cells resulted in proper processing yielding single-labeled insulin species. Unexpectedly, glucose or drug stimulation of insulin secretion in β cells led to the preferential release of the insulin-sfGFP construct, while the mCherry-fused C-peptide remained trapped in exocytic granules. This physical separation was used to monitor glucose-stimulated insulin secretion ratiometrically by total internal reflection fluorescence microscopy in single MIN6 and primary mouse β cells. Further, RINS1 enabled parallel monitoring of pulsatile insulin release in tolbutamide-treated β cells, demonstrating the potential of RINS1 for investigations of antidiabetic drug candidates at the single-cell level.
Collapse
Affiliation(s)
- Martina Schifferer
- Interdisciplinary Chemistry Group, Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Dmytro A Yushchenko
- Interdisciplinary Chemistry Group, Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Group of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6, Czech Republic
| | - Frank Stein
- Interdisciplinary Chemistry Group, Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrey Bolbat
- Interdisciplinary Chemistry Group, Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Interdisciplinary Chemistry Group, Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97237, USA.
| |
Collapse
|
44
|
Neelankal John A, Morahan G, Jiang FX. Incomplete Re-Expression of Neuroendocrine Progenitor/Stem Cell Markers is a Key Feature of β-Cell Dedifferentiation. J Neuroendocrinol 2017; 29. [PMID: 27891681 DOI: 10.1111/jne.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
Abstract
There is increasing evidence to suggest that type 2 diabetes mellitus (T2D), a pandemic metabolic disease, may be caused by β-cell dedifferentiation (βCD). However, there is currently no universal definition of βCD, and the underlying mechanism is poorly understood. We hypothesise that a high-glucose in vitro environment mimics hyperglycaemia in vivo and that β cells grown in this milieu over a long period will undergo dedifferentiation. In the present study, we report that the pancreatic β cell line mouse insulinoma 6 (MIN6) grown under a high-glucose condition did not undergo massive cell death but exhibited a glucose-stimulated insulin-secreting profile similar to that of immature β cells. The expression of insulin and the glucose-sensing molecule glucose transporter 2 (Glut2) in late passage MIN6 cells was significantly lower than the early passage at both the RNA and protein levels. Mechanistically, these cells also expressed significantly less of the 'pancreatic and duodenal homebox1' (Pdx1) β-cell transcription factor. Finally, passaged MIN6 cells dedifferentiated to demonstrate some features of β-cell precursors, as well as neuroendocrine markers, in addition to expressing both glucagon and insulin. Thus, we concluded that high-glucose passaged MIN6 cells passaged MIN6 cells. provide a cellular model of β-cell dedifferentiation that can help researchers develop a better understanding of this process. These findings provide new insights that may enhance knowledge of the pathophysiology of T2D and facilitate the establishment of a novel strategy by which this disease can be treated.
Collapse
Affiliation(s)
- A Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - G Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| | - F-X Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
- School of Medicine And Pharmacology, University of Western Australia, Carwley, Australia
| |
Collapse
|
45
|
3,4-dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic β-cells dysfunction induced by high cholesterol. Exp Cell Res 2015; 334:270-82. [DOI: 10.1016/j.yexcr.2015.03.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 01/07/2023]
|
46
|
SIRT3 Overexpression Attenuates Palmitate-Induced Pancreatic β-Cell Dysfunction. PLoS One 2015; 10:e0124744. [PMID: 25915406 PMCID: PMC4411148 DOI: 10.1371/journal.pone.0124744] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/05/2015] [Indexed: 11/29/2022] Open
Abstract
Abnormally high levels of circulating free fatty acids can lead to pancreatic islet β-cell dysfunction and apoptosis, contributing to β-cell failure in Type 2 diabetes. The NAD+-dependent protein deacetylase Sirtuin-3 (SIRT3) has been implicated in Type 2 diabetes. In this study, we tested whether SIRT3 overexpression affects palmitate-induced β-cell dysfunction in cells of line NIT1, which are derived from mouse pancreatic β-cells. Two different lengths of SIRT3 were overexpressed: full length SIRT3 (SIRT3LF), which was preferentially targeted to mitochondria and partially to the nucleus, and its N-terminal truncated form (SIRT3SF), which was located in the nucleus and cytoplasm. Overexpression of SIRT3LF and SIRT3SF using an adenoviral system alleviated palmitate-induced lipotoxicity such as reduction of cell viability and mitogen-activated protein kinase (MAPK) activation. Chronic exposure to low concentrations of palmitate suppressed glucose-stimulated insulin secretion, but the suppression was effectively reversed by overexpression of SIRT3LF or SIRT3SF. The mRNA levels of the endoplasmic reticulum (ER) stress responsive genes ATF4, GRP94 and FKBP11 were increased by palmitate treatment, but the increases were completely inhibited by SIRT3LF overexpression and less effectively inhibited by SIRT3SF overexpression. This result suggests that overexpression of SIRT3 inhibits induction of ER stress by palmitate. Collectively, we conclude that overexpression of SIRT3 alleviates palmitate-induced β-cell dysfunction.
Collapse
|
47
|
Bhat UG, Ilievski V, Unterman TG, Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic β cell line MIN6. J Periodontol 2014; 85:1629-36. [PMID: 24921432 PMCID: PMC4394373 DOI: 10.1902/jop.2014.140070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A close association between periodontitis and diabetes has been demonstrated in human cross-sectional studies, but an exact relationship between periodontitis and prediabetes has not been established. Previous studies using animal model systems consistently have shown that hyperinsulinemia occurs in animals with periodontitis compared to animals with healthy periodontium (while maintaining normoglycemia). Because bacterial lipopolysaccharide (LPS) plays an important role in the pathogenesis of periodontitis, we hypothesized that LPS may stimulate insulin secretion through a direct effect on β cell function. To test this hypothesis, pancreatic β cell line MIN6 cells were used to determine the effect of Porphyromonas gingivalis (Pg) LPS on insulin secretion. Furthermore, expression of genes altered by Pg LPS in innate immunity and insulin-signaling pathways was determined. METHODS MIN6 cells were grown in medium with glucose concentration of normoglycemia (5.5 mM). Pg LPS was added to each well at final concentrations of 50, 200, and 500 ng/mL. Insulin secretion was measured using enzyme-linked immunosorbent assay. Gene expression levels altered by Pg LPS were determined by polymerase chain reaction (PCR) array for mouse innate and adaptive immunity response and mouse insulin-signaling pathways, and results were confirmed for specific genes of interest by quantitative PCR. RESULTS Pg LPS stimulated insulin secretion in the normoglycemic condition by ≈1.5- to 3.0-fold depending on the concentration of LPS. Pg LPS treatment altered the expression of several genes involved in innate and adaptive immune response and insulin-signaling pathway. Pg LPS upregulated the expression of the immune response-related genes cluster of differentiation 8a (Cd8a), Cd14, and intercellular adhesion molecule-1 (Icam1) by about two-fold. LPS also increased the expression of two insulin signaling-related genes, glucose-6-phosphatase catalytic subunit (G6pc) and insulin-like 3 (Insl3), by three- to four-fold. CONCLUSIONS We have demonstrated for the first time that Pg LPS stimulates insulin secretion by pancreatic β cell line MIN cells. Pg LPS may have significant implications on the development of β cell compensation and insulin resistance in prediabetes in individuals with periodontitis.
Collapse
Affiliation(s)
- Uppoor G. Bhat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| | - Terry G. Unterman
- Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
48
|
Tsai CC, Chen LJ, Niu HS, Chung KM, Cheng JT, Lin KC. Allantoin activates imidazoline I-3 receptors to enhance insulin secretion in pancreatic β-cells. Nutr Metab (Lond) 2014. [DOI: 10.1186/1743-7075-11-41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
49
|
Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 2014; 155:347-57. [PMID: 24280059 DOI: 10.1210/en.2013-1205] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)(2)D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)(2)D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G(0)/G(1) arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G(1)/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)(2)D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research (C.M.G., N.M., K.C., J.E.G.), Sydney, New South Wales 2010, Australia; Faculty of Medicine (C.M.G., R.J.C.-B., J.E.G.), University of Sydney, Sydney, New South Wales 2008, Australia; The Kolling Institute of Medical Research (R.J.C.-B.) and Royal North Shore Hospital (R.J.C.-B.), Sydney, New South Wales 2065, Australia; Department of Endocrinology and Diabetes (J.E.G.), Westmead Hospital, Sydney, New South Wales 2145, Australia; and St Vincent's Clinical School (J.E.G.), University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
50
|
Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P, Morgan NG, Yaqoob MM, Holness MJ, Sugden MC. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013; 56:1068-77. [PMID: 23397292 DOI: 10.1007/s00125-013-2851-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/18/2013] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin (SIRT)3 is a mitochondrial protein deacetylase that regulates reactive oxygen species (ROS) production and exerts anti-inflammatory effects. As chronic inflammation and mitochondrial dysfunction are key factors mediating pancreatic beta cell impairment in type 2 diabetes, we investigated the role of SIRT3 in the maintenance of beta cell function and mass in type 2 diabetes. METHODS We analysed changes in SIRT3 expression in experimental models of type 2 diabetes and in human islets isolated from type 2 diabetic patients. We also determined the effects of SIRT3 knockdown on beta cell function and mass in INS1 cells. RESULTS SIRT3 expression was markedly decreased in islets isolated from type 2 diabetes patients, as well as in mouse islets or INS1 cells incubated with IL1β and TNFα. SIRT3 knockdown in INS1 cells resulted in lowered insulin secretion, increased beta cell apoptosis and reduced expression of key beta cell genes. SIRT3 knockdown also blocked the protective effects of nicotinamide mononucleotide on pro-inflammatory cytokines in beta cells. The deleterious effects of SIRT3 knockdown were mediated by increased levels of cellular ROS and IL1β. CONCLUSIONS/INTERPRETATION Decreased beta cell SIRT3 levels could be a key step in the onset of beta cell dysfunction, occurring via abnormal elevation of ROS levels and amplification of beta cell IL1β synthesis. Strategies to increase the activity or levels of SIRT3 could generate attractive therapies for type 2 diabetes.
Collapse
Affiliation(s)
- P W Caton
- Centre for Diabetes, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|