1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
Liu X, Pang S, Song G, Wang Y, Fang W, Qi W. The alleviation by wheat and oat dietary fiber alone or combined of T2DM symptoms in db/ db mice. Food Funct 2025; 16:1142-1156. [PMID: 39835833 DOI: 10.1039/d4fo04037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The effects of wheat and oat dietary fiber (DF) alone or combined on T2DM remain unclear. In this research, db/db diabetic mice were fed with diets containing 10% insoluble wheat dietary fiber (WDF), 10% insoluble oat dietary fiber (ODF), and 10% WODF (mixture of WDF and ODF, WDF : ODF = 1 : 1) for 8 weeks. The results showed that WDF, ODF, and WODF all reduced the body weight and fasting blood glucose (FBG) and improved oral glucose tolerance in db/db mice. WDF and ODF alone further relieved insulin resistance and decreased the levels of glycated hemoglobin A1c (GHbA1c), and glycosylated serum protein (GSP). In addition, WDF and ODF alone decreased the levels of TNF-α, IL-6, and IL-1β in serum. The colon function was improved and similar changes were observed in the gut microbiota structure and abundance in all the DF groups. The change of gut microbiota mainly manifested as reducing F/B ratio at the phylum level, while at the genus level as decreasing Enterococcus, Escherichia-Shigella, Erysipelatoclostridium, and unclassified_f_Lachnospiraceae and increase of norank_f_Muribaculaceae, Bacteroides, and Alistipes. Further testing of colonic bile acids (BAs) revealed that WDF, ODF, and WODF all significantly changed the composition of BAs, mainly reducing the levels of UDCA, HDCA, and 3β-UDCA. WODF further decreased DCA and increased β-MCA, LCA-3S, and 12-KCDCA. Importantly, WODF reduced the values of 12-OH-BAs/non-12-OH-BAs. Moreover, the TGR5 level was up-regulated in both the liver and colon, and the FXR level was up-regulated in the liver while down-regulated in the colon in all the DF groups. Furthermore, for the protein level, IRS-1, p-PI3K/PI3K, and AKT were up-regulated in the liver in all the DF groups, while for the mRNA expression level, GLUT4 was up-regulated, and FOXO1, GSK3β, PEPCK, and PGC-1α were down-regulated. WDF and WODF further up-regulated the mRNA expression levels of GYS and down-regulated that of G6Pase. These results suggested that WDF, ODF, and WODF all can alleviate T2DM through the gutmicrobiota-BAs-TGR5/FXR axis and liver IRS-1/PI3K/AKT pathway in db/db mice. WDF and ODF alone are beneficial for improving glucose metabolism and inflammation indicators, while WODF helps improve BAs' profile more in the colon.
Collapse
Affiliation(s)
- Xinguo Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shaojie Pang
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Liu CF, Chuang HT, Wang CS, Hsu YW, Pan TM, Lee CL. Monascus pilosus SWM-008 red mold rice and its components, monascinol and monascin, reduce obesity in a high-fat diet-induced rat model through synergistic modulation of gut microbiota and anti-lipogenesis. Food Funct 2025; 16:966-985. [PMID: 39807634 DOI: 10.1039/d4fo05435k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study is the first to explore the effects of the novel yellow pigment monascinol (Msol) from red mold rice (RMR) on reducing body fat and to compare its effects with those of monascin (MS) and ankaflavin (AK). In a high-fat diet-induced rat model, different doses of RMR fermented rice (RL, RM, RH) and purified Msol, MS, and AK were administered over an 8-week period. The results showed that all treatment groups significantly reduced body weight and fat mass. Msol, in particular, activated acetyl-CoA carboxylase (ACC), inhibiting fatty acid synthesis and reducing triglyceride accumulation. All treatments suppressed the differentiation of preadipocytes into mature adipocytes by inhibiting CCAAT/enhancer-binding proteins β (C/EBPβ) and C/EBPα, as well as peroxisome proliferator-activated receptor γ (PPARγ). In the liver, RL, RM, RH, MS, and AK enhanced the expression of AMP-activated protein kinase (AMPK), ACC, peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyl transferase-1α (CPT-1α), thereby promoting fatty acid metabolism. Additionally, RMR and its active components, MS and Msol, reduced body fat by modulating gut microbiota. These compounds significantly decreased the abundance of bacteria associated with fat storage, such as Oliverpabstia intestinalis, while increasing the abundance of bacteria linked to energy expenditure and lipid breakdown, such as Akkermansia muciniphila and Ruminococcus callidus. Moreover, MS and Msol upregulated proteins involved in fat degradation, such as UCP1, thereby enhancing fat burning and reducing fat accumulation. These regulatory effects suggest that Monascus and its components have potential in managing metabolic health and reducing obesity.
Collapse
Affiliation(s)
- Chin-Feng Liu
- Continuing Education Program of Food Biotechnology Applications, National Taitung University, Taitung 95092, Taiwan, Republic of China
| | - Hui-Tzu Chuang
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan, Republic of China.
| | - Chia-Shu Wang
- SunWay Biotech Co., Taipei 11494, Taiwan, Republic of China.
| | - Ya-Wen Hsu
- SunWay Biotech Co., Taipei 11494, Taiwan, Republic of China.
| | - Tzu-Ming Pan
- SunWay Biotech Co., Taipei 11494, Taiwan, Republic of China.
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan, Republic of China.
| |
Collapse
|
4
|
Lu X, Jing Y, Zhang N, Chen L, Tai J, Cao Y. Structural characterization and anti-obesity effect of a novel water-soluble galactomannan isolated from Eurotium cristatum. Carbohydr Polym 2025; 348:122870. [PMID: 39567117 DOI: 10.1016/j.carbpol.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024]
Abstract
Obesity is a serious public health challenge worldwide, the present study is aimed to investigate the structural characteristic and anti-obesity effect of a water-soluble galactomannan (PEC) extracted from Eurotium cristatum (E. cristatum). Detailed analysis of the PEC structure showed a weight-average molecular weight of 32,305 Da and a composition of mainly mannose, galactose and small amounts of glucose. Nuclear magnetic resonance spectroscopy combined with methylation analysis indicated that the main chain of PEC is →5)-β-D-Galf-(1 → 6)-α-D-Manp-(1 → glycosidic bond, and the branched chain →2)-α-D-Manp-(1 → through →2,6)-α-D-Manp-(1 → is connected to the main chain by an O-2 bond. Furthermore, PEC was found to ameliorate body weight gain, metabolic disorders, and to modulate the gut microbiota in HFD-fed mice. Fecal microbiota transplantation trial confirmed that PEC prevented obesity development and metabolic disorders by reversing gut dysbiosis in HFD-fed mice. This is the first report of the isolation of PEC from E. cristatum, and the findings suggested that PEC exerted its antiobesity and related beneficial effects by regulating the gut microbiota. In conclusion, as a polysaccharide, PEC could reduce obesity by modulating the gut microbiota and has potential been a prophylactic agent for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yue Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Lei Chen
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
5
|
Qu Z, Liu H, Yang J, Zheng L, Huang J, Wang Z, Xie C, Zuo W, Xia X, Sun L, Zhou Y, Xie Y, Lu J, Zhu Y, Yu L, Liu L, Zhou H, Dai L, Leung ELH. Selective utilization of medicinal polysaccharides by human gut Bacteroides and Parabacteroides species. Nat Commun 2025; 16:638. [PMID: 39809740 PMCID: PMC11733155 DOI: 10.1038/s41467-025-55845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Human gut Bacteroides and Parabacteroides species play crucial roles in human health and are known for their capacity to utilize diverse polysaccharides. Understanding how these bacteria utilize medicinal polysaccharides is foundational for developing polysaccharides-based prebiotics and drugs. Here, we systematically mapped the utilization profiles of 20 different medicinal polysaccharides by 28 human gut Bacteroides and Parabacteroides species. The growth profiles exhibited substantial variation across different bacterial species and medicinal polysaccharides. Ginseng polysaccharides promoted the growth of multiple Bacteroides and Parabacteroides species; in contrast, Dendrobium polysaccharides selectively promoted the growth of Bacteroides uniformis. This distinct utilization profile was associated with genomic variation in carbohydrate-active enzymes, rather than monosaccharides composition variation among medicinal polysaccharides. Through comparative transcriptomics and genetical manipulation, we validated that the polysaccharide utilization locus PUL34_Bu enabled Bacteroides uniformis to utilize Dendrobium polysaccharides (i.e. glucomannan). In addition, we found that the GH26 enzyme in PUL34_Bu allowed Bacteroides uniformis to utilize multiple plant-derived mannan. Overall, our results revealed the selective utilization of medicinal polysaccharide by Bacteroides and Parabacteroides species and provided insights into the use of polysaccharides in engineering the human gut microbiome.
Collapse
Affiliation(s)
- Zepeng Qu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linggang Zheng
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiong Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Sun
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingguang Lu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lili Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lihua Liu
- School of Economics and Management, Yanbian University, Yanji, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China.
- State Key Laboratory of Quality Research in Chinese Medicine, University of, Macau, Macau.
| |
Collapse
|
6
|
Dmitrijeva M, Ruscheweyh HJ, Feer L, Li K, Miravet-Verde S, Sintsova A, Mende DR, Zeller G, Sunagawa S. The mOTUs online database provides web-accessible genomic context to taxonomic profiling of microbial communities. Nucleic Acids Res 2025; 53:D797-D805. [PMID: 39526369 PMCID: PMC11701688 DOI: 10.1093/nar/gkae1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Determining the taxonomic composition (taxonomic profiling) is a fundamental task in studying environmental and host-associated microbial communities. However, genome-resolved microbial diversity on Earth remains undersampled, and accessing the genomic context of taxa detected during taxonomic profiling remains a challenging task. Here, we present the mOTUs online database (mOTUs-db), which is consistent with and interfaces with the mOTUs taxonomic profiling tool. It comprises 2.83 million metagenome-assembled genomes (MAGs) and 919 090 single-cell and isolate genomes from 124 295 species-level taxonomic units. In addition to being one of the largest prokaryotic genome resources to date, all MAGs in the mOTUs-db were reconstructed de novo in 117 902 individual samples by abundance correlation of scaffolds across multiple samples for improved quality metrics. The database complements the Genome Taxonomy Database, with over 50% of its species-level taxonomic groups being unique. It also offers interactive querying, enabling users to explore and download genomes at various taxonomic levels. The mOTUs-db is accessible at https://motus-db.org.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Lilith Feer
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Kang Li
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Samuel Miravet-Verde
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna Sintsova
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | - Daniel R Mende
- Medical Microbiology and Infection Prevention (MMI), Amsterdam University Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, 2333ZA Leiden, Netherlands
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Espada MV, De la Cruz CR, Jeri C, Garcia-Tejedor A, Laparra JM. Chenopodium Quinoa's Ingredients Contribute to the Gut Microbiota's Metabolic Adaptations on Carbohydrate Metabolism. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:18. [PMID: 39708162 DOI: 10.1007/s11130-024-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 12/23/2024]
Abstract
Gut microbiota dysbiosis significantly contributes either to metabolic or immune diseases. Modulating the gut microbiome is the subject of intense research, but how immunonutritional ingredients from Chenopodium quinoa contribute to shaping the commensal microbiome and its metabolic capacities has not been determined. Sixty healthy volunteers participated in a double-blind, randomized parallel pilot study with two study arms: high fat-containing cookie and a C. quinoa-based cookie. The composition of the colonic microbiota was quantified by real time qPCR and bacterial metabolism to use carbohydrates was monitored using metabolic strips. Regardless of the order in which the volunteers receive the cookies, the administration of the C. quinoa-based cookie allows establishing and maintaining significant differences in the diversity of the microbiota. C. quinoa-based cookie prevented imbalances in the gut microbiota composition derived from the administration of the high fat-containing cookie. These findings provide new insights into how immunonutritional foods can help to establish steady-state commensalism.
Collapse
Affiliation(s)
- M V Espada
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain
| | - C R De la Cruz
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain
| | - C Jeri
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, Valencia, 46002, Spain
| | - A Garcia-Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, Valencia, 46002, Spain
| | - J M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, Madrid, 28049, Spain.
- Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, Valencia, 46002, Spain.
| |
Collapse
|
8
|
Liu W, He Q, Yue C, Xu T, Hang X. Effects of dechlorane plus on hepatic pathology, metabolic health and gut microbiota in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177532. [PMID: 39551218 DOI: 10.1016/j.scitotenv.2024.177532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Dechlorane plus (DP), a widely used flame retardant, was added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in 2023. This study aimed to investigate the effects of DP on glucose and lipid metabolism by orally exposing eight-week-old male mice to environmentally relevant concentrations of DP (0.5, 1, and 5 mg/kg/day) for six weeks. The in vivo effects of DP on liver histomorphology, glucose and lipid metabolism, intestinal microbiota, and the associated molecular mechanisms were assessed. Pathological examination revealed that exposure to 1 and 5 mg/kg/day DP induced hepatic damage, characterized by structural disarray of the hepatic cords and vacuolar degeneration of liver cells, while 0.5 and 1 mg/kg/day DP exposure led to significant triglycerides (TG) accumulation in the liver. Metabolite analysis showed a marked increase in hepatic pyruvate, glycogen, and TG in mice exposed to 0.5 and 1 mg/kg/day DP, while 5 mg/kg/day exposure resulted in elevated glycogen levels and reduced pyruvate and glucose concentrations. The underlying mechanisms involved the transcriptional regulation of key enzymes related to glucose and lipid metabolism, as well as the activation of the PI3K/AKT pathway. Exposure to 5 mg/kg/day DP upregulated genes associated with glycogenesis (GK), glycolysis (HK1 and PK), and fatty acid synthesis (SREBP1, FAS, and ACC1), while downregulating genes involved in gluconeogenesis (PCK1) and fatty acid β-oxidation (CPT1 and PPARA). The activated PI3K/AKT pathway regulated key proteins (GLUT4, GSK3β, and FoxO1), playing distinct roles in glucose and lipid metabolism. High-throughput 16S rDNA sequencing revealed that 5 mg/kg/day DP exposure altered the composition and diversity of intestinal microbiota, reducing the relative abundance of beneficial probiotics at both the phylum and genus levels. These findings offer new insights into the complex mechanisms through which DP affects glucose and lipid metabolism in mammals, contributing to a more comprehensive evaluation of its toxicity.
Collapse
Affiliation(s)
- Wen Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qiyu He
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Caiyu Yue
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Tong Xu
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaoming Hang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
9
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Liu C, Liu L, Tian Z, Zhan S, Qiu Y, Li M, Li T, Mao R, Zhang S, Chen M, Zeng Z, Zhuang X. Bacteroides uniformis ameliorates pro-inflammatory diet-exacerbated colitis by targeting endoplasmic reticulum stress-mediated ferroptosis. J Adv Res 2024:S2090-1232(24)00544-7. [PMID: 39566817 DOI: 10.1016/j.jare.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION A pro-inflammatory diet is positively associated with the risk and progression of inflammatory bowel diseases (IBD). Recently, ferroptosis has been observed in patients with different dietary patterns-associated intestinal inflammation, while the mechanisms underlying the effects of a pro-inflammatory diet and whether it mediates ferroptosis are unknown. OBJECTIVES This study aims to elucidate the mechanisms underlying pro-inflammatory diet-mediated colitis and explore potential intervention strategies. METHODS Mice were fed a dietary inflammatory index-based pro-inflammatory diet for 12 weeks. Subsequently, colitis was chemically induced using 2.5 % dextran sulfate sodium. The body weight, pathological score, immune response and mucosal barrier function were evaluated to assess intestinal inflammation. Intestine tissue transcriptomics, fecal microbiome analysis and serum metabolomics were applied to identify diet-microbe-host interactions. Additionally, the dietary inflammatory index (DII) scores and intestinal specimens of 32 patients with Crohn's disease were evaluated. The biological functions of Bacteroides uniformis were observed in vitro and in vivo. RESULTS Pro-inflammatory diet induces low-grade intestinal inflammation in mice and exacerbates colitis by activating glutathione peroxidase 4-associated ferroptosis in the endoplasmic reticulum stress-mediated pathway. These effects are reversed by ferrostatin-1 treatment. Additionally, the pro-inflammatory diet triggers colitis by modulating the gut microbiota and metabolites. Notably, supplementation with B. uniformis improves the pro-inflammatory diet-aggravated colitis by inhibiting endoplasmic reticulum stress-mediated ferroptosis. Moreover, B. uniformis is non-enterotoxigenic and non-enteroinvasive in co-cultures with intestinal epithelial cells. CONCLUSIONS Pro-inflammatory diet drives colitis by targeting endoplasmic reticulum stress-mediated ferroptosis, possibly in a gut microbiota-dependent manner. Pro-inflammatory diet restriction and microbial-based therapies may be effective strategies for preventing and treating IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Boji Pharmaceutical Research Center, Boji Medical Biotechnological Co. Ltd., Guangzhou, Guangdong, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Maher S, Rajapakse J, El-Omar E, Zekry A. Role of the Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:457-473. [PMID: 39389571 DOI: 10.1055/a-2438-4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)-previously described as nonalcoholic fatty liver disease-continues to rise globally. Despite this, therapeutic measures for MASLD remain limited. Recently, there has been a growing interest in the gut microbiome's role in the pathogenesis of MASLD. Understanding this relationship may allow for the administration of therapeutics that target the gut microbiome and/or its metabolic function to alleviate MASLD development or progression. This review will discuss the interplay between the gut microbiome's structure and function in relation to the development of MASLD, assess the diagnostic yield of gut microbiome-based signatures as a noninvasive tool to identify MASLD severity, and examine current and emerging therapies targeting the gut microbiome-liver axis.
Collapse
Affiliation(s)
- Salim Maher
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Jayashi Rajapakse
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Emad El-Omar
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| |
Collapse
|
12
|
Feng J, Peng J, Hsiao YC, Liu CW, Yang Y, Zhao H, Teitelbaum T, Wang X, Lu K. Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms. Metabolites 2024; 14:544. [PMID: 39452925 PMCID: PMC11509705 DOI: 10.3390/metabo14100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome-host interactive metabolism. METHODS Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. RESULTS This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome-host interactions. CONCLUSIONS The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS-gut microbiome research to inspire advanced examination of the NAS exposure-gut microbiome-host metabolism axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Du Y, Zuo W, Sun F. Imputing Metagenomic Hi-C Contacts Facilitates the Integrative Contig Binning Through Constrained Random Walk with Restart. J Comput Biol 2024; 31:1008-1021. [PMID: 39246231 DOI: 10.1089/cmb.2024.0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Metagenomic Hi-C (metaHi-C) has shown remarkable potential for retrieving high-quality metagenome-assembled genomes from complex microbial communities. Nevertheless, existing metaHi-C-based contig binning methods solely rely on Hi-C interactions between contigs, disregarding crucial biological information such as the presence of single-copy marker genes. To overcome this limitation, we introduce ImputeCC, an integrative contig binning tool optimized for metaHi-C datasets. ImputeCC integrates both Hi-C interactions and the discriminative power of single-copy marker genes to group marker-gene-containing contigs into preliminary bins. It also introduces a novel constrained random walk with restart algorithm to enhance Hi-C connectivity among contigs. Comprehensive assessments using both mock and real metaHi-C datasets from diverse environments demonstrate that ImputeCC consistently outperforms other Hi-C-based contig binning tools. A genus-level analysis of the sheep gut microbiota reconstructed by ImputeCC underlines its capability to recover key species from dominant genera and identify previously unknown genera.
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Wenxuan Zuo
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Wu Y, He X, Chen H, Lin Y, Zheng C, Zheng B. Extraction and characterization of hepatoprotective polysaccharides from Anoectochilus roxburghii against CCl 4-induced liver injury via regulating lipid metabolism and the gut microbiota. Int J Biol Macromol 2024; 277:134305. [PMID: 39094884 DOI: 10.1016/j.ijbiomac.2024.134305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anoectochilus roxburghii polysaccharides exhibit notable hepatoprotective effects, but the underlying substance basis and mechanisms remain unknown. In this study, four new polysaccharides named ARP-1a, ARP-1b, ARP-2a and ARP-2b, were isolated from A. roxburghii. Their structural characteristics were systematically analyzed using HPGPC, HPLC, GC-MS, IR and NMR analysis. ARP-1a, the leading polysaccharide isolated from A. roxburghii, was further evaluated for its hepatoprotective effects on acute liver injury mice induced by CCl4. ARP-1a significantly reduced the serum ALT, AST, TNF-α, IL-1β and IL-6 levels, liver MDA content, and increased the SOD and CAT activities and GSH level in liver. H&E staining revealed that ARP-1a pretreatment could markedly relieve liver injury. Further mechanism exploration indicated that ARP-1a could relieve CCl4-induced oxidative damage through activating the Nrf2 signaling. In addition, metabolomics, lipidomics and 16S rRNA amplicon sequencing were used to elucidate the underlying mechanisms of ARP-1a. Multi-omics analysis indicated that ARP-1a exerted hepatoprotective effect against CCl4-induced acute liver injury by regulating lipid metabolism and modulating the gut microbiota. In conclusion, the above results suggest that ARP-1a can be considered a promising and safe candidate for hepatoprotective drug, as well as a potential prebiotic for maintaining intestinal homeostasis and promoting human intestinal health.
Collapse
Affiliation(s)
- Yanbin Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Huiling Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10365-6. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
16
|
Lin H, Chen Y, Abror-Lacks G, Price M, Morris A, Sun J, Palella F, Chew KW, Brown TT, Rinaldo CR, Peddada SD. Sexual behavior is linked to changes in gut microbiome and systemic inflammation that lead to HIV-1 infection in men who have sex with men. Commun Biol 2024; 7:1145. [PMID: 39277660 PMCID: PMC11401892 DOI: 10.1038/s42003-024-06816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Pathogenic changes in gut microbial composition precede the onset of HIV-1 infection in men who have sex with men (MSM). This process is associated with increased levels of systemic inflammatory biomarkers and risk for AIDS development. Using mediation analysis framework, in this report we link the effects of unprotected receptive intercourse among MSM prior to primary HIV-1 infection to higher levels of proinflammatory cytokines sCD14 and sCD163 in plasma and a significant decrease in the abundance of A. muciniphila, B. caccae, B. fragilis, B. uniformis, Bacteroides spp., Butyricimonas spp., and Odoribacter spp., and a potential increase in the abundance of Dehalobacterium spp. and Methanobrevibacter spp. in stools of MSM with the highest number of sexual partners. These differences in microbiota, together with a reduction in the pairwise correlations among commensal and short-chain fatty acid-producing bacteria with a number of sexual partners, support an increase in gut dysbiosis with the number of sexual partners. These results demonstrate the interconnectedness of sexual behavior, immune response, and microbiota composition, notably among MSM participating in high-risk sexual behaviors.
Collapse
Affiliation(s)
- Huang Lin
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC, USA
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD, USA
| | - Yue Chen
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Grace Abror-Lacks
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meaghan Price
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Sun
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frank Palella
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kara W Chew
- School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Todd T Brown
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles R Rinaldo
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shyamal D Peddada
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC, USA.
| |
Collapse
|
17
|
Paone P, Latousakis D, Terrasi R, Vertommen D, Jian C, Borlandelli V, Suriano F, Johansson MEV, Puel A, Bouzin C, Delzenne NM, Salonen A, Juge N, Florea BI, Muccioli GG, Overkleeft H, Van Hul M, Cani PD. Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024; 73:1632-1649. [PMID: 38740509 PMCID: PMC11420753 DOI: 10.1136/gutjnl-2023-330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Dimitris Latousakis
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Romano Terrasi
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valentina Borlandelli
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Puel
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), IREC Imaging Platform (2IP RRID:SCR_023378), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Bogdan I Florea
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Herman Overkleeft
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Li W, Tang H, Xue K, Ying T, Wu M, Qu Z, Dong C, Jin T, Brunius C, Hallmans G, Åman P, Johansson A, Landberg R, Liu Y, He G. Personalized Microbial Fingerprint Associated with Differential Glycemic Effects of a Whole Grain Rye Intervention on Chinese Adults. Mol Nutr Food Res 2024; 68:e2400274. [PMID: 39091068 DOI: 10.1002/mnfr.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Indexed: 08/04/2024]
Abstract
SCOPE This study aims to identify the gut enterotypes that explain differential responses to intervention with whole grain rye by proposing an "enterotype - metabolic" model. METHODS AND RESULTS A 12-week randomized controlled trial is conducted in Chinese adults, with 79 subjects consuming whole grain products with fermented rye bran (FRB) and 77 consuming refined wheat products in this exploratory post-hoc analysis. Responders or non-responders are identified according to whether blood glucose decreased by more than 10% after rye intervention. Compared to non-responders, responders in FRB have higher baseline Bacteroides (p < 0.001), associated with reduced blood glucose (p < 0.001), increased Faecalibacterium (p = 0.020) and Erysipelotrichaceae_UCG.003 (p = 0.022), as well as deceased 7β-hydroxysteroid dehydrogenase (p = 0.033) after intervention. The differentiated gut microbiota and metabolites between responders and non-responders after intervention are enriched in aminoacyl-tRNA biosynthesis. CONCLUSION The work confirms the previously suggested importance of microbial enterotypes in differential responses to whole grain interventions and supports taking enterotypes into consideration for improved efficacy of whole grain intervention for preventing type 2 diabetes. Altered short-chain fatty acids and bile acid metabolism might be a potential mediator for the beneficial effects of whole grain rye on glucose metabolism.
Collapse
Affiliation(s)
- Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai, 200032, China
| | - Kun Xue
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Tao Ying
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Zheng Qu
- Department of Gastroenterology, Zhongye Hospital, Shanghai, 200003, China
| | - Chenglin Dong
- Department of Clinical Laboratory, Zhongye Hospital, Shanghai, 200003, China
| | - Taiyi Jin
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Carl Brunius
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, 901 87, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
19
|
Cui W, Chen F, Sun Z, Cui C, Xu B, Shen W, Wan F, Cheng A. Catabolism of phenolics from grape peel and its effects on gut microbiota during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7182-7193. [PMID: 38624038 DOI: 10.1002/jsfa.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Grape peels, the main by-products of wine processing, are rich in bioactive ingredients of phenolics, including proanthocyanidins, flavonoids and anthocyanins. Phenolics have the function of regulating intestinal microbiota and promoting intestinal health. From the perspective of the dietary nutrition of grape peel phenolics (GPP), the present study aimed to investigate the influence of GPP on the composition and metabolism of human gut microbiota during in vitro fermentation. RESULTS The results indicated that GPP could decrease pH and promote the production of short-chain fatty acids. ACE and Chao1 indices in GPP group were lower than that of the Blank group. GPP enhanced the levels of Lachnospiraceae UCG-004, Bacteroidetes and Roseburia, but reduced the Firmicutes/Bacteroidetes ratio. Kyoto Encyclopedia of Proteins and Genome enrichment pathways related to phenolic acid metabolism mainly included flavonoid, anthocyanin, flavone and flavonol biosynthesis. Gut microbiota could accelerate the release and breakdown of phenolic compounds, resulting in a decrease in the content of hesperetin-7-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-rutinoside etc. In vitro antibacterial test found that GPP increased the diameters of the inhibition zones of Escherichia coli and Staphylococcus aureus in a dose-dependent manner. CONCLUSION The results of the present study revealed that GPP might be a potential prebiotic-like to prevent diseases by improving gut health. The findings could provide a theoretical basis for the potential to exploit GPP as dietary nutrition to maintain intestinal function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyu Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fuchun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Caifang Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ben Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anwei Cheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Romaní-Pérez M, Líebana-García R, Flor-Duro A, Bonillo-Jiménez D, Bullich-Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2024. [PMID: 39159270 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rebeca Líebana-García
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Daniel Bonillo-Jiménez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
21
|
Liu Y, Wu H, Liu B, Chen S, Huang L, Liu Z, Wang J, Xie L, Wu X. Multi-omics analysis reveals the impact of gut microbiota on antipsychotic-induced weight gain in schizophrenia. Schizophr Res 2024; 270:325-338. [PMID: 38964078 DOI: 10.1016/j.schres.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Emerging evidence indicates that gut microbial dysbiosis is associated with the development of antipsychotic-induced weight gain in schizophrenia (SZ). However, the exact taxonomic composition and functionality that constitute the "obesogenic" microbial profile remain elusive. Our retrospective survey identified two groups of the SZ population separated by BMI, with 1/3 of patients developing overweight/obesity after chronic antipsychotic treatment. Based on multi-omics analysis, we observed altered gut microbiota in SZ patients with overweight/obesity, characterized by a reduction in several beneficial bacteria genera, including Bacteroides, Parabacteroides, Akkermansia, and Clostridium. This microbial dysbiosis was accompanied by disrupted energy expenditure and nutritional metabolism, worsened metabolic indices, and reduced levels of beneficial metabolites, e.g. indole-3-carboxylic acid and propionic acid. Moreover, leveraging data from first-episode drug-naïve schizophrenia (FSZ) patients at one-month and one-year follow-up, both artificial neural network and random forest classifier-based prediction models demonstrated a strong ability of microbial profiles to predict antipsychotic-induced weight gain. Importantly, FSZ patients with higher relative abundance of Parabacteria distasonis were less susceptible to antipsychotic-induced weight gain. Thus, gut microbiota could serve as a noninvasive approach to predict antipsychotic-induced weight gain, guiding clinical antipsychotics administration and developing novel therapeutic strategies for weight management in SZ.
Collapse
Affiliation(s)
- Yaxi Liu
- Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; Sleep Medicine Center of Psychiatry Department, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Wu
- Radiology Department, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bingdong Liu
- Department of Endocrinology and Metabolism, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shengyun Chen
- Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Liujing Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jie Wang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiaoli Wu
- Psychiatry Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Zhu XX, Zhao CY, Meng XY, Yu XY, Ma LC, Chen TX, Chang C, Chen XY, Zhang Y, Hou B, Cai WW, Du B, Han ZJ, Qiu LY, Sun HJ. Bacteroides uniformis Ameliorates Carbohydrate and Lipid Metabolism Disorders in Diabetic Mice by Regulating Bile Acid Metabolism via the Gut-Liver Axis. Pharmaceuticals (Basel) 2024; 17:1015. [PMID: 39204119 PMCID: PMC11357665 DOI: 10.3390/ph17081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- Department of Physiology, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Chen-Yang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xiao-Yi Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Lin-Chun Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Tian-Xiao Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Chang Chang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Xin-Yu Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China;
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (X.-X.Z.); (C.-Y.Z.); (X.-Y.M.); (X.-Y.Y.); (L.-C.M.); (T.-X.C.); (C.C.); (X.-Y.C.); (Y.Z.); (B.H.); (W.-W.C.); (B.D.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
23
|
Han L, Liu X, Lan Y, Hua Y, Fan Z, Li Y. Metagenomic analysis demonstrates distinct changes in the gut microbiome of Kawasaki diseases children. Front Immunol 2024; 15:1416185. [PMID: 39104524 PMCID: PMC11298399 DOI: 10.3389/fimmu.2024.1416185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Background Kawasaki disease (KD) has been considered as the most common required pediatric cardiovascular diseases among the world. However, the molecular mechanisms of KD were not fully underlined, leading to a confused situation in disease management and providing precious prognosis prediction. The disorders of gut microbiome had been identified among several cardiovascular diseases and inflammation conditions. Therefore, it is urgent to elucidate the characteristics of gut microbiome in KD and demonstrate its potential role in regulating intravenous immunoglobulin (IVIG) resistance and coronary artery injuries. Methods A total of 96 KD children and 62 controls were enrolled in the study. One hundred forty fecal samples had been harvested from KD patients, including individuals before or after IVIG treatment, with or without early coronary artery lesions and IVIG resistance. Fecal samples had been collected before and after IVIG administration and stored at -80°C. Then, metagenomic analysis had been done using Illumina NovaSeq 6000 platform. After that, the different strains and functional differences among comparisons were identified. Results First, significant changes had been observed between KD and their controls. We found that the decrease of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides uniformis, and Bacteroides ovatus and the increase of pathogenic bacteria Finegoldia magna, Abiotrophia defectiva, and Anaerococcus prevotii perhaps closely related to the incidence of KD. Then, metagenomic and responding functional analysis demonstrated that short-chain fatty acid pathways and related strains were associated with different outcomes of therapeutic efficacies. Among them, the reduction of Bacteroides thetaiotaomicron, the enrichment of Enterococcus faecalis and antibiotic resistance genes had been found to be involved in IVIG resistance of KD. Moreover, our data also revealed several potential pathogenetic microbiome of that KD patients with coronary artery lesions. Conclusion These results strongly proved that distinct changes in the gut microbiome of KD and the dysfunction of gut microbiomes should be responsible for the pathogenesis of KD and significantly impact the prognosis of KD.
Collapse
Affiliation(s)
- Linli Han
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, Ministry of Education Key Laboratory of Women and Children’s Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
He Y, Chen X, Li Y, Liang Y, Hong T, Yang J, Cao Z, Mai H, Yao J, Zhang T, Wu K, Zou J, Feng D. Curcumin supplementation alleviates hepatic fat content associated with modulation of gut microbiota-dependent bile acid metabolism in patients with nonalcoholic simple fatty liver disease: a randomized controlled trial. Am J Clin Nutr 2024; 120:66-79. [PMID: 38795741 DOI: 10.1016/j.ajcnut.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Our previous studies showed that curcumin prevented hepatic steatosis in animal models. OBJECTIVES This study aimed to assess the effects of curcumin on hepatic fat content, body composition, and gut microbiota-dependent bile acid (BA) metabolism in patients with nonalcoholic simple fatty liver (NASFL). METHODS In a 24-wk double-blind randomized trial, 80 patients with NASFL received 500 mg/d curcumin or placebo. Hepatic fat content was measured using FibroTouch-based controlled attenuation parameters (CAPs). Microbial composition and BA metabolites were analyzed using 16S rRNA sequencing and metabolomics. RESULTS Curcumin consumption significantly reduced CAP value compared with placebo (-17.5 dB/m; 95% confidence interval [CI]: -27.1, -7.8 dB/m; P < 0.001). This corresponded to reduction in weight (-2.6 kg; 95% CI: -4.4, -0.8 kg; P < 0.001) and BMI (-1.0 kg/m2; 95% CI: -2.0, -0.1 kg/m2; P = 0.032) compared with placebo group. Additionally, free fatty acid (-0.12 mmol/L; 95% CI: -0.20, -0.04 mmol/L; P = 0.004), triglycerides (-0.29 mmol/L; 95% CI: -0.41, -0.14 mmol/L; P < 0.001), fasting blood glucose (-0.06 mmol/L; 95% CI: -0.12, -0.01 mmol/L; P = 0.038), hemoglobin A1c (-0.06%; 95% CI: -0.33, -0.01%; P = 0.019), and insulin (-4.94 μU/L; 95% CI: -9.73, -0.15 μU/L; P = 0.043) showed significant reductions in the curcumin group compared with placebo group. Gut microbiota analysis indicated that curcumin significantly decreased Firmicutes to Bacteroidetes ratio and significantly increased Bacteroides abundance. Serum levels of deoxycholic acid, the most potent activator of Takeda G protein-coupled receptor 5 (TGR5), were significantly elevated after curcumin intervention (37.5 ng/mL; 95% CI: 6.7, 68.4 ng/mL; P = 0.018). Curcumin treatment also increased TGR5 expression in peripheral blood mononuclear cells and serum glucagon-like peptide-1 levels (0.73 ng/mL; 95% CI: 0.16, 1.30 ng/mL; P = 0.012). CONCLUSIONS Improvements in gut microbiota-dependent BA metabolism and TGR5 activation after 24-wk curcumin intervention were associated with a reduction in hepatic fat content in patients with NASFL, providing evidence that curcumin is a potential nutritional therapy for NASFL. The trial was registered at www.chictr.org.cn as ChiCTR2200058052.
Collapse
Affiliation(s)
- Youming He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongchun Li
- Department of Infectious Diseases, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yunyi Liang
- Health Management Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Mai
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiale Yao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Kaize Wu
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jun Zou
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Romaní-Pérez M, López-Almela I, Bullich-Vilarrubias C, Evtoski Z, Benítez-Páez A, Sanz Y. Bacteroides uniformis CECT 7771 requires adaptive immunity to improve glucose tolerance but not to prevent body weight gain in diet-induced obese mice. MICROBIOME 2024; 12:103. [PMID: 38845049 PMCID: PMC11155119 DOI: 10.1186/s40168-024-01810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. METHODS We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. RESULTS The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. CONCLUSIONS Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability. Video Abstract.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
- Present Address: Research Group Intracellular Pathogens: Biology and Infection, Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Zoran Evtoski
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| |
Collapse
|
26
|
Prins FM, Collij V, Groot HE, Björk JR, Swarte JC, Andreu-Sánchez S, Jansen BH, Fu J, Harmsen HJM, Zhernakova A, Lipsic E, van der Harst P, Weersma RK, Gacesa R. The gut microbiome across the cardiovascular risk spectrum. Eur J Prev Cardiol 2024; 31:935-944. [PMID: 38060843 DOI: 10.1093/eurjpc/zwad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 06/04/2024]
Abstract
AIMS Despite treatment advancements, cardiovascular disease remains a leading cause of death worldwide. Identifying new targets is crucial for enhancing preventive and therapeutic strategies. The gut microbiome has been associated with coronary artery disease (CAD), however our understanding of specific changes during CAD development remains limited. We aimed to investigate microbiome changes in participants without clinically manifest CAD with different cardiovascular risk levels and in patients with ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS In this cross-sectional study, we characterized the gut microbiome using metagenomics of 411 faecal samples from individuals with low (n = 130), intermediate (n = 130), and high (n = 125) cardiovascular risk based on the Framingham score, and STEMI patients (n = 26). We analysed diversity, and differential abundance of species and functional pathways while accounting for confounders including medication and technical covariates. Collinsella stercoris, Flavonifractor plautii, and Ruthenibacterium lactatiformans showed increased abundances with cardiovascular risk, while Streptococcus thermophilus was negatively associated. Differential abundance analysis revealed eight species and 49 predicted metabolic pathways that were differently abundant among the groups. In the gut microbiome of STEMI patients, there was a depletion of pathways linked to vitamin, lipid, and amino acid biosynthesis. CONCLUSION We identified four microbial species showing a gradual trend in abundance from low-risk individuals to those with STEMI, and observed differential abundant species and pathways in STEMI patients compared to those without clinically manifest CAD. Further investigation is warranted to gain deeper understanding of their precise role in CAD progression and potential implications, with the ultimate goal of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Femke M Prins
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Valerie Collij
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Hilde E Groot
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Johannes R Björk
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - J Casper Swarte
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Bernadien H Jansen
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection prevention, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Erik Lipsic
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rinse K Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ranko Gacesa
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| |
Collapse
|
27
|
Aya JV, Vega LC, Muñoz E, Muñoz M, López DF, Guzmán MP, Martínez DF, Cruz-Saavedra LB, Castillo AK, Quintero KJ, Gónzalez Soltero R, Cala MP, Ramírez JD. Divergent Gut Microbiota: Archaeal and Bacterial Signatures Unveil Unique Patterns in Colombian Cyclists Compared to Weightlifters and Non-Athletes. Adv Biol (Weinh) 2024; 8:e2400069. [PMID: 38548661 DOI: 10.1002/adbi.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Indexed: 06/16/2024]
Abstract
Engagement in physical activity, across various sports, promotes a diverse microbiota in active individuals. This study examines the gut microbiota of Colombian athletes, specifically weightlifters (n = 16) and road cyclists (n = 13), compared to non-athletes (n = 15). Using Kruskal-Wallis tests, the physical activity level of a group of non-athletic individuals and the sports experience of a group of professional athletes is analyzed. The median age of participants is 24 years, comprising 25 men and 19 women. The microbiota is collected using fecal samples. Participants provided these samples during their pre-competitive stage, specifically during the concentration phase occurring two weeks prior to national competitions. This timing is chosen to capture the microbial composition during a period of heightened physical preparation. Questionnaire responses and microbial composition assessments identify disparities among groups. Microbial composition analysis explores core microbiome, abundance, and taxonomy using Pavian, MicrobiomeAnalyst 2.0, and GraPhlAn. ANCOM-BC2 reveals differentially abundant species. Road cyclists exhibit decreased Bacteria and increased Archaea abundance. Phylum-level variations included Planctomycetes, Acidobacteria, and Proteobacteria, while Bacteroidetes prevailed. Key families influencing gut microbiota are Bacteroidaceae, Muribaculaceae, and Selenomonadaceae. Weightlifters exhibit unique viral and archaeal community connections, while cyclists showed specialized microbial interplay influenced by endurance exercise. Correlation network analysis emphasizes distinctive microbial interactions within athlete groups, shedding light on the impact of physical activities on gut microbiota and athlete health.
Collapse
Affiliation(s)
- J V Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L C Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - E Muñoz
- Universidad Santo Tomás, Bogotá, Colombia
| | - M Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - D F López
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - M P Guzmán
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - D F Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L B Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - A K Castillo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - K J Quintero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - R Gónzalez Soltero
- MAS Microbiota Group, Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - M P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - J D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
28
|
Zhou X, Zhang X, Yu J. Gut mycobiome in metabolic diseases: Mechanisms and clinical implication. Biomed J 2024; 47:100625. [PMID: 37364760 PMCID: PMC11332988 DOI: 10.1016/j.bj.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) are three common metabolic diseases with high prevalence worldwide. Emerging evidence suggests that gut dysbiosis may influence the development of metabolic diseases, in which gut fungal microbiome (mycobiome) is actively involved. In this review, we summarize the studies exploring the composition changes of gut mycobiome in metabolic diseases and mechanisms by which fungi affect the development of metabolic diseases. The current mycobiome-based therapies, including probiotic fungi, fungal products, anti-fungal agents and fecal microbiota transplantation (FMT), and their implication in treating metabolic diseases are discussed. We highlight the unique role of gut mycobiome in metabolic diseases, providing perspectives for future research on gut mycobiome in metabolic diseases.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
29
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
30
|
Hamamah S, Hajnal A, Covasa M. Influence of Bariatric Surgery on Gut Microbiota Composition and Its Implication on Brain and Peripheral Targets. Nutrients 2024; 16:1071. [PMID: 38613104 PMCID: PMC11013759 DOI: 10.3390/nu16071071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity remains a significant global health challenge, with bariatric surgery remaining as one of the most effective treatments for severe obesity and its related comorbidities. This review highlights the multifaceted impact of bariatric surgery beyond mere physical restriction or nutrient malabsorption, underscoring the importance of the gut microbiome and neurohormonal signals in mediating the profound effects on weight loss and behavior modification. The various bariatric surgery procedures, such as Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), act through distinct mechanisms to alter the gut microbiome, subsequently impacting metabolic health, energy balance, and food reward behaviors. Emerging evidence has shown that bariatric surgery induces profound changes in the composition of the gut microbiome, notably altering the Firmicutes/Bacteroidetes ratio and enhancing populations of beneficial bacteria such as Akkermansia. These microbiota shifts have far-reaching effects beyond gut health, influencing dopamine-mediated reward pathways in the brain and modulating the secretion and action of key gut hormones including ghrelin, leptin, GLP-1, PYY, and CCK. The resultant changes in dopamine signaling and hormone levels contribute to reduced hedonic eating, enhanced satiety, and improved metabolic outcomes. Further, post-bariatric surgical effects on satiation targets are in part mediated by metabolic byproducts of gut microbiota like short-chain fatty acids (SCFAs) and bile acids, which play a pivotal role in modulating metabolism and energy expenditure and reducing obesity-associated inflammation, as well as influencing food reward pathways, potentially contributing to the regulation of body weight and reduction in hedonic eating behaviors. Overall, a better understanding of these mechanisms opens the door to developing non-surgical interventions that replicate the beneficial effects of bariatric surgery on the gut microbiome, dopamine signaling, and gut hormone regulation, offering new avenues for obesity treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 9176, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
| |
Collapse
|
31
|
Zambrano AK, Paz-Cruz E, Ruiz-Pozo VA, Cadena-Ullauri S, Tamayo-Trujillo R, Guevara-Ramírez P, Zambrano-Villacres R, Simancas-Racines D. Microbiota dynamics preceding bariatric surgery as obesity treatment: a comprehensive review. Front Nutr 2024; 11:1393182. [PMID: 38633602 PMCID: PMC11021787 DOI: 10.3389/fnut.2024.1393182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The review present data on the intricate relationship between bariatric surgery, gut microbiota, and metabolic health in obesity treatment. Bariatric surgery, is recognized as an effective intervention for managing morbid obesity, including various techniques with distinct mechanisms of action, efficacy, and safety profiles including Roux-en-Y Gastric Bypass (RYGB), Sleeve Gastrectomy (SG), Laparoscopic Adjustable Gastric Banding (LAGB), and Biliopancreatic Diversion (BPD). RYGB and SG are the most prevalent procedures globally, inducing gut microbiota changes that influence microbial diversity and abundance. Post-surgery, alterations in bacterial communities occur, such as the increased of Escherichia coli inversely correlated with fat mass and leptin levels. During digestion, microbiota produce physiologically active compounds like bile acids (Bas) and short-chain fatty acids (SCFAs). SCFAs, derived by microbial fermentation, influence appetite, energy metabolism, and obesity-related pathways. Bas, altered by surgery, modulate glucose metabolism and insulin sensitivity. Furthermore, SG and RYGB enhance incretin secretion, particularly glucagon-like peptide 1 (GLP-1). Therefore, understanding microbiota changes after bariatric surgery could be crucial for predicting metabolic outcomes and developing targeted interventions for obesity management.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| |
Collapse
|
32
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Cao L, Zhou S, Li J, Chen K, Xue X, Yi W. Effects of electroacupuncture on intestinal microflora and plasma metabolites in an insulin-resistant mouse model of type 2 diabetes mellitus. Acupunct Med 2024; 42:76-86. [PMID: 38160204 DOI: 10.1177/09645284231207871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate the effects of electroacupuncture (EA) at ST36 on intestinal microflora and plasma metabolites in a mouse model of type 2 diabetes mellitus (T2DM), to provide a theoretical basis and guidance for the clinical treatment of T2DM by traditional Chinese medicine (TCM). METHODS Sixteen T2DM db/db mice were randomly divided into treatment (T, n = 8) and model (M, n = 8) groups, and a further eight normal db/m+ mice reared under the same conditions served as a non-diabetic control group (C, n = 8). The general conditions of mice were observed weekly. After obtaining blood and stool samples, the mice were euthanized. Fasting blood glucose (FBG) was measured using a glucometer and fasting insulin (FINS) was measured in plasma by enzyme-linked immunosorbent assay (ELISA). Liver and colon tissues were embedded in paraffin and subjected to hematoxylin-eosin (HE) staining to observe pathological changes in these tissues. In addition, 16S ribosomal RNA (rRNA) sequencing was performed to analyze changes in the intestinal flora and metabolomics was employed to assess changes in metabolites in the blood. RESULTS EA significantly reduced FBG and FINS levels and alleviated pathological damage to the liver and colon. Furthermore, EA increased intestinal community richness and diversity by decreasing the relative abundance of Clostridium and incresasing the relative abundance of Lactobacillus. EA also reduced D-fructose levels in T2DM mice according to plasma metabolomics. CONCLUSION EA has a positive regulatory effect on the intestinal flora and can regulate blood glucose and improve insulin resistance in T2DM model mice.
Collapse
Affiliation(s)
- Linhui Cao
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kefang Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojin Xue
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Tran T, Senger S, Baldassarre M, Brosnan RA, Cristofori F, Crocco M, De Santis S, Elli L, Faherty CS, Francavilla R, Goodchild-Michelman I, Kenyon VA, Leonard MM, Lima RS, Malerba F, Montuori M, Morelli A, Norsa L, Passaro T, Piemontese P, Reed JC, Sansotta N, Valitutti F, Zomorrodi AR, Fasano A. Novel Bacteroides Vulgatus strain protects against gluten-induced break of human celiac gut epithelial homeostasis: a pre-clinical proof-of-concept study. Pediatr Res 2024; 95:1254-1264. [PMID: 38177249 PMCID: PMC11035120 DOI: 10.1038/s41390-023-02960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND AND AIMS We have identified a decreased abundance of microbial species known to have a potential anti-inflammatory, protective effect in subjects that developed Celiac Disease (CeD) compared to those who did not. We aim to confirm the potential protective role of one of these species, namely Bacteroides vulgatus, and to mechanistically establish the effect of bacterial bioproducts on gluten-dependent changes on human gut epithelial functions. METHODS We identified, isolated, cultivated, and sequenced a unique novel strain (20220303-A2) of B. vulgatus found only in control subjects. Using a human gut organoid system developed from pre-celiac patients, we monitored epithelial phenotype and innate immune cytokines at baseline, after exposure to gliadin, or gliadin plus B. vulgatus cell free supernatant (CFS). RESULTS Following gliadin exposure, we observed increases in epithelial cell death, epithelial monolayer permeability, and secretion of pro-inflammatory cytokines. These effects were mitigated upon exposure to B. vulgatus 20220303-A2 CFS, which had matched phenotype gene product mutations. These protective effects were mediated by epigenetic reprogramming of the organoids treated with B. vulgatus CFS. CONCLUSIONS We identified a unique strain of B. vulgatus that may exert a beneficial role by protecting CeD epithelium against a gluten-induced break of epithelial tolerance through miRNA reprogramming. IMPACT Gut dysbiosis precedes the onset of celiac disease in genetically at-risk infants. This dysbiosis is characterized by the loss of protective bacterial strains in those children who will go on to develop celiac disease. The paper reports the mechanism by which one of these protective strains, B. vulgatus, ameliorates the gluten-induced break of gut epithelial homeostasis by epigenetically re-programming the target intestinal epithelium involving pathways controlling permeability, immune response, and cell turnover.
Collapse
Affiliation(s)
- Tina Tran
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | | | - Rachel A Brosnan
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Fernanda Cristofori
- Pediatric Unit "Bruno Trambusti", Osp Pediatrico Giovanni XXIII, University of Bari, Bari, Italy
| | - Marco Crocco
- Department of Pediatrics, IRCCS Ospedale Giannina Gaslini, Genova, Italy
| | - Stefania De Santis
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pathology, Case Western University School of Medicine, Cleveland, OH, USA
| | - Luca Elli
- Celiac Disease Referral Center, Ospedale Maggiore Policlinico, Milan, Italy
| | - Christina S Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruggero Francavilla
- Pediatric Unit "Bruno Trambusti", Osp Pediatrico Giovanni XXIII, University of Bari, Bari, Italy
| | - Isabella Goodchild-Michelman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Victoria A Kenyon
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Maureen M Leonard
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Mass General for Children, Boston, MA, USA
| | - Rosiane S Lima
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Federica Malerba
- Department of Pediatrics, IRCCS Ospedale Giannina Gaslini, Genova, Italy
| | - Monica Montuori
- Pediatric Gastroenterology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Annalisa Morelli
- Pediatric Training Program, University of Salerno School of Medicine, Salerno, Italy
| | - Lorenzo Norsa
- Pediatric Hepatology Gastroenterology and Transplant Unit, Ospedale Papa Giovanni XXIII Bergamo, Bergamo, Italy
| | - Tiziana Passaro
- Celiac Disease Referral Center, "San Giovanni di Dio e Ruggi d'Aragona" University Hospital, Pole of Cava de' Tirreni, Salerno, Italy
| | - Pasqua Piemontese
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - James C Reed
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Mass General for Children, Boston, MA, USA
| | - Naire Sansotta
- Pediatric Hepatology Gastroenterology and Transplant Unit, Ospedale Papa Giovanni XXIII Bergamo, Bergamo, Italy
| | - Francesco Valitutti
- Pediatric Gastroenterology and Liver Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Ali R Zomorrodi
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Mass General for Children, Boston, MA, USA.
- European Biomedical Research Institute of Salerno, Salerno, Italy.
| |
Collapse
|
35
|
Zhang J, Zhou J, He Z, Li H. Bacteroides and NAFLD: pathophysiology and therapy. Front Microbiol 2024; 15:1288856. [PMID: 38572244 PMCID: PMC10988783 DOI: 10.3389/fmicb.2024.1288856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition observed globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Currently, the US Food and Drug Administration (FDA) has not approved any drugs for the treatment of NAFLD. NAFLD is characterized by histopathological abnormalities in the liver, such as lipid accumulation, steatosis, hepatic balloon degeneration, and inflammation. Dysbiosis of the gut microbiota and its metabolites significantly contribute to the initiation and advancement of NAFLD. Bacteroides, a potential probiotic, has shown strong potential in preventing the onset and progression of NAFLD. However, the precise mechanism by which Bacteroides treats NAFLD remains uncertain. In this review, we explore the current understanding of the role of Bacteroides and its metabolites in the treatment of NAFLD, focusing on their ability to reduce liver inflammation, mitigate hepatic steatosis, and enhance intestinal barrier function. Additionally, we summarize how Bacteroides alleviates pathological changes by restoring the metabolism, improving insulin resistance, regulating cytokines, and promoting tight-junctions. A deeper comprehension of the mechanisms through which Bacteroides is involved in the pathogenesis of NAFLD should aid the development of innovative drugs targeting NAFLD.
Collapse
Affiliation(s)
- Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zheyun He
- Liver Diseases Institute, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
36
|
Ng HY, Liao Y, Zhang R, Chan KH, To WP, Hui CH, Seto WK, Leung WK, Hung IFN, Lam TTY, Cheung KS. The Predictive Value of Gut Microbiota Composition for Sustained Immunogenicity following Two Doses of CoronaVac. Int J Mol Sci 2024; 25:2583. [PMID: 38473829 DOI: 10.3390/ijms25052583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
CoronaVac immunogenicity decreases with time, and we aimed to investigate whether gut microbiota associate with longer-term immunogenicity of CoronaVac. This was a prospective cohort study recruiting two-dose CoronaVac recipients from three centres in Hong Kong. We collected blood samples at baseline and day 180 after the first dose and used chemiluminescence immunoassay to test for neutralizing antibodies (NAbs) against the receptor-binding domain (RBD) of wild-type SARS-CoV-2 virus. We performed shotgun metagenomic sequencing performed on baseline stool samples. The primary outcome was the NAb seroconversion rate (seropositivity defined as NAb ≥ 15AU/mL) at day 180. Linear discriminant analysis [LDA] effect size analysis was used to identify putative bacterial species and metabolic pathways. A univariate logistic regression model was used to derive the odds ratio (OR) of seropositivity with bacterial species. Of 119 CoronaVac recipients (median age: 53.4 years [IQR: 47.8-61.3]; male: 39 [32.8%]), only 8 (6.7%) remained seropositive at 6 months after vaccination. Bacteroides uniformis (log10LDA score = 4.39) and Bacteroides eggerthii (log10LDA score = 3.89) were significantly enriched in seropositive than seronegative participants. Seropositivity was associated with B. eggerthii (OR: 5.73; 95% CI: 1.32-29.55; p = 0.022) and B. uniformis with borderline significance (OR: 3.27; 95% CI: 0.73-14.72; p = 0.110). Additionally, B. uniformis was positively correlated with most enriched metabolic pathways in seropositive vaccinees, including the superpathway of adenosine nucleotide de novo biosynthesis I (log10LDA score = 2.88) and II (log10LDA score = 2.91), as well as pathways related to vitamin B biosynthesis, all of which are known to promote immune functions. In conclusion, certain gut bacterial species (B. eggerthii and B. uniformis) and metabolic pathways were associated with longer-term CoronaVac immunogenicity.
Collapse
Affiliation(s)
- Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Yunshi Liao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ruiqi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-Hung Chan
- Department of Microbiology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai-Pan To
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Chun-Him Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai K Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ivan F N Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Tommy T Y Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
- Centre for Immunology & Infection Ltd., 17W Hong Kong Science & Technology Parks, Hong Kong
- Laboratory of Data Discovery for Health Ltd., 19W Hong Kong Science & Technology Parks, Hong Kong
- School of Public Health, The University of Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
37
|
Liu N, Yan X, Lv B, Wu Y, Hu X, Zheng C, Tao S, Deng R, Dou J, Zeng B, Jiang G. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Appl Microbiol Biotechnol 2024; 108:213. [PMID: 38358546 PMCID: PMC10869376 DOI: 10.1007/s00253-024-13041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.
Collapse
Affiliation(s)
- Nannan Liu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Bohan Lv
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Yanxiang Wu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehong Hu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Chunyan Zheng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Siyu Tao
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Ruxue Deng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Jinfang Dou
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Guangjian Jiang
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China.
| |
Collapse
|
38
|
Kumar M, Muthurayar T, Karthika S, Gayathri S, Varalakshmi P, Ashokkumar B. Anti-Diabetic Potentials of Lactobacillus Strains by Modulating Gut Microbiota Structure and β-Cells Regeneration in the Pancreatic Islets of Alloxan-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10221-7. [PMID: 38329697 DOI: 10.1007/s12602-024-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus, a most common endocrine disorder of glucose metabolism, has become a global epidemic and poses a serious public health threat with an increased socio-economic burden. Escalating incidence of diabetes is correlated with changes in lifestyle and food habits that cause gut microbiome dysbiosis and β-cells damage, which can be addressed with dietary interventions containing probiotics. Hence, the search for probiotics of human origin with anti-diabetic, anti-AGE, and anti-ACE potentials has gained renewed interest for the effective management of diabetes and its associated complications. The present study used an alloxan (AXN)-induced diabetic rat model to investigate the effects of potential probiotic Lacticaseibacillus casei MKU1, Lactiplantibacillus pentosus MKU3, and Lactiplantibacillus plantarum MKU7 administration individually on physiochemical parameters related to diabetic pathogenesis. Experimental animals were randomly allotted into six groups viz. NCG (control), DCG (AXN), DGM (metformin), DGP1 (MKU1), DGP2 (MKU3), and DGP3 (MKU7), and biochemical data like serum glucose, insulin, AngII, ACE, HbA1c, and TNF-α levels were measured until 90 days. Our results suggest that oral administration with MKU1, MKU3, or MKU7 significantly improved serum insulin levels, glycemic control, glucose tolerance, and body weight. Additionally, β-cell mass was increased by preserving islet integrity in Lactobacillus-treated diabetic rats, whereas TNF-α (~40%), AngII (~30%), and ACE levels (~50%) were strongly inhibited and enhanced sIgA production (5.8 folds) abundantly. Furthermore, Lactobacillus administration positively influenced the gut microbiome with a significant increase in the abundance of Lactobacillus species and the beneficial Bacteroides uniformis and Bacteroides fragilis, while decreased the pathogenic Proteus vulgaris and Parabacteroides distasonis. Among the probiotic treatment groups, L. pentosus MKU3 performed greatly in almost all parameters, indicating its potential use for alleviating diabetes-associated complications.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Tharmar Muthurayar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
39
|
Li X, Niu H, Huang Z, Zhang M, Xing M, Chen Z, Wu L, Xu P. Deciphering the Role of the Gut Microbiota in Exposure to Emerging Contaminants and Diabetes: A Review. Metabolites 2024; 14:108. [PMID: 38393000 PMCID: PMC10890638 DOI: 10.3390/metabo14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.
Collapse
Affiliation(s)
- Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Huixia Niu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhengliang Huang
- Disease Prevention and Control Center of Jingning She Autonomous County, Lishui 323500, China
| | - Man Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Rd., Binjiang District, Hangzhou 310051, China
| |
Collapse
|
40
|
Radocchia G, Marazzato M, Harbi KB, Capuzzo E, Pantanella F, De Giorgio R, Guarino M, Costanzini A, Zenzeri L, Parisi P, Ferretti A, Felici E, Palamara AT, Di Nardo G, Schippa S. Chronic intestinal pseudo-obstruction: associations with gut microbiota and genes expression of intestinal serotonergic pathway. BMC Microbiol 2024; 24:48. [PMID: 38302874 PMCID: PMC10835911 DOI: 10.1186/s12866-024-03200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Pediatric chronic intestinal pseudo-obstruction (PIPO) is a rare disease characterized by symptoms and radiological signs suggestive of intestinal obstruction, in the absence of lumen-occluding lesions. It results from an extremely severe impairment of propulsive motility. The intestinal endocrine system (IES) jointly with the enteric nervous system (ENS) regulates secreto-motor functions via different hormones and bioactive messengers/neurotransmitters. The neurotransmitter 5-hydroxytryptamine (5-HT) (or serotonin) is linked to intestinal peristalsis and secretory reflexes. Gut microbiota and its interplay with ENS affect 5-HT synthesis, release, and the subsequent serotonin receptor activation. To date, the interplay between 5-HT and gut microbiota in PIPO remains largely unclear. This study aimed to assess correlations between mucosa associated microbiota (MAM), intestinal serotonin-related genes expression in PIPO. To this purpose, biopsies of the colon, ileum and duodenum have been collected from 7 PIPO patients, and 7 age-/sex-matched healthy controls. After DNA extraction, the MAM was assessed by next generation sequencing (NGS) of the V3-V4 region of the bacterial RNA 16 S, on an Illumina Miseq platform. The expression of genes implicated in serotoninergic pathway (TPH1, SLC6A4, 5-HTR3 and 5-HTR4) was established by qPCR, and correlations with MAM and clinical parameters of PIPO have been evaluated. RESULTS Our results revealed that PIPO patients exhibit a MAM with a different composition and with dysbiosis, i.e. with a lower biodiversity and fewer less connected species with a greater number of non-synergistic relationships, compared to controls. qPCR results revealed modifications in the expression of serotonin-related intestinal genes in PIPO patients, when compared to controls. Correlation analysis do not reveal any kind of connection. CONCLUSIONS For the first time, we report in PIPO patients a specific MAM associated to underlying pathology and an altered intestinal serotonin pathway. A possible dysfunction of the serotonin pathway, possibly related to or triggered by an altered microbiota, may contribute to dysmotility in PIPO patients. The results of our pilot study provide the basis for new biomarkers and innovative therapies targeting the microbiota or serotonin pathways in PIPO patients.
Collapse
Affiliation(s)
- Giulia Radocchia
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Karim Ben Harbi
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Elena Capuzzo
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Matteo Guarino
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Letizia Zenzeri
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
- Paediatric Emergency Department, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Pasquale Parisi
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Alessandro Ferretti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Pediatric Unit, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Enrico Felici
- Unit of Pediatrics, The Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Giovanni Di Nardo
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy.
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Microbiology section, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
41
|
Eberhart T, Stanley FU, Ricci L, Chirico T, Ferrarese R, Sisti S, Scagliola A, Baj A, Badurek S, Sommer A, Culp-Hill R, Dzieciatkowska M, Shokry E, Sumpton D, D'Alessandro A, Clementi N, Mancini N, Cardaci S. ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota. Cell Death Dis 2024; 15:105. [PMID: 38302438 PMCID: PMC10834593 DOI: 10.1038/s41419-024-06483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.
Collapse
Affiliation(s)
- Tanja Eberhart
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federico Uchenna Stanley
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luisa Ricci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Tiziana Chirico
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Synlab Italia, Castenedolo, BS, Italy
| | - Sofia Sisti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Alessandra Scagliola
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sylvia Badurek
- Preclinical Phenotyping Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Andreas Sommer
- Next Generation Sequencing Facility, Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Vienna, Austria
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
- IRCCS San Raffaele Hospital, Milan, 20100, Italy
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, Varese, Italy
| | - Simone Cardaci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
42
|
Wang L, Tu Y, Chen L, Yu K, Wang H, Yang S, Zhang Y, Zhang S, Song S, Xu H, Yin Z, Feng M, Yue J, Huang X, Tang T, Wei S, Liang X, Chen Z. Black rice diet alleviates colorectal cancer development through modulating tryptophan metabolism and activating AHR pathway. IMETA 2024; 3:e165. [PMID: 38868519 PMCID: PMC10989083 DOI: 10.1002/imt2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 06/14/2024]
Abstract
Consumption of dietary fiber and anthocyanin has been linked to a lower incidence of colorectal cancer (CRC). This study scrutinizes the potential antitumorigenic attributes of a black rice diet (BRD), abundantly rich in dietary fiber and anthocyanin. Our results demonstrate notable antitumorigenic effects in mice on BRD, indicated by a reduction in both the size and number of intestinal tumors and a consequent extension in life span, compared to control diet-fed counterparts. Furthermore, fecal transplants from BRD-fed mice to germ-free mice led to a decrease in colonic cell proliferation, coupled with maintained integrity of the intestinal barrier. The BRD was associated with significant shifts in gut microbiota composition, specifically an augmentation in probiotic strains Bacteroides uniformis and Lactobacillus. Noteworthy changes in gut metabolites were also documented, including the upregulation of indole-3-lactic acid and indole. These metabolites have been identified to stimulate the intestinal aryl hydrocarbon receptor pathway, inhibiting CRC cell proliferation and colorectal tumorigenesis. In summary, these findings propose that a BRD may modulate the progression of intestinal tumors by fostering protective gut microbiota and metabolite profiles. The study accentuates the potential health advantages of whole-grain foods, emphasizing the potential utility of black rice in promoting health.
Collapse
Affiliation(s)
- Ling Wang
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Yi‐Xuan Tu
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Lu Chen
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Ke‐Chun Yu
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Hong‐Kai Wang
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Shu‐Qiao Yang
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Yuan Zhang
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Shuai‐Jie Zhang
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Shuo Song
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Hong‐Li Xu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong Agricultural UniversityWuhanChina
| | - Zhu‐Cheng Yin
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong Agricultural UniversityWuhanChina
| | - Ming‐Qian Feng
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
| | - Jun‐Qiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Tang Tang
- Wuhan Metware Biotechnology Co., LtdWuhanChina
| | - Shao‐Zhong Wei
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Jun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong Agricultural UniversityWuhanChina
| | - Zhen‐Xia Chen
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
43
|
Lin H, Chen Y, Abror G, Price M, Morris A, Sun J, Palella F, Chew KW, Brown TT, Rinaldo CR, Peddada SD. The effect of sexual behavior on HIV-1 seroconversion is mediated by the gut microbiome and proinflammatory cytokines. RESEARCH SQUARE 2024:rs.3.rs-3868545. [PMID: 38343862 PMCID: PMC10854284 DOI: 10.21203/rs.3.rs-3868545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The association between HIV-1 seroconversion and gut dysbiosis is well documented, and its association with sexual activity is also widely recognized. However, it is not known whether the gut dysbiosis mediates the effects of high-risk sexual behavior on HIV-1 seroconversion. In this report we focused on men who engaged in high-risk sexual behavior where they had receptive anal intercourse with multiple men. We demonstrate that proinflammatory cytokines, sCD14 and sCD163, and gut microbiota mediate the effects of this high-risk sexual behavior on subsequent HIV seroconversion. We discovered changes in the gut microbial ecology, prior to seroconversion, both in terms of the composition as well as inter-relationships among the commensal species. Furthermore, these changes correlate with future HIV seroconversion. Specifically, as the number of sexual partners increased, we discovered in a "dose-response" manner, a decrease in the abundance of commensal and short-chain fatty acid-producing species, A. muciniphila, B. caccae, B. fragilis, B. uniformis, Bacteroides spp., Butyricimonas spp., and Odoribacter spp, and an increase in proinflammatory species Dehalobacterium spp. and Methanobrevibacter spp. These changes were also observed among subsequent HIV seroconverters. Interestingly, we also discovered a reduction in correlations among these commensal and short-chain fatty acid producing bacteria in a "dose-response" manner with the number of sexual partners. Our mediation analysis not only provides a conceptual model for the disease process but also provides clues for future clinical interventions that will manipulate the gut microbiota to treat high-risk subjects to prevent HIV seroconversion.
Collapse
Affiliation(s)
- Huang Lin
- Co-first authors
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC USA
| | - Yue Chen
- Co-first authors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Grace Abror
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Meaghan Price
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jing Sun
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Frank Palella
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Kara W Chew
- School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Todd T Brown
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Charles R Rinaldo
- Co-senior authors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Shyamal D Peddada
- Co-senior authors
- Biostatistics and Computational Biology, National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC USA
| |
Collapse
|
44
|
Cheng S, Cui H, Zhang J, Wang Q, Duan Z. Probiotic potential of Lacticaseibacillus rhamnosus VHProbi M15 on sucralfate-induced constipation in mice. Sci Rep 2024; 14:1131. [PMID: 38212429 PMCID: PMC10784533 DOI: 10.1038/s41598-024-51497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The main objective of this study was to investigate the potential probiotic properties of Lacticaseibacillus rhamnosus VHProbi®M15 (M15). This study examined the effects of M15 on sucralfate-induced constipation in a mouse model. The BALB/c mice were randomly divided into four groups: the normal group (NOR) was without any treatment, while the constipation (CON), phenolphthalein (PHE), and probiotic (PRO) treatment groups were fed with sucralfate until the appearance of constipation symptoms. Afterward, the NOR and CON groups were given 1 ml saline orally every day until the end of the experiment; the PHE and PRO groups were given phenolphthalein or M15 suspension in 1 ml orally, respectively. Compared with the CON group, the fecal water content and intestinal peristalsis improved in the PRO group. Here, intake of M15 effectively attenuated sucralfate-induced constipation, recuperated colonic epithelial integrity, and increased serum levels of gastrointestinal excitatory neurotransmitters (motilin, gastrin, substance P). Analysis of the intestinal microbiota of mice by 16S rRNA metagenomic revealed an increase in the relative abundance of Bacteroides and a decrease in Sclerotinia, Verrucosa and Proteus in the PRO group. Compared with the CON group, the constipation-induced intestinal microecological changes were partially recovered in the PHE and PRO groups. These results demonstrate that M15 enhanced gastrointestinal transit and alleviated in mice with sucralfate-induced constipation.
Collapse
Affiliation(s)
- Shumin Cheng
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Hongchang Cui
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Jingyan Zhang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Qian Wang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China.
| |
Collapse
|
45
|
Zhang J, Wu X, Zhao J, Ma X, Murad MS, Mu G. Peptidome comparison on the immune regulation effects of different casein fractions in a cyclophosphamide mouse model. J Dairy Sci 2024; 107:40-61. [PMID: 37709034 DOI: 10.3168/jds.2023-23761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The protein composition of human milk plays a crucial role in infant formula milk powder formulation. Notably, significant differences exist between bovine casein and human milk casein. Previous studies have shown that casein hydrolysates could enhance immune function; however, gastrointestinal dyspepsia in infants affects the type and function of peptides. Therefore, the present study used peptidomics to sequence and analyze hydrolyzed peptides from different casein fractions. Additionally, animal experiments were conducted to assess the functionality of these casein fractions and elucidate their differences. The results revealed variations in peptide composition among the different casein fractions of formula milk powder. Interestingly, milk powder formulated with both β- and κ-casein (BK) exhibited significant enrichment of peptides related to the immune system. Moreover, the BK group significantly alleviated immune organ damage in cyclophosphamide-treated mice and regulated serum levels of pro-inflammatory and anti-inflammatory factors. Furthermore, feeding different casein fractions influenced the intestinal microflora of cyclophosphamide-treated mice, with the BK group mitigating the changes caused by cyclophosphamide. In conclusion, the findings suggest that BK formula in milk powder has the potential to positively enhance immunity. This study provides a robust theoretical basis for human-emulsified formula milk powder development.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| | - Jinghong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Xutong Ma
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - M Safian Murad
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China.
| |
Collapse
|
46
|
Hossain MI, Akash SR, Faruk MO, Mimi SI, Chowdhury IH, Islam MS, Alam MM, Ali MS. Evaluating Gut Microbiota Modification as a Next-Generation Therapy for Obesity and Diabetes. Curr Diabetes Rev 2024; 20:e150523216913. [PMID: 37190800 DOI: 10.2174/1573399820666230515115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 05/17/2023]
Abstract
The human body is a complex ecosystem that thrives on symbiosis. It is estimated that around 10^14 commensal microorganisms inhabit the human body, with the gut microbiota being one of the most diverse and complex populations of bacteria. This community is thought to comprise over a thousand different species that play a crucial role in the development of critical human diseases such as cancer, obesity, diabetes, mental depression, hypertension, and others. The gut microbiota has been identified as one of the most recent contributors to these metabolic disorders. With the emergence of inexpensive and high-performance sequence technology, our understanding of the function of the intestinal microbiome in host metabolism regulation and the development of (cardio) metabolic diseases has increased significantly. The symbiotic relationship between the gut microbiota and the host is essential for properly developing the human metabolic system. However, if this balance is disrupted by various factors such as infection, diet, exercise, sleep patterns, or exposure to antibiotics, it can lead to the development of various diseases in the body, including obesity and diabetes type 1 and 2. While many approaches and medications have been developed globally to treat these diseases, none have proven to be entirely effective, and many show side effects. Therefore, scientists believe that treating the gut microbiota using tried-and-true methods is the best option for combating obesity and diabetes. In this study, we aim to identify several feasible ways and prospects for gut microbiota therapy that can shape a new format for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Md Imran Hossain
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Md Omor Faruk
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Sanjida Islam Mimi
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Md Shariful Islam
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Mahbubol Alam
- Department of Pharmacy, Bangladesh University, Dhaka, 1000, Bangladesh
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
47
|
He H, He H, Mo L, You Z, Zhang J. Priming of microglia with dysfunctional gut microbiota impairs hippocampal neurogenesis and fosters stress vulnerability of mice. Brain Behav Immun 2024; 115:280-294. [PMID: 37914097 DOI: 10.1016/j.bbi.2023.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Mental disorders may be involved in neuroinflammatory processes that are triggered by gut microbiota. How gut microbiota influence microglia-mediated sensitivity to stress remains unclear. Here we explored in an animal model of depression whether disruption of the gut microbiome primes hippocampal microglia, thereby impairing neurogenesis and sensitizing to stress. METHODS Male C57BL/6J mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, and effects on gut microbiota were assessed using 16S rRNA sequencing. Fecal microbiota was transplanted from control or CUMS mice into naïve animals. The depression-like behaviors of recipients were evaluated in a forced swimming test and sucrose preference test. The morphology and phenotype of microglia in the hippocampus of recipients were examined using immunohistochemistry, quantitative PCR, and enzyme-linked immunosorbent assays. The recipients were treated with lipopolysaccharide or chronic stress exposure, and effects were evaluated on behavior, microglial responses and hippocampal neurogenesis. Finally, we explored the ability of minocycline to reverse the effects of CUMS on hippocampal neurogenesis and stress sensitivity in recipients. RESULTS CUMS altered the gut microbiome, leading to higher relative abundance of some bacteria (Helicobacter, Bacteroides, and Desulfovibrio) and lower relative abundance of some bacteria (Lactobacillus, Bifidobacterium, and Akkermansia). Fecal microbiota transplantation from CUMS mice to naïve animals induced microglial priming in the dentate gyrus of recipients. This microglia showed hyper-ramified morphology, and became more sensitive to LPS challenge or chronic stress, which characterized by more significant morphological changes and inflammatory responses, as well as impaired hippocampal neurogenesis and increased depressive-like behaviors. Giving minocycline to recipients reversed these effects of fecal transplantation. CONCLUSIONS These findings suggest that gut microbiota from stressed animals can induce microglial priming in the dentate gyrus, which is associated with a hyper-immune response to stress and impaired hippocampal neurogenesis. Remodeling the gut microbiome or inhibiting microglial priming may be strategies to reduce sensitivity to stress.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
48
|
Li H, Wang XK, Tang M, Lei L, Li JR, Sun H, Jiang J, Dong B, Li HY, Jiang JD, Peng ZG. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024; 16:2304159. [PMID: 38277137 PMCID: PMC10824146 DOI: 10.1080/19490976.2024.2304159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Wu L, Park SH, Kim H. Direct and Indirect Evidence of Effects of Bacteroides spp. on Obesity and Inflammation. Int J Mol Sci 2023; 25:438. [PMID: 38203609 PMCID: PMC10778732 DOI: 10.3390/ijms25010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic disorders present a significant public health challenge globally. The intricate relationship between the gut microbiome, particularly Bacteroides spp. (BAC), and obesity, including their specific metabolic functions, remains partly unresolved. This review consolidates current research on BAC's role in obesity and lipid metabolism, with three objectives: (1) To summarize the gut microbiota's impact on obesity; (2) To assess BAC's efficacy in obesity intervention; (3) To explore BAC's mechanisms in obesity and lipid metabolism management. This review critically examines the role of BAC in obesity, integrating findings from clinical and preclinical studies. We highlight the changes in BAC diversity and concentration following successful obesity treatment and discuss the notable differences in BAC characteristics among individuals with varying obesity levels. Furthermore, we review recent preclinical studies demonstrating the potential of BAC in ameliorating obesity and related inflammatory conditions, providing detailed insights into the methodologies of these in vivo experiments. Additionally, certain BAC-derived metabolites have been shown to be involved in the regulation of host lipid metabolism-related pathways. The enhanced TNF production by dendritic cells following BAC administration, in response to LPS, also positions BAC as a potential adjunctive therapy in obesity management.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Rehabilitation Medicine of Korean Medicine, Ilsan Hospital of Dongguk University, Goyang 10326, Republic of Korea;
| | - Seo-Hyun Park
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| |
Collapse
|
50
|
Ryu SW, Moon JC, Oh BS, Yu SY, Bak JE, Heo ES, Jeong JH, Lee JH. Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265. Arch Microbiol 2023; 206:19. [PMID: 38086977 DOI: 10.1007/s00203-023-03750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Obesity is a global health threat that causes various complications such as type 2 diabetes and nonalcoholic fatty liver disease. Gut microbiota is closely related to obesity. In particular, a higher Firmicutes to Bacteroidetes ratio has been reported as a biomarker of obesity, suggesting that the phylum Bacteroidetes may play a role in inhibiting obesity. Indeed, the genus Bacteroides was enriched in the healthy subjects based on metagenome analysis. In this study, we determined the effects of Bacteroides stercoris KGMB02265, a species belonging to the phylum Bacteroidetes, on obesity both in vitro and in vivo. The cell-free supernatant of B. stercoris KGMB02265 inhibited lipid accumulation in 3T3-L1 preadipocytes, in which the expression of adipogenic marker genes was repressed. In vivo study showed that the oral administration of B. stercoris KGMB02265 substantially reduced body weight and fat weight in high-fat diet induced obesity in mice. Furthermore, obese mice orally administered with B. stercoris KGMB02265 restored glucose sensitivity and reduced leptin and triglyceride levels. Taken together, our study reveals that B. stercoris KGMB02265 has anti-obesity activity and suggests that it may be a promising candidate for treating obesity.
Collapse
Affiliation(s)
- Seoung Woo Ryu
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Jeong Chan Moon
- National Institute of Ecology, Yeongyang, 36531, Republic of Korea
| | - Byeong Seob Oh
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Seung Yeob Yu
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Jeong Eun Bak
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Eun Seo Heo
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jae-Ho Jeong
- BioMedical Sciences Graduate Program, Chonnam National University, Hwasun, 58128, Republic of Korea.
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Biological Resource Center, Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|