1
|
Flatt EE, Alderman SL. 11β-Hydroxysteroid dehydrogenase type 2 may mediate the stress-specific effects of cortisol on brain cell proliferation in adult zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248020. [PMID: 39092490 PMCID: PMC11418181 DOI: 10.1242/jeb.248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.
Collapse
Affiliation(s)
- E. Emma Flatt
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
2
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Reyes-Contreras M, de Vries B, van der Molen JC, Groothuis TGG, Taborsky B. Egg-mediated maternal effects in a cooperatively breeding cichlid fish. Sci Rep 2023; 13:9759. [PMID: 37328515 PMCID: PMC10276030 DOI: 10.1038/s41598-023-35550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/19/2023] [Indexed: 06/18/2023] Open
Abstract
Mothers can influence offspring phenotype through egg-mediated maternal effects, which can be influenced by cues mothers obtain from their environment during offspring production. Developing embryos use these components but have mechanisms to alter maternal signals. Here we aimed to understand the role of mothers and embryos in how maternal effects might shape offspring social phenotype. In the cooperatively breeding fish Neolamprologus pulcher different social phenotypes develop in large and small social groups differing in predation risk and social complexity. We manipulated the maternal social environment of N. pulcher females during egg laying by allocating them either to a small or a large social group. We compared egg mass and clutch size and the concentration of corticosteroid metabolites between social environments, and between fertilized and unfertilized eggs to investigate how embryos deal with maternal signalling. Mothers in small groups produced larger clutches but neither laid smaller eggs nor bestowed eggs differently with corticosteroids. Fertilized eggs scored lower on a principal component representing three corticosteroid metabolites, namely 11-deoxycortisol, cortisone, and 11-deoxycorticosterone. We did not detect egg-mediated maternal effects induced by the maternal social environment. We discuss that divergent social phenotypes induced by different group sizes may be triggered by own offspring experience.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland
| | - Bonnie de Vries
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - J C van der Molen
- Laboratorium Bijzondere Chemie, Cluster Endocrinologie and Metabole Ziekten, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - T G G Groothuis
- The Groningen Institute for Evolutionary Life Science, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032, Hinterkappelen, Switzerland.
| |
Collapse
|
4
|
Best C, Faught E, Vijayan MM, Gilmour KM. Negative feedback regulation in the hypothalamic-pituitary-interrenal axis of rainbow trout (Oncorhynchus mykiss) subjected to chronic social stress. Gen Comp Endocrinol 2023:114332. [PMID: 37301413 DOI: 10.1016/j.ygcen.2023.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
The formation of dominance hierarchies in pairs of juvenile rainbow trout (Oncorhynchus mykiss) results in subordinate individuals exhibiting chronically elevated plasma cortisol concentrations. Cortisol levels reflect a balance between cortisol production, which is coordinated by the hypothalamic-pituitary-interrenal (HPI) axis in teleost fish, and negative feedback regulation and hormone clearance, which act to lower cortisol levels. However, the mechanisms contributing to the longer-term elevation of cortisol levels during chronic stress are not well established in fishes. The current study aimed to determine how subordinate fish maintain elevated cortisol levels, by testing the prediction that negative feedback and clearance mechanisms are impaired by chronic social stress. Plasma cortisol clearance was unchanged by social stress based on a cortisol challenge trial, hepatic abundance of the cortisol-inactivating enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11βHSD2), and tissue fate of labelled cortisol. The capacity for negative feedback regulation in terms of transcript and protein abundances of corticosteroid receptors in the preoptic area (POA) and pituitary appeared stable. However, changes in 11βHSD2 and mineralocorticoid receptor (MR) expression suggest subtle regulatory changes in the pituitary that may alter negative feedback. The chronic cortisol elevation observed during social subordination likely is driven by HPI axis activation and compounded by dysregulated negative feedback.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON Canada.
| | - Erin Faught
- Department of Biology, University of Calgary, Calgary, AB Canada
| | | | | |
Collapse
|
5
|
Kennedy EKC, Janz DM. Chronic stress causes cortisol, cortisone and DHEA elevations in scales but not serum in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111352. [PMID: 36427661 DOI: 10.1016/j.cbpa.2022.111352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Fish scales have been reported to incorporate cortisol over long periods of time and thus provide a promising means of assessing long-term stress in many species of teleost fish. However, the quantification of other stress related hormones has only been accomplished in our previous study conducted in goldfish (Carassius auratus). DHEA is a precursory androgen with anti-stress effects used alongside cortisol to diagnose chronic stress via the cortisol:DHEA ratio in mammals. Included in DHEA's anti-stress mechanisms are changes in the metabolism of cortisol to its inactive metabolite cortisone suggesting the relationships between cortisol, DHEA and cortisone may be additionally informative in the assessment of long-term stress. Therefore, to further explore these concepts in a native fish species and generate more comprehensive comparisons between scale and serum hormone concentrations than was possible in our previous study we implemented a 14-day stress protocol in adult rainbow trout (Oncorhynchus mykiss) and quantified resulting scale and serum cortisol, cortisone and DHEA concentrations. As predicted, elevations in scale concentrations of all hormones were observed in stressed trout compared to controls but were not reflected in serum samples. Significant differences in the cortisol:DHEA and cortisone:cortisol ratios were also found between control and stressed group scales but not serum. These results suggest not only that scales provide a superior medium for the assessment of long-term stress but also that the addition of scale cortisone and DHEA may provide additional relevant information for such assessments.
Collapse
Affiliation(s)
- Emily K C Kennedy
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK, Canada.
| | - David M Janz
- Western College of Veterinary Medicine and Toxicology Centre, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Podgórski R, Sumińska M, Rachel M, Fichna M, Fichna P, Mazur A. Alteration in glucocorticoids secretion and metabolism in patients affected by cystic fibrosis. Front Endocrinol (Lausanne) 2022; 13:1074209. [PMID: 36568105 PMCID: PMC9779927 DOI: 10.3389/fendo.2022.1074209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited syndrome associated with a mutation in a cystic fibrosis transmembrane conductance regulator gene, composed of exocrine gland dysfunction involving multiple systems that may result in chronic respiratory infections, pancreatic enzyme deficiency, and developmental disorders. Our study describes for the first time the urinary profile of glucocorticoid metabolites and the activity of the enzymes involved in the development and metabolism of cortisol in patients with CF, using a gas chromatography/mass spectrometry method. Data were obtained from 25 affected patients and 70 sex- and age- matched healthy volunteers. We have shown a general decrease in the activity of enzymes involved in the peripheral metabolism of cortisol, such as 11β-hydroxysteroid dehydrogenase type 2, 5α- and 5β-reductases. In contrast, the activity of 11β-hydroxysteroid dehydrogenase type 1, the enzyme that converts cortisone to cortisol, increased. Furthermore, our study found a significant decrease in glucocorticoid excretion in patients with CF. This may suggest adrenal insufficiency or dysregulation of the HPA axis and the development of peripheral mechanisms to counteract cortisol degradation in the case of reduced synthesis of glucocorticoids by the adrenal glands. Furthermore, the activity of 5α-reductase seems to be enhanced only through the backdoor pathway, especially when we taking into consideration 11β-hydroxyandrosterone/11β-hydroxyetiocholanolone ratio which has been shown to be the best differential marker for enzyme activity. CF impairs nutritional effects and energetic balance in patients; thus, our findings suggest the existence of adaptive mechanisms due to limited secretion of adrenal steroids and subsequent diminished amounts of their metabolites in urine. On the other hand, local control of cortisol availability is maintained by enhanced 11βHSD1 activity and its recovery from cortisone in organs and tissues which need this. Steroid hormone dysregulation might be another important factor in the course of CF that should be taken into account when planning an effective and comprehensive therapy.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marta Sumińska
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan, University of Medical Sciences, Poznan, Poland
| | - Marta Rachel
- Department of Pediatrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology and Obesity, Institute of Pediatrics, Poznan, University of Medical Sciences, Poznan, Poland
| | - Artur Mazur
- Department of Pediatrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| |
Collapse
|
7
|
Cao ZM, Qiang J, Zhu JH, Li HX, Tao YF, He J, Xu P, Dong ZJ. Transcriptional inhibition of steroidogenic factor 1 in vivo in Oreochromis niloticus increased weight and suppressed gonad development. Gene 2022; 809:146023. [PMID: 34673205 DOI: 10.1016/j.gene.2021.146023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Steroidogenic factor 1 (sf1) (officially designated as nuclear receptor subfamily 5 group A member 1 [NR5A1]) is an important regulator of gonad development. Previous studies on sf1 in fish have been limited to cloning and in vitro expression experiments. In this study, we used antisense RNA to down-regulate sf1 transcription and sf1 protein expression. Down-regulation of sf1 resulted in an increase in body weight and inhibition of gonadal development in both males and females with the consequent lower gonadosomatic index compared to fish in the control group. Hematoxylin-eosin staining of the gonads of fish with down-regulated sf1 revealed fewer seminiferous tubules and sperm in the testis of males. In addition, the oocytes were mainly stage II and many of them were atretic follicle. We conducted comparative transcriptome and proteome analyses between the sf1-down-regulated group and the control group. These analyses revealed multiple gene-protein pairs and pathways involved in regulating the observed changes, including 44 and 74 differently expressed genes and proteins in males and females, respectively. The results indicated that dysfunctional retinal metabolism and fatty acid metabolism could be causes of the observed weight gain and gonad abnormalities in sf1-down-regulated fish. These findings demonstrate the feasibility of using antisense RNA for gene editing in fish. This methodology allows the study gene function in species less amenable to gene editing as for example aquaculture species with long life cycles.
Collapse
Affiliation(s)
- Zhe-Ming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Zai-Jie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
8
|
Lai XJ, Peng S, Wang YL. Dynamic transcriptome analysis of ovarian follicles in artificial maturing Japanese eel (Anguilla japonica). Theriogenology 2021; 180:176-188. [PMID: 34990963 DOI: 10.1016/j.theriogenology.2021.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022]
Abstract
Inducing maturation of the ovaries to enable the production of good-quality eggs is critical for the successful artificial breeding of Anguilla japonica. During the spawning season, however, the ovaries of A. japonica have been found to develop into asynchronous clutches, impeding the success of artificial breeding on a commercial scale. The dynamic molecular regulation of follicular development in the same individual was assessed by transcriptome analysis of the five stages of follicles, the pre-vitellogenic, early vitellogenic, midvitellogenic, late vitellogenic, and migratory nucleus stages in artificial maturing A. japonica. Comparisons across these developmental stages identified a total of 19,298 differentially expressed transcripts (DETs). Short time-series expression miner analysis across these DETs revealed four significant expression profiles. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses found that some of the significantly enriched biological processes and metabolic pathways included those related to steroid hormone biosynthesis (cyp11a1, cyp17a1, cyp17a2, hsd17b1, and hsd17b12), cargo receptor activity (vtgr and vldlr), meiosis and ovulation (pgrs and mPRγ), hydration (cts and aqp1), and egg coat formation (zp). These genes and pathways were associated with serum 17β-estradiol concentrations and morphological changes. The levels of hsd17b12 and mPRγ mRNAs were much higher during the migratory nucleus stage, suggesting their respective involvement in the biosynthesis and functional pathway of the maturation-inducing steroid 17α,20β-dihydroxy-4-pregnen-3-one. The gene subtypes aqp1b and ctsd may regulate water influx into oocytes and yolk protein proteolysis, respectively. To our knowledge, the present study is the first to describe combined transcriptome profiling of asynchronously developing follicles in the same individual. The findings suggest that steroid hormone synthesis and nutrient absorption in follicular somatic cells play important roles during follicular development and maturation, despite the same external physiological surroundings.
Collapse
Affiliation(s)
- Xiao Jian Lai
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, 361013, China.
| | - Shuai Peng
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China
| | - Yi Lei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
9
|
Mikloska KV, Zrini ZA, Bernier NJ. Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. J Exp Biol 2021; 225:274120. [PMID: 34931659 DOI: 10.1242/jeb.243335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Fish nursery habitats are increasingly hypoxic and the brain is recognized as highly hypoxia-sensitive, yet there is a lack of information on the effects of hypoxia on the development and function of the larval fish brain. Here, we tested the hypothesis that by inhibiting brain development, larval exposure to severe hypoxia has persistent functional effects on the cortisol stress response in zebrafish (Danio rerio). Exposing 5 days post-fertilization (dpf) larvae to 10% dissolved O2 (DO) for 16 h only marginally reduced survival, but it decreased forebrain neural proliferation by 55%, and reduced the expression of neurod1, gfap, and mbpa, markers of determined neurons, glia, and oligodendrocytes, respectively. The 5 dpf hypoxic exposure also elicited transient increases in whole body cortisol and in crf, uts1, and hsd20b2 expression, key regulators of the endocrine stress response. Hypoxia exposure at 5 dpf also inhibited the cortisol stress response to hypoxia in 10 dpf larvae and increased hypoxia tolerance. However, 10% DO exposure at 5 dpf for 16h did not affect the cortisol stress response to a novel stressor in 10 dpf larvae or the cortisol stress response to hypoxia in adult fish. Therefore, while larval exposure to severe hypoxia can inhibit brain development, it also increases hypoxia tolerance. These effects may transiently reduce the impact of hypoxia on the cortisol stress response but not its functional capacity to respond to novel stressors. We conclude that the larval cortisol stress response in zebrafish has a high capacity to cope with severe hypoxia-induced neurogenic impairment.
Collapse
Affiliation(s)
- Kristina V Mikloska
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zoe A Zrini
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
10
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Aubin-Horth N, Bernier NJ, Balshine S. Rank- and sex-specific differences in the neuroendocrine regulation of glucocorticoids in a wild group-living fish. Horm Behav 2021; 136:105079. [PMID: 34717080 DOI: 10.1016/j.yhbeh.2021.105079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
Individuals that live in groups experience different challenges based on their social rank and sex. Glucocorticoids have a well-established role in coordinating responses to challenges and glucocorticoid levels often vary between ranks and sexes. However, the neuroendocrine mechanisms regulating glucocorticoid dynamics in wild groups are poorly understood, making it difficult to determine the functional consequences of differences in glucocorticoid levels. Therefore, we observed wild social groups of a cooperatively breeding fish (Neolamprologus pulcher) and evaluated how scale cortisol content (an emerging method to evaluate cortisol dynamics in fishes) and expression of glucocorticoid-related genes varied across group members. Scale cortisol was detectable in ~50% of dominant males (7/17) and females (7/15)-but not in any subordinates (0/16)-suggesting that glucocorticoid levels were higher in dominants. However, the apparent behavioural and neuroendocrine factors regulating cortisol levels varied between dominant sexes. In dominant females, higher cortisol was associated with greater rates of territory defense and increased expression of corticotropin-releasing factor in the preoptic and hypothalamic regions of the brain, but these patterns were not observed in dominant males. Additionally, transcriptional differences in the liver suggest that dominant sexes may use different mechanisms to cope with elevated cortisol levels. While dominant females appeared to reduce the relative sensitivity of their liver to cortisol (fewer corticosteroid receptor transcripts), dominant males appeared to increase hepatic cortisol breakdown (more catabolic enzyme transcripts). Overall, our results offer valuable insights on the mechanisms regulating rank- and sex-based glucocorticoid dynamics, as well as the potential functional outcomes of these differences.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Phillips J, Akemann C, Shields JN, Wu CC, Meyer DN, Baker BB, Pitts DK, Baker TR. Developmental phenotypic and transcriptomic effects of exposure to nanomolar levels of metformin in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103716. [PMID: 34311114 PMCID: PMC8446320 DOI: 10.1016/j.etap.2021.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 05/06/2023]
Abstract
Metformin is found in the majority of lakes and streams in the United States, leading to widespread environmental exposure. Results of the present study indicate that extended duration metformin exposure at critical developmental periods leads to decreased survival rates in zebrafish (danio rerio), an NIH approved human model. Significant abnormalities are seen with extended duration metformin exposure from 4 h post fertilization up to 5 days post fertilization, although short term metformin exposure for 24 h at 4-5 days post fertilization did not lead to any significant abnormalities. Both extended and short term duration did however have an impact on locomotor activity of zebrafish, and several genes involved in neurological and cardiovascular development were differentially expressed after exposure to metformin. The changes seen in behavior, gene expression and morphological abnormalities caused by metformin exposure should be examined further in future studies in order to assess their potential human health implications as metformin prescriptions continue to increase worldwide.
Collapse
Affiliation(s)
- Jessica Phillips
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA.
| |
Collapse
|
12
|
Tokarz J, Schmitt SM, Möller G, Brändli AW, Adamski J. Functional characterization of two 20β-hydroxysteroid dehydrogenase type 2 homeologs from Xenopus laevis reveals multispecificity. J Steroid Biochem Mol Biol 2021; 210:105874. [PMID: 33722706 DOI: 10.1016/j.jsbmb.2021.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
The African clawed frog, Xenopus laevis, is a versatile model for biomedical research and is largely similar to mammals in terms of organ development, anatomy, physiology, and hormonal signaling mechanisms. Steroid hormones control a variety of processes and their levels are regulated by hydroxysteroid dehydrogenases (HSDs). The subfamily of 20β-HSD type 2 enzymes currently comprises eight members from teleost fish and mammals. Here, we report the identification of three 20β-HSD type 2 genes in X. tropicalis and X. laevis and the functional characterization of the two homeologs from X. laevis. X. laevis Hsd20b2.L and Hsd20b2.S showed high sequence identity with known 20β-HSD type 2 enzymes and mapped to the two subgenomes of the allotetraploid frog genome. Both homeologs are expressed during embryonic development and in adult tissues, with strongest signals in liver, kidney, intestine, and skin. After recombinant expression in human cell lines, both enzymes co-localized with the endoplasmic reticulum and catalyzed the conversion of cortisone to 20β-dihydrocortisone. Both Hsd20b2.L and Hsd20b2.S catalyzed the 20β-reduction of further C21 steroids (17α-hydroxyprogesterone, progesterone, 11-deoxycortisol, 11-deoxycorticosterone), while only Hsd20b2.S was able to convert corticosterone and cortisol to their 20β-reduced metabolites. Estrone was only a poor and androstenedione no substrate for both enzymes. Our results demonstrate multispecificity of 20β-HSD type 2 enzymes from X. laevis similar to other teleost 20β-HSD type 2 enzymes. X. laevis 20β-HSD type 2 enzymes are probably involved in steroid catabolism and in the generation of pheromones for intraspecies communication. A role in oocyte maturation is unlikely.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany.
| | - Stefan M Schmitt
- Walter Brendel Centre of Experimental Medicine, University Hospital and Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany
| | - André W Brändli
- Walter Brendel Centre of Experimental Medicine, University Hospital and Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Reuland C, Culbert BM, Fernlund Isaksson E, Kahrl AF, Devigili A, Fitzpatrick JL. Male-male behavioral interactions drive social-dominance-mediated differences in ejaculate traits. Behav Ecol 2021; 32:168-177. [PMID: 33708008 PMCID: PMC7937186 DOI: 10.1093/beheco/araa118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022] Open
Abstract
Higher social status is expected to result in fitness benefits as it secures access to potential mates. In promiscuous species, male reproductive success is also determined by an individual’s ability to compete for fertilization after mating by producing high-quality ejaculates. However, the complex relationship between a male’s investment in social status and ejaculates remains unclear. Here, we examine how male social status influences ejaculate quality under a range of social contexts in the pygmy halfbeak Dermogenys collettei, a small, group-living, internally fertilizing freshwater fish. We show that male social status influences ejaculate traits, both in the presence and absence of females. Dominant males produced faster swimming and more viable sperm, two key determinants of ejaculate quality, but only under conditions with frequent male–male behavioral interactions. When male–male interactions were experimentally reduced through the addition of a refuge, differences in ejaculate traits of dominant and subordinate males disappeared. Furthermore, dominant males were in a better condition, growing faster, and possessing larger livers, highlighting a possible condition dependence of competitive traits. Contrary to expectations, female presence or absence did not affect sperm swimming speed or testes mass. Together, these results suggest a positive relationship between social status and ejaculate quality in halfbeaks and highlight that the strength of behavioral interactions between males is a key driver of social-status-dependent differences in ejaculate traits.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm, Sweden
| | - Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | | | - Ariel F Kahrl
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm, Sweden
| | - Alessandro Devigili
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm, Sweden
| | - John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm, Sweden
| |
Collapse
|
14
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
15
|
Sumińska M, Podgórski R, Fichna P, Fichna M. Steroid Metabolism in Children and Adolescents With Obesity and Insulin Resistance: Altered SRD5A and 20α/20βHSD Activity. Front Endocrinol (Lausanne) 2021; 12:759971. [PMID: 34764940 PMCID: PMC8577858 DOI: 10.3389/fendo.2021.759971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
Alterations in glucocorticoid metabolism may contribute to the development of obesity and insulin resistance (IR). Obesity in turn affects the androgen balance. The peripheral metabolism of steroids is equally an important determinant of their bioavailability and activity. The aim of this study was to evaluate steroid metabolism in obese children and to define which enzyme alterations are associated with IR. Clinical characteristics and anthropometric measurements were determined in 122 obese children and adolescents (72 girls, 50 boys) aged 8 - 18 years. 26 of them (21.3%) were diagnosed with IR (13 boys, 13 girls). Routine laboratory tests were performed and 24h urinary steroid excretion profiles were analyzed by gas chromatography/mass spectrometry. Positive relationship between 5α-reductase (SRD5A) activity and IR was found. According to the androsterone to etiocholanolone (An/Et) ratio the activity of SRD5A was significantly increased in obese children with IR, but the difference remained insignificant once the 5α-dihydrotestosterone to testosterone (5αDHT/T) ratio was considered. Furthermore, this relationship persisted in boys but was not observed in girls. The activity of 20α-hydroxysteroid dehydrogenase (20αHSD) and 20β-hydroxysteroid dehydrogenase (20βHSD) was reduced only in obese girls with IR. Conclude, in the context of obese children and adolescents with IR, we surmise that increased SRD5A represents a compensatory mechanism to reduce local glucocorticoid availability. This phenomenon is probably different in the liver (restriction) and in the adipose tissue (expected increase in activity). We show significant changes in 20αHSD and 20βHSD activity in obese girls with IR, but it is difficult to clearly determine whether the activity of these enzymes is an indicator of the function in their ovaries or adrenal glands.
Collapse
Affiliation(s)
- Marta Sumińska
- Department of Pediatric Diabetes and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
- *Correspondence: Marta Sumińska,
| | - Rafał Podgórski
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
- Department of Biochemistry, Institute of Medical Sciences, Collegium of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes and Obesity, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Tokarz J, Lintelmann J, Möller G, Adamski J. Substrate multispecificity among 20β-hydroxysteroid dehydrogenase type 2 members. Mol Cell Endocrinol 2020; 510:110822. [PMID: 32315721 DOI: 10.1016/j.mce.2020.110822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Steroids regulate many physiological processes. Hydroxysteroid dehydrogenases (HSDs) modulate the levels of steroids in pre- and post-receptor metabolism. The subfamily of 20β-HSD type 2 currently comprises six members from six different species. The zebrafish ortholog converts cortisone to 20β-dihydrocortisone and is involved in the catabolism of the stress hormone cortisol. Here, we elucidated the substrate preferences of all 20β-HSD type 2 enzymes towards a selected panel of steroids. For quantification of the substrates and their respective 20β-reduced products, we first developed and validated a liquid chromatography-mass spectrometry based method. Applying this method to activity assays with recombinantly expressed enzymes, our findings indicate that the 20β-HSD type 2 enzymes catalyze the 20β-reduction of a plethora of steroids of the glucocorticoid biosynthesis pathway. The observed multispecificity among the homologous 20β-HSD type 2 enzymes implies different physiological roles in different species.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany.
| | - Jutta Lintelmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Wei P, Zhao F, Zhang X, Ru S. Long-term exposure of zebrafish to bisphenol S impairs stress function of hypothalamic-pituitary-interrenal axis and causes anxiety-like behavioral responses to novelty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137092. [PMID: 32044495 DOI: 10.1016/j.scitotenv.2020.137092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), a main substitute of bisphenol A, has been reported to induce multiple endocrine disrupting effects on animals, however, whether it can interfere with the corticosteroid-endocrine system still remains unknown. Furthermore, previous studies mainly investigated the influences of environmental pollutants on corticosteroid levels and gene expressions of hypothalamic-pituitary-interrenal/adrenal (HPI/A) axis, while the downstream toxic effects caused thereafter have not yet been fully elucidated. Considering the key role of cortisol, a primary corticosteroid hormone in teleost, in mediating stress adaptation and the highly positive correlation between cortisol level and anxious phenotype in the novel environment, we hypothesized that an imbalanced cortisol homeostasis due to environmental pollutant exposure may further affect the behavioral responses to novelty stress. In the present study, zebrafish, a valuable model in studying human stress physiology and anxiety behavior, were exposed to BPS from embryos to adults (120 days) at environmentally relevant concentrations (1 and 10 μg/L) and 100 μg/L. Results found that long-term exposure to BPS increased whole-body cortisol levels and caused abnormal expressions of HPI axis genes. Moreover, the excessive cortisol levels may be due to the inhibition of cortisol catabolism and excretion, as evidenced by the down-regulated expressions of hydroxysteroid 11-beta dehydrogenase 2 and hydroxysteroid 20-beta dehydrogenase 2 genes. More importantly, as we speculated, excessive cortisol levels may be responsible for the occurrence of anxiety-like behavioral responses indicated by longer latency, fewer time spent in the upper half, and more erratic movements in a 6-min novel tank test. Overall, our study provides basic data for the comprehensive understanding of BPS toxicity, and emphasizes environmental health risks of BPS in inducing anxiety syndrome at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Penghao Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, Shandong province, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China.
| |
Collapse
|
18
|
Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish ( Danio rerio) Testicular Explants. Biomolecules 2020; 10:biom10030429. [PMID: 32164184 PMCID: PMC7175196 DOI: 10.3390/biom10030429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system. The results revealed that cortisol treatment did not modulate basal androgen production, but it influenced transcript levels of a selected number of genes involved in the zebrafish testicular function ar (androgen receptor), star (steroidogenic acute regulatory), cyp17a1 (17α-hydroxylase/17,20 lyase/17,20 desmolase), cyp11a2 (cytochrome P450, family 11, subfamily A, polypeptide 2), hsd11b2 (11-beta hydroxysteroid dehydrogenase), cyp2k22 (cytochrome P450, family 2, subfamily K, polypeptide 22), fkbp5 (FKBP prolyl isomerase 5), grα (glucocorticoid receptor alpha), and grβ (glucocorticoid receptor beta) in a short-term culture. We also showed that cortisol stimulates spermatogonial proliferation and differentiation in an androgen independent manner as well as promoting meiosis and spermiogenesis by increasing the number of spermatozoa in the testes. Moreover, we demonstrated that concomitant treatment with RU 486, a potent glucocorticoid receptor (Gr) antagonist, did not affect the cortisol effects on spermatogonial differentiation but blocked the induced effects on meiosis and spermiogenesis. Supporting the Gr-mediated effects, RU 486 nullified the cortisol-induced expression of sycp3l (synaptonemal complex protein 3), a marker for the meiotic prophase that encodes a component of the synaptonemal complex. This is consistent with in silico analysis that found 10 putative GREs (glucocorticoid response elements) upstream of the zebrafish sycp3l. Finally, we also showed that grα mRNA is expressed in Sertoli and Leydig cells, but also in several types of germ cells, including spermatogonia and spermatocytes. Altogether, this evidence indicates that cortisol exerts paracrine roles in the zebrafish testicular function and spermatogenesis, highlighting its effects on spermatogonial differentiation, meiosis, and spermiogenesis.
Collapse
|
19
|
Faltermann S, Hettich T, Küng N, Fent K. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105372. [PMID: 31812088 DOI: 10.1016/j.aquatox.2019.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ecotoxicological effects of glucocorticoids and steroid mixtures in the environment are not sufficiently known. Here we investigate effects of 11-14 days exposure of female zebrafish to the glucocorticoid clobetasol propionate (Clo), cortisol (Cs), their mixture and mixtures with five different class steroids (Clo + triamcinolone + estradiol + androstenedione + progesterone) in liver, brain and gonads. Cs showed little activity, while Clo reduced the condition factor at 0.57 and 6.35 μg/L. Clo induced differential expression of genes in the liver at 0.07-6.35 μg/L, which were related to circadian rhythm (per1, nr1d2), glucose metabolism (g6pca, pepck1), immune system response (fkbp 5, socs3, gilz), nuclear steroid receptors (pgr and pxr), steroidogeneses and steroid metabolism (hsd11b2, cyp2k22). Clo caused strong transcriptional down-regulation of vtg. Similar upregulations occurred in the brain for pepck1, fkbp5, socs3, gilz, hsd11b2, and nr1d2a, while cyp19b was down-regulated. Effects of Clo + Cs mixtures were similar to Clo alone. Transcriptional alterations were different in mixtures of five steroids with no alteration of vtg in the liver due to counteraction of Clo and estradiol. Induction of fkbp5 (brain) and sult2st3 (liver) and downregulation of cyp19a (gonads) occurred at 1 μg/L. Histological effects of the five steroids mixture in gonads were characterized by a decrease of mature oocytes. Our data indicate that effects of steroids of different classes sum up to an overall joint effect driven by the most potent steroid Clo.
Collapse
Affiliation(s)
- Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Noemi Küng
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| |
Collapse
|
20
|
D’Agostino S, Testa M, Aliperti V, Venditti M, Minucci S, Aniello F, Donizetti A. Expression pattern dysregulation of stress- and neuronal activity-related genes in response to prenatal stress paradigm in zebrafish larvae. Cell Stress Chaperones 2019; 24:1005-1012. [PMID: 31209726 PMCID: PMC6717227 DOI: 10.1007/s12192-019-01017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Maternal stress during pregnancy adversely affects developmental fetal programming. Glucocorticoid excess is one of those conditions that underlie the prenatal stress and can lead to many pathological disorders later in life. Beyond the obvious use of mammalian model organisms to uncover the different mechanisms at the basis of prenatal stress effects, zebrafish represents a complementary fruitful model for this research field. Here we demonstrated that the application of an experimental paradigm, which simulates prenatal stress by exposing embryos to cortisol excess, produced an alteration of gene expression pattern. In particular, the transcript level of hsd11b2, a gene involved in the cortisol catabolism, was affected in prenatally stressed larvae, even after many hours from the removal of cortisol excess. Interestingly, the expression pattern of c-fos, a marker gene of neural activity, was affected in prenatally stressed larvae even in response to a swirling and osmotic stress challenge. Our data corroborate the idea of zebrafish as a useful model organism to study prenatal stress effects on vertebrate development.
Collapse
Affiliation(s)
- Serena D’Agostino
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Martino Testa
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Vincenza Aliperti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Sergio Minucci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| |
Collapse
|
21
|
Doden HL, Pollet RM, Mythen SM, Wawrzak Z, Devendran S, Cann I, Koropatkin NM, Ridlon JM. Structural and biochemical characterization of 20β-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32. J Biol Chem 2019; 294:12040-12053. [PMID: 31209107 DOI: 10.1074/jbc.ra119.009390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Indexed: 01/20/2023] Open
Abstract
Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20β-hydroxysteroid dehydrogenase (20β-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20β-dihydrocortisol. Recently, the gene encoding 20β-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20β-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20β-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20β-HSDH was cloned, overexpressed, and purified. 20β-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20β-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20β-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
Collapse
Affiliation(s)
- Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rebecca M Pollet
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sean M Mythen
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center-LS-CAT, Northwestern University, Argonne, Illinois 60439
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Isaac Cann
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois 61801; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
22
|
Wong RY, French J, Russ JB. Differences in stress reactivity between zebrafish with alternative stress coping styles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181797. [PMID: 31218026 PMCID: PMC6549991 DOI: 10.1098/rsos.181797] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Animals experience stress in a variety of contexts and the behavioural and neuroendocrine responses to stress can vary among conspecifics. The responses across stressors often covary within an individual and are consistently different between individuals, which represent distinct stress coping styles (e.g. proactive and reactive). While studies have identified differences in peak glucocorticoid levels, less is known about how cortisol levels differ between stress coping styles at other time points of the glucocorticoid stress response. Here we quantified whole-body cortisol levels and stress-related behaviours (e.g. depth preference, movement) at time points representing the rise and recovery periods of the stress response in zebrafish lines selectively bred to display the proactive and reactive coping style. We found that cortisol levels and stress behaviours are significantly different between the lines, sexes and time points. Further, individuals from the reactive line showed significantly higher cortisol levels during the rising phase of the stress response compared with those from the proactive line. We also observed a significant correlation between individual variation of cortisol levels and depth preference but only in the reactive line. Our results show that differences in cortisol levels between the alternative stress coping styles extend to the rising phase of the endocrine stress response and that cortisol levels may explain variation in depth preferences in the reactive line. Differences in the timing and duration of cortisol levels may influence immediate behavioural displays and longer lasting neuromolecular mechanisms that modulate future responses.
Collapse
Affiliation(s)
- Ryan Y. Wong
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jeffrey French
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Jacalyn B. Russ
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
23
|
Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line. Hear Res 2019; 377:12-23. [PMID: 30878773 DOI: 10.1016/j.heares.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.
Collapse
|
24
|
de Freitas Souza C, Descovi S, Baldissera MD, Bertolin K, Bianchini AE, Mourão RHV, Schmidt D, Heinzmann BM, Antoniazzi A, Baldisserotto B, Martinez-Rodríguez G. Involvement of HPI-axis in anesthesia with Lippia alba essential oil citral and linalool chemotypes: gene expression in the secondary responses in silver catfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:155-166. [PMID: 30120603 DOI: 10.1007/s10695-018-0548-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
In teleost fish, stress initiates a hormone cascade along the hypothalamus-pituitary-interrenal (HPI) axis to provoke several physiological reactions in order to maintain homeostasis. In aquaculture, a number of factors induce stress in fish, such as handling and transport, and in order to reduce the consequences of this, the use of anesthetics has been an interesting alternative. Essential oil (EO) of Lippia alba is considered to be a good anesthetic; however, its distinct chemotypes have different side effects. Therefore, the present study aimed to investigate, in detail, the expression of genes involved with the HPI axis and the effects of anesthesia with the EOs of two chemotypes of L. alba (citral EO-C and linalool EO-L) on this expression in silver catfish, Rhamdia quelen. Anesthesia with the EO-C is stressful for silver catfish because there was an upregulation of the genes directly related to stress: slc6a2, crh, hsd20b, hspa12a, and hsp90. In this study, it was also possible to observe the importance of the hsd11b2 gene in the response to stress by handling. The use of EO-C as anesthetics for fish is not recommended, but, the use of OE-L is indicated for silver catfish as it does not cause major changes in the HPI axis.
Collapse
Affiliation(s)
- Carine de Freitas Souza
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Sharine Descovi
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Matheus Dellaméa Baldissera
- Departamento de Microbiologia e Parasitologia, Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Kalyne Bertolin
- Laboratório de Reprodução Animal - Biorep, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Adriane Erbice Bianchini
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Rosa Helena Veraz Mourão
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará-UFOPA, Rua Vera Paz, s/n, Santarém, PA, 68035-110, Brazil
| | - Denise Schmidt
- Departamento de Agronomia e Ciências Ambientais, Universidade Federal de Santa Maria, Centro de Educação Superior Norte do Rio Grande do Sul, Frederico Westphalen, RS, Brazil
| | - Berta Maria Heinzmann
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratório de Reprodução Animal - Biorep, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Gonzalo Martinez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain.
| |
Collapse
|
25
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
26
|
Cao Q, Gu J, Wang D, Liang F, Zhang H, Li X, Yin S. Physiological mechanism of osmoregulatory adaptation in anguillid eels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:423-433. [PMID: 29344774 PMCID: PMC5862950 DOI: 10.1007/s10695-018-0464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task. One of the huge gaps is artificial condition which is far from the natural condition to develop their capability of osmoregulation. Thus, understanding their osmoregulatory mechanisms will help to improve the breed and adapt to the changes in the environment. In this paper, we give a general review for a study progress of osmoregulatory mechanisms in eels from five aspects including tissues and organs, ion transporters, hormones, proteins, and high throughput sequencing methods.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Jie Gu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Hongye Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Xinru Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
27
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
28
|
Aerts J. Quantification of a Glucocorticoid Profile in Non-pooled Samples Is Pivotal in Stress Research Across Vertebrates. Front Endocrinol (Lausanne) 2018; 9:635. [PMID: 30405537 PMCID: PMC6206410 DOI: 10.3389/fendo.2018.00635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Vertebrates are faced continuously with a variety of potential stressful stimuli and react by a highly conserved endocrine stress response. An immediate catecholamine mediated response increases plasma glucose levels in order to prepare the organism for the "fight or flight" reaction. In addition, in a matter of minutes after this (nor)adrenaline release, glucocorticoids, in particular cortisol or corticosterone depending on the species, are released through activation of the hypothalamic-pituitary-interrenal (HPI) axis in fish or hypothalamic-pituitary-adrenal (HPA) axis in other vertebrates. These plasma glucocorticoids are well documented and widely used as biomarker for stress across vertebrates. In order to study the role of glucocorticoids in acute and chronic stress and gain in-depth insight in the stress axis (re)activity across vertebrates, it is pivotal to pin-point the involved molecules, to understand the mechanisms of how the latter are synthesized, regulated and excreted, and to grasp their actions on a plethora of biological processes. Furthermore, in-depth knowledge on the characteristics of the tissues as well as on the analytical methodologies available for glucocorticoid quantification is needed. This manuscript is to be situated in the multi-disciplinary research topic of glucocorticoid action across vertebrates which is linked to a wide range of research domains including but not limited to biochemistry, ecology, endocrinology, ethology, histology, immunology, morphology, physiology, and toxicology, and provides a solid base for all interested in stress, in particular glucocorticoid, related research. In this framework, internationally validated confirmation methods for quantification of a glucocorticoid profile comprising: (i) the dominant hormone; (ii) its direct precursors; (iii) its endogenously present phase I metabolites; and (iv) the most abundant more polar excreted exogenous phase I metabolites in non-pooled samples are pivotal.
Collapse
Affiliation(s)
- Johan Aerts
- Stress Physiology Research Group, Faculty of Pharmaceutical Sciences, Ghent University, Ostend, Belgium
- Stress Physiology Research Group, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
- *Correspondence: Johan Aerts
| |
Collapse
|
29
|
Steenbergen PJ, Bardine N, Sharif F. Kinetics of glucocorticoid exposure in developing zebrafish: A tracer study. CHEMOSPHERE 2017; 183:147-155. [PMID: 28544900 DOI: 10.1016/j.chemosphere.2017.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
In the current study the dynamics of glucocorticoid uptake by zebrafish chorionated embryos from the surrounding medium were studied, using 2.5 μM cortisol or dexamethasone solutions complemented with their tritiated variant. We measured the uptake of radioactive cortisol by embryos during a 1 h submersion. Interestingly, the signal in chorionated embryos was 85% (exposure: 1-2 hpf) or 78% (exposure: 48-49 hpf) of the signal present in an equal volume medium. By comparing embryos measured without chorion, we found that 18-20% of the radioactivity present in chorionated embryos is actually bound to the chorion or located in the perivitelline space. Consequently, embryonic tissue contains radioactivity levels of 60% of a similar volume of medium after 1 h incubation. During early developmental stages (1-48 hpf) exposure of more than 24 h in cortisol was needed to achieve radioactivity levels similar to an equal volume of medium within the embryonic tissue and more than 48 h for dexamethasone. In glucocorticoid-free medium, radioactivity dropped rapidly below 10% for both glucocorticoids, suggesting that the major portion of the embryonic radioactivity was a result of simple diffusion. During later developmental stages (48-96 hpf) initial uptake dynamics were similar, but showed a decrease of tissue radioactivity to 20% of an equal volume of medium after hatching, probably due to development and activation of the hypothalamic pituitary interrenal axis. Uptake is dependent on the developmental stage of the embryo. Furthermore, the presence of the chorion during exposure should be taken into account even when small lipophilic molecules are being tested.
Collapse
Affiliation(s)
- Peter Johannes Steenbergen
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nabila Bardine
- Department of Cell Biology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Faiza Sharif
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Interdisciplinary Reseach Centre in Biomedical Materials, COMSATS Institute of Information Technology Lahore, Pakistan.
| |
Collapse
|
30
|
Tsalafouta A, Gorissen M, Pelgrim TNM, Papandroulakis N, Flik G, Pavlidis M. α-MSH and melanocortin receptors at early ontogeny in European sea bass (Dicentrarchus labrax, L.). Sci Rep 2017; 7:46075. [PMID: 28378841 PMCID: PMC5380957 DOI: 10.1038/srep46075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/10/2017] [Indexed: 11/18/2022] Open
Abstract
Temporal patterns of whole-body α-MSH concentrations and of transcripts of melanocortin receptors during early development as well as the endocrine response (α-MSH, cortisol, MCR mRNAs) to stress at the end of the larval period were characterized in Dicentrarchus labrax. Immunohistochemistry showed α-MSH positive cells in the pituitary pars intermedia in all stages examined. As development proceeds, α-MSH content gradually increases; mRNA levels of mc2r and mc4r remain low until first feeding where peak values are observed. Mc1r expression was constant during development, pomc mRNA levels remain low until the stage of flexion after which a significant increase is observed. At the stage of the formation of all fins, whole-body cortisol and α-MSH concentrations responded with peak values at 2 h post stress. Additionally, the stress challenge resulted in elevated transcript levels of pomc, mc2r and mc4r but not in mc1r, with a pattern characterized by peak values at 1 h post stress and a strong correlation with whole body α-MSH concentrations was found. Our data provide for the first time a view on the importance of the α-MSH stress response in early development of European sea bass, an additional and relatively poorly understood signal involved in the stress response in teleosts.
Collapse
Affiliation(s)
- A Tsalafouta
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece.,University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| | - M Gorissen
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - T N M Pelgrim
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - N Papandroulakis
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, P.O. Box 2214, Heraklion, Crete, Greece
| | - G Flik
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, Heyendaalseweg 135, 6525AJ, The Netherlands
| | - M Pavlidis
- University of Crete, Department of Biology, P.O. Box 2208, GR-714 09, Heraklion, Crete, Greece
| |
Collapse
|
31
|
Tsachaki M, Meyer A, Weger B, Kratschmar DV, Tokarz J, Adamski J, Belting HG, Affolter M, Dickmeis T, Odermatt A. Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish. J Endocrinol 2017; 232:323-335. [PMID: 27927697 DOI: 10.1530/joe-16-0495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/07/2016] [Indexed: 11/08/2022]
Abstract
Zebrafish are widely used as model organism. Their suitability for endocrine studies, drug screening and toxicity assessements depends on the extent of conservation of specific genes and biochemical pathways between zebrafish and human. Glucocorticoids consist of inactive 11-keto (cortisone and 11-dehydrocorticosterone) and active 11β-hydroxyl forms (cortisol and corticosterone). In mammals, two 11β-hydroxysteroid dehydrogenases (11β-HSD1 and 11β-HSD2) interconvert active and inactive glucocorticoids, allowing tissue-specific regulation of glucocorticoid action. Furthermore, 11β-HSDs are involved in the metabolism of 11-oxy androgens. As zebrafish and other teleost fish lack a direct homologue of 11β-HSD1, we investigated whether they can reduce 11-ketosteroids. We compared glucocorticoid and androgen metabolism between human and zebrafish using recombinant enzymes, microsomal preparations and zebrafish larvae. Our results provide strong evidence for the absence of 11-ketosteroid reduction in zebrafish. Neither human 11β-HSD3 nor the two zebrafish 11β-HSD3 homologues, previously hypothesized to reduce 11-ketosteroids, converted cortisone and 11-ketotestosterone (11KT) to their 11β-hydroxyl forms. Furthermore, zebrafish microsomes were unable to reduce 11-ketosteroids, and exposure of larvae to cortisone or the synthetic analogue prednisone did not affect glucocorticoid-dependent gene expression. Additionally, a dual-role of 11β-HSD2 by inactivating glucocorticoids and generating the main fish androgen 11KT was supported. Thus, due to the lack of 11-ketosteroid reduction, zebrafish and other teleost fish exhibit a limited tissue-specific regulation of glucocorticoid action, and their androgen production pathway is characterized by sustained 11KT production. These findings are of particular significance when using zebrafish as a model to study endocrine functions, stress responses and effects of pharmaceuticals.
Collapse
Affiliation(s)
- Maria Tsachaki
- Division of Molecular and Systems ToxicologyDepartment of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Arne Meyer
- Division of Molecular and Systems ToxicologyDepartment of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- AstraZeneca AGZug, Switzerland
| | - Benjamin Weger
- Karlsruhe Institute of Technology (KIT)Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- Nestlé Institute of Health Sciences SAEPFL Innovation Park, Lausanne, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems ToxicologyDepartment of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janina Tokarz
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | | | | | - Thomas Dickmeis
- Karlsruhe Institute of Technology (KIT)Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Alex Odermatt
- Division of Molecular and Systems ToxicologyDepartment of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Wilson KS, Tucker CS, Al-Dujaili EAS, Holmes MC, Hadoke PWF, Kenyon CJ, Denvir MA. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish. J Endocrinol 2016; 230:125-42. [PMID: 27390302 PMCID: PMC5064771 DOI: 10.1530/joe-15-0376] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head-trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared 'bolder' than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and development in the zebrafish and that, like other species, manipulating GC status pharmacologically, physiologically or genetically in early life leads to programmable metabolic and behavioural traits in adulthood.
Collapse
Affiliation(s)
- K S Wilson
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C S Tucker
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - E A S Al-Dujaili
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M C Holmes
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P W F Hadoke
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - C J Kenyon
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - M A Denvir
- The University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
33
|
Pottinger TG, Williams RJ, Matthiessen P. A comparison of two methods for the assessment of stress axis activity in wild fish in relation to wastewater effluent exposure. Gen Comp Endocrinol 2016; 230-231:29-37. [PMID: 26996427 DOI: 10.1016/j.ygcen.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Riverine fish are particularly vulnerable to chemical exposure - rivers receive chemicals of anthropogenic origin from a variety of sources, one of the most significant being the chemically complex effluents discharged by wastewater treatment works (WWTWs). The extent to which non-reproductive components of the endocrine system in fish may be vulnerable to interference by contaminants associated with WWTW effluent is not well understood, but a significant body of evidence does suggest that contaminants present in the aquatic environment may interfere with the normal function of the neuroendocrine stress axis in fish. Field investigations of stress axis function in free-living populations of fish by measurement of hormone concentrations in blood can be confounded by the remoteness of sampling locations and the size of target species. Two methods for assessing stress axis reactivity in situations where blood samples are unavailable were compared in three-spined sticklebacks in relation to their exposure to WWTWs effluent. Sticklebacks were sampled in two successive years at fifteen sites in north-west England impacted by WWTW effluent and the response of each fish to the combined stressor of capture and a brief period of confinement was evaluated using both whole-body immunoreactive cortisol concentrations (WBIC) and the rate of release of cortisol to water (CRTW). A positive relationship between the magnitude of stress-induced CRTW in sticklebacks of both sexes and WWTW effluent concentration at site of capture was observed in both years. However, the relationship between stress-induced WBIC and WWTW effluent concentration was not consistent. These results suggest that components of WWTW effluent can modulate the magnitude of the neuroendocrine stress response in sticklebacks, and by inference in other fish species, but they raise questions about the measurement and interpretation of stress axis responses in fish via endpoints other than blood hormone concentrations. Possible factors underlying the disparity between the CRTW and WBIC results are discussed.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| | - Richard J Williams
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Peter Matthiessen
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| |
Collapse
|
34
|
|
35
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
37
|
Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics 2015; 16:425. [PMID: 26032017 PMCID: PMC4450845 DOI: 10.1186/s12864-015-1626-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Animals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment. RESULTS Using RNA-sequencing we quantified the basal transcriptomes from the brains of wild-derived zebrafish lines selectively bred to exhibit the proactive or reactive stress coping style. We identified 1953 genes that differed in baseline gene expression levels. Weighted gene coexpression network analyses identified one gene module associated with line differences. Together with our previous pharmacological experiment, we identified a core set of 62 genes associated with line differences. Gene ontology analyses reveal that many of these core genes are implicated in neurometabolism (e.g. organic acid biosynthetic and fatty acid metabolic processes). CONCLUSIONS Our results show that proactive and reactive stress coping individuals display distinct basal neurotranscriptomic states. Differences in baseline expression of select genes or regulation of specific gene modules are linked to the magnitude of the behavioral response and the display of a coping style, respectively. Our results expand the molecular mechanisms of stress coping from one focused on the neurotransmitter systems to a more complex system that involves an organism's capability to handle neurometabolic loads and allows for comparisons with other animal taxa to uncover potential conserved mechanisms.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
- Current Address: Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Melissa S Lamm
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| | - John Godwin
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| |
Collapse
|
38
|
Scott AP, Ellis T, Tveiten H. Identification of cortisol metabolites in the bile of Atlantic cod Gadus morhua L. Steroids 2014; 88:26-35. [PMID: 24928732 DOI: 10.1016/j.steroids.2014.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022]
Abstract
Interpretation of plasma cortisol levels in wild-caught fish is confounded by the stress of capture. Measurement of cortisol metabolites in fish bile could provide a method for assessing the stress level of wild fish because the time-lag for metabolism, conjugation and excretion into bile avoids the effects of sampling stress. To determine which biliary metabolite(s) to target, four Atlantic cod, Gadus morhua L., were injected with radioactive cortisol. After 22 h, the bile was collected and found to contain 30% of the injected activity. Cortisol metabolites were extracted from diluted bile samples using solid phase extraction and the radioactive metabolites separated by several different chromatographic procedures. The metabolites were predominantly present as sulfates (95%) with the remainder being glucuronidated. Chromatography split the sulfates into at least seven peaks, and acid solvolysis (which removes sulfate groups from steroids) generated four major radioactive steroids. These were identified, using microchemical reactions and re-crystallization to constant specific activity, as: 11β,17,21-trihydroxypregn-4-ene-3,20-dione (cortisol), 3α,11β,17,21-tetrahydroxy-5β-pregnan-20-one (tetrahydrocortisol; THF), 3α,17,21-trihydroxy-5β-pregnane-11,20-dione (tetrahydrocortisone; THE) and 3α,17,20β,21-tetrahydroxy-5β-pregnan-11-one (β-cortolone). The last of these was the most abundant, and thus a likely target for a biliary stress assay. Studies were also carried out to determine the best method for extraction and solvolysis of sulfates. Solid phase extraction (i.e. using octadecylsilane) was found to be too unreliable for routine use. Even though the extraction efficiency could be improved by acidifying the bile, this caused premature solvolysis of sulfated steroids. Acid solvolysis of unextracted bile worked best (c. 90% converted to free steroids) on volumes that were 1 μL or lower. Aryl sulfatase digestion of unextracted bile did not work well (only 20% of radioactivity was converted to free steroids).
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Tim Ellis
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | | |
Collapse
|
39
|
Wilson KS, Matrone G, Livingstone DEW, Al-Dujaili EAS, Mullins JJ, Tucker CS, Hadoke PWF, Kenyon CJ, Denvir MA. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J Physiol 2013; 591:6209-20. [PMID: 24167225 PMCID: PMC3892472 DOI: 10.1113/jphysiol.2013.256826] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/23/2013] [Indexed: 11/08/2022] Open
Abstract
While glucocorticoids (GCs) are known to be present in the zebrafish embryo, little is known about their physiological roles at this stage. We hypothesised that GCs play key roles in stress response, hatching and swim activity during early development. To test this, whole embryo cortisol (WEC) and corticosteroid-related genes were measured in embryos from 6 to 120 h post fertilisation (hpf) by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Stress response was assessed by change in WEC following stirring, hypoxia or brief electrical impulses applied to the bathing water. The impact of pharmacological and molecular GC manipulation on the stress response, spontaneous hatching and swim activity at different stages of development was also assessed. WEC levels demonstrated a biphasic pattern during development with a decrease from 0 to 36 hpf followed by a progressive increase towards 120 hpf. This was accompanied by a significant and sustained increase in the expression of genes encoding cyp11b1 (GC biosynthesis), hsd11b2 (GC metabolism) and gr (GC receptor) from 48 to 120 hpf. Metyrapone (Met), an inhibitor of 11β-hydroxylase (encoded by cyp11b1), and cyp11b1 morpholino (Mo) knockdown significantly reduced basal and stress-induced WEC levels at 72 and 120 hpf but not at 24 hpf. Spontaneous hatching and swim activity were significantly affected by manipulation of GC action from approximately 48 hpf onwards. We have identified a number of key roles of GCs in zebrafish embryos contributing to adaptive physiological responses under adverse conditions. The ability to alter GC action in the zebrafish embryo also highlights its potential value for GC research.
Collapse
Affiliation(s)
- K S Wilson
- M. A. Denvir: The University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|