1
|
Pavone P, Pappalardo XG, Parano C, Falsaperla R, Corsello A, Parano E, Polizzi A, Ruggieri M. NRXN1-related disorders, attempt to better define clinical assessment. Open Med (Wars) 2024; 19:20240979. [PMID: 39655047 PMCID: PMC11627049 DOI: 10.1515/med-2024-0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 12/12/2024] Open
Abstract
Background NRXN1-related disorders are uncommonly reported. The clinical features of the disorders are wide and heterogeneous mainly consisting of undistinctive facial dysmorphism, mild to severe intellectual and speech delay, epileptic seizures, and motor dysfunction. Defects in NRXN1 gene have been identified in cases diagnosed as Pitt-Hopkins-like-syndrome 2 (PTHLS2; OMIM#614325). Methods Literature review of NRXN1-related disorders was conducted and main clinical features of individuals affected by these disorders were analyzed. In addition, clinical features of individuals labelled with PTHSL2 diagnosis were reported. A comparison between international consensus diagnostic criteria for Pitt-Hopkins syndrome (PTHS) and twins presenting with NRXN1-related disorder and followed by this institution were also presented. Results Our data confirmed that NRXN1-related disorders mainly manifest with undistinctive dysmorphic features and neurological involvement consisting of more or less severe developmental delay/intellectual disability, autistic spectrum disorder, and epilepsy. Relationship between PTHSL2 and NRXN1 remains to be established. Conclusions Our present analysis denoted a heterogeneous and unspecific clinical framework of the NRXN1-related disorders mainly affecting the nervous system for which the clinical diagnosis remains inconclusive without the support of genetic analysis. Further contributions are necessary to better clarify the clinical assessment of PTHSL2.
Collapse
Affiliation(s)
- Piero Pavone
- Pediatrics, and Psychiatric Department of Child and Experimental Medicine, University of Catania, A.O.U. “Policlinico” “G. Rodolico”, Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Claudia Parano
- Department of General Surgery and Medical-Surgical Specialties of the University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU “Policlinico”, PO “San Marco”, Catania, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Enrico Parano
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Pediatrics, and Psychiatric Department of Child and Experimental Medicine, University of Catania, A.O.U. “Policlinico” “G. Rodolico”, Catania, Italy
| |
Collapse
|
2
|
Fernando MB, Fan Y, Zhang Y, Tokolyi A, Murphy AN, Kammourh S, Michael Deans P, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams S, Flaherty EK, Prytkova IA, Cao L, Knowles DA, Fang G, Slesinger PA, Brennand KJ. Phenotypic complexities of rare heterozygous neurexin-1 deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.28.564543. [PMID: 37961635 PMCID: PMC10634884 DOI: 10.1101/2023.10.28.564543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations --sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1 +/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, in order to achieve individualized restoration of NRXN1 isoform repertoires by increasing wildtype, or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B. Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Aleta N. Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Sadaf Ghorbani
- Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erin K. Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Iya A. Prytkova
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - David A. Knowles
- New York Genome Center, New York, NY, 10013
- Departments of Computer Science, Systems Biology, and Data Science Institute, Columbia University, New York, NY, USA, 10027
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paul A. Slesinger
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| |
Collapse
|
3
|
Guzman C, Mohri K, Nakamura R, Miyake M, Tsuchiya Y, Tomii K, Watanabe H. Neuronal and non-neuronal functions of the synaptic cell adhesion molecule neurexin in Nematostella vectensis. Nat Commun 2024; 15:6495. [PMID: 39090098 PMCID: PMC11294457 DOI: 10.1038/s41467-024-50818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The evolutionary transition from diffusion-mediated cell-cell communication to faster, targeted synaptic signaling in animal nervous systems is still unclear. Genome sequencing analyses have revealed a widespread distribution of synapse-related genes among early-diverging metazoans, but how synaptic machinery evolved remains largely unknown. Here, we examine the function of neurexins (Nrxns), a family of presynaptic cell adhesion molecules with critical roles in bilaterian chemical synapses, using the cnidarian model, Nematostella vectensis. Delta-Nrxns are expressed mainly in neuronal cell clusters that exhibit both peptidergic and classical neurotransmitter signaling. Knockdown of δ-Nrxn reduces spontaneous peristalsis of N. vectensis polyps. Interestingly, gene knockdown and pharmacological studies suggest that δ-Nrxn is involved in glutamate- and glycine-mediated signaling rather than peptidergic signaling. Knockdown of the epithelial α-Nrxn reveals a major role in cell adhesion between ectodermal and endodermal epithelia. Overall, this study provides molecular, functional, and cellular insights into the pre-neural function of Nrxns, as well as key information for understanding how and why they were recruited to the synaptic machinery.
Collapse
Affiliation(s)
- Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Minato Miyake
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
4
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
5
|
Leow KQ, Tonta MA, Lu J, Coleman HA, Parkington HC. Towards understanding sex differences in autism spectrum disorders. Brain Res 2024; 1833:148877. [PMID: 38513995 DOI: 10.1016/j.brainres.2024.148877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social deficits, repetitive behaviours and lack of empathy. Its significant genetic heritability and potential comorbidities often lead to diagnostic and therapeutic challenges. This review addresses the biological basis of ASD, focusing on the sex differences in gene expression and hormonal influences. ASD is more commonly diagnosed in males at a ratio of 4:1, indicating a potential oversight in female-specific ASD research and a risk of underdiagnosis in females. We consider how ASD manifests differently across sexes by exploring differential gene expression in female and male brains and consider how variations in steroid hormones influence ASD characteristics. Synaptic function, including excitation/inhibition ratio imbalance, is influenced by gene mutations and this is explored as a key factor in the cognitive and behavioural manifestations of ASD. We also discuss the role of micro RNAs (miRNAs) and highlight a novel mutation in miRNA-873, which affects a suite of key synaptic genes, neurexin, neuroligin, SHANK and post-synaptic density proteins, implicated in the pathology of ASD. Our review suggests that genetic predisposition, sex differences in brain gene expression, and hormonal factors significantly contribute to the presentation, identification and severity of ASD, necessitating sex-specific considerations in diagnosis and treatments. These findings advocate for personalized interventions to improve the outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Karen Q Leow
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Mary A Tonta
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Jing Lu
- Tianjin Institute of Infectious Disease, Second Hospital of Tianjin Medical University, China
| | - Harold A Coleman
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedical Discovery Institute, Monash University, Victoria, Australia.
| |
Collapse
|
6
|
Brockhaus J, Kahl I, Ahmad M, Repetto D, Reissner C, Missler M. Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca 2+ Influx. Cells 2024; 13:981. [PMID: 38891114 PMCID: PMC11171642 DOI: 10.3390/cells13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Iris Kahl
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Mohiuddin Ahmad
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Dudas A, Nakahara TS, Pellissier LP, Chamero P. Parenting behaviors in mice: Olfactory mechanisms and features in models of autism spectrum disorders. Neurosci Biobehav Rev 2024; 161:105686. [PMID: 38657845 DOI: 10.1016/j.neubiorev.2024.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Rodents, along with numerous other mammals, heavily depend on olfactory cues to navigate their social interactions. Processing of olfactory sensory inputs is mediated by conserved brain circuits that ultimately trigger social behaviors, such as social interactions and parental care. Although innate, parenting is influenced by internal states, social experience, genetics, and the environment, and any significant disruption of these factors can impact the social circuits. Here, we review the molecular mechanisms and social circuits from the olfactory epithelium to central processing that initiate parental behaviors and their dysregulations that may contribute to the social impairments in mouse models of autism spectrum disorders (ASD). We discuss recent advances of the crucial role of olfaction in parental care, its consequences for social interactions, and the reciprocal influence on social interaction impairments in mouse models of ASD.
Collapse
Affiliation(s)
- Ana Dudas
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Thiago S Nakahara
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France
| | - Lucie P Pellissier
- Team biology of GPCR Signaling systems (BIOS), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| | - Pablo Chamero
- Team Neuroendocrine Integration of Reproduction and Behavior (INERC), CNRS, INRAE, University of Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
8
|
Shan D, Song Y, Zhang Y, Ho CW, Xia W, Li Z, Ge F, Ou Q, Dai Z, Dai Z. Neurexin dysfunction in neurodevelopmental and neuropsychiatric disorders: a PRIMSA-based systematic review through iPSC and animal models. Front Behav Neurosci 2024; 18:1297374. [PMID: 38380150 PMCID: PMC10876810 DOI: 10.3389/fnbeh.2024.1297374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Background Neurexins, essential synaptic proteins, are linked to neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD) and schizophrenia. Objective Through this systematic review, we aimed to shed light on the relationship between neurexin dysfunction and its implications in neurodevelopmental and neuropsychiatric manifestations. Both animal and human-induced pluripotent stem cell (hiPSC) models served as our primary investigative platforms. Methods Utilizing the PRISMA 2020 guidelines, our search strategy involved scouring articles from the PubMed and Google Scholar databases covering a span of two decades (2003-2023). Of the initial collection, 27 rigorously evaluated studies formed the essence of our review. Results Our review suggested the significant ties between neurexin anomalies and neurodevelopmental and neuropsychiatric outcomes, most notably ASD. Rodent-based investigations delineated pronounced ASD-associated behaviors, and hiPSC models derived from ASD-diagnosed patients revealed the disruptions in calcium dynamics and synaptic activities. Additionally, our review underlined the integral role of specific neurexin variants, primarily NRXN1, in the pathology of schizophrenia. It was also evident from our observation that neurexin malfunctions were implicated in a broader array of these disorders, including ADHD, intellectual challenges, and seizure disorders. Conclusion This review accentuates the cardinal role neurexins play in the pathological process of neurodevelopmental and neuropsychiatric disorders. The findings underscore a critical need for standardized methodologies in developing animal and hiPSC models for future studies, aiming to minimize heterogeneity. Moreover, we highlight the need to expand research into less studied neurexin variants (i.e., NRXN2 and NRXN3), broadening the scope of our understanding in this field. Our observation also projects hiPSC models as potent tools for bridging research gaps, promoting translational research, and fostering the development of patient-specific therapeutic interventions.
Collapse
Affiliation(s)
- Dan Shan
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Yuming Song
- School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheong Wong Ho
- School of Medicine, University of Galway, Galway, Ireland
| | - Wenxin Xia
- School of Medicine, University of Galway, Galway, Ireland
| | - Zhi Li
- College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Fenfen Ge
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Qifeng Ou
- School of Medicine, University of Galway, Galway, Ireland
| | - Zijie Dai
- Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Zhihao Dai
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
9
|
Bastien BL, Cowen MH, Hart MP. Distinct neurexin isoforms cooperate to initiate and maintain foraging activity. Transl Psychiatry 2023; 13:367. [PMID: 38036526 PMCID: PMC10689797 DOI: 10.1038/s41398-023-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and β isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara H Cowen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
11
|
Shiwaku H, Katayama S, Gao M, Kondo K, Nakano Y, Motokawa Y, Toyoda S, Yoshida F, Hori H, Kubota T, Ishikawa K, Kunugi H, Ikegaya Y, Okazawa H, Takahashi H. Analyzing schizophrenia-related phenotypes in mice caused by autoantibodies against NRXN1α in schizophrenia. Brain Behav Immun 2023; 111:32-45. [PMID: 37004758 DOI: 10.1016/j.bbi.2023.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.
Collapse
Affiliation(s)
- Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Mengxuan Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Tokyo 113-8510, Japan
| | - Yuri Nakano
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Yukiko Motokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Saori Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Tokyo 187-8553, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1, Tokyo 187-8553, Japan
| | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Ibaraki 300-0051, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Tokyo 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| |
Collapse
|
12
|
Alonso A, Samanta A, van der Meij J, van den Brand L, Negwer M, Navarro Lobato I, Genzel L. Defensive and offensive behaviours in a Kleefstra syndrome mouse model. Anim Cogn 2023; 26:1131-1140. [PMID: 36877418 PMCID: PMC10345049 DOI: 10.1007/s10071-023-01757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.
Collapse
Affiliation(s)
- Alejandra Alonso
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Anumita Samanta
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Liz van den Brand
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Moritz Negwer
- Donders Institute for Brain, Cognition and Behaviour, RadboudUMC, Nijmegen, The Netherlands
| | - Irene Navarro Lobato
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Department of Neuroinformatics, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Lu H, Zuo L, Roddick KM, Zhang P, Oku S, Garden J, Ge Y, Bellefontaine M, Delhaye M, Brown RE, Craig AM. Alternative splicing and heparan sulfation converge on neurexin-1 to control glutamatergic transmission and autism-related behaviors. Cell Rep 2023; 42:112714. [PMID: 37384525 DOI: 10.1016/j.celrep.2023.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Neurexin synaptic organizing proteins are central to a genetic risk pathway in neuropsychiatric disorders. Neurexins also exemplify molecular diversity in the brain, with over a thousand alternatively spliced forms and further structural heterogeneity contributed by heparan sulfate glycan modification. Yet, interactions between these modes of post-transcriptional and post-translational modification have not been studied. We reveal that these regulatory modes converge on neurexin-1 splice site 5 (S5): the S5 insert increases the number of heparan sulfate chains. This is associated with reduced neurexin-1 protein level and reduced glutamatergic neurotransmitter release. Exclusion of neurexin-1 S5 in mice boosts neurotransmission without altering the AMPA/NMDA ratio and shifts communication and repetitive behavior away from phenotypes associated with autism spectrum disorders. Thus, neurexin-1 S5 acts as a synaptic rheostat to impact behavior through the intersection of RNA processing and glycobiology. These findings position NRXN1 S5 as a potential therapeutic target to restore function in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Long Zuo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jessica Garden
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Michael Bellefontaine
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
15
|
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, Storer JM, Kuhlwilm M, Fontsere C, Seshadri L, Bergey CM, Burrell AS, Bergman J, Phillips-Conroy JE, Shiferaw F, Chiou KL, Chuma IS, Keyyu JD, Fischer J, Gingras MC, Salvi S, Doddapaneni H, Schierup MH, Batzer MA, Jolly CJ, Knauf S, Zinner D, Farh KKH, Marques-Bonet T, Munch K, Roos C, Rogers J. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. Science 2023; 380:eabn8153. [PMID: 37262153 DOI: 10.1126/science.abn8153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/27/2022] [Indexed: 06/03/2023]
Abstract
Baboons (genus Papio) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high-coverage whole-genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and interspecies gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes.
Collapse
Affiliation(s)
- Erik F Sørensen
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Artificial Intelligence Lab, Illumina Inc., San Diego, CA 92122, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Christina M Bergey
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew S Burrell
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jane E Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Marie-Claude Gingras
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sejal Salvi
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Kyle K-H Farh
- Artificial Intelligence Lab, Illumina Inc., San Diego, CA 92122, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluis Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, cl Columnes s/n, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, Storer JM, Kuhlwilm M, Fontsere C, Seshadri L, Bergey CM, Burrell AS, Bergmann J, Phillips-Conroy JE, Shiferaw F, Chiou KL, Chuma IS, Keyyu JD, Fischer J, Gingras MC, Salvi S, Doddapaneni H, Schierup MH, Batzer MA, Jolly CJ, Knauf S, Zinner D, Farh KKH, Marques-Bonet T, Munch K, Roos C, Rogers J. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539112. [PMID: 37205419 PMCID: PMC10187195 DOI: 10.1101/2023.05.02.539112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Baboons (genus Papio ) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high coverage whole genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and inter-species gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal novel patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes. One-Sentence Summary Genomic data for 225 baboons reveal novel sites of inter-species gene flow and local effects due to differences in admixture.
Collapse
|
17
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
18
|
Nong Y, Stoppel DC, Johnson MA, Boillot M, Todorovic J, Shen J, Zhou X, Nadler MJ, Rodriguez C, Huo Y, Nagakura I, Kasper EM, Anderson MP. UBE3A and transsynaptic complex NRXN1-CBLN1-GluD1 in a hypothalamic VMHvl-arcuate feedback circuit regulates aggression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530462. [PMID: 36909588 PMCID: PMC10002692 DOI: 10.1101/2023.02.28.530462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The circuit origins of aggression in autism spectrum disorder remain undefined. Here we report Tac1-expressing glutamatergic neurons in ventrolateral division of ventromedial hypothalamus (VMHvl) drive intermale aggression. Aggression is increased due to increases of Ube3a gene dosage in the VMHvl neurons when modeling autism due to maternal 15q11-13 triplication. Targeted deletion of increased Ube3a copies in VMHvl reverses the elevated aggression adult mice. VMHvl neurons form excitatory synapses onto hypothalamic arcuate nucleus AgRP/NPY neurons through a NRXN1-CBLN1-GluD1 transsynaptic complex and UBE3A impairs this synapse by decreasing Cbln1 gene expression. Exciting AgRP/NPY arcuate neurons leads to feedback inhibition of VMHvl neurons and inhibits aggression. Asymptomatic increases of UBE3A synergize with a heterozygous deficiency of presynaptic Nrxn1 or postsynaptic Grid1 (both ASD genes) to increase aggression. Targeted deletions of Grid1 in arcuate AgRP neurons impairs the VMHvl to AgRP/NPY neuron excitatory synapses while increasing aggression. Chemogenetic/optogenetic activation of arcuate AgRP/NPY neurons inhibits VMHvl neurons and represses aggression. These data reveal that multiple autism genes converge to regulate the VMHvl-arcuate AgRP/NPY glutamatergic synapse. The hypothalamic circuitry implicated by these data suggest impaired excitation of AgRP/NPY feedback inhibitory neurons may explain the increased aggression behavior found in genetic forms of autism.
Collapse
Affiliation(s)
- Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Regeneron 777 Old Saw Mill River Road Tarrytown, NY 10591, USA
| | - David C. Stoppel
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark A. Johnson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Morgane Boillot
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Jelena Todorovic
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Jason Shen
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Xinyu Zhou
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Monica J.S. Nadler
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Carrie Rodriguez
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Yuda Huo
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Regeneron 777 Old Saw Mill River Road Tarrytown, NY 10591, USA
| | - Ikue Nagakura
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Ekkehard M. Kasper
- Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Matthew P. Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Regeneron 777 Old Saw Mill River Road Tarrytown, NY 10591, USA
| |
Collapse
|
19
|
Li K, Liang X, Xie X, Tian L, Yan J, Lin B, Liu H, Lai W, Liu X, Xi Z. Role of SHANK3 in concentrated ambient PM2. 5 exposure induced autism-like phenotype. Heliyon 2023; 9:e14328. [PMID: 36938421 PMCID: PMC10018567 DOI: 10.1016/j.heliyon.2023.e14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Perinatal air pollution plays an important role in the development of autism. However, research on the pathogenic mechanism remains limited. In this study, the model of systemic inhalation of concentrated approximately 8-fold the level (mean concentration was 224 μg/m3) reported in ambient outdoor air of PM2.5 (particulate matters that are 2.5 μm or less in diameter)in early-postnatal male Sprague-Dawley (SD) rats was established. Through a series of autism-related behavioral tests, it was identified that young rats (postnatal day 1-day21, named PND1-PND21) exposed to PM2.5 exhibited typical autistic phenotypes, such as impaired language communication, abnormal repetitive and stereotyped behaviors, and impaired social skills. Moreover, synaptic abnormalities have been found in the brain tissues of young rats exposed to PM2.5. In terms of the molecular mechanism, we found that the levels of SH3 and multiple ankyrin repeat domains 3 (SHANK3) expression and key molecular proteins in the downstream signaling pathways were decreased in the brain tissues of the exposed rats. Finally, at the epigenetic level, SHANK3 methylation levels were increased in young rats exposed to PM2.5. In conclusion, the study revealed that PM2.5 exposure might induce the early postnatal autism through the SHANK3 signaling pathway by affecting the SHANK3 methylation levels and reducing the SHANK3 expression levels. The study could provide new ideas for autism etiology and a theoretical basis for the prevention and treatment of autism in children.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaotian Liang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Xiaoqian Xie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Corresponding author.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
- Corresponding author. Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, PR China.
| |
Collapse
|
20
|
Khoja S, Haile MT, Chen LY. Advances in neurexin studies and the emerging role of neurexin-2 in autism spectrum disorder. Front Mol Neurosci 2023; 16:1125087. [PMID: 36923655 PMCID: PMC10009110 DOI: 10.3389/fnmol.2023.1125087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Over the past 3 decades, the prevalence of autism spectrum disorder (ASD) has increased globally from 20 to 28 million cases making ASD the fastest-growing developmental disability in the world. Neurexins are a family of presynaptic cell adhesion molecules that have been increasingly implicated in ASD, as evidenced by genetic mutations in the clinical population. Neurexins function as context-dependent specifiers of synapse properties and critical modulators in maintaining the balance between excitatory and inhibitory transmission (E/I balance). Disrupted E/I balance has long been established as a hallmark of ASD making neurexins excellent starting points for understanding the etiology of ASD. Herein we review neurexin mutations that have been discovered in ASD patients. Further, we discuss distinct synaptic mechanisms underlying the aberrant neurotransmission and behavioral deficits observed in different neurexin mouse models, with focus on recent discoveries from the previously overlooked neurexin-2 gene (Nrxn2 in mice and NRXN2 in humans). Hence, the aim of this review is to provide a summary of new synaptic insights into the molecular underpinnings of ASD.
Collapse
Affiliation(s)
| | | | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
21
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
22
|
Xu B, Ho Y, Fasolino M, Medina J, O’Brien WT, Lamonica JM, Nugent E, Brodkin ES, Fuccillo MV, Bucan M, Zhou Z. Allelic contribution of Nrxn1α to autism-relevant behavioral phenotypes in mice. PLoS Genet 2023; 19:e1010659. [PMID: 36848371 PMCID: PMC9997995 DOI: 10.1371/journal.pgen.1010659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Copy number variations (CNVs) in the Neurexin 1 (NRXN1) gene, which encodes a presynaptic protein involved in neurotransmitter release, are some of the most frequently observed single-gene variants associated with autism spectrum disorder (ASD). To address the functional contribution of NRXN1 CNVs to behavioral phenotypes relevant to ASD, we carried out systematic behavioral phenotyping of an allelic series of Nrxn1 mouse models: one carrying promoter and exon 1 deletion abolishing Nrxn1α transcription, one carrying exon 9 deletion disrupting Nrxn1α protein translation, and one carrying an intronic deletion with no observable effect on Nrxn1α expression. We found that homozygous loss of Nrxn1α resulted in enhanced aggression in males, reduced affiliative social behaviors in females, and significantly altered circadian activities in both sexes. Heterozygous or homozygous loss of Nrxn1α affected the preference for social novelty in male mice, and notably, enhanced repetitive motor skills and motor coordination in both sexes. In contrast, mice bearing an intronic deletion of Nrxn1 did not display alterations in any of the behaviors assessed. These findings demonstrate the importance of Nrxn1α gene dosage in regulating social, circadian, and motor functions, and the variables of sex and genomic positioning of CNVs in the expression of autism-related phenotypes. Importantly, mice with heterozygous loss of Nrxn1, as found in numerous autistic individuals, show an elevated propensity to manifest autism-related phenotypes, supporting the use of models with this genomic architecture to study ASD etiology and assess additional genetic variants associated with autism.
Collapse
Affiliation(s)
- Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joanna Medina
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William Timothy O’Brien
- Preclinical Models Core, Intellectual and Developmental Disability Research Center (IDDRC) Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janine M. Lamonica
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Edward S. Brodkin
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marc V. Fuccillo
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maja Bucan
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Autism Spectrum Program of Excellence (ASPE), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Preclinical Models Core, Intellectual and Developmental Disability Research Center (IDDRC) Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Cheung A, Konno K, Imamura Y, Matsui A, Abe M, Sakimura K, Sasaoka T, Uemura T, Watanabe M, Futai K. Neurexins in serotonergic neurons regulate neuronal survival, serotonin transmission, and complex mouse behaviors. eLife 2023; 12:85058. [PMID: 36695811 PMCID: PMC9876567 DOI: 10.7554/elife.85058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Extensive serotonin (5-hydroxytryptamine, 5-HT) innervation throughout the brain corroborates 5-HT's modulatory role in numerous cognitive activities. Volume transmission is the major mode for 5-HT transmission but mechanisms underlying 5-HT signaling are still largely unknown. Abnormal brain 5-HT levels and function have been implicated in autism spectrum disorder (ASD). Neurexin (Nrxn) genes encode presynaptic cell adhesion molecules important for the regulation of synaptic neurotransmitter release, notably glutamatergic and GABAergic transmission. Mutations in Nrxn genes are associated with neurodevelopmental disorders including ASD. However, the role of Nrxn genes in the 5-HT system is poorly understood. Here, we generated a mouse model with all three Nrxn genes disrupted specifically in 5-HT neurons to study how Nrxns affect 5-HT transmission. Loss of Nrxns in 5-HT neurons reduced the number of serotonin neurons in the early postnatal stage, impaired 5-HT release, and decreased 5-HT release sites and serotonin transporter expression. Furthermore, 5-HT neuron-specific Nrxn knockout reduced sociability and increased depressive-like behavior. Our results highlight functional roles for Nrxns in 5-HT neurotransmission, 5-HT neuron survival, and the execution of complex behaviors.
Collapse
Affiliation(s)
- Amy Cheung
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Brudnick Neuropsychiatric Research Institute, University of MassachusettsWorcesterUnited States
- Medical Scientist Training Program, University of MassachusettsWorcesterUnited States
| | - Kotaro Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido UniversitySapporoJapan
| | - Yuka Imamura
- Departments of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University DriveHersheyUnited States
| | - Aya Matsui
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Takeshi Uemura
- Division of Gene Research, Research Center for Advanced Science, Shinshu UniversityNaganoJapan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu UniversityNaganoJapan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido UniversitySapporoJapan
| | - Kensuke Futai
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Brudnick Neuropsychiatric Research Institute, University of MassachusettsWorcesterUnited States
| |
Collapse
|
24
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
25
|
Cothren TO, Evonko CJ, MacQueen DA. Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species. Curr Top Behav Neurosci 2023; 63:363-392. [PMID: 36059004 DOI: 10.1007/7854_2022_390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though understudied relative to perturbations in the auditory and visual domains, olfactory dysfunction is a common symptom of schizophrenia. Over the past two decades, the availability of standardized assessments to quantify human olfactory abilities, and enhance understanding of the neurophysiology supporting olfaction, has increased, enabling a more thorough characterization of these deficits. In contrast to other psychiatric conditions for which olfactory dysfunction has been observed (e.g., major depressive disorder, bipolar disorder, Alzheimer's disease), the impairments observed in schizophrenia are particularly global and profound. At this level, such deficits in olfactory abilities likely impact the enjoyment of food, detection of environmental hazards, and influence social relationships. More broadly, the study of olfactory phenotypes in schizophrenia presents new avenues for detection of those at-risk for the condition, identification of therapeutic targets for treatment development, and for the characterization of novel animal models relevant to schizophrenia and psychosis. This review will consider the olfactory performance of individuals with schizophrenia in domains for which standardized assessments are available (odor sensitivity, discrimination, identification, and memory). Paradigms available for assessing these abilities in rodents will also be discussed with the aim of facilitating translation. Thus, future studies will be able to include cross-species translation of mechanisms relevant to olfactory function and cognition, what has gone awry in the disease state, and test potential therapeutics.
Collapse
Affiliation(s)
- Taitum O Cothren
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - David A MacQueen
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA.
| |
Collapse
|
26
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
27
|
Camasio A, Panzeri E, Mancuso L, Costa T, Manuello J, Ferraro M, Duca S, Cauda F, Liloia D. Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS One 2022; 17:e0277466. [PMID: 36441779 PMCID: PMC9704678 DOI: 10.1371/journal.pone.0277466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of developmental conditions with widespread neuroanatomical abnormalities and a strong genetic basis. Although neuroimaging studies have indicated anatomical changes in grey matter (GM) morphometry, their associations with gene expression remain elusive. METHODS Here, we aim to understand how gene expression correlates with neuroanatomical atypicalities in ASD. To do so, we performed a coordinate-based meta-analysis to determine the common GM variation pattern in the autistic brain. From the Allen Human Brain Atlas, we selected eight genes from the SHANK, NRXN, NLGN family and MECP2, which have been implicated with ASD, particularly in regards to altered synaptic transmission and plasticity. The gene expression maps for each gene were built. We then assessed the correlation between the gene expression maps and the GM alteration maps. Lastly, we projected the obtained clusters of GM alteration-gene correlations on top of the canonical resting state networks, in order to provide a functional characterization of the structural evidence. RESULTS We found that gene expression of most genes correlated with GM alteration (both increase and decrease) in regions located in the default mode network. Decreased GM was also correlated with gene expression of some ASD genes in areas associated with the dorsal attention and cerebellar network. Lastly, single genes were found to be significantly correlated with increased GM in areas located in the somatomotor, limbic and ganglia/thalamus networks. CONCLUSIONS This approach allowed us to combine the well beaten path of genetic and brain imaging in a novel way, to specifically investigate the relation between gene expression and brain with structural damage, and individuate genes of potential interest for further investigation in the functional domain.
Collapse
Affiliation(s)
- Alessia Camasio
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Physics, University of Turin, Turin, Italy
| | - Elisa Panzeri
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Mario Ferraro
- Department of Physics, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
29
|
Heval Özgen M, van den Brink W. Ketamine Self-Medication in a Patient with Autism Spectrum Disorder and Comorbid Therapy-Resistant Depression. PSYCHIAT CLIN PSYCH 2022; 32:268-272. [PMID: 38766674 PMCID: PMC11099673 DOI: 10.5152/pcp.2022.22037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 05/22/2024] Open
Abstract
In this case report, we present an adult male patient with autism spectrum disorder and a comorbid (treatment-resistant) mood disorder with suicidality. He has been treated with numerous psychopharmaceuticals, most recently risperidone and valproic acid. He has been hospitalized several times and has attempted suicide. He displayed limited social functioning, repetitive behaviors, sensory hypersensitivity, anxiety, depressed mood, anhedonia, low energy, and chronic suicidality. Despite intensive treatment, he remained highly symptomatic and unable to work. After repeatedly self-medicating with ketamine, the patient reported that his depression and suicidality disappeared and that his autism spectrum disorder symptoms were reduced. This case study - along with previous clinical studies - suggests that ketamine is likely to be effective against depression and suicidality and potentially effective against (certain) autism spectrum disorder symptoms. However, increasing public awareness of the beneficial effects of ketamine may lead to more unsupervised and thus risky use of ketamine for self-medication.
Collapse
Affiliation(s)
- Mihriban Heval Özgen
- Parnassia Addiction Research Centre (PARC), Parnassia Psychiatric Institute, The Hague, The Netherlands
- Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim van den Brink
- Amsterdam University Medical Centers, location Academic Medical Center, Bijlmer, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
31
|
Doi M, Li M, Usui N, Shimada S. Genomic Strategies for Understanding the Pathophysiology of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:930941. [PMID: 35813066 PMCID: PMC9263364 DOI: 10.3389/fnmol.2022.930941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Recent breakthroughs in sequencing technology and technological developments have made it easier to analyze the entire human genome than ever before. In addition to disease-specific genetic mutations and chromosomal aberrations, epigenetic alterations in individuals can also be analyzed using genomics. Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) caused by genetic and/or environmental factors. More than a thousand genes associated with ASD have been identified which are known to be involved in brain development. However, it is difficult to decode the roles of ASD-associated genes without in vitro and in vivo validations, particularly in the process of brain development. In this review, we discuss genomic strategies for understanding the pathological mechanisms underlying ASD. For this purpose, we discuss ASD-associated genes and their functions, as well as analytical strategies and their strengths and weaknesses in cellular and animal models from a basic research perspective.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Mengwei Li
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
32
|
Sauer AK, Hagmeyer S, Grabrucker AM. Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. Int J Mol Sci 2022; 23:ijms23116082. [PMID: 35682762 PMCID: PMC9181257 DOI: 10.3390/ijms23116082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Epidemiological studies have shown a clear association between early life zinc deficiency and Autism Spectrum Disorders (ASD). In line with this, mouse models have revealed prenatal zinc deficiency as a profound risk factor for neurobiological and behavioral abnormalities in the offspring reminiscent of ASD behavior. From these studies, a complex pathology emerges, with alterations in the gastrointestinal and immune system and synaptic signaling in the brain, as a major consequence of prenatal zinc deficiency. The features represent a critical link in a causal chain that leads to various neuronal dysfunctions and behavioral phenotypes observed in prenatal zinc deficient (PZD) mice and probably other mouse models for ASD. Given that the complete phenotype of PZD mice may be key to understanding how non-genetic factors can modify the clinical features and severity of autistic patients and explain the observed heterogeneity, here, we summarize published data on PZD mice. We critically review the emerging evidence that prenatal zinc deficiency is at the core of several environmental risk factors associated with ASD, being mechanistically linked to ASD-associated genetic factors. In addition, we highlight future directions and outstanding questions, including potential symptomatic, disease-modifying, and preventive treatment strategies.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Simone Hagmeyer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.K.S.); (S.H.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61-237756
| |
Collapse
|
33
|
Gonçalves C, Kareklas K, Teles MC, Varela SAM, Costa J, Leite RB, Paixão T, Oliveira RF. Phenotypic architecture of sociality and its associated genetic polymorphisms in zebrafish. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12809. [PMID: 35524578 PMCID: PMC9744564 DOI: 10.1111/gbb.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Sociality relies on motivational and cognitive components that may have evolved independently, or may have been linked by phenotypic correlations driven by a shared selective pressure for increased social competence. Furthermore, these components may be domain-specific or of general-domain across social and non-social contexts. Here, we used zebrafish to test if the motivational and cognitive components of social behavior are phenotypically linked and if they are domain specific or of general domain. The behavioral phenotyping of zebrafish in social and equivalent non-social tests shows that the motivational (preference) and cognitive (memory) components of sociality: (1) are independent from each other, hence not supporting the occurrence of a sociality syndrome; and (2) are phenotypically linked to non-social traits, forming two general behavioral modules, suggesting that sociality traits have been co-opted from general-domain motivational and cognitive traits. Moreover, the study of the association between single nucleotide polymorphisms (SNPs) and each behavioral module further supports this view, since several SNPs from a list of candidate "social" genes, are statistically associated with the motivational, but not with the cognitive, behavioral module. Together, these results support the occurrence of general-domain motivational and cognitive behavioral modules in zebrafish, which have been co-opted for the social domain.
Collapse
Affiliation(s)
- Claúdia Gonçalves
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Kyriacos Kareklas
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Magda C. Teles
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Susana A. M. Varela
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - João Costa
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Ricardo B. Leite
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Tiago Paixão
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Rui F. Oliveira
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal,Department of BiosciencesISPA‐Instituto UniversitárioLisbonPortugal,Champalimaud Neuroscience Program, Champalimaud FoundationLisbonPortugal
| |
Collapse
|
34
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
35
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Hughes RB, Whittingham-Dowd J, Clapcote SJ, Broughton SJ, Dawson N. Altered medial prefrontal cortex and dorsal raphé activity predict genotype and correlate with abnormal learning behavior in a mouse model of autism-associated 2p16.3 deletion. Autism Res 2022; 15:614-627. [PMID: 35142069 PMCID: PMC9303357 DOI: 10.1002/aur.2685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14C‐2‐deoxyglucose imaging. We also assess performance in an olfactory‐based discrimination and reversal learning (OB‐DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/− mice. Behaviorally, Nrxn1α+/− mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/− mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/− mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/− mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
37
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Ferdos S, Brockhaus J, Missler M, Rohlmann A. Deletion of β-Neurexins in Mice Alters the Distribution of Dense-Core Vesicles in Presynapses of Hippocampal and Cerebellar Neurons. Front Neuroanat 2022; 15:757017. [PMID: 35173587 PMCID: PMC8841415 DOI: 10.3389/fnana.2021.757017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Communication between neurons through synapses includes the release of neurotransmitter-containing synaptic vesicles (SVs) and of neuromodulator-containing dense-core vesicles (DCVs). Neurexins (Nrxns), a polymorphic family of cell surface molecules encoded by three genes in vertebrates (Nrxn1–3), have been proposed as essential presynaptic organizers and as candidates for cell type-specific or even synapse-specific regulation of synaptic vesicle exocytosis. However, it remains unknown whether Nrxns also regulate DCVs. Here, we report that at least β-neurexins (β-Nrxns), an extracellularly smaller Nrxn variant, are involved in the distribution of presynaptic DCVs. We found that conditional deletion of all three β-Nrxn isoforms in mice by lentivirus-mediated Cre recombinase expression in primary hippocampal neurons reduces the number of ultrastructurally identified DCVs in presynaptic boutons. Consistently, colabeling against marker proteins revealed a diminished population of chromogranin A- (ChrgA-) positive DCVs in synapses and axons of β-Nrxn-deficient neurons. Moreover, we validated the impaired DCV distribution in cerebellar brain tissue from constitutive β-Nrxn knockout (β-TKO) mice, where DCVs are normally abundant and β-Nrxn isoforms are prominently expressed. Finally, we observed that the ultrastructure and marker proteins of the Golgi apparatus, responsible for packaging neuropeptides into DCVs, seem unchanged. In conclusion, based on the validation from the two deletion strategies in conditional and constitutive KO mice, two neuronal populations from the hippocampus and cerebellum, and two experimental protocols in cultured neurons and in the brain tissue, this study presented morphological evidence that the number of DCVs at synapses is altered in the absence of β-Nrxns. Our results therefore point to an unexpected contribution of β-Nrxns to the organization of neuropeptide and neuromodulator function, in addition to their more established role in synaptic vesicle release.
Collapse
|
39
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
40
|
Kight KE, Argue KJ, Bumgardner JG, Bardhi K, Waddell J, McCarthy MM. Social behavior in prepubertal neurexin 1α deficient rats: A model of neurodevelopmental disorders. Behav Neurosci 2021; 135:782-803. [PMID: 34323517 PMCID: PMC8649076 DOI: 10.1037/bne0000482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss-of-function mutations in the synaptic protein neurexin1α (NRXN1α) are associated with several neurodevelopmental disorders, including autism spectrum disorder (ASD), schizophrenia, and attention-deficit hyperactivity disorder (ADHD), and many of these disorders are defined by core deficits in social cognition. Mouse models of Nrxn1α deficiency are not amenable to studying aspects of social cognition because, in general, mice do not engage in complex social interactions such as social play or prosocial helping behaviors. Rats, on the contrary, engage in these complex, well-characterized social behaviors. Using the Nrxn1tm1Sage Sprague Dawley rat, we tested a range of cognitive and social behaviors in juveniles with haplo- or biallelic Nrxn1α mutation. We found a deficit in ultrasonic vocalizations (USVs) of male and female neonatal rats with Nrxn1α deficiency. A male-specific deficit in social play was observed in Nrxn1α-deficient juveniles, although sociability and social discrimination were unaltered. Nurturing behavior induced by exposure to pups was enhanced in male and female juveniles with biallelic Nrxn1α mutation. Performance in tasks of prosocial helping behavior and food retrieval indicated severe deficits in learning and cognition in juveniles with biallelic Nrxn1α mutation, and a less severe deficit in haploinsufficient rats, although Pavlovian learning was altered only in haploinsufficient males. We also observed a male-specific increase in mobility and object investigation in juveniles with complete Nrxn1α deficiency. Together, these observations more fully characterize the Nrxn1tm1Sage Sprague Dawley rat as a model for Nrxn1α-related neurodevelopmental disorders, and support a rationale for the juvenile rat as a more appropriate model for disorders that involve core deficits in complex social behaviors. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Katherine E Kight
- Department of Pharmacology, University of Maryland School of Medicine
| | - Kathryn J Argue
- Department of Pharmacology, University of Maryland School of Medicine
| | | | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine
| | | |
Collapse
|
41
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
42
|
Shiota Y, Matsudaira I, Takeuchi H, Ono C, Tomita H, Kawashima R, Taki Y. The influence of NRXN1 on systemizing and the brain structure in healthy adults. Brain Imaging Behav 2021; 16:692-701. [PMID: 34529206 DOI: 10.1007/s11682-021-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Certain behavioral characteristics of autism spectrum disorder can be found in otherwise healthy people. Individuals with difficulties in social adaptation may have subclinical autistic traits; however, effective biomarkers of these traits have not yet been established. There is a dire need for objective indices of these traits that combine behavior, brain images, and genetic information. In this study, we examined the association among a single nucleotide polymorphism of NRXN1 (rs858932; C/G), autistic traits, and brain structure in 311 healthy adults. We found that carriers of minor alleles (carriers of the G-allele) had significantly higher systemizing scores than major-allele (C-allele) homozygotes. Furthermore, the regional white matter volume in the right anterior limb of the internal capsule was significantly greater in carriers of the G-allele than in C-allele homozygotes. To the best of our knowledge, this is the first report of NRXN1 rs858932 being involved in systemizing and the brain structure of healthy adults. Our findings provide insight into the effects of genetics on autistic traits and their respective neural substrates.
Collapse
Affiliation(s)
- Yuka Shiota
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
The protective effect and potential mechanism of NRXN1 on learning and memory in ADHD rat models. Exp Neurol 2021; 344:113806. [PMID: 34228999 DOI: 10.1016/j.expneurol.2021.113806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
The learning and memory network is highly complex and remains unclear. The hippocampus is the location of learning and memory function. Impairment of synaptic morphology and synaptic plasticity (i.e., long-term potentiation) appears to cause learning and memory deficits. Several studies have indicated the role of NRXN1 in regulating the synaptic function, but little is known on its role in learning and memory dysfunction associated with attention deficit and hyperactivity disorder (ADHD). Our results showed that overexpression and interference of NRXN1 in vivo, respectively, affected learning and memory, as was assessed by Morris water maze tests, in spontaneously hypertensive rats (SHRs) and Sprague Dawley (SD) rats. We found that SD rats performed better after methylphenidate (MPH) treatment in salvage trials. Accordingly, the change of NRXN1 led to altered synapse-related gene (PSD95, SYN1, GAP43, NLGN1) expression, further providing evidence of its role in the maintenance of synaptic plasticity. We also verified that the expression of synapse-related genes synchronously changed with NRXN1expression in the behavioral assessment. The expression of NRXN1 was confirmed to affect the expression of synapse-related genes after its interference and overexpression in the primary hippocampal neurons in vitro. These results confirmed our hypothesis that NRXN1 might nucleate an overall trans-synaptic signaling network that controls synaptic plasticity and is responsible for impairments in learning and memory in ADHD. These findings suggest a possible protective role of NRXN1 in learning and memory in ADHD. Further RNA-seq sequencing revealed significant differences in the expression of 5-hydroxytryptamine receptor (5-HT6R), which was further verified at the cellular level, and the mechanism of NRXN1 affecting synaptic plasticity was preliminarily discussed.
Collapse
|
44
|
Klatt O, Repetto D, Brockhaus J, Reissner C, El Khallouqi A, Rohlmann A, Heine M, Missler M. Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior. Cell Rep 2021; 35:109266. [PMID: 34133920 DOI: 10.1016/j.celrep.2021.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Neurexins are key organizer molecules that regulate synaptic function and are implicated in autism and schizophrenia. β-neurexins interact with numerous cell adhesion and receptor molecules, but their neuronal localization remains elusive. Using single-molecule tracking and high-resolution microscopy to detect neurexin1β and neurexin3β in primary hippocampal neurons from knockin mice, we demonstrate that endogenous β-neurexins are present in fewer than half of excitatory and inhibitory synapses. Moreover, we observe a large extrasynaptic pool of β-neurexins on axons and show that axonal β-neurexins diffuse with higher surface mobility than those transiently confined within synapses. Stimulation of neuronal activity further increases the mobility of synaptic and axonal β-neurexins, whereas inhibition causes the opposite. Blocking ectodomain cleavage by metalloproteases also reduces β-neurexin mobility and enhances glutamate release. These findings suggest that the surface mobility of endogenous β-neurexins inside and outside of synapses is dynamically regulated and linked to neuronal activity.
Collapse
Affiliation(s)
- Oliver Klatt
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany; Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Martin Heine
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany.
| |
Collapse
|
45
|
Scekic-Zahirovic J, Sanjuan-Ruiz I, Kan V, Megat S, De Rossi P, Dieterlé S, Cassel R, Jamet M, Kessler P, Wiesner D, Tzeplaeff L, Demais V, Sahadevan S, Hembach KM, Muller HP, Picchiarelli G, Mishra N, Antonucci S, Dirrig-Grosch S, Kassubek J, Rasche V, Ludolph A, Boutillier AL, Roselli F, Polymenidou M, Lagier-Tourenne C, Liebscher S, Dupuis L. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun 2021; 12:3028. [PMID: 34021132 PMCID: PMC8140148 DOI: 10.1038/s41467-021-23187-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a progressive increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo, associated with altered synaptic gene expression. Synaptic ultrastructural and morphological defects were more pronounced in inhibitory than excitatory synapses and associated with increased synaptosomal levels of FUS and its RNA targets. Thus, cytoplasmic FUS triggers synaptic deficits, which is leading to increased neuronal activity in frontal cortex and causing related behavioral phenotypes. These results indicate that FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, likely relevant also for other neurodegenerative diseases characterized by FUS mislocalization.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Inmaculada Sanjuan-Ruiz
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Vanessa Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Salim Megat
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Stéphane Dieterlé
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Raphaelle Cassel
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Marguerite Jamet
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pascal Kessler
- Université de Strasbourg, Inserm, Unité mixte de service du CRBS, UMS 038, Strasbourg, France
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Laura Tzeplaeff
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, NeuroPôle, Strasbourg, France
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | - Gina Picchiarelli
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Nibha Mishra
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Stefano Antonucci
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Volker Rasche
- Ulm University Medical Center, Department of Internal Medicine II, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France.
| |
Collapse
|
46
|
Tromp A, Mowry B, Giacomotto J. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2021; 26:747-760. [PMID: 33191396 DOI: 10.1038/s41380-020-00944-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
47
|
Davatolhagh MF, Fuccillo MV. Neurexin1⍺ differentially regulates synaptic efficacy within striatal circuits. Cell Rep 2021; 34:108773. [PMID: 33626349 PMCID: PMC8071350 DOI: 10.1016/j.celrep.2021.108773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in genes essential for synaptic function, such as the presynaptic adhesion molecule Neurexin1α (Nrxn1α), are strongly implicated in neuropsychiatric pathophysiology. As the input nucleus of the basal ganglia, the striatum integrates diverse excitatory projections governing cognitive and motor control, and its impairment may represent a recurrent pathway to disease. Here, we test the functional relevance of Nrxn1α in striatal circuits by employing optogenetic-mediated afferent recruitment of dorsal prefrontal cortical (dPFC) and parafascicular thalamic connections onto dorsomedial striatal (DMS) spiny projection neurons (SPNs). For dPFC-DMS circuits, we find decreased synaptic strength specifically onto indirect pathway SPNs in both Nrxn1α+/- and Nrxn1α-/- mice, driven by reductions in neurotransmitter release. In contrast, thalamic excitatory inputs to DMS exhibit relatively normal excitatory synaptic strength despite changes in synaptic N-methyl-D-aspartate receptor (NMDAR) content. These findings suggest that dysregulation of Nrxn1α modulates striatal function in an input- and target-specific manner.
Collapse
Affiliation(s)
- M Felicia Davatolhagh
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
49
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
50
|
Neurexin 1 variants as risk factors for suicide death. Mol Psychiatry 2021; 26:7436-7445. [PMID: 34168285 PMCID: PMC8709873 DOI: 10.1038/s41380-021-01190-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Suicide is a significant public health concern with complex etiology. Although the genetic component of suicide is well established, the scope of gene networks and biological mechanisms underlying suicide has yet to be defined. Previously, we reported genome-wide evidence that neurexin 1 (NRXN1), a key synapse organizing molecule, is associated with familial suicide risk. Here we present new evidence for two non-synonymous variants (rs78540316; P469S and rs199784139; H885Y) associated with increased familial risk of suicide death. We tested the impact of these variants on binding interactions with known partners and assessed functionality in a hemi-synapse formation assay. Although the formation of hemi-synapses was not altered with the P469S variant relative to wild-type, both variants increased binding to the postsynaptic binding partner, leucine-rich repeat transmembrane neuronal 2 (LRRTM2) in vitro. Our findings indicate that variants in NRXN1 and related synaptic genes warrant further study as risk factors for suicide death.
Collapse
|