1
|
Tice AL, Lee C, Hickner RC, Steiner JL. Scheduled Exercise Partially Offsets Alcohol-Induced Clock Dysfunction in Skeletal Muscle and Liver of Female Mice. J Biol Rhythms 2025:7487304241312461. [PMID: 39924857 DOI: 10.1177/07487304241312461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert C Hickner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
2
|
Guo M, Shen F, Guo X, Zhang J, Ma Y, Wu X, Zuo H, Yao J, Hu Y, Wang D, Li Y, Li J, Qiu J, Yu J, Meng M, Zheng Y, Chen X, Gong M, Liu K, Jin L, Ren X, Zhang Q, Zhao Y, Gu X, Shen F, Li D, Gao L, Liu C, Zhou F, Li M, Wang J, Ding S, Ma X, Lu J, Xie C, Xiao J, Xu L. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100968. [PMID: 39187065 PMCID: PMC11863284 DOI: 10.1016/j.jshs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Mian Li
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Santovito LS, Shaikh M, Sharma D, Forsyth CB, Voigt RM, Keshavarzian A, Bishehsari F. Effect of Alcohol on Clock Synchrony and Tissue Circadian Homeostasis in Mice. Mol Nutr Food Res 2024; 68:e2400234. [PMID: 39126133 DOI: 10.1002/mnfr.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Alcohol use disorder accounts for a growing worldwide health system concern. Alcohol causes damages to various organs, including intestine and liver, primarily involved in its absorption and metabolism. However, alcohol-related organ damage risk varies significantly among individuals, even when they report consuming comparable dosages of alcohol. Factor(s) that may modulate the risk of organ injuries from alcohol consumption could be responsible for inter-individual variations in susceptibility to alcohol-related organ damages. Accumulating evidence suggests disruptions in circadian rhythm can exacerbate alcohol-related organ damages. Here we investigated the interplay between alcohol, circadian rhythm, and key tissue cellular processes at baseline, after a regular and a shift in the light/dark cycle (LCD) in mice. Central/peripheral clock expression of core clock genes (CoClGs) was analyzed. We also studied circadian homeostasis of tissue cellular processes that are involved in damages from alcohol. These experiments reveal that alcohol affects the expression of CoClGs causing a central-peripheral dyssynchrony, amplified by shift in LCD. The observed circadian clock dyssynchrony was linked to circadian disorganization of key processes involved in the alcohol-related damages, particularly when alcohol was combined with LCD. These results offer insights into the mechanisms by which alcohol interacts with circadian rhythm disruption to promote organ injury.
Collapse
Affiliation(s)
- Luca S Santovito
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Christopher B Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Robin M Voigt
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Medicine, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
- MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, Gastroenterology Research Center, University of Texas, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Li X, Zhuang R, Zhang K, Zhang Y, Lu Z, Wu F, Wu X, Li W, Zhang Z, Zhang H, Zhu W, Zhang B. Nobiletin Protects Against Alcoholic Liver Disease in Mice via the BMAL1-AKT-Lipogenesis Pathway. Mol Nutr Food Res 2024; 68:e2300833. [PMID: 38850176 DOI: 10.1002/mnfr.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Indexed: 06/10/2024]
Abstract
SCOPE Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.
Collapse
Affiliation(s)
- Xudong Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ke Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhitian Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fan Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoli Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Shock and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Ferrell JM. Circadian rhythms and inflammatory diseases of the liver and gut. LIVER RESEARCH 2023; 7:196-206. [PMID: 39958387 PMCID: PMC11791922 DOI: 10.1016/j.livres.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2025]
Abstract
Circadian rhythms play a central role in maintaining metabolic homeostasis and orchestrating inter-organ crosstalk. Research evidence indicates that disruption to rhythms, which occurs through shift work, chronic sleep disruption, molecular clock polymorphisms, or the consumption of alcohol or high-fat diets, can influence inflammatory status and disrupt timing between the brain and periphery or between the body and the external environment. Within the liver and gut, circadian rhythms direct the timing of glucose and lipid homeostasis, bile acid and xenobiotic metabolism, and nutrient absorption, making these systems particularly susceptible to the effects of disrupted rhythms. In this review, the impacts of circadian disruption will be discussed with emphasis on inflammatory conditions affecting the liver and gut, and the potential for chronotherapy for these conditions will be explored.
Collapse
Affiliation(s)
- Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
6
|
Yeh DW, Liu C, Hernandez JC, Tahara SM, Tsukamoto H, Machida K. Polycomb repressive complex 2 binds and stabilizes NANOG to suppress differentiation-related genes to promote self-renewal. iScience 2023; 26:107035. [PMID: 37448562 PMCID: PMC10336160 DOI: 10.1016/j.isci.2023.107035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The synergistic effect of alcohol and HCV mediated through TLR4 signaling transactivates NANOG, a pluripotency transcription factor important for the stemness of tumor-initiating stem-like cells (TICs). NANOG together with the PRC2 complex suppresses expression of oxidative phosphorylation (OXPHOS) genes to generate TICs. The phosphodegron sequence PEST domain of NANOG binds EED to stabilize NANOG protein by blocking E3 ligase recruitment and proteasome-dependent degradation, while the tryptophan-rich domain of NANOG binds EZH2 and SUZ12. Human ARID1A gene loss results in the resistance to combined FAO and PRC2 inhibition therapies due to reduction of mitochondrial ROS levels. CRISPR-Cas9-mediated ARID1A knockout and/or constitutively active CTNNB1 driver mutations promoted tumor development in humanized FRG HCC mouse models, in which use of an interface inhibitor antagonizing PRC2-NANOG binding and/or FAO inhibitor blocked tumor growth. Together, the PRC2-NANOG interaction becomes a new drug target for HCC via inducing differentiation-related genes, destabilizing NANOG protein, and suppressing NANOG activity.
Collapse
Affiliation(s)
- Da-Wei Yeh
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng Liu
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hidekazu Tsukamoto
- Department of Pathology; University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Ehlers CL, Wills D, Benedict J, Amodeo LR. Use of a Fitbit-like device in rats: Sex differences, relation to EEG sleep, and use to measure the long-term effects of adolescent ethanol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1055-1066. [PMID: 37335518 PMCID: PMC10330894 DOI: 10.1111/acer.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Sleep difficulties and rhythm disturbances are some of the problems associated with adolescent binge drinking. Recently, animal models of alcohol-induced insomnia have been developed. However, studies in human subjects have recently focused not only on nighttime EEG findings but also on daytime sleepiness and disrupted activity levels as typically measured by activity tracking devices such as the "Fitbit." We sought to develop and test a Fitbit-like device (the "FitBite") in rats and use it to track rest-activity cycles following adolescent alcohol exposure. METHODS The effects of 5 weeks of adolescent ethanol vapor or control conditions were evaluated in 48 male and female Wistar rats using FitBite activity while intoxicated, and during acute (24 h post-vapor exposure) and chronic withdrawal (4 weeks post-vapor exposure). Data were analyzed using activity count and cosinor analyses. Fourteen rats were subsequently implanted with cortical electrodes, and data from the FitBite were compared with EEG data to determine how well the FitBite could identify sleep and activity cycles. RESULTS Female rats were generally more active than males, with higher circadian rhythm amplitudes and mesors (rhythm-adjusted means) across a 24-h period. There were significant correlations between EEG-estimated sleep and activity counts using the FitBite. When the rats were tested during intoxication after 4 weeks of ethanol vapor exposure, they had significantly less overall activity. Disruptions in circadian rhythm were also found with significant decreases in the circadian amplitude, mesor, and a later shift in the acrophase. At 24 h of ethanol withdrawal, rats had more episodes of activity with shorter durations during the daytime, when rats are expected to spend more of their time sleeping. This effect remained at 4 weeks following withdrawal, but circadian rhythm disruptions were no longer present. CONCLUSIONS A Fitbit-like device can be successfully used in rats to assess rest-activity cycles. Adolescent alcohol exposure produced circadian rhythm disturbances that were not observed after withdrawal. Fragmentation of ultradian rest-activity cycles during the light period was found at 24 h and 4 weeks after withdrawal and support data demonstrating the presence of sleep disturbance long after alcohol withdrawal.
Collapse
Affiliation(s)
- Cindy L. Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Derek Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Jessica Benedict
- Department of Neuroscience, The Scripps Research Institute, La Jolla CA 92037
| | - Leslie R. Amodeo
- Department of Psychology, California State University San Bernardino, San Bernardino CA 92407
| |
Collapse
|
8
|
Lai CQ, Parnell LD, Lee YC, Zeng H, Smith CE, McKeown NM, Arnett DK, Ordovás JM. The impact of alcoholic drinks and dietary factors on epigenetic markers associated with triglyceride levels. Front Genet 2023; 14:1117778. [PMID: 36873949 PMCID: PMC9975169 DOI: 10.3389/fgene.2023.1117778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Many epigenetic loci have been associated with plasma triglyceride (TG) levels, but epigenetic connections between those loci and dietary exposures are largely unknown. This study aimed to characterize the epigenetic links between diet, lifestyle, and TG. Methods: We first conducted an epigenome-wide association study (EWAS) for TG in the Framingham Heart Study Offspring population (FHS, n = 2,264). We then examined relationships between dietary and lifestyle-related variables, collected four times in 13 years, and differential DNA methylation sites (DMSs) associated with the last TG measures. Third, we conducted a mediation analysis to evaluate the causal relationships between diet-related variables and TG. Finally, we replicated three steps to validate identified DMSs associated with alcohol and carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 993). Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions. We identified 102 unique associations between these DMSs and one or more dietary and lifestyle-related variables. Alcohol and carbohydrate intake showed the most significant and consistent associations with 11 TG-associated DMSs. Mediation analyses demonstrated that alcohol and carbohydrate intake independently affect TG via DMSs as mediators. Higher alcohol intake was associated with lower methylation at seven DMSs and higher TG. In contrast, increased carbohydrate intake was associated with higher DNA methylation at two DMSs (CPT1A and SLC7A11) and lower TG. Validation in the GOLDN further supports the findings. Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes, particularly alcoholic drinks, which could affect the current cardiometabolic risk via epigenetic changes. This study illustrates a new method to map epigenetic signatures of environmental factors for disease risk. Identification of epigenetic markers of dietary intake can provide insight into an individual's risk of cardiovascular disease and support the application of precision nutrition. Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study (FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), NCT01023750.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Laurence D Parnell
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Yu-Chi Lee
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Haihan Zeng
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Nicola M McKeown
- Programs of Nutrition, Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States.,Nutrition Epidemiology and Data Science Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, United States
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
9
|
Gao J, Sun X, Zhou Q, Jiang S, Zhang Y, Ge H, Qin X. Circadian clock disruption aggravates alcohol liver disease in an acute mouse model. Chronobiol Int 2022; 39:1554-1566. [PMID: 36354126 DOI: 10.1080/07420528.2022.2132865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are important for organisms to adapt to the environment and maintain homeostasis. Disruptions of circadian rhythms contribute to the occurrence, progression, and exacerbation of diseases, such as cancer, psychiatric disorders, and metabolic disorders. Alcohol-induced liver disease (ALD) is one of the most prevalent liver diseases. Disruptions of the circadian clock enhance the ALD symptoms using chronic mice models or genetic manipulated mice. However, chronic models are time consuming and clock gene deletions interfere with metabolisms. Here, we report that constant light (LL) condition significantly disrupted the circadian clock in an acute ALD model, resulting in aggravated ALD phenotypes in wild type mice. Comparative transcriptome analysis revealed that the alcohol feeding affected the circadian pathway, as well as metabolic pathways. The acute alcohol feeding plus the LL condition further interfered with metabolic pathways and dysregulated canonical circadian gene expressions. These findings support the idea that disrupting the circadian clock could provide an improved ALD mouse model for further applications, such as facilitating identification of potential therapeutic targets for the prevention and treatment of ALD.Abbreviations: ALD, alcohol-induced liver disease; LD, 12 h light _ 12 h dark; LL, constant light; HF, high-fat liquid control diet; ETH, ethanol-containing diet; NIAAA, National Institute on Alcohol Abuse and Alcoholism; TTFLs, transcription-translation feedback loops; FDA, US Foods and Drug Administration; NAFLD, non-alcoholic fatty liver disease; RER, respiratory exchange rate; DEGs, differentially expressed genes; H&E, haematoxylin and eosin; ALT, alanine transaminase; AST, aspartate transaminase; TG, triglycerides.
Collapse
Affiliation(s)
- Jiajia Gao
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Xianpu Sun
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Qin Zhou
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shuo Jiang
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Tice AL, Laudato JA, Rossetti ML, Wolff CA, Esser KA, Lee C, Lang CH, Vied C, Gordon BS, Steiner JL. Binge alcohol disrupts skeletal muscle core molecular clock independent of glucocorticoids. Am J Physiol Endocrinol Metab 2021; 321:E606-E620. [PMID: 34541876 PMCID: PMC8791790 DOI: 10.1152/ajpendo.00187.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are central to optimal physiological function, as disruption contributes to the development of several chronic diseases. Alcohol (EtOH) intoxication disrupts circadian rhythms within liver, brain, and intestines, but it is unknown whether alcohol also disrupts components of the core clock in skeletal muscle. Female C57BL/6Hsd mice were randomized to receive either saline (control) or alcohol (EtOH) (5 g/kg) via intraperitoneal injection at the start of the dark cycle [Zeitgeber time (ZT12)], and gastrocnemius was collected every 4 h from control and EtOH-treated mice for the next 48 h following isoflurane anesthetization. In addition, metyrapone was administered before alcohol intoxication in separate mice to determine whether the alcohol-induced increase in serum corticosterone contributed to circadian gene regulation. Finally, synchronized C2C12 myotubes were treated with alcohol (100 mM) to assess the influence of centrally or peripherally mediated effects of alcohol on the muscle clock. Alcohol significantly disrupted mRNA expression of Bmal1, Per1/2, and Cry1/2 in addition to perturbing the circadian pattern of clock-controlled genes, Myod1, Dbp, Tef, and Bhlhe40 (P < 0.05), in muscle. Alcohol increased serum corticosterone levels and glucocorticoid target gene, Redd1, in muscle. Metyrapone prevented the EtOH-mediated increase in serum corticosterone but did not normalize the EtOH-induced change in Per1, Cry1 and Cry2, and Myod1 mRNA expression. Core clock gene expression (Bmal, Per1/2, and Cry1/2) was not changed following 4, 8, or 12 h of alcohol treatment on synchronized C2C12 myotubes. Therefore, binge alcohol disrupted genes of the core molecular clock independently of elevated serum corticosterone or direct effects of EtOH on the muscle.NEW & NOTEWORTHY Alcohol is a myotoxin that impairs skeletal muscle metabolism and function following either chronic consumption or acute binge drinking; however, mechanisms underlying alcohol-related myotoxicity have not been fully elucidated. Herein, we demonstrate that alcohol acutely interrupts oscillation of skeletal muscle core clock genes, and this is neither a direct effect of ethanol on the skeletal muscle, nor an effect of elevated serum corticosterone, a major clock regulator.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Joseph A Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Michael L Rossetti
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, Gainesville Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee Florida
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee Florida
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
11
|
Ishay Y, Kolben Y, Kessler A, Ilan Y. Role of circadian rhythm and autonomic nervous system in liver function: a hypothetical basis for improving the management of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2021; 321:G400-G412. [PMID: 34346773 DOI: 10.1152/ajpgi.00186.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic encephalopathy (HE) is a common, incapacitating complication of cirrhosis that affects many patients with cirrhosis. Although several therapies have proven effective in the treatment and prevention of this condition, several patients continue to suffer from covert disease or episodes of relapse. The circadian rhythm has been demonstrated to be pivotal for many body functions, including those of the liver. Here, we explore the impact of circadian rhythm-dependent signaling on the liver and discuss the evidence of its impact on liver pathology and metabolism. We describe the various pathways through which circadian influences are mediated. Finally, we introduce a novel method for improving patient response to drugs aimed at treating HE by utilizing the circadian rhythm. A digital system that introduces a customization-based technique for improving the response to therapies is presented as a hypothetical approach for improving the effectiveness of current medications used for the treatment of recurrent and persistent hepatic encephalopathy.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yotam Kolben
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Asa Kessler
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Liu Q, Xu L, Wu M, Zhou Y, Yang J, Huang C, Xu T, Li J, Zhang L. Rev-erbα exacerbates hepatic steatosis in alcoholic liver diseases through regulating autophagy. Cell Biosci 2021; 11:129. [PMID: 34246287 PMCID: PMC8272374 DOI: 10.1186/s13578-021-00622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background and aims Alcoholic fatty liver (AFL) is a liver disease caused by long-term excessive drinking and is characterized by hepatic steatosis. Understanding the regulatory mechanism of steatosis is essential for the treatment of AFL. Rev-erbα is a member of the Rev-erbs family of nuclear receptors, playing an important role in regulating lipid metabolism. However, its functional role in AFL and its underlying mechanism remains unclear. Results Rev-erbα was upregulated in the liver of EtOH-fed mice and EtOH-treated L-02 cells. Further, Rev-erbα activation exacerbates steatosis in L-02 cells. Inhibition/downexpression of Rev-erbα improved steatosis. Mechanistically, autophagy activity was inhibited in vivo and vitro. Interestingly, inhibition/downexpression of Rev-erbα enhanced autophagy. Furthermore, silencing of Rev-erbα up-regulated the nuclear expression of Bmal1. Autophagy activity was inhibited and steatosis was deteriorated after EtOH-treated L-02 cells were cotransfected with Rev-erbα shRNA and Bmal1 siRNA. Conclusions Rev-erbα induces liver steatosis, which promotes the progression of AFL. Our study reveals a novel steatosis regulatory mechanism in AFL and suggest that Rev-erbα might be a potential therapeutic target for AFL. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00622-4.
Collapse
Affiliation(s)
- Qingxue Liu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Lei Xu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Meifei Wu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yiwen Zhou
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Junfa Yang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China. .,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
13
|
Zhou Y, Kreek MJ. Blockade of alcohol excessive and "relapse" drinking in male mice by pharmacological cryptochrome (CRY) activation. Psychopharmacology (Berl) 2021; 238:1099-1109. [PMID: 33420591 PMCID: PMC7969462 DOI: 10.1007/s00213-020-05757-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Metabolic dysfunction, mood disorders, anxiety disorders, and substance abuse disorders are associated with disruptions in circadian rhythm and circadian clock gene machinery. While the effects of alcohol on several core components of the clock genes have been described in rodent models, pharmacological activation or inhibition of clock gene functions has not been studied on alcohol drinking behaviors. OBJECTIVES We investigated whether cryptochrome (CRY1/2) activator KL001 altered alcohol intake in mice in excessive and relapse-like alcohol drinking models. METHODS Mice, subjected to 3 weeks of chronic intermittent alcohol drinking (IAD) (two-bottle choice, 24-h access every other day) developed excessive alcohol intake and high preference. We evaluated the pharmacological effects of KL001 after either 1-day acute withdrawal from IAD or 1-week chronic withdrawal using the alcohol deprivation effect (ADE) model. RESULTS Single pretreatment with KL001 at 1-4 mg kg-1 reduced alcohol intake and preference after acute withdrawal in a dose-related manner. The effect of KL001 on reducing excessive alcohol consumption seems alcohol specific, as the compound does not alter sucrose (caloric reinforcer) or saccharin (noncaloric reinforcer) consumption in mice. Both single- and multiple-dosing regimens with an effective dose of KL001 (4 mg kg-1) prevented the ADE after chronic withdrawal, with no tolerance development after the multi-dosing regimen. CONCLUSIONS Pretreatment with KL001 (a CRY1/2 activator) reduces excessive and "relapse" alcohol drinking in mice. Our in vivo results with a CRY activator suggest a possible novel target for alcohol treatment intervention.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA.
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
14
|
Katary M, Abdel-Rahman AA. Alcohol suppresses cardiovascular diurnal variations in male normotensive rats: Role of reduced PER2 expression and CYP2E1 hyperactivity in the heart. Alcohol 2020; 89:27-36. [PMID: 32777474 DOI: 10.1016/j.alcohol.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The molecular mechanism of the adverse effects of ethanol on diurnal cardiovascular regulation remains unknown. In separate studies, the cardiac circadian rhythm protein period-2 (PER2) confers cardioprotection and, in other organs, PER2 interaction with the ethanol-metabolizing enzyme CYP2E1 underlies, via heme oxygenase-1 (HO-1) upregulation, tissue injury/dysfunction. Here, we hypothesized that suppressed PER2 expression and elevated CYP2E1/HO-1 levels in the heart underlie the disrupted diurnal cardiovascular rhythm/function in alcohol-fed normotensive rats. METHODS In ethanol-fed (5%, w/v; 8 weeks) or isocaloric liquid diet-fed male rats, diurnal changes in blood pressure (BP), heart rate (HR), HR vagal variability index, root mean square of successive beat-to-beat differences in beat-interval duration (rMSSD), and cardiac function were measured by radiotelemetry and echocardiography followed by ex vivo molecular studies. RESULTS Radiotelemetry findings showed ethanol-evoked reductions in BP (during the dark cycle), rMSSD (during both cycles), and in diurnal differences in BP and rMSSD. Echocardiography findings revealed significant (p < 0.05) reductions in ejection fraction and fractional shortening (weeks 4-6) in the absence of cardiac remodeling (collagen content). Hearts of ethanol-fed rats exhibited higher (p < 0.05) CYP2E1 activity (50%) and HO-1 expression (63%), along with reduction (p < 0.05) in PER2 levels (29%), compared with the hearts of isocaloric diet-fed control rats. CONCLUSIONS Our novel findings implicate upregulations of CYP2E1/HO-1 and downregulation of the circadian rhythm cardioprotective protein PER2, in the heart, in the chronic deleterious diurnal cardiovascular effects of alcohol in male rats.
Collapse
Affiliation(s)
- Mohamed Katary
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
15
|
Zhang D, Colson JC, Jin C, Becker BK, Rhoads MK, Pati P, Neder TH, King MA, Valcin JA, Tao B, Kasztan M, Paul JR, Bailey SM, Pollock JS, Gamble KL, Pollock DM. Timing of Food Intake Drives the Circadian Rhythm of Blood Pressure. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa034. [PMID: 33415319 PMCID: PMC7772288 DOI: 10.1093/function/zqaa034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
Timing of food intake has become a critical factor in determining overall cardiometabolic health. We hypothesized that timing of food intake entrains circadian rhythms of blood pressure (BP) and renal excretion in mice. Male C57BL/6J mice were fed ad libitum or reverse feeding (RF) where food was available at all times of day or only available during the 12-h lights-on period, respectively. Mice eating ad libitum had a significantly higher mean arterial pressure (MAP) during lights-off compared to lights-on (113 ± 2 mmHg vs 100 ± 2 mmHg, respectively; P < 0.0001); however, RF for 6 days inverted the diurnal rhythm of MAP (99 ± 3 vs 110 ± 3 mmHg, respectively; P < 0.0001). In contrast to MAP, diurnal rhythms of urine volume and sodium excretion remained intact after RF. Male Bmal1 knockout mice (Bmal1KO) underwent the same feeding protocol. As previously reported, Bmal1KO mice did not exhibit a diurnal MAP rhythm during ad libitum feeding (95 ± 1 mmHg vs 92 ± 3 mmHg, lights-off vs lights-on; P > 0.05); however, RF induced a diurnal rhythm of MAP (79 ± 3 mmHg vs 95 ± 2 mmHg, lights-off vs lights-on phase; P < 0.01). Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 in ex vivo tissue cultures. The timing of the PER2::LUC rhythm in the renal cortex and suprachiasmatic nucleus was not affected by RF; however, RF induced significant phase shifts in the liver, renal inner medulla, and adrenal gland. In conclusion, the timing of food intake controls BP rhythms in mice independent of Bmal1, urine volume, or sodium excretion.
Collapse
Affiliation(s)
| | | | - Chunhua Jin
- Division of Nephrology, Department of Medicine
| | | | | | | | | | | | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology
| | - Binli Tao
- Division of Nephrology, Department of Medicine
| | | | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine,Address correspondence to D.M.P. (e-mail: )
| |
Collapse
|
16
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Bishehsari F, Preuss F, Mirbagheri SS, Zhang L, Shaikh M, Keshavarzian A. Interaction of alcohol with time of eating on markers of circadian dyssynchrony and colon tissue injury. Chem Biol Interact 2020; 325:109132. [PMID: 32437693 PMCID: PMC7315934 DOI: 10.1016/j.cbi.2020.109132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol increases the risk of developing colon cancer (CRC), in part via tissue inflammation and impaired barrier integrity. Circadian dyssynchrony (CD) is an understudied but common lifestyle associated factor that increases the risk of multi-organ tissue injury and number of malignancies including CRC. Our prior studies showed that the shift in light-dark cycle exacerbates barrier dysfunction and colonic inflammation in the setting of alcohol treatment, and increases the risk of CRC. Here we studied the interaction of alcohol with an abnormal eating pattern on markers of CD and colonic barrier integrity. METHOD Mice were subjected to day (rest-phase = wrong-time WT) or night-time (active-phase = right-time RT) access to food in combination with access to water or 15% alcohol for total duration of 10 weeks. The food and liquid intake was measured. The locomotor activity data was recorded throughout the study, using a beam-break system. Mice were euthanized at two time points (ZT2 and ZT14). Time variation in the expression of the molecular marker of circadian clock (per2 gene) was measured in the central (hypothalamus) and intestinal (colon) tissue. Colonic protein expression of barrier markers (Occludin and Claudin-1) was studied. RESULTS No significant differences were present in the weight gain and alcohol intake among the groups over the study period. We observed an interaction of WT eating with alcohol on behavioral markers of circadian rhythm. Compared to the RT + Water treated animals ("reference group"), combination of WT eating and alcohol consumption (WT + Alcohol) significantly changed the per2 oscillatory pattern, that was different between the colon and hypothalamus, indicative of worsening circadian dyssynchrony. This was associated with an overall impaired expression of barrier integrity markers in the colon. CONCLUSIONS Alcohol induces circadian dyssynchrony which is worsened by abnormal food timing, associated with impaired barrier integrity in the colon. Future studies on the interaction of alcohol and food timing could provide further insights into alcohol associated CRC pathophysiology.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, USA
| | - Seyed Sina Mirbagheri
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Lijuan Zhang
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA; Department of Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Hwang DB, Won DH, Shin YS, Kim SY, Kang BC, Lim KM, Che JH, Nam KT, Yun JW. Ccrn4l as a pre-dose marker for prediction of cisplatin-induced hepatotoxicity susceptibility. Free Radic Biol Med 2020; 148:128-139. [PMID: 31911150 DOI: 10.1016/j.freeradbiomed.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Clinical cisplatin use is often limited by its drug-induced liver injury (DILI). Particularly, individual differences in susceptibility to DILI can cause life-threatening medical conditions. This study aimed to uncover the inherent genetic factors determining individual variations in hepatotoxicity susceptibility. Rats were subjected to liver biopsy and a 3-week postoperative recovery period before cisplatin administration. At 2 days post-treatment with cisplatin, the rats exhibited histopathological and serum biochemical alterations in the liver, and changes in hydrogen peroxide and cytochrome P450-2E1 levels. Based on these results of liver-related biochemical markers, 32 rats were grouped into the susceptible (top five) and resistant (bottom five) groups. Using RNA-sequencing, we compared gene expressions in the liver pre-biopsied from these two groups before cisplatin treatment and found 161 differently expressed genes between the Susceptible and Resistant groups. Among them, the clock-controlled Ccrn4l responsible for 'rhythmic process' was identified as a common gene downregulated inherently prior to drug exposure in both cisplatin- and acetaminophen-sensitive animals. Additionally, low Ccrn4l levels before cisplatin treatment in the Susceptible group were maintained even after treatment, with decreased antioxidants, increased nitration, and apoptosis. The relationship of Ccrn4l with catalase and mitochondrial RNAs in the liver was confirmed by correlation of their hepatic levels among individuals and similar patterns of circadian variation in their mRNA expression. Remarkably, Ccrn4l knockdown promoted cisplatin-induced mitochondrial dysfunction in WB-F344 cells with antioxidant catalase and apoptosis-related Bax changes. Inherent individual hepatic Ccrn4l level might be a novel factor affecting cisplatin-induced hepatotoxicity susceptibility, possibly through regulation of mitochondrial and antioxidant functions.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
19
|
Ferreira LL, Cervantes M, Froufe HJC, Egas C, Cunha-Oliveira T, Sassone-Corsi P, Oliveira PJ. Doxorubicin persistently rewires cardiac circadian homeostasis in mice. Arch Toxicol 2019; 94:257-271. [PMID: 31768571 DOI: 10.1007/s00204-019-02626-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022]
Abstract
Circadian rhythms disruption can be the cause of chronic diseases. External cues, including therapeutic drugs, have been shown to modulate peripheral-circadian clocks. Since anthracycline cardiotoxicity is associated with loss of mitochondrial function and metabolic remodeling, we investigated whether the energetic failure induced by sub-chronic doxorubicin (DOX) treatment in juvenile mice was associated with persistent disruption of circadian regulators. Juvenile C57BL/6J male mice were subjected to a sub-chronic DOX treatment (4 weekly injections of 5 mg/kg DOX) and several cardiac parameters, as well as circadian-gene expression and acetylation patterns, were analyzed after 6 weeks of recovery time. Complementary experiments were performed with Mouse Embryonic Fibroblasts (MEFs) and Human Embryonic Kidney 293 cells. DOX-treated juvenile mice showed cardiotoxicity markers and persistent alterations of transcriptional- and signaling cardiac circadian homeostasis. The results showed a delayed influence of DOX on gene expression, accompanied by changes in SIRT1-mediated cyclic deacetylation. The mechanism behind DOX interference with the circadian clock was further studied in vitro, in which were observed alterations of circadian-gene expression and increased BMAL1 SIRT1-mediated deacetylation. In conclusion, DOX treatment in juvenile mice resulted in disruption of oscillatory molecular mechanisms including gene expression and acetylation profiles.
Collapse
Affiliation(s)
- Luciana L Ferreira
- Mitochondrial Toxicology and Experimental Therapeutics Laboratory (MitoXT), CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, Cantanhede, Portugal
| | - Marlene Cervantes
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Hugo J C Froufe
- Next Generation Sequencing Unit, Biocant, Biocant Park, Núcleo 04, Lote 8, Cantanhede, Portugal
| | - Conceição Egas
- Mitochondrial Toxicology and Experimental Therapeutics Laboratory (MitoXT), CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, Cantanhede, Portugal.,Next Generation Sequencing Unit, Biocant, Biocant Park, Núcleo 04, Lote 8, Cantanhede, Portugal
| | - Teresa Cunha-Oliveira
- Mitochondrial Toxicology and Experimental Therapeutics Laboratory (MitoXT), CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, Cantanhede, Portugal
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Paulo J Oliveira
- Mitochondrial Toxicology and Experimental Therapeutics Laboratory (MitoXT), CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building (Lote 8A), Biocant Park, 3060-197, Cantanhede, Portugal. .,Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
20
|
Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proc Natl Acad Sci U S A 2019; 116:25250-25259. [PMID: 31757851 DOI: 10.1073/pnas.1911189116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Binge drinking and chronic exposure to ethanol contribute to alcoholic liver diseases (ALDs). A potential link between ALDs and circadian disruption has been observed, though how different patterns of alcohol consumption differentially impact hepatic circadian metabolism remains virtually unexplored. Using acute versus chronic ethanol feeding, we reveal differential reprogramming of the circadian transcriptome in the liver. Specifically, rewiring of diurnal SREBP transcriptional pathway leads to distinct hepatic signatures in acetyl-CoA metabolism that are translated into the subcellular patterns of protein acetylation. Thus, distinct drinking patterns of alcohol dictate differential adaptation of hepatic circadian metabolism.
Collapse
|
21
|
De Luca M, Vecchie’ D, Athmanathan B, Gopalkrishna S, Valcin JA, Swain TM, Sertie R, Wekesa K, Rowe GC, Bailey SM, Nagareddy PR. Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet. Nutrients 2019; 11:nu11112810. [PMID: 31752080 PMCID: PMC6893658 DOI: 10.3390/nu11112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Correspondence: ; Tel.: +1-205-934-7033
| | - Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Baskaran Athmanathan
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Sreejit Gopalkrishna
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Jennifer A. Valcin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Telisha M. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
| | - Kennedy Wekesa
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Prabhakara R. Nagareddy
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| |
Collapse
|
22
|
NOCTURNIN Gene Diurnal Variation in Healthy Volunteers and Expression Levels in Shift Workers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7582734. [PMID: 31467910 PMCID: PMC6699378 DOI: 10.1155/2019/7582734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 02/06/2023]
Abstract
Objective The NOCTURNIN gene links nutrient absorption and metabolism to the circadian clock. Shift workers are at a heightened risk of overweight and of developing obesity and metabolic syndrome. This study investigates the diurnal variation of NOCTURNIN in healthy volunteers and its expression levels in rotational shift and daytime workers. Methods NOCTURNIN expression levels were evaluated in peripheral blood lymphocytes from 15 healthy volunteers at 4-hour intervals for 24 h. Metabolic parameters and NOCTURNIN expression were measured in workers engaged in shift and daytime work. Results In the group of volunteers NOCTURNIN expression showed diurnal variation, with a peak at 8:00 AM. NOCTURNIN expression was higher in shift workers than in daytime workers. Multivariate analysis confirmed the role of shift work as an independent factor affecting NOCTURNIN expression. Notably, its level correlated directly with body mass index and inversely with total energy expenditure. Conclusions Measuring NOCTURNIN expression levels in human peripheral blood lymphocytes can improve investigations on the relationship between changes in circadian rhythm and metabolic disorders. Shift workers show higher NOCTURNIN levels than daytime workers.
Collapse
|
23
|
Mukherji A, Bailey SM, Staels B, Baumert TF. The circadian clock and liver function in health and disease. J Hepatol 2019; 71:200-211. [PMID: 30930223 PMCID: PMC7613420 DOI: 10.1016/j.jhep.2019.03.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Each day, all organisms are subjected to changes in light intensity because of the Earth's rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The 'clock' is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g. travel and jet lag, night and rotating shift work), which force 'circadian misalignment', have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease.
Collapse
Affiliation(s)
- Atish Mukherji
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg, Strasbourg, France.
| | - Shannon M. Bailey
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, USA
| | - Bart Staels
- Université de Lille-European Genomic Institute for Diabetes, Institut Pasteur de Lille, CHU de Lille, INSERM UMR 1011, Lille, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
You M, Jogasuria A, Lee K, Wu J, Zhang Y, Lee YK, Sadana P. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2019; 10:226-236. [PMID: 26278388 DOI: 10.2174/1874467208666150817112109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.
Collapse
Affiliation(s)
- Min You
- 4209 State Route 44, Rootstown OH 44272. United States
| | | | | | - Jiashin Wu
- Department of Pharmaceutical Sciences. 0
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | | |
Collapse
|
25
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
26
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Capri KM, Maroni MJ, Deane HV, Pierre A, Adams AM, Goncalves FL, Meyer AS, Seggio JA. Effects of time of day and constant light on the behavioral responses and ethanol metabolism to acute alcohol administration in male Black Swiss mice. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1543640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kimberly M. Capri
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Marissa J. Maroni
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Hannah V. Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Audeline Pierre
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Abigail M. Adams
- Department of Mathematics, Bridgewater State University, Bridgewater, MA, USA
| | - Fatiana L. Goncalves
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Andrew S. Meyer
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
28
|
Effect of cisplatin on the clock genes expression in the liver, heart and kidney. Biochem Biophys Res Commun 2018; 501:593-597. [PMID: 29753739 DOI: 10.1016/j.bbrc.2018.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022]
Abstract
Cisplatin is a platinum-based chemotherapy drug that is widely used to treat various types of malignancies. Although the involvement of circadian clock in cisplatin metabolism and excretion has been reported, the effect of cisplatin on circadian rhythm remains unclear. In the present study, we investigated the effects of cisplatin on clock genes expression in mouse peripheral tissues. Cisplatin induced severe nephrotoxicity, as revealed by the significant increase of blood urea nitrogen and serum creatinine levels. Moreover, cisplatin circadian time-dependently induced p21 expression in the liver, heart and kidney, with the highest increase during the dark phase. In addition, cisplatin altered the clock genes expression in the liver, heart and kidney in a tissue- and gene-specific manner. Interesting, the expression of D site of the albumin promoter binding protein (Dbp), a gene involved in detoxification and drug metabolism, was consistently suppressed in the liver, heart and kidney after cisplatin treatment, implying a role of DBP in the toxicity of cisplatin.
Collapse
|
29
|
Tan X, Zhao T, Wang Z, Wang J, Wang Y, Liu Z, Liu X. Acrylamide Defects the Expression Pattern of the Circadian Clock and Mitochondrial Dynamics in C57BL/6J Mice Liver and HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10252-10266. [PMID: 30196695 DOI: 10.1021/acs.jafc.8b02473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Circadian rhythm helps organisms adapt to their environment and control a variety of physiological and metabolic processes. Acrylamide is a toxic compound that can be produced during food processing. The aim of this research is to investigate whether the circadian clock is involved in the toxicity mechanisms of acrylamide in mice liver. Our results revealed that acrylamide markedly induced circadian gene oscillation disorder and blocked circadian-related protein in mice liver and HepG2 cells. Simultaneously, the balance of the daily oscillation of the antioxidant enzymes was impeded under acrylamide treatment. Furthermore, acrylamide treatment elevated the mitochondrial dynamic gene expressions and influenced the mitochondrial morphology at the night phase. Acrylamide blocked circadian protein expression via repressing the phosphorylation of AKT or inducing oxidative stress. Taken together, our work reveals acrylamide as a clock-repressing compound generated through the Maillard browning reaction in certain foods that may possess a toxic effect via circadian clock mechanisms.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Zihan Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yijie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
30
|
Gao LM, Xie CY, Zhang TY, Wu X, Yin YL. Maternal supplementation with calcium varying with feeding time daily during late pregnancy affects lipid metabolism and transport of placenta in pigs. Biochem Biophys Res Commun 2018; 505:624-630. [PMID: 30278888 DOI: 10.1016/j.bbrc.2018.09.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 01/18/2023]
Abstract
To investigate effects of Ca level varying with feeding time daily in sows during late pregnancy on placental lipid metabolism and transport in pigs, sixty pregnant sows were assigned to 3 groups: the CON group was fed low-Ca diet with 11.25 g CaCO3 at 0600 h and 1500 h, H-L group was fed low-Ca diet with 22.5 g CaCO3 at 0600 h and low-Ca diet at 1500 h, and L-H group was fed low-Ca diet at 0600 h and low-Ca diet with 22.5 g CaCO3 at 1500 h, respectively. Serum from sows and umbilical cord and placenta were collected during delivery. Results showed that, compared with the CON group, H-L feeding significantly increased maternal serum total triglyceride (TG) and umbilical serum high-density lipoprotein (HDL) (P < 0.05). The results showed that long chain fatty acid (FA) contents in placenta were significantly increased in H-L and L-H groups (P < 0.05). Experiments on genes involved in glycolipid metabolism showed that H-L or L-H feeding inhibited mRNA expression of GLUT3, GLUT4, FAS, FABP1, FABPpm, FAT/CD36, while activated the mRNA expression of FASD1, FASD2 and SCD in placenta (P < 0.05). In addition, experiments on genes involved in biological clock showed that L-H feeding sequence activated the mRNA expression of per1 and clock, while H-L and L-H feeding sequence inhibited mRNA expression of per2 in placenta (P < 0.05). It is concluded that maternal supplementation with Ca varying with feeding time daily during late pregnancy affects placental lipid metabolism and transport in pigs by regulating the mRNA expression related to lipid metabolism and the circadian clock.
Collapse
Affiliation(s)
- Lu-Min Gao
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, China
| | - Chun-Yan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Tian-Yong Zhang
- Henan Guang'an Biology Technology Co. Ltd, Zhengzhou, Henan, 450001, China
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, China.
| | - Yu-Long Yin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, 410125, China
| |
Collapse
|
31
|
Zhang D, Tong X, Nelson BB, Jin E, Sit J, Charney N, Yang M, Omary MB, Yin L. The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARα pathway. Hepatology 2018; 68:883-896. [PMID: 29534306 PMCID: PMC6428639 DOI: 10.1002/hep.29878] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Alcohol liver disease (ALD) is one of the major chronic liver diseases worldwide, ranging from fatty liver, alcoholic hepatitis, cirrhosis, and potentially, hepatocellular carcinoma. Epidemiological studies suggest a potential link between ALD and impaired circadian rhythms, but the role of hepatic circadian proteins in the pathogenesis of ALD remains unknown. Here we show that the circadian clock protein BMAL1 in hepatocytes is both necessary and sufficient to protect mice from ALD. Ethanol diet-fed mice with liver-specific knockout (Bmal1-LKO) or depletion of Bmal1 develop more severe liver steatosis and injury as well as a simultaneous suppression of both de novo lipogenesis and fatty acid oxidation, which can be rescued by the supplementation of synthetic PPARα ligands. Restoring de novo lipogenesis in the liver of Bmal1-LKO mice by constitutively active AKT not only elevates hepatic fatty acid oxidation but also alleviates ethanol-induced fatty liver and liver injury. Furthermore, hepatic over-expression of lipogenic transcription factor ChREBP, but not SREBP-1c, in the liver of Bmal1-LKO mice also increases fatty acid oxidation and partially reduces ethanol-induced fatty liver and liver injury. Conclusion: we identified a protective role of BMAL1 in hepatocytes against ALD. The protective action of BMAL1 during alcohol consumption depends on its ability to couple ChREBP-induced de novo lipogenesis with PPARα-mediated fatty oxidation. (Hepatology 2018).
Collapse
Affiliation(s)
- Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Bradley B Nelson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Ethan Jin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Julian Sit
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Nicholas Charney
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Meichan Yang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
32
|
Bailey SM. Emerging role of circadian clock disruption in alcohol-induced liver disease. Am J Physiol Gastrointest Liver Physiol 2018; 315:G364-G373. [PMID: 29848023 PMCID: PMC6732736 DOI: 10.1152/ajpgi.00010.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The detrimental health effects of excessive alcohol consumption are well documented. Alcohol-induced liver disease (ALD) is the leading cause of death from chronic alcohol use. As with many diseases, the etiology of ALD is influenced by how the liver responds to other secondary insults. The molecular circadian clock is an intrinsic cellular timing system that helps organisms adapt and synchronize metabolism to changes in their environment. The clock also influences how tissues respond to toxic, environmental, and metabolic stressors, like alcohol. Consistent with the essential role for clocks in maintaining health, genetic and environmental disruption of the circadian clock contributes to disease. While a large amount of rich literature is available showing that alcohol disrupts circadian-driven behaviors and that circadian clock disruption increases alcohol drinking and preference, very little is known about the role circadian clocks play in alcohol-induced tissue injuries. In this review, recent studies examining the effect alcohol has on the circadian clock in peripheral tissues (liver and intestine) and the impact circadian clock disruption has on development of ALD are presented. This review also highlights some of the rhythmic metabolic processes in the liver that are disrupted by alcohol and potential mechanisms through which alcohol disrupts the liver clock. Improved understanding of the mechanistic links between the circadian clock and alcohol will hopefully lead to the development of new therapeutic approaches for treating ALD and other alcohol-related organ pathologies.
Collapse
Affiliation(s)
- Shannon M. Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
Thompson KJ, Nazari SS, Jacobs WC, Grahame NJ, McKillop IH. Use of a crossed high alcohol preferring (cHAP) mouse model with the NIAAA-model of chronic-binge ethanol intake to study liver injury. Alcohol Alcohol 2018; 52:629-637. [PMID: 29036399 DOI: 10.1093/alcalc/agx063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Aims This study sought to compare mice bred to preferentially consume high amounts of alcohol (crossed-high alcohol preferring, cHAP) to c57BL/6 (C57) mice using a chronic-binge ethanol ingestion model to induce alcoholic liver disease (ALD). Methods Male C57 and cHAP mice were randomized to a Lieber-DeCarli control (LDC) diet, Lieber-DeCarli 5% (v/v) ethanol (LDE) diet or free-choice between 10% (v/v) ethanol in drinking water (EtOH-DW) and DW. After 4 weeks mice were gavaged with either 9 g/kg maltose-dextrin (LDC+MD) or 5 g/kg EtOH (LDE+Binge, EtOH-DW+Binge). Nine hours later tissue and serum were collected and analyzed. Results cHAP mice on EtOH-DW consumed significantly more ethanol than cHAP or C57 mice maintained on LDE. However, cHAP and C57 mice on the LDE+Binge regiment had greater hepatosteatosis and overall degree of liver injury compared to EtOH-DW+Binge. Changes in pro-inflammatory gene expression was more pronounced in cHAP mice than C57 mice. Analysis of liver enzymes revealed a robust induction of CYP2E1 in C57 and cHAP mice maintained on EtOH-DW+Binge or LDE+Binge. However, while C57 mice exhibited higher basal hepatic glutathione than cHAP mice, these mice appeared more susceptible to oxidative stress following LDE+Binge than cHAP counterparts. Conclusions Despite cHAP mice consuming more total ethanol prior to gavage when maintained on EtOH-DW, LDE followed by gavage created a more severe model of ALD in both C57 and cHAP mice. These data suggest factors other than total amount of alcohol consumed affect degree of ALD development in the chronic-binge model in cHAP mice. Short Summary cHAP mice voluntarily consume high amounts of ethanol and exhibited hepatic injury when subject to chronic-binge ethanol feeding with the Lieber-DeCarli diet. However, hepatic injury was reduced in cHAP mice in a chronic-binge model following voluntary high ethanol consumption in drinking water.
Collapse
Affiliation(s)
- Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Shayan S Nazari
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA.,Department of Biology, UNC at Charlotte, Charlotte, NC 28223, USA
| | - W Carl Jacobs
- Department of Pathology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| |
Collapse
|
34
|
Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. Circadian Mechanisms in Alcohol Use Disorder and Tissue Injury. Alcohol Clin Exp Res 2018; 42:668-677. [PMID: 29450896 DOI: 10.1111/acer.13612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Abstract
Heavy use of alcohol can lead to addictive behaviors and to eventual alcohol-related tissue damage. While increased consumption of alcohol has been attributed to various factors including level of alcohol exposure and environmental factors such as stress, data from behavioral scientists and physiological researchers are revealing roles for the circadian rhythm in mediating the development of behaviors associated with alcohol use disorder as well as the tissue damage that drives physiological disease. In this work, we compile recent work on the complex mutually influential relationship that exists between the core circadian rhythm and the pharmacodynamics of alcohol. As we do so, we highlight implications of the relationship between alcohol and common circadian mechanisms of effected organs on alcohol consumption, metabolism, toxicity, and pathology.
Collapse
Affiliation(s)
| | | | | | | | - Ali Keshavarzian
- Division of Digestive Disease and Nutrition, Section of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
35
|
Udoh US, Valcin JA, Swain TM, Filiano AN, Gamble KL, Young ME, Bailey SM. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice. Am J Physiol Gastrointest Liver Physiol 2018; 314:G431-G447. [PMID: 29191941 PMCID: PMC5899240 DOI: 10.1152/ajpgi.00281.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.
Collapse
Affiliation(s)
- Uduak S Udoh
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jennifer A Valcin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Telisha M Swain
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ashley N Filiano
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry, Division of Behavioral Neurobiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham , Birmingham, Alabama
| | - Shannon M Bailey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
36
|
Ghosh Dastidar S, Warner JB, Warner DR, McClain CJ, Kirpich IA. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018; 8:biom8010003. [PMID: 29342874 PMCID: PMC5871972 DOI: 10.3390/biom8010003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Both chronic and acute (binge) alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD). There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH) feeding (Lieber–DeCarli liquid diet model), chronic intragastric EtOH administration (Tsukamoto–French model), and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA) model). This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s) of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.
Collapse
Affiliation(s)
- Shubha Ghosh Dastidar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
37
|
Nagy L. Mechanisms of Hepatic Steatosis. COMPREHENSIVE TOXICOLOGY 2018:296-309. [DOI: 10.1016/b978-0-12-801238-3.95662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Blancas-Velazquez AS, Unmehopa UA, Eggels L, Koekkoek L, Kalsbeek A, Mendoza J, la Fleur SE. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats. Front Endocrinol (Lausanne) 2018; 9:154. [PMID: 29686649 PMCID: PMC5900023 DOI: 10.3389/fendo.2018.00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.
Collapse
Affiliation(s)
- Aurea Susana Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, Strasbourg, France
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Koekkoek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- *Correspondence: Susanne E. la Fleur,
| |
Collapse
|
39
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
40
|
Besing RC, Rogers CO, Paul JR, Hablitz LM, Johnson RL, McMahon LL, Gamble KL. GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus 2017; 27:890-898. [PMID: 28556462 PMCID: PMC5511075 DOI: 10.1002/hipo.22739] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022]
Abstract
Hippocampal rhythms in clock gene expression, enzymatic activity, and long-term potentiation (LTP) are thought to underlie day-night differences in memory acquisition and recall. Glycogen synthase kinase 3-beta (GSK3β) is a known regulator of hippocampal function, and inhibitory phosphorylation of GSK3β exhibits region-specific differences over the light-dark cycle. Here, we sought to determine whether phosphorylation of both GSK3α and GSK3β isoforms has an endogenous circadian rhythm in specific areas of the hippocampus and whether chronic inhibition or activation alters the molecular clock and hippocampal plasticity (LTP). Results indicated a significant endogenous circadian rhythm in phosphorylation of GSK3β, but not GSK3α, in hippocampal CA1 extracts from mice housed in constant darkness for at least 2 weeks. To examine the importance of this rhythm, genetic and pharmacological strategies were used to disrupt the GSK3 activity rhythm by chronically activating or inhibiting GSK3. Chronic activation of both GSK3 isoforms in transgenic mice (GSK3-KI mice) diminished rhythmic BMAL1 expression. On the other hand, chronic treatment with a GSK3 inhibitor significantly shortened the molecular clock period of organotypic hippocampal PER2::LUC cultures. While WT mice exhibited higher LTP magnitude at night compared to day, the day-night difference in LTP magnitude remained with greater magnitude at both times of day in mice with chronic GSK3 activity. On the other hand, pharmacological GSK3 inhibition impaired day-night differences in LTP by blocking LTP selectively at night. Taken together, these results support the model that circadian rhythmicity of hippocampal GSK3β activation state regulates day/night differences in molecular clock periodicity and a major form of synaptic plasticity (LTP).
Collapse
Affiliation(s)
- Rachel C. Besing
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney O. Rogers
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jodi R. Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren M. Hablitz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell L. Johnson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
41
|
Fujisawa K, Takami T, Matsumoto T, Yamamoto N, Sakaida I. Profiling of the circadian metabolome in thioacetamide-induced liver cirrhosis in mice. Hepatol Commun 2017; 1:704-718. [PMID: 29404487 PMCID: PMC5721444 DOI: 10.1002/hep4.1075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cirrhosis can disturb circadian rhythms, decreasing patient quality of life. Changes in metabolic products in cirrhosis are poorly understood. We evaluated changes in liver metabolism products using a thioacetamide‐induced mouse model of liver cirrhosis exhibiting circadian rhythm disturbance. Principal component analysis indicated that the circular progression found in the control group was disrupted in the thioacetamide group, and Jonckheere‐Terpstra‐Kendall analysis showed an imbalanced pattern of oscillating metabolic products. In addition to changes in serotonin and other vitamin A–related metabolites, differences in metabolic products associated with energetics, redox homeostasis, bile acid production, inflammation, and other processes were identified. Carbohydrate metabolism showed a reduction in metabolic products associated with the tricarboxylic acid cycle, suggesting up‐regulation of glycolysis and reduced mitochondrial activity. Lipid metabolism showed an increase in ω‐oxidation products, suggesting decreased β‐oxidation. Conclusion: These data will be useful for chronotherapy and modulation of circadian rhythms in patients with liver damage. (Hepatology Communications 2017;1:704–718)
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine Yamaguchi University School of Medicine Ube Yamaguchi Japan.,Department of Gastroenterology and Hepatology Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology Yamaguchi University Graduate School of Medicine Ube Yamaguchi Japan
| |
Collapse
|
42
|
Li WK, Li H, Lu YF, Li YY, Fu ZD, Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ 2017; 5:e3348. [PMID: 28533986 PMCID: PMC5438592 DOI: 10.7717/peerj.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
Aim Atorvastatin is a HMG-CoA reductase inhibitor used for hyperlipidemia. Atorvastatin is generally safe but may induce cholestasis. The present study aimed to examine the effects of atorvastatin on hepatic gene expression related to bile acid metabolism and homeostasis, as well as the expression of circadian clock genes in livers of mice. Methods Adult male mice were given atorvastatin (10, 30, and 100 mg/kg, po) daily for 30 days, and blood biochemistry, histopathology, and gene expression were examined. Results Repeated administration of atorvastatin did not affect animal body weight gain or liver weights. Serum enzyme activities were in the normal range. Histologically, the high dose of atorvastatin produced scattered swollen hepatocytes, foci of feathery-like degeneration, together with increased expression of Egr-1 and metallothionein-1. Atorvastatin increased the expression of Cyp7a1 in the liver, along with FXR and SHP. In contract, atorvastatin decreased the expression of bile acid transporters Ntcp, Bsep, Ostα, and Ostβ. The most dramatic change was the 30-fold induction of Cyp7a1. Because Cyp7a1 is a circadian clock-controlled gene, we further examined the effect of atorvastatin on clock gene expression. Atorvastatin increased the expression of clock core master genes Bmal1 and Npas2, decreased the expression of clock feedback genes Per2, Per3, and the clock targeted genes Dbp and Tef, whereas it had no effect on Cry1 and Nr1d1 expression. Conclusion Repeated administration of atorvastatin affects bile acid metabolism and markedly increases the expression of the bile acid synthesis rate-limiting enzyme gene Cyp7a1, together with alterations in the expression of circadian clock genes.
Collapse
Affiliation(s)
- Wen-Kai Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China.,Department of Pharmacology, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Huan Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Ying-Ying Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| |
Collapse
|
43
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
44
|
Zhou X, Wan D, Zhang Y, Zhang Y, Long C, Chen S, He L, Tan B, Wu X, Yin Y. Diurnal variations in polyunsaturated fatty acid contents and expression of genes involved in their de novo synthesis in pigs. Biochem Biophys Res Commun 2016; 483:430-434. [PMID: 28013051 DOI: 10.1016/j.bbrc.2016.12.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
Abstract
The daily variations in circulating fatty acid (FA) contents and lipid metabolism have been well documented. However, whether long chain polyunsaturated FA (PUFA) contents and expression of genes involved in their de novo synthesis exhibit daily rhythms are yet unknown. We conducted the present study to investigate the daily variations in PUFA contents in plasma and liver of pigs. Moreover, diurnal expression of genes encode fatty acid desaturases and elongases, which are key enzymes catalyzed de novo synthesis of long chain PUFA, were also explored. The results showed that long chain PUFA contents in plasma and liver both exhibited diurnal rhythms. Diurnal variations were also observed in mRNA expression of FASD1 (Delta 5-desaturase), FASD2 (Delta 6-desaturase), ELOVL5 (fatty acid elongase 5) and ELOVL2 in liver, with an unexpectedly high level at night. Moreover, our results showed a similarity between the diurnal patterns of FASD1, FASD2, ELOVL2, ELOVL5 and Period 2. These results indicated a high activity of the desaturase-elongase pathway at night in pigs. These findings have important physiological and pathophysiological implications, since long chain PUFA are essential for cell function and closely involved in the development of metabolic syndrome.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Dan Wan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | - Yumei Zhang
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, College of Animal Science and Technology, Hunan Agricultural University, Nongda Road 1, Changsha 410128, China
| | - Yiming Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Cimin Long
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| |
Collapse
|
45
|
Guo R, Simasko SM, Jansen HT. Chronic Alcohol Consumption in Rats Leads to Desynchrony in Diurnal Rhythms and Molecular Clocks. Alcohol Clin Exp Res 2016; 40:291-300. [PMID: 26842248 DOI: 10.1111/acer.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Circadian rhythms are essential for adapting to the environment. Chronic alcohol consumption often leads to sleep and circadian disruptions, which may impair the life quality of individuals with alcohol use disorders and contribute to the morbidity associated with alcoholism. METHODS We used a pair-feeding liquid diet alcohol exposure protocol (6 weeks duration) in PER1::LUC transgenic rats to examine the effects of chronic alcohol exposure on: (i) diurnal rhythms of core body temperature and locomotor activity, (ii) plasma corticosterone (CORT) concentrations, and (iii) rhythms of ex vivo Period1 (Per1) expression in the suprachiasmatic nucleus (SCN), pituitary, and adrenal glands. We followed multiple circadian outputs not only to examine individual components, but also to assess the relative phase relationships among rhythms. RESULTS We found that chronic alcohol consumption: (i) reduced 24-hour body temperature and locomotor activity counts in the dark period, (ii) advanced the acrophase of diurnal rhythms of body temperature and locomotor activity, (iii) abolished the phase difference between temperature and activity rhythms, (iv) blunted and advanced the diurnal CORT rhythm, and (v) advanced Per1 expression in the adrenal and pituitary glands but not in the SCN. We found that chronic alcohol altered the phase relationships among diurnal rhythms and between the central (SCN) and peripheral (adrenal and pituitary) molecular clocks. CONCLUSIONS Our findings suggest that desynchrony among internal rhythms is an important and overlooked aspect of alcohol-induced circadian disruptions. The misalignment of phases among rhythms may compromise normal physiological functions and put individuals with chronic alcohol use at greater risk for developing other physical and mental health issues. How this desynchrony occurs and the extent to which it participates in alcohol-related pathologies requires further investigation.
Collapse
Affiliation(s)
- Rong Guo
- Programs in Neuroscience, Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Steve M Simasko
- Programs in Neuroscience, Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Heiko T Jansen
- Programs in Neuroscience, Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
46
|
Souza-Smith FM, Lang CH, Nagy LE, Bailey SM, Parsons LH, Murray GJ. Physiological processes underlying organ injury in alcohol abuse. Am J Physiol Endocrinol Metab 2016; 311:E605-19. [PMID: 27436613 PMCID: PMC5142006 DOI: 10.1152/ajpendo.00270.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
This review summarizes the American Physiological Society (APS) Presidential Symposium 1 entitled "Physiological Processes Underlying Organ Injury in Alcohol Abuse" at the 2016 Experimental Biology meeting. The symposium was organized by Dr. Patricia Molina, past president of the APS, was held on April 3 at the Convention Center in San Diego, CA, and was funded by the National Institute on Alcohol Abuse and Alcoholism. The "Physiological Processes Underlying Organ Injury in Alcohol Abuse Symposium" assembled experts and leaders in the field and served as a platform to discuss and share knowledge on the latest developments and scientific advances on the mechanisms underlying organ injury in alcohol abuse. This symposium provided unique, interdisciplinary alcohol research, including several organs, liver, muscle, adipose, and brain, affected by excessive alcohol use.
Collapse
Affiliation(s)
- Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana;
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shannon M Bailey
- Department of Pathology, University of Alabama, Birmingham, Alabama
| | | | - Gary J Murray
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
47
|
Transcription Profile in Sporadic Multiple Symmetric Lipomatosis Reveals Differential Expression at the Level of Adipose Tissue-Derived Stem Cells. Plast Reconstr Surg 2016; 137:1181-1190. [PMID: 27018673 DOI: 10.1097/prs.0000000000002013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The cause of the rare fat distribution disorder multiple symmetric lipomatosis is unknown. Independent reports suggest a higher proliferative activity, hormone resistance, and involvement of mitochondrial function in the disease. METHODS The authors performed morphologic comparison of affected and unaffected tissues in five unrelated patients and generated adipose-derived stem cell cultures from the tissue samples and characterized them as a possible cellular model of multiple symmetric lipomatosis evolution. The authors investigated proliferative activity and the expression of genes relevant to disease processes. RESULTS There was no difference in the morphologic appearance and the surface marker profile. Stem cells from lipomatous tissue showed significantly higher proliferative activity. Polymerase chain reaction arrays showed marked changes in genes associated with proliferation, hormonal regulation, and mitochondria. The authors show that multiple symmetric lipomatosis tissue is morphologically and histologically different from regular subcutaneous fat. CONCLUSIONS This study indicates an involvement of mesenchymal stem cells in the pathogenesis of multiple symmetric lipomatosis and that the evolution of multiple symmetric lipomatosis tissue is a process driven by an inherent defect of the respective cell clone(s). Further molecular genetics and functional analysis will be required to unravel the pathogenetic mechanism underlying the derailment in fat cell metabolism and proliferation. Here, the authors show for the first time that adipose-derived stem cells exhibit many characteristics previously described for native multiple symmetric lipomatosis fat tissue and propose that they are therefore an excellent tool for further functional investigations in multiple symmetric lipomatosis and other disorders of the fat tissue. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, V.
Collapse
|
48
|
Abstract
The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.
Collapse
|
49
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
50
|
Kuttippurathu L, Patra B, Hoek JB, Vadigepalli R. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration. MOLECULAR BIOSYSTEMS 2016; 12:1037-56. [PMID: 26847025 PMCID: PMC4891188 DOI: 10.1039/c5mb00740b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Biswanath Patra
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. and Mitocare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. and Mitocare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|