1
|
Yoshii A, McMillen TS, Wang Y, Zhou B, Chen H, Banerjee D, Herrero M, Wang P, Muraoka N, Wang W, Murry CE, Tian R. Blunted Cardiac Mitophagy in Response to Metabolic Stress Contributes to HFpEF. Circ Res 2024; 135:1004-1017. [PMID: 39328167 PMCID: PMC11502249 DOI: 10.1161/circresaha.123.324103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Metabolic remodeling and mitochondrial dysfunction are hallmarks of heart failure with reduced ejection fraction. However, their role in the pathogenesis of HF with preserved ejection fraction (HFpEF) is poorly understood. METHODS In a mouse model of HFpEF, induced by high-fat diet and Nω-nitrol-arginine methyl ester, cardiac energetics was measured by 31P nuclear magnetic resonance (NMR) spectroscopy and substrate oxidation profile was assessed by 13C-isotopmer analysis. Mitochondrial functions were assessed in the heart tissue and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS HFpEF hearts presented a lower phosphocreatine content and a reduced phosphocreatine/ATP ratio, similar to that in heart failure with reduced ejection fraction. Decreased respiratory function and increased reactive oxygen species production were observed in mitochondria isolated from HFpEF hearts suggesting mitochondrial dysfunction. Cardiac substrate oxidation profile showed a high dependency on fatty acid oxidation in HFpEF hearts, which is the opposite of heart failure with reduced ejection fraction but similar to that in high-fat diet hearts. However, phosphocreatine/ATP ratio and mitochondrial function were sustained in the high-fat diet hearts. We found that mitophagy was activated in the high-fat diet heart but not in HFpEF hearts despite similar extent of obesity suggesting that mitochondrial quality control response was impaired in HFpEF hearts. Using a human induced pluripotent stem cell-derived cardiomyocyte mitophagy reporter, we found that fatty acid loading stimulated mitophagy, which was obliterated by inhibiting fatty acid oxidation. Enhancing fatty acid oxidation by deleting ACC2 (acetyl-CoA carboxylase 2) in the heart stimulated mitophagy and improved HFpEF phenotypes. CONCLUSIONS Maladaptation to metabolic stress in HFpEF hearts impairs mitochondrial quality control and contributed to the pathogenesis, which can be improved by stimulating fatty acid oxidation.
Collapse
Affiliation(s)
- Akira Yoshii
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Timothy S. McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Yajun Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Durba Banerjee
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melisa Herrero
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Wang JX, Zhang YY, Qian YC, Qian YF, Jin AH, Wang M, Luo Y, Qiao F, Zhang ML, Chen LQ, Du ZY. Inhibition of mitochondrial citrate shuttle alleviates metabolic syndromes induced by high-fat diet. Am J Physiol Cell Physiol 2024; 327:C737-C749. [PMID: 39069827 DOI: 10.1152/ajpcell.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yan-Yu Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yu-Cheng Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yi-Fan Qian
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - An-Hui Jin
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mai Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. J Am Heart Assoc 2024; 13:e033676. [PMID: 38533937 PMCID: PMC11179765 DOI: 10.1161/jaha.123.033676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.
Collapse
Affiliation(s)
- Kylene M. Harold
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Brooke L. Loveland
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
4
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of cardiac PFKFB2 drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568379. [PMID: 38045353 PMCID: PMC10690253 DOI: 10.1101/2023.11.22.568379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.
Collapse
|
5
|
Inhibition of Pyruvate Dehydrogenase in the Heart as an Initiating Event in the Development of Diabetic Cardiomyopathy. Antioxidants (Basel) 2023; 12:antiox12030756. [PMID: 36979003 PMCID: PMC10045649 DOI: 10.3390/antiox12030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Obesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles. However, the progression of metabolic changes and mechanisms by which these changes impact the heart have not been established. Cardiac pyruvate dehydrogenase (PDH), the central regulatory site for glucose oxidation, is rapidly inhibited in mice fed high dietary fat, a model of obesity and diabetes. Increased reliance on fatty acid oxidation for energy production, in turn, enhances mitochondrial pro-oxidant production. Inhibition of PDH may therefore initiate metabolic inflexibility and oxidative stress and precipitate diabetic cardiomyopathy. We discuss evidence from the literature that supports a role for PDH inhibition in loss in energy homeostasis and diastolic function in obese and diabetic humans and in rodent models. Finally, seemingly contradictory findings highlight the complexity of the disease and the need to delineate progressive changes in cardiac metabolism, the impact on myocardial structure and function, and the ability to intercede.
Collapse
|
6
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
8
|
Guo Y, Wen J, He A, Qu C, Peng Y, Luo S, Wang X. iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation. J Adv Res 2023; 43:175-186. [PMID: 36585107 PMCID: PMC9811328 DOI: 10.1016/j.jare.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Despite the high morbidity and mortality of heart failure with preserved fraction (HFpEF), there are currently no effective therapies for this condition. Moreover, the pathophysiological basis of HFpEF remains poorly understood. OBJECTIVE The aim of the present study was to investigate the role of inducible nitric oxide synthase (iNOS) and its underlying mechanism in a high-fat diet and Nω-nitro-L-arginine methyl ester-induced HFpEF mouse model. METHODS The selective iNOS inhibitor L-NIL was used to examine the effects of short-term iNOS inhibition, whereas the long-term effects of iNOS deficiency were evaluated using iNOS-null mice. Cardiac and mitochondrial function, oxidative stress and Akt S-nitrosylation were then measured. RESULTS The results demonstrated that both pharmacological inhibition and iNOS knockout mitigated mitochondrial dysfunction, oxidative stress and Akt S-nitrosylation, leading to an ameliorated HFpEF phenotype in mice. In vitro, iNOS directly induced Akt S-nitrosylation at cysteine 224 residues , leading to oxidative stress, while inhibiting insulin-mediated glucose uptake in myocytes. CONCLUSION Altogether, the present findings suggested an important role for iNOS in the pathophysiological development of HFpEF, indicating that iNOS inhibition may represent a potential therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junjie Wen
- Division of Cardiology, West China Guang'an Hospital of Sichan University, Guang'an 638500, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuce Peng
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Bakar MHA, Shahril NSN, Khalid MSFM, Mohammad S, Shariff KA, Karunakaran T, Salleh RM, Rosdi MN. Celastrol alleviates high-fat diet-induced obesity via enhanced muscle glucose utilization and mitochondrial oxidative metabolism-mediated upregulation of pyruvate dehydrogenase complex. Toxicol Appl Pharmacol 2022; 449:116099. [DOI: 10.1016/j.taap.2022.116099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
10
|
Tong D, Schiattarella GG, Jiang N, Altamirano F, Szweda PA, Elnwasany A, Lee DI, Yoo H, Kass DA, Szweda LI, Lavandero S, Verdin E, Gillette TG, Hill JA. NAD + Repletion Reverses Heart Failure With Preserved Ejection Fraction. Circ Res 2021; 128:1629-1641. [PMID: 33882692 PMCID: PMC8159891 DOI: 10.1161/circresaha.120.317046] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dan Tong
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Gabriele G. Schiattarella
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Nan Jiang
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Francisco Altamirano
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Pamela A. Szweda
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Abdallah Elnwasany
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Dong Ik Lee
- Medicine (Cardiology), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Heesoo Yoo
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - David A. Kass
- Medicine (Cardiology), Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Luke I. Szweda
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Sergio Lavandero
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
- Advanced Center for Chronic Diseases (ACCDiS) & Corporacion Estudios Cientificos de las Enfermedades Cronicas (CECEC), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Eric Verdin
- Bulk Institute for Research on Aging, Novato, CA, USA, 94945
| | - Thomas G. Gillette
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| | - Joseph A. Hill
- Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA, 75390-8573
| |
Collapse
|
11
|
Dvořák A, Pospíšilová K, Žížalová K, Capková N, Muchová L, Vecka M, Vrzáčková N, Křížová J, Zelenka J, Vítek L. The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers. Front Pharmacol 2021; 12:567001. [PMID: 33746746 PMCID: PMC7969661 DOI: 10.3389/fphar.2021.567001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
Collapse
Affiliation(s)
- Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Pospíšilová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Žížalová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Capková
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Marek Vecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Vrzáčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
12
|
Mitochondrial Carriers Regulating Insulin Secretion Profiled in Human Islets upon Metabolic Stress. Biomolecules 2020; 10:biom10111543. [PMID: 33198243 PMCID: PMC7697104 DOI: 10.3390/biom10111543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic exposure of β-cells to nutrient-rich metabolic stress impairs mitochondrial metabolism and its coupling to insulin secretion. We exposed isolated human islets to different metabolic stresses for 3 days: 0.4 mM oleate or 0.4 mM palmitate at physiological 5.5 mM glucose (lipotoxicity), high 25 mM glucose (glucotoxicity), and high 25 mM glucose combined with 0.4 mM oleate and/or palmitate (glucolipotoxicity). Then, we profiled the mitochondrial carriers and associated genes with RNA-Seq. Diabetogenic conditions, and in particular glucotoxicity, increased expression of several mitochondrial solute carriers in human islets, such as the malate carrier DIC, the α-ketoglutarate-malate exchanger OGC, and the glutamate carrier GC1. Glucotoxicity also induced a general upregulation of the electron transport chain machinery, while palmitate largely counteracted this effect. Expression of different components of the TOM/TIM mitochondrial protein import system was increased by glucotoxicity, whereas glucolipotoxicity strongly upregulated its receptor subunit TOM70. Expression of the mitochondrial calcium uniporter MCU was essentially preserved by metabolic stresses. However, glucotoxicity altered expression of regulatory elements of calcium influx as well as the Na+/Ca2+ exchanger NCLX, which mediates calcium efflux. Overall, the expression profile of mitochondrial carriers and associated genes was modified by the different metabolic stresses exhibiting nutrient-specific signatures.
Collapse
|
13
|
Venkatesh S, Baljinnyam E, Tong M, Kashihara T, Yan L, Liu T, Li H, Xie LH, Nakamura M, Oka SI, Suzuki CK, Fraidenraich D, Sadoshima J. Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. Am J Physiol Regul Integr Comp Physiol 2020; 320:R547-R562. [PMID: 33112656 DOI: 10.1152/ajpregu.00207.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a twofold change at time points up to 120 days relative to 12 days were subjected to ingenuity pathway analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1-α), the insulin receptor (IR), and the retinoblastoma protein (Rb1) transcriptional repressor. IPA and immunoblotting showed upregulation of the mitochondrial LonP1 protease-a regulator of mitochondrial proteostasis, energetics, and metabolism. LonP1 knockdown increased FAO in neonatal rat ventricular cardiomyocytes (nRVMs). Our results support the notion that LonP1 upregulation negatively regulates FAO in cardiomyocytes to calibrate the flux between glucose and fatty acid oxidation. We discuss potential mechanisms by which IR, Rb1, and LonP1 regulate the metabolic shift from glycolysis to OXPHOS and FAO. These newly identified factors and pathways may help in optimizing the maturation of iPSC-CMs.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Mingming Tong
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Toshihide Kashihara
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lin Yan
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
14
|
De Jong KA, Hall LG, Renton MC, Connor T, Martin SD, Kowalski GM, Shaw CS, Bruce CR, Howlett KF, McGee SL. Loss of protein kinase D activity demonstrates redundancy in cardiac glucose metabolism and preserves cardiac function in obesity. Mol Metab 2020; 42:101105. [PMID: 33099046 PMCID: PMC7680779 DOI: 10.1016/j.molmet.2020.101105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Protein kinase D (PKD) signaling has been implicated in stress-induced cardiac remodeling and function as well as metabolic processes including contraction-mediated cardiac glucose uptake. PKD has recently emerged as a nutrient-sensing kinase that is activated in high-lipid environments, such as in obesity. However, the role of PKD signaling in cardiac glucose metabolism and cardiac function in both normal and obese conditions remains unknown. Methods A cardiac-specific and inducible dominant negative (DN) PKD mouse model was developed. Echocardiography was used to assess cardiac function, while metabolic phenotyping was performed, including stable isotope metabolomics on cardiac tissue in mice fed either regular chow or a high-fat diet (43% calories from fat). Results Cardiac PKD activity declined by ∼90% following DN PKD induction in adult mice. The mice had diminished basal cardiac glucose clearance, suggesting impaired contraction-mediated glucose uptake, but normal cardiac function. In obesity studies, systolic function indices were reduced in control mice, but not in cardiac DN PKD mice. Using targeted stable isotope metabolomic analyses, no differences in glucose flux through glycolysis or the TCA cycle were observed between groups. Conclusions The data show that PKD contributes to cardiac dysfunction in obesity and highlight the redundancy in cardiac glucose metabolism that maintains cardiac glucose flux in vivo. The data suggest that impairments in contraction-mediated glucose uptake are unlikely to drive cardiac dysfunction in both normal and metabolic disease states. Cardiac protein kinase D (PKD) is required for contraction-mediated glucose uptake. PKD is not essential for normal cardiac function. Loss of PKD activity does not alter cardiac glucose flux in normal or obese mice. Loss of cardiac PKD activity preserves cardiac function in obesity.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Greg M Kowalski
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| |
Collapse
|
15
|
Wang XP, Xing CY, Zhang JX, Zhou JH, Li YC, Yang HY, Zhang PF, Zhang W, Huang Y, Long JG, Gao F, Zhang X, Li J. Time-restricted feeding alleviates cardiac dysfunction induced by simulated microgravity via restoring cardiac FGF21 signaling. FASEB J 2020; 34:15180-15196. [PMID: 32954538 DOI: 10.1096/fj.202001246rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/11/2022]
Abstract
Dietary restriction has been well-described to improve health metrics, but whether it could benefit pathophysiological adaptation to extreme environment, for example, microgravity, remains unknown. Here, we investigated the effects of a daily rhythm of fasting and feeding without reducing caloric intake on cardiac function and metabolism against simulated microgravity. Male rats under ad libitum feeding or time-restricted feeding (TRF; food access limited to 8 hours every day) were subjected to hindlimb unloading (HU) to simulate microgravity. HU for 6 weeks led to left ventricular dyssynchrony and declined cardiac function. HU also lowered pyruvate dehydrogenase (PDH) activity and impaired glucose utilization in the heart. All these were largely preserved by TRF. TRF showed no effects on HU-induced loss of cardiac mass, but significantly improved contractile function of cardiomyocytes. Interestingly, TRF raised liver-derived fibroblast growth factor 21 (FGF21) level and enhanced cardiac FGF21 signaling as manifested by upregulation of FGF receptor-1 (FGFR1) expression and its downstream markers in HU rats. In isolated cardiomyocytes, FGF21 treatment improved PDH activity and glucose utilization, consequently enhancing cell contractile function. Finally, both liver-specific knockdown (KD) of FGF21 and cardiac-specific FGFR1 KD abrogated the cardioprotective effects of TRF in HU rats. These data demonstrate that TRF improves cardiac glucose utilization and ameliorates cardiac dysfunction induced by simulated microgravity, at least partially, through restoring cardiac FGF21 signaling, suggesting TRF as a potential countermeasure for cardioprotection in long-term spaceflight.
Collapse
Affiliation(s)
- Xin-Pei Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Chang-Yang Xing
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China.,Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Xin Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Heng Zhou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yun-Chu Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Hong-Yan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Peng-Fei Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Jian-Gang Long
- Center for Mitochondrial Biology and Medicine, Center for Translational Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Løkken N, Hansen KK, Storgaard JH, Ørngreen MC, Quinlivan R, Vissing J. Titrating a modified ketogenic diet for patients with McArdle disease: A pilot study. J Inherit Metab Dis 2020; 43:778-786. [PMID: 32060930 DOI: 10.1002/jimd.12223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/01/2023]
Abstract
Glycogen storage disease type V (GSDV) is a rare inborn error of carbohydrate metabolism. Patients present with exercise intolerance due to blocked glycogen breakdown in skeletal muscle. Introducing alternative fuel substrates, such as ketone bodies (KBs), could potentially alleviate muscle symptoms. This pilot study investigates which of three different modified ketogenic diet regimes is optimal for GSDV-patients to follow in a future large-scale study. Participants were randomised to follow one of three diet regimes for 3 weeks (#1: 65%/15%/20%; #2: 75%/15%/10%, or #3: 80%/15%/5%, fat/protein/carbohydrate). The primary outcome was exercise tolerance assessed by heart rate (HR) changes during constant load cycling. Secondary outcomes included levels of ketosis, and changes in perceived exertion and indirect calorimetry measures during exercise. Ten GSDV-patients were included. Eight completed the study. The other two were excluded. Diet #3 showed the highest average KB level (1.1 mmol/L) vs #2 (0.5 mmol/L) and #1 (0.3 mmol/L). Five patients reported subjective symptom relief, all of whom were on diets #2 and #3. All diet regimes seemed to improve fatty acid oxidation rates and exercise capacity as indicated by a small decrease in HR and perceived exertion. The results of this open-label pilot study show that diets #2 and #3 induce ketosis and improve symptoms and exercise capacity in GSDV-patients. Diet #2 had the highest acceptability score and was superior or equal to diet #3 in all other parameters, except level of ketosis. Based on this, we suggest testing diet #2 in a large-scale, placebo-controlled study in GSDV.
Collapse
Affiliation(s)
- Nicoline Løkken
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kit K Hansen
- The Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jesper H Storgaard
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette C Ørngreen
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ros Quinlivan
- The Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
17
|
Sahraoui A, Dewachter C, Vegh G, Mc Entee K, Naeije R, Bouguerra SA, Dewachter L. High fat diet altered cardiac metabolic gene profile in Psammomys obesus gerbils. Lipids Health Dis 2020; 19:123. [PMID: 32493392 PMCID: PMC7271448 DOI: 10.1186/s12944-020-01301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/22/2020] [Indexed: 01/18/2023] Open
Abstract
Background In metabolic disorders, myocardial fatty infiltration is critically associated with lipotoxic cardiomyopathy. Methods Twenty Psammomys obesus gerbils were randomly assigned to normal plant or high fat diet. Sixteen weeks later, myocardium was sampled for pathobiological evaluation. Results A sixteen-week high fat diet resulted in myocardial structure disorganization, with collagen deposits, lipid accumulation, cardiomyocyte apoptosis and inflammatory cell infiltration. Myocardial expressions of glucose transporter GLUT1 and pyruvate dehydrogenase (PDH) inhibitor, PDH kinase (PDK)4 increased, while insulin-regulated GLUT4 expression remained unchanged. Myocardial expressions of molecules regulating fatty acid transport, CD36 and fatty acid binding protein (FABP)3, were increased, while expression of rate-controlling fatty acid β-oxidation, carnitine palmitoyl transferase (CPT)1B decreased. Myocardial expression of AMP-activated protein kinase (AMPK), decreased, while expression of peroxisome proliferator activated receptors (PPAR)-α and -γ did not change. Conclusion In high fat diet fed Psammomys obesus, an original experimental model of nutritionally induced metabolic syndrome mixing genetic predisposition and environment interactions, a short period of high fat feeding was sufficient to induce myocardial structural alterations, associated with altered myocardial metabolic gene expression in favor of lipid accumulation.
Collapse
Affiliation(s)
- Abdelhamid Sahraoui
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium.,Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria.,Faculté des Sciences de la Nature et de la Vie & des Sciences de la Terre, University Djilali Bounaama of Khemis Miliana, 44225, Khemis Miliana, Algeria
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium.,Department of Cardiology, Cliniques Universitaires de Bruxelles, Hôpital Académique Erasme, Bruxelles, Belgium
| | - Grégory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium
| | - Kathleen Mc Entee
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium
| | - Souhila Aouichat Bouguerra
- Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium.
| |
Collapse
|
18
|
Locatelli P, Belaich MN, López AE, Olea FD, Uranga Vega M, Giménez CS, Simonin JA, Bauzá MDR, Castillo MG, Cuniberti LA, Crottogini A, Cerrudo CS, Ghiringhelli PD. Novel insights into cardiac regeneration based on differential fetal and adult ovine heart transcriptomic analysis. Am J Physiol Heart Circ Physiol 2020; 318:H994-H1007. [PMID: 32167779 DOI: 10.1152/ajpheart.00610.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting. Thus we aimed at characterizing the transcriptomic profiles of the early fetal, late fetal, and adult sheep heart by employing RNA-seq technique and bioinformatic analysis to detect protein-encoding genes that in some of the stages were turned off, turned on, or differentially expressed. Genes earlier proposed as positive cell cycle regulators such as cyclin A, cdk2, meis2, meis3, and PCNA showed higher expression in fetal hearts and lower in AH, as expected. In contrast, genes previously proposed as cell cycle inhibitors, such as meis1, p16, and sav1, tended to be higher in fetal than in adult hearts, suggesting that these genes are involved in cell processes other than cell cycle regulation. Additionally, we described Gene Ontology (GO) enrichment of different sets of genes. GO analysis revealed that differentially expressed gene sets were mainly associated with metabolic and cellular processes. The cell cycle-related genes fam64a, cdc20, and cdk1, and the metabolism-related genes pitx and adipoq showed strong differential expression between fetal and adult hearts, thus being potent candidates to be targeted in human cardiac regeneration strategies.NEW & NOTEWORTHY We characterized the transcriptomic profiles of the fetal and adult sheep hearts employing RNAseq technique and bioinformatic analyses to provide sets of transcripts whose variation in expression level may link them to a specific role in cell cycle regulation. It is important to remark that this study was performed in a large mammal closer to humans than laboratory rodents. In consequence, the results can be used for further translational studies in cardiac regeneration.
Collapse
Affiliation(s)
- Paola Locatelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Mariano N Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Ayelén E López
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Fernanda D Olea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Martín Uranga Vega
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Carlos S Giménez
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Del Rosario Bauzá
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Marta G Castillo
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Luis A Cuniberti
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Alberto Crottogini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Carolina S Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Pablo D Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular; CONICET, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
19
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Newhardt MF, Batushansky A, Matsuzaki S, Young ZT, West M, Chin NC, Szweda LI, Kinter M, Humphries KM. Enhancing cardiac glycolysis causes an increase in PDK4 content in response to short-term high-fat diet. J Biol Chem 2019; 294:16831-16845. [PMID: 31562244 DOI: 10.1074/jbc.ra119.010371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.
Collapse
Affiliation(s)
- Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Melinda West
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Ngun Cer Chin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
21
|
Inserte J, Aluja D, Barba I, Ruiz-Meana M, Miró E, Poncelas M, Vilardosa Ú, Castellano J, Garcia-Dorado D. High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J Mol Cell Cardiol 2019; 133:164-173. [DOI: 10.1016/j.yjmcc.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023]
|
22
|
Golias T, Kery M, Radenkovic S, Papandreou I. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. Int J Cancer 2018; 144:674-686. [PMID: 30121950 DOI: 10.1002/ijc.31812] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
During malignant progression cancer cells undergo a series of changes, which promote their survival, invasiveness and metastatic process. One of them is a change in glucose metabolism. Unlike normal cells, which mostly rely on the tricarboxylic acid cycle (TCA), many cancer types rely on glycolysis. Pyruvate dehydrogenase complex (PDC) is the gatekeeper enzyme between these two pathways and is responsible for converting pyruvate to acetyl-CoA, which can then be processed further in the TCA cycle. Its activity is regulated by PDP (pyruvate dehydrogenase phosphatases) and PDHK (pyruvate dehydrogenase kinases). Pyruvate dehydrogenase kinase exists in 4 tissue specific isoforms (PDHK1-4), the activities of which are regulated by different factors, including hormones, hypoxia and nutrients. PDHK1 and PDHK3 are active in the hypoxic tumor microenvironment and inhibit PDC, resulting in a decrease of mitochondrial function and activation of the glycolytic pathway. High PDHK1/3 expression is associated with worse prognosis in patients, which makes them a promising target for cancer therapy. However, a better understanding of PDC's enzymatic regulation in vivo and of the mechanisms of PDHK-mediated malignant progression is necessary for the design of better PDHK inhibitors and the selection of patients most likely to benefit from such inhibitors.
Collapse
Affiliation(s)
- Tereza Golias
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martin Kery
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Radenkovic
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and Wexner Medical Center, Columbus, OH
| |
Collapse
|
23
|
Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ. Cell Physiol Biochem 2018; 48:1317-1331. [PMID: 30048968 PMCID: PMC6179152 DOI: 10.1159/000492091] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/25/2018] [Indexed: 01/07/2023] Open
Abstract
Background/Aims: Systemic hyperlipidemia and intracellular lipid accumulation induced by chronic high fat diet (HFD) leads to enhanced fatty acid oxidation (FAO) and ketogenesis. The present study was aimed to determine whether activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) by surplus free fatty acids (FA) in hyperlipidemic condition, has a positive feedback regulation over FAO and ketogenic enzymes controlling lipotoxicity and cardiac apoptosis. Methods: 8 weeks old C57BL/6 wild type (WT) or PPAR-γ−/− mice were challenged with 16 weeks 60% HFD to induce obesity mediated type 2 diabetes mellitus (T2DM) and diabetic cardiomyopathy. Treatment course was followed by echocardiographic measurements, glycemic and lipid profiling, immunoblot, qPCR and immunohistochemistry (IHC) analysis of PPAR-γ and following mitochondrial metabolic enzymes 3-hydroxy-3- methylglutaryl-CoA synthase (HMGCS2), mitochondrial β-hydroxy butyrate dehydrogenase (BDH1) and pyruvate dehydrogenase kinase isoform 4 (PDK4). In vivo model was translated in vitro, with neonatal rat cardiomyocytes (NRCM) treated with PPAR-γ agonist/antagonist and PPAR-γ overexpression adenovirus in presence of palmitic acid (PA). Apoptosis was determined in vivo from left ventricular heart by TUNEL assay and immunoblot analysis. Results: We found exaggerated circulating ketone bodies production and expressions of the related mitochondrial enzymes HMGCS2, BDH1 and PDK4 in HFD-induced diabetic hearts and in PA-treated NRCM. As a mechanistic approach we found HFD mediated activation of PPAR-03B3 is associated with the above-mentioned mitochondrial enzymes. HFD-fed PPAR-γ−/− mice display decreased hyperglycemia, hyperlipidemia associated with increased insulin responsiveness as compared to HFD-fed WT mice PPAR-γ−/−−HFD mice demonstrated a more robust functional recovery after diabetes induction, as well as significantly reduced myocyte apoptosis and improved cardiac function. Conclusions: PPAR-γ has been described previously to regulate lipid metabolism and adipogenesis. The present study suggests for the first time that increased PPAR-γ expression by HFD is responsible for cardiac dysfunction via upregulation of mitochondrial enzymes HMGCS2, BDH1 and PDK4. Targeting PPAR-γ and its downstream mitochondrial enzymes will provide novel strategies in preventing metabolic and myocardial dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Kunal Sikder
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sanket Kumar Shukla
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Neel Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Khadija Rafiq
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Rohm M, Savic D, Ball V, Curtis MK, Bonham S, Fischer R, Legrave N, MacRae JI, Tyler DJ, Ashcroft FM. Cardiac Dysfunction and Metabolic Inflexibility in a Mouse Model of Diabetes Without Dyslipidemia. Diabetes 2018; 67:1057-1067. [PMID: 29610263 DOI: 10.2337/db17-1195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022]
Abstract
Diabetes is a well-established risk factor for heart disease, leading to impaired cardiac function and a metabolic switch toward fatty acid usage. In this study, we investigated if hyperglycemia/hypoinsulinemia in the absence of dyslipidemia is sufficient to drive these changes and if they can be reversed by restoring euglycemia. Using the βV59M mouse model, in which diabetes can be rapidly induced and reversed, we show that stroke volume and cardiac output were reduced within 2 weeks of diabetes induction. Flux through pyruvate dehydrogenase was decreased, as measured in vivo by hyperpolarized [1-13C]pyruvate MRS. Metabolomics showed accumulation of pyruvate, lactate, alanine, tricarboxyclic acid cycle metabolites, and branched-chain amino acids. Myristic and palmitoleic acid were decreased. Proteomics revealed proteins involved in fatty acid metabolism were increased, whereas those involved in glucose metabolism decreased. Western blotting showed enhanced pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) expression. Elevated PDK4 and UCP3 and reduced pyruvate usage were present 24 h after diabetes induction. The observed effects were independent of dyslipidemia, as mice showed no evidence of elevated serum triglycerides or lipid accumulation in peripheral organs (including the heart). The effects of diabetes were reversible, as glibenclamide therapy restored euglycemia, cardiac metabolism and function, and PDK4/UCP3 levels.
Collapse
Affiliation(s)
- Maria Rohm
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, U.K
| | - Dragana Savic
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - M Kate Curtis
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Sarah Bonham
- Discovery Proteomics Facility, Target Discovery Institute, University of Oxford, Oxford, U.K
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, University of Oxford, Oxford, U.K
| | | | | | - Damian J Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, U.K.
| |
Collapse
|
25
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Schafer C, Young ZT, Makarewich CA, Elnwasany A, Kinter C, Kinter M, Szweda LI. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice. J Biol Chem 2018. [PMID: 29540486 DOI: 10.1074/jbc.ra117.000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for β-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.
Collapse
Affiliation(s)
- Christopher Schafer
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Catherine A Makarewich
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Abdallah Elnwasany
- the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Caroline Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Michael Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| |
Collapse
|
27
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
28
|
Kezos JN, Cabral LG, Wong BD, Khou BK, Oh A, Harb JF, Chiem D, Bradley TJ, Mueller LD, Rose MR. Starvation but not locomotion enhances heart robustness in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:8-14. [PMID: 28285040 DOI: 10.1016/j.jinsphys.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Insects and vertebrates have multiple major physiological systems, each species having a circulatory system, a metabolic system, and a respiratory system that enable locomotion and survival in stressful environments, among other functions. Broadening our understanding of the physiology of Drosophila melanogaster requires the parsing of interrelationships among such major component physiological systems. By combining electrical pacing and flight exhaustion assays with manipulative conditioning, we have started to unpack the interrelationships between cardiac function, locomotor performance, and other functional characters such as starvation and desiccation resistance. Manipulative sequences incorporating these four physiological characters were applied to five D. melanogaster lab populations that share a common origin from the wild and a common history of experimental evolution. While exposure to starvation or desiccation significantly reduced flight duration, exhaustion due to flight only affected subsequent desiccation resistance. A strong association was found between flight duration and desiccation resistance, providing additional support for the hypothesis that these traits depend on glycogen and water content. However, there was negligible impact on rate of cardiac arrests from exhaustion by flight or exposure to desiccant. Brief periods of starvation significantly lowered the rate of cardiac arrest. These results provide suggestive support for the adverse impact of lipids on Drosophila heart robustness, a parallel result to those of many comparable studies in human cardiology. Overall, this study underscores clear distinctions among the connections between specific physiological responses to stress and specific types of physiological performance.
Collapse
Affiliation(s)
- James N Kezos
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Larry G Cabral
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Brandon D Wong
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Belinda K Khou
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Angela Oh
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Jerry F Harb
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Danny Chiem
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Timothy J Bradley
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, Francisco J. Ayala School of Biological Sciences, University of California, Irvine, CA 92697-2525, United States.
| |
Collapse
|
29
|
Vadvalkar SS, Matsuzaki S, Eyster CA, Giorgione JR, Bockus LB, Kinter CS, Kinter M, Humphries KM. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION. J Biol Chem 2017; 292:4423-4433. [PMID: 28154187 DOI: 10.1074/jbc.m116.753509] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.
Collapse
Affiliation(s)
- Shraddha S Vadvalkar
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Satoshi Matsuzaki
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Craig A Eyster
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Jennifer R Giorgione
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Lee B Bockus
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and.,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Caroline S Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Michael Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and
| | - Kenneth M Humphries
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 and .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
30
|
Crewe C, Schafer C, Lee I, Kinter M, Szweda LI. Regulation of Pyruvate Dehydrogenase Kinase 4 in the Heart through Degradation by the Lon Protease in Response to Mitochondrial Substrate Availability. J Biol Chem 2016; 292:305-312. [PMID: 27856638 DOI: 10.1074/jbc.m116.754127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Cardiac metabolic inflexibility is driven by robust up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) and phosphorylation-dependent inhibition of pyruvate dehydrogenase (PDH) within a single day of feeding mice a high fat diet. In the current study, we have discovered that PDK4 is a short lived protein (t½ ∼ 1 h) and is specifically degraded by the mitochondrial protease Lon. Lon does not rapidly degrade PDK1 and -2, indicating specificity toward the PDK isoform that is a potent modulator of metabolic flexibility. Moreover, PDK4 degradation appears regulated by dissociation from the PDH complex dependent on the respiratory state and energetic substrate availability of mouse heart mitochondria. Finally, we demonstrate that pharmacologic inhibition of PDK4 promotes PDK4 degradation in vitro and in vivo These findings reveal a novel strategy to manipulate PDH activity by selectively targeting PDK4 content through dissociation and proteolysis.
Collapse
Affiliation(s)
- Clair Crewe
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, and
| | - Christopher Schafer
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Irene Lee
- the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael Kinter
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- From the Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
31
|
Heggermont WA, Papageorgiou AP, Heymans S, van Bilsen M. Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 2016; 18:1420-1429. [DOI: 10.1002/ejhf.678] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ward A. Heggermont
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Research; University of Leuven; Belgium
- Cardiovascular Research Institute Maastricht; University of Maastricht; The Netherlands
- Cardiovascular Research Centre, Cardiology Service; OLV Hospital Aalst; Aalst Belgium
| | - Anna-Pia Papageorgiou
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Research; University of Leuven; Belgium
- Cardiovascular Research Institute Maastricht; University of Maastricht; The Netherlands
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Research; University of Leuven; Belgium
- Cardiovascular Research Institute Maastricht; University of Maastricht; The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht; University of Maastricht; The Netherlands
| |
Collapse
|
32
|
Rindler PM, Cacciola A, Kinter M, Szweda LI. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Am J Physiol Heart Circ Physiol 2016; 311:H1091-H1096. [PMID: 27614223 DOI: 10.1152/ajpheart.00066.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022]
Abstract
We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H2O2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H2O2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H2O2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H2O2, we found that catalase contributes significantly to mitochondrial H2O2 consumption. In addition, catalase is solely responsible for removal of H2O2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H2O2 in response to high dietary fat, the selective increase in catalase did not prevent H2O2-induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H2O2 without perturbing redox-dependent signaling.
Collapse
Affiliation(s)
- Paul M Rindler
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Angela Cacciola
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Michael Kinter
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Luke I Szweda
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
33
|
Mailloux RJ, Gardiner D, O'Brien M. 2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue. Free Radic Biol Med 2016; 97:501-512. [PMID: 27394173 DOI: 10.1016/j.freeradbiomed.2016.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Pyruvate dehydrogenase (Pdh) and 2-oxoglutarate dehydrogenase (Ogdh) are vital for Krebs cycle metabolism and sources of reactive oxygen species (ROS). O2(·-)/H2O2 formation by Pdh and Ogdh from porcine heart were compared when operating under forward or reverse electron transfer conditions. Comparisons were also conducted with liver and cardiac mitochondria. During reverse electron transfer (RET) from NADH, purified Ogdh generated ~3-3.5× more O2(·-)/H2O2 in comparison to Pdh when metabolizing 0.5-10µM NADH. Under forward electron transfer (FET) conditions Ogdh generated ~2-4× more O2(·-)/H2O2 than Pdh. In both liver and cardiac mitochondria, Ogdh displayed significantly higher rates of ROS formation when compared to Pdh. Ogdh was also a significant source of ROS in liver mitochondria metabolizing 50µM and 500µM pyruvate or succinate. Finally, we also observed that DTT directly stimulated O2(·-)/H2O2 formation by purified Pdh and Ogdh and in cardiac or liver mitochondria in the absence of substrates and cofactors. Taken together, Ogdh is a more potent source of ROS than Pdh in liver and cardiac tissue. Ogdh is also an important ROS generator regardless of whether pyruvate or succinate serve as the sole source of carbon. Our observations provide insight into the ROS generating capacity of either complex in cardiac and liver tissue. The evidence presented herein also indicates DTT, a reductant that is routinely added to biological samples, should be avoided when assessing mitochondrial O2(·-)/H2O2 production.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3×9.
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3×9
| | - Marisa O'Brien
- Department of Biochemistry, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, Canada A1B 3×9
| |
Collapse
|
34
|
Lewis AJ, Neubauer S, Tyler DJ, Rider OJ. Pyruvate dehydrogenase as a therapeutic target for obesity cardiomyopathy. Expert Opin Ther Targets 2016; 20:755-66. [PMID: 26617082 DOI: 10.1517/14728222.2016.1126248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Obesity cardiomyopathy is a major public health problem with few specific therapeutic options. Abnormal cardiac substrate metabolism with reduced pyruvate dehydrogenase (PDH) activity is associated with energetic and functional cardiac impairment and may be a therapeutic target. AREAS COVERED This review summarizes the changes to cardiac substrate and high energy phosphorus metabolism that occur in obesity and describes the links between abnormal metabolism and impairment of cardiac function. The available evidence for the currently available pharmacological options for selective metabolic therapy in obesity cardiomyopathy is reviewed. EXPERT OPINION Pharmacological restoration of PDH activity is in general associated with favourable effects upon cardiac substrate metabolism and function in both animal models and small scale human studies, supporting a potential role as a therapeutic target.
Collapse
Affiliation(s)
- Andrew Jm Lewis
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| | - Stefan Neubauer
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK
| | - Damian J Tyler
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| | - Oliver J Rider
- a Division of Cardiovascular Medicine, Radcliffe Department of Medicine , University of Oxford , Oxford , OX3 9DU , UK.,b Department of Physiology , Anatomy and Genetics, University of Oxford , Sherrington Road, Oxford , OX3 9DU , UK
| |
Collapse
|
35
|
Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, Doo Kim N, Choi YK, Do JY, Go Y, Ha CM, Ha CM, Choi JY, Huh S, Ho Jeoung N, Lee KU, Choi HS, Wang Y, Park KG, Harris RA, Lee IK. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci Rep 2015; 5:16577. [PMID: 26560812 PMCID: PMC4642318 DOI: 10.1038/srep16577] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 01/07/2023] Open
Abstract
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Sun Joo Lee
- Department of Biomedical Science, Graduate School of Medicine, Kyungpook National University
| | - Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University.,Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi, Republic of Korea
| | - Chang Joo Oh
- Department of Internal Medicine, Kyungpook National University
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Joon-Young Kim
- Department of Internal Medicine, Kyungpook National University.,GIST College, Gwangju Institute of Science and Technology
| | - Han-Jong Kim
- Department of Internal Medicine, Kyungpook National University.,Research Institute of Clinical Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation
| | - Young-Keun Choi
- Department of Internal Medicine, Kyungpook National University
| | - Ji-Yeon Do
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Younghoon Go
- Department of Internal Medicine, Kyungpook National University
| | | | - Chae-Myung Ha
- Department of Internal Medicine, Kyungpook National University
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| | - Seung Huh
- Department of Surgery, Kyungpook National University, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Ki-Up Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Robert A Harris
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
36
|
Griffin TM, Humphries KM, Kinter M, Lim HY, Szweda LI. Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 2015; 124:74-83. [PMID: 26476002 DOI: 10.1016/j.biochi.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
A central feature of obesity-related cardiometabolic diseases is the impaired ability to transition between fatty acid and glucose metabolism. This impairment, referred to as "metabolic inflexibility", occurs in a number of tissues, including the heart. Although the heart normally prefers to metabolize fatty acids over glucose, the inability to upregulate glucose metabolism under energetically demanding conditions contributes to a pathological state involving energy imbalance, impaired contractility, and post-translational protein modifications. This review discusses pathophysiologic processes that contribute to cardiac metabolic inflexibility and speculates on the potential physiologic origins that lead to the current state of cardiometabolic disease in an obesogenic environment.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
37
|
Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet. BIOMED RESEARCH INTERNATIONAL 2015; 2015:645984. [PMID: 26301251 PMCID: PMC4537729 DOI: 10.1155/2015/645984] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/09/2014] [Accepted: 01/11/2015] [Indexed: 12/29/2022]
Abstract
In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.
Collapse
|
38
|
Fernandes J, Weddle A, Kinter CS, Humphries KM, Mather T, Szweda LI, Kinter M. Lysine Acetylation Activates Mitochondrial Aconitase in the Heart. Biochemistry 2015; 54:4008-18. [PMID: 26061789 DOI: 10.1021/acs.biochem.5b00375] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-throughput proteomics studies have identified several thousand acetylation sites on more than 1000 proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3)-catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-coenzyme A resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and revealed significant increases with both in vitro treatments. A high-fat diet (60% of kilocalories from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high-fat diet also produced an increased level of aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high-fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity, and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation.
Collapse
Affiliation(s)
- Jolyn Fernandes
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alexis Weddle
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Caroline S Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Kenneth M Humphries
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Timothy Mather
- ‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,§Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Luke I Szweda
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,‡Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Michael Kinter
- †Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States.,∥Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
39
|
20 years of leptin: Role of leptin in cardiomyocyte physiology and physiopathology. Life Sci 2015; 140:10-8. [PMID: 25748420 DOI: 10.1016/j.lfs.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 02/08/2023]
Abstract
Since the discovery of leptin in 1994 by Zhang et al., there have been a number of reports showing its implication in the development of a wide range of cardiovascular diseases. However, there exists some controversy about how leptin can induce or preserve cardiovascular function, as different authors have found contradictory results about leptin beneficial or detrimental effects in leptin deficient/resistant murine models and in wild type tissue and cardiomyocytes. Here, we will focus on the main discoveries about the leptin functions at cardiac level within the last two decades, focusing on its role in cardiac metabolism, remodeling and contractile function.
Collapse
|
40
|
Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol Metab 2015; 4:310-24. [PMID: 25830094 PMCID: PMC4354928 DOI: 10.1016/j.molmet.2015.01.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/11/2022] Open
Abstract
Objective The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. Methods DIO C57BL/6 mice maintained on a 60% kcal fat diet received five intraperitoneal (i.p.) injections of the bioactive peptide adropin34-76 (450 nmol/kg/i.p.). Following treatment, glucose tolerance and whole body insulin sensitivity were assessed and indirect calorimetry was employed to analyze whole body substrate oxidation preferences. Biochemical assays performed in skeletal muscle samples analyzed insulin signaling action and substrate oxidation. Results Adropin treatment improved glucose tolerance, enhanced insulin action and augmented metabolic flexibility towards glucose utilization. In muscle, adropin treatment increased insulin-induced Akt phosphorylation and cell-surface expression of GLUT4 suggesting sensitization of insulin signaling pathways. Reduced incomplete fatty acid oxidation and increased CoA/acetyl-CoA ratio suggested improved mitochondrial function. The underlying mechanisms appear to involve suppressions of carnitine palmitoyltransferase-1B (CPT-1B) and CD36, two key enzymes in fatty acid utilization. Adropin treatment activated pyruvate dehydrogenase (PDH), a rate-limiting enzyme in glucose oxidation, and downregulated PDH kinase-4 (PDK-4) that inhibits PDH. Along with these changes, adropin treatment downregulated peroxisome proliferator-activated receptor-gamma coactivator-1α that regulates expression of Cpt1b, Cd36 and Pdk4. Conclusions Adropin treatment of DIO mice enhances glucose tolerance, ameliorates insulin resistance and promotes preferential use of carbohydrate over fat in fuel selection. Skeletal muscle is a key organ in mediating adropin's whole-body effects, sensitizing insulin signaling pathways and altering fuel selection preference to favor glucose while suppressing fat oxidation.
Collapse
Affiliation(s)
- Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qingzhang Zhu
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
| | - Gary D. Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew W. Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Andrew A. Butler
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL, USA
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, USA
- Corresponding author. Pharmacological & Physiological Science, Saint Louis University School of Medicine, 1402 S Grand Blvd, St Louis, MO 63104, USA. Tel.: +1 314 977 6425; fax: +1 314 977 6410.
| |
Collapse
|
41
|
Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 2014; 63:3626-36. [PMID: 24848064 PMCID: PMC4207399 DOI: 10.2337/db14-0006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects.
Collapse
Affiliation(s)
- Pasha Apontes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Zhongbo Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Kai Su
- Department of Paediatrics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Dou Y Youn
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Xisong Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Wei Li
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Raihan H Mirza
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Claire C Bastie
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Linda A Jelicks
- Department of Physiology & Biophysics and Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Radhika H Muzumdar
- Department of Paediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
42
|
Berthiaume JM, Azam SM, Hoit BD, Chandler MP. Cardioprotective effects of dietary lipids evident in the time-dependent alterations of cardiac function and gene expression following myocardial infarction. Physiol Rep 2014; 2:2/5/e12019. [PMID: 24844640 PMCID: PMC4098746 DOI: 10.14814/phy2.12019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that prolonged high–saturated fat feeding (SAT) for 8 weeks after myocardial infarction (MI) improves ventricular function and prevents the metabolic remodeling commonly observed in heart failure. The current study was designed to delineate the interplay between markers of energy metabolism and indices of cardiac remodeling with 2 and 4 weeks of post‐MI SAT in male Wistar rats. By 2 weeks, less remodeling was noted in MI‐SAT evidenced by diminished chamber dilation and greater ejection fraction assessed by echocardiography and hemodynamic measures. In addition, gene expression of energy metabolism targets involved in FA uptake, oxidation, and glucose oxidation regulation was increased in MI‐SAT with respect to MI alone, although no change in PDH phosphorylation was observed. The regulatory kinase, phosphoinositide 3 kinase (Pi3k), was strongly induced by 2 weeks in the MI‐SAT group, although AKT protein content (a primary downstream target of PI3K that affects metabolism) was decreased by both MI and SAT alone, indicating early involvement of cellular signaling pathways in lipid‐mediated cardioprotection. Our results demonstrate that cardioprotection occurs acutely with SAT following MI, with improvement in indices of both cardiac function and fatty acid oxidation, suggesting a mechanistic role for energy metabolism in the beneficial effects of high dietary fat following cardiac injury. e12019 A diet rich in saturated fats is cardioprotective after myocardial infarction. The cardioprotective effect is noted by 2 weeks and includes functional and genomic changes indicative of a relationship with preservation of metabolic flexibility.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Salaman M Azam
- Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Brian D Hoit
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|