1
|
Tseng YH, Lin HP, Lin SY, Chen BM, Vo TNN, Yang SH, Lin YC, Prijovic Z, Czosseck A, Leu YL, Roffler SR. Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. J Control Release 2024; 369:179-198. [PMID: 38368947 DOI: 10.1016/j.jconrel.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Pei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sung-Yao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Zeljko Prijovic
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11001, Serbia
| | - Andreas Czosseck
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Nguyen MK, Nguyen VP, Yang SY, Min BS, Kim JA. Astraoleanosides E-P, oleanane-type triterpenoid saponins from the aerial parts of Astragalus membranaceus Bunge and their β-glucuronidase inhibitory activity. Bioorg Chem 2024; 145:107230. [PMID: 38387397 DOI: 10.1016/j.bioorg.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent β-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for β-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where β-glucuronidase plays a crucial role.
Collapse
Affiliation(s)
- Manh Khoa Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Viet Phong Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Guo X, Sha Y, Pu X, Xu Y, Yao L, Liu X, He Y, Hu J, Wang J, Li S, Chen G. Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2022; 23:ijms231810488. [PMID: 36142400 PMCID: PMC9499677 DOI: 10.3390/ijms231810488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu Liu
- Correspondence: (X.L.); (G.C.)
| | | | | | | | | | | |
Collapse
|
4
|
Akram F, Haq IU, Shah FI, Aqeel A, Ahmed Z, Mir AS, Qureshi SS, Raja SI. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability. Bioorg Chem 2022; 127:105942. [PMID: 35709577 DOI: 10.1016/j.bioorg.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Nature is a dexterous and prolific chemist for cataloging a number of hostile niches that are the ideal residence of various thermophiles. Apart from having other species, these subsurface environments are considered a throne of bacterial genus Thermotoga. The genome sequence of Thermotogales encodes complex and incongruent clusters of glycoside hydrolases (GHs), which are superior to their mesophilic counterparts and play a prominent role in various applications due to their extreme intrinsic stability. They have a tremendous capacity to use a wide variety of simple and multifaceted carbohydrates through GHs, formulate fermentative hydrogen and bioethanol at extraordinary yield, and catalyze high-temperature reactions for various biotechnological applications. Nevertheless, no stringent rules exist for the thermo-stabilization of biocatalysts present in the genus Thermotoga. These enzymes endure immense attraction in fundamental aspects of how these polypeptides attain and stabilize their distinctive three-dimensional (3D) structures to accomplish their physiological roles. Moreover, numerous genome sequences from Thermotoga species have revealed a significant fraction of genes most closely related to those of archaeal species, thus firming a staunch belief of lateral gene transfer mechanism. However, the question of its magnitude is still in its infancy. In addition to GHs, this genus is a paragon of encapsulins which carry pharmacological and industrial significance in the field of life sciences. This review highlights an intricate balance between the genomic organizations, factors inducing the thermostability, and pharmacological and industrial applications of GHs isolated from genus Thermotoga.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Azka Shahzad Mir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Sumbal Sajid Qureshi
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Saleha Ibadat Raja
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Cheng KW, Tseng CH, Chen IJ, Huang BC, Liu HJ, Ho KW, Lin WW, Chuang CH, Huang MY, Leu YL, Roffler SR, Wang JY, Chen YL, Cheng TL. Inhibition of gut microbial β-glucuronidase effectively prevents carcinogen-induced microbial dysbiosis and intestinal tumorigenesis. Pharmacol Res 2022; 177:106115. [PMID: 35124207 DOI: 10.1016/j.phrs.2022.106115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 01/11/2023]
|
6
|
Sun CP, Tian XG, Feng L, Wang C, Li JX, Huo XK, Zhao WY, Ning J, Yu ZL, Deng S, Zhang BJ, Lv X, Hou J, Ma XC. Inhibition of gut bacterial β-glucuronidase by chemical components from black tea: Inhibition interactions and molecular mechanism. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Gónzalez-Meneses A, Pineda M, Bandeira A, Janeiro P, Ruiz MÁ, Diogo L, Cancho-Candela R. Description of the molecular and clinical characteristics of the mucopolysaccharidosis type VII Iberian cohort. Orphanet J Rare Dis 2021; 16:445. [PMID: 34686181 PMCID: PMC8532367 DOI: 10.1186/s13023-021-02063-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type VII (Sly syndrome) is an ultra-rare neurometabolic disorder caused by inherited deficiency of the lysosomal enzyme β-glucuronidase. Precise data regarding its epidemiology are scarce, but birth prevalence is estimated to vary from 0.02 to 0.24 per 100,000 live births. The clinical course and disease progression are widely heterogeneous, but most patients have been reported to show signs such as skeletal deformities or cognitive delay. Additionally, detection criteria are not standardized, resulting in delayed diagnosis and treatment. METHODS We present a cohort of 9 patients with mucopolysaccharidosis VII diagnosed in the Iberian Peninsula, either in Spain or Portugal. The diagnostic approach, genetic studies, clinical features, evolution and treatment interventions were reviewed. RESULTS We found that skeletal deformities, hip dysplasia, hydrops fetalis, hepatosplenomegaly, hernias, coarse features, respiratory issues, and cognitive and growth delay were the most common features identified in the cohort. In general, patients with early diagnostic confirmation who received the appropriate treatment in a timely manner presented a more favorable clinical evolution. CONCLUSIONS This case series report helps to improve understanding of this ultra-rare disease and allows to establish criteria for clinical suspicion or diagnosis, recommendations, and future directions for better management of patients with Sly syndrome.
Collapse
Affiliation(s)
- Antonio Gónzalez-Meneses
- Unidad de Dismorfología Y Metabolismo, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, s/n, 41013, Seville, Spain.
| | - Mercè Pineda
- Fundació Hospital Sant Joan de Deu, Esplugues/Clínica Teknon, Barcelona, Spain
| | - Anabela Bandeira
- Centro de Referência de Doenças Hereditárias Do Metabolismo, CHUP, Porto, Portugal
| | - Patrícia Janeiro
- Centro de Referência de Doenças Hereditárias Do Metabolismo, CHULN, Lisboa, Portugal
| | | | - Luisa Diogo
- Centro de Referência de Doenças Hereditárias do Metabolismo, CHUC, Coimbra, Portugal
| | - Ramón Cancho-Candela
- Unidad Neurología Pediátrica, Servicio de Pediatría, Hospital Universitario Río Hortega, Valladolid, Spain
| |
Collapse
|
8
|
Zhou TS, He LL, He J, Yang ZK, Zhou ZY, Du AQ, Yu JB, Li YS, Wang SJ, Wei B, Cui ZN, Wang H. Discovery of a series of 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety as potent Escherichia coli β-glucuronidase inhibitors. Bioorg Chem 2021; 116:105306. [PMID: 34521047 DOI: 10.1016/j.bioorg.2021.105306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Gut microbial β-glucuronidases have drawn much attention due to their role as a potential therapeutic target to alleviate some drugs or their metabolites-induced gastrointestinal toxicity. In this study, fifteen 5-phenyl-2-furan derivatives containing 1,3-thiazole moiety (1-15) were synthesized and evaluated for their inhibitory effects against Escherichia coli β-glucuronidase (EcGUS). Twelve of them showed satisfactory inhibition against EcGUS with IC50 values ranging from 0.25 μM to 2.13 μM with compound 12 exhibited the best inhibition. Inhibition kinetics studies indicated that compound 12 (Ki = 0.14 ± 0.01 μM) was an uncompetitive inhibitor for EcGUS and molecular docking simulation further predicted the binding model and capability of compound 12 with EcGUS. A preliminary structure-inhibitory activity relationship study revealed that the heterocyclic backbone and bromine substitution of benzene may be essential for inhibition against EcGUS. The compounds have the potential to be applied in drug-induced gastrointestinal toxicity and the findings would help researchers to design and develop more effective 5-phenyl-2-furan type EcGUS inhibitors.
Collapse
Affiliation(s)
- Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lu-Lu He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Jing He
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Kun Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jin-Biao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Sheng Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
9
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
10
|
Wang P, Jia Y, Wu R, Chen Z, Yan R. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol 2021; 190:114566. [PMID: 33865833 DOI: 10.1016/j.bcp.2021.114566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial β-glucuronidase enzymes (BGUSs) are at the interface of host-microbial metabolic symbiosis, playing an important role in health and disease as well as medication outcomes (efficacy or toxicity) by deconjugating a large number of endogenous and exogenous glucuronides. In recent years, BGUSs inhibition has emerged as a new approach to manage diseases and medication therapy and attracted an increasing research interest. However, a growing body of evidence underlines great genetic diversity, functional promiscuity and varied inhibition propensity of BGUSs, which have posed big challenges to identifying BGUSs involved in a specific pathophysiological or pharmacological process and developing effective inhibition. In this article, we offered a general introduction of the function, in particular the physiological, pathological and pharmacological roles, of BGUSs and their taxonomic distribution in human gut microbiota, highlighting the structural features (active sites and adjacent loop structures) that affecting the protein-substrate (inhibitor) interactions. Recent advances in BGUSs-mediated deconjugation of drugs and carcinogens and the discovery and applications of BGUS inhibitors in management of medication therapy, typically, irinotecan-induced diarrhea and non-steroidal anti-inflammatory drugs (NSAIDs)-induced enteropathy, were also reviewed. At the end, we discussed the perspectives and the challenges of tailoring BGUS inhibition towards precision medicine.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yifei Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zhiqiang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
11
|
Rigon L, De Filippis C, Napoli B, Tomanin R, Orso G. Exploiting the Potential of Drosophila Models in Lysosomal Storage Disorders: Pathological Mechanisms and Drug Discovery. Biomedicines 2021; 9:biomedicines9030268. [PMID: 33800050 PMCID: PMC8000850 DOI: 10.3390/biomedicines9030268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
Collapse
Affiliation(s)
- Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Correspondence:
| | - Concetta De Filippis
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Barbara Napoli
- Laboratory of Molecular Biology, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Rosella Tomanin
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
12
|
Schlachter CR, McGee AC, Sitasuwan PN, Horvath GC, Karri NG, Lee LA, Tomashek JJ. Variants of glycosyl hydrolase family 2 β-glucuronidases have increased activity on recalcitrant substrates. Enzyme Microb Technol 2021; 145:109742. [PMID: 33750535 DOI: 10.1016/j.enzmictec.2020.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
Glucuronidated drug metabolites can be quantified from urine samples by first hydrolyzing conjugates with β-glucuronidase (β-GUS) and then separating free drug molecules by liquid chromatography and mass spectrometry detection (LC-MS). To improve the activity and specificity of various β-GUS, we designed enzyme chimeras and generated site-saturation variants based on structural analyses, then screened them for improved activity on drug metabolites important to clinical and forensic drug-testing laboratories. Often, an increase of activity on one substrate of interest was countered by loss of activity against another, and there was no strong correlation of activity on standard β-glucuronidase substrates to activity on recalcitrant drug glucuronides. However, we discovered a chimera of two enzymes from different species of Aspergillus that displays a 27 % increase in activity on morphine-3-glucuronide than the parent proteins. Furthermore, mutations in the M-loop, which is a loop near the active site, resulted in numerous variants with dramatically increased rates of hydrolysis on drug glucuronides. Specifically, the M-loop variant Q451D/A452E of a β-GUS from Brachyspira pilosicoli has a 50-fold and 25-fold increase in activity on the recalcitrant substrates codeine-6-glucuronide and dihydrocodeine-6-glucuronide, respectively, compared to the parent enzyme.
Collapse
Affiliation(s)
- Caleb R Schlachter
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - Amanda C McGee
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - Pongkwan N Sitasuwan
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - Gary C Horvath
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - Nanda G Karri
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - L Andrew Lee
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States
| | - John J Tomashek
- Integrated Micro-Chromatography Systems, 110 Centrum Drive, Irmo, SC, 29063, United States.
| |
Collapse
|
13
|
|
14
|
Iraji A, Nouri A, Edraki N, Pirhadi S, Khoshneviszadeh M, Khoshneviszadeh M. One-pot synthesis of thioxo-tetrahydropyrimidine derivatives as potent β-glucuronidase inhibitor, biological evaluation, molecular docking and molecular dynamics studies. Bioorg Med Chem 2020; 28:115359. [PMID: 32098709 DOI: 10.1016/j.bmc.2020.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023]
Abstract
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nouri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Dubot P, Sabourdy F, Plat G, Jubert C, Cancès C, Broué P, Touati G, Levade T. First Report of a Patient with MPS Type VII, Due to Novel Mutations in GUSB, Who Underwent Enzyme Replacement and Then Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2019; 20:ijms20215345. [PMID: 31661765 PMCID: PMC6861985 DOI: 10.3390/ijms20215345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
We report the case of a boy who was diagnosed with mucopolysaccharidosis (MPS) VII at two weeks of age. He harbored three missense β-glucuronidase (GUSB) variations in exon 3: two novel, c.422A>C and c.424C>T, inherited from his mother, and the rather common c.526C>T, inherited from his father. Expression of these variations in transfected HEK293T cells demonstrated that the double mutation c.422A>C;424C>T reduces β-glucuronidase enzyme activity. Enzyme replacement therapy (ERT), using UX003 (vestronidase alfa), was started at four months of age, followed by a hematopoietic stem cell allograft transplantation (HSCT) at 13 months of age. ERT was well tolerated and attenuated visceromegaly and skin infiltration. After a severe skin and gut graft-versus-host disease, ERT was stopped six months after HSCT. The last follow-up examination (at the age of four years) revealed a normal psychomotor development, stabilized growth curve, no hepatosplenomegaly, and no other organ involvement. Intriguingly, enzyme activity had normalized in leukocytes but remained low in plasma. This case report illustrates: (i) The need for an early diagnosis of MPS, and (ii) the possible benefit of a very early enzymatic and/or cellular therapy in this rare form of lysosomal storage disease.
Collapse
Affiliation(s)
- Patricia Dubot
- Laboratoire de Biochimie Métabolique, Centre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de Toulouse, 31059 Toulouse cedex 9, France.
- INSERM UMR1037, CRCT (Cancer Research Center of Toulouse), Université Paul Sabatier, 31037 Toulouse, France.
| | - Frédérique Sabourdy
- Laboratoire de Biochimie Métabolique, Centre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de Toulouse, 31059 Toulouse cedex 9, France.
- INSERM UMR1037, CRCT (Cancer Research Center of Toulouse), Université Paul Sabatier, 31037 Toulouse, France.
| | - Geneviève Plat
- Service d'Hématologie Pédiatrique, CHU de Toulouse, 31058 Toulouse, France.
| | - Charlotte Jubert
- Service d'Hématologie Pédiatrique, CHU de Bordeaux, 33076 Bordeaux, France.
| | - Claude Cancès
- Hôpital des Enfants, Centre de Référence en Maladies Héréditaires du Métabolisme, CHU de Toulouse, 31059 Toulouse, France.
| | - Pierre Broué
- Hôpital des Enfants, Centre de Référence en Maladies Héréditaires du Métabolisme, CHU de Toulouse, 31059 Toulouse, France.
| | - Guy Touati
- Hôpital des Enfants, Centre de Référence en Maladies Héréditaires du Métabolisme, CHU de Toulouse, 31059 Toulouse, France.
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Centre de Référence en Maladies Héréditaires du Métabolisme, Institut Fédératif de Biologie, CHU de Toulouse, 31059 Toulouse cedex 9, France.
- INSERM UMR1037, CRCT (Cancer Research Center of Toulouse), Université Paul Sabatier, 31037 Toulouse, France.
| |
Collapse
|
16
|
Anouar EH, Moustapha ME, Taha M, Geesi MH, Farag ZR, Rahim F, Almandil NB, Farooq RK, Nawaz M, Mosaddik A. Synthesis, Molecular Docking and β-Glucuronidase Inhibitory Potential of Indole Base Oxadiazole Derivatives. Molecules 2019; 24:molecules24050963. [PMID: 30857263 PMCID: PMC6429331 DOI: 10.3390/molecules24050963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
β-glucuronidase is a lysosomal glycosidase enzyme which catalyzes the extracellular matrix of cancer and normal cells and the glycosaminoglycans of the cell membrane, which is important for cancer cell proliferation, invasion, and metastasis. Liver cancer, colon carcinoma, and neoplasm bladder are triggered by the increase of the level of β-glucuronidase activity. The most valuable structures are indole and oxadiazole which has gain immense attention because of its pharmacological behavior and display many biological properties. Twenty-two (1⁻22) analogs of indole based oxadiazole were synthesized and screened for their inhibitory potential against β-glucuronidase. Majority of the compounds showed potent inhibitory potential with IC50 values ranging between 0.9 ± 0.01 to 46.4 ± 0.9 µM, under positive control of standard drug d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 µM). Structural activity relationship (SAR) has been established for all synthesized compounds. To shed light on molecular interactions between the synthesized compounds and β-glucuronidase, 1, 4, and 6 compounds were docked into the active binding site of β-glucuronidase. The obtained results showed that this binding is thermodynamically favorable and β-glucuronidase inhibition of the selected compounds increases with the number of hydrogen bonding established in selected compound-β-glucuronidase complexes.
Collapse
Affiliation(s)
- El Hassane Anouar
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, 11942 Al Kharj, Saudi Arabia.
| | - Moustapha Eid Moustapha
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, 11942 Al Kharj, Saudi Arabia.
- University Central Laboratory, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, 11942 Al Kharj, Saudi Arabia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Mohammed H Geesi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, 11942 Al Kharj, Saudi Arabia.
| | - Zeinab R Farag
- Chemistry Department, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt.
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra-21300, Khyber Pakhtunkhwa 21300, Pakistan.
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Ashik Mosaddik
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| |
Collapse
|
17
|
Kantaputra PN, Smith LJ, Casal ML, Kuptanon C, Chang YC, Nampoothiri S, Paiyarom A, Veerasakulwong T, Trachoo O, Ketudat Cairns JR, Chinadet W, Tanpaiboon P. Oral manifestations in patients and dogs with mucopolysaccharidosis Type VII. Am J Med Genet A 2019; 179:486-493. [PMID: 30653816 DOI: 10.1002/ajmg.a.61034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/07/2022]
Abstract
Mucopolysaccharidosis Type VII (MPS7, also called β-glucuronidase deficiency or Sly syndrome; MIM 253220) is an extremely rare autosomal recessive lysosomal storage disease, caused by mutations in the GUSB gene. β-glucuronidase (GUSB) is a lysosomal hydrolase involved in the stepwise degradation of glucuronic acid-containing glycosaminoglycans (GAGs). Patients affected with MPS VII are not able to completely degrade glucuronic acid-containing GAGs, including chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and heparan sulfate. The accumulation of these GAGs in lysosomes of various tissues leads to cellular and organ dysfunctions. Characteristic features of MPS VII include short stature, macrocephaly, hirsutism, coarse facies, hearing loss, cloudy cornea, short neck, valvular cardiac defects, hepatosplenomegaly, and dysostosis multiplex. Oral manifestations in patients affected with MPS VII have never been reported. Oral manifestations observed in three patients consist of wide root canal spaces, taurodontism, hyperplastic dental follicles, malposition of unerupted permanent molars, and failure of tooth eruption with malformed roots. The unusual skeletal features of the patients include maxillary hypoplasia, hypoplastic midface, long mandibular length, mandibular prognathism, hypoplastic and aplastic mandibular condyles, absence of the dens of the second cervical vertebra, and erosion of the cortex of the lower border of mandibles. Dogs affected with MPS VII had anterior and posterior open bite, maxillary hypoplasia, premolar crowding, and mandibular prognathism. Unlike patients with MPS VII, the dogs had unremarkable mandibular condyles. This is the first report of oral manifestations in patients affected with MPS VII.
Collapse
Affiliation(s)
- Piranit N Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chulaluck Kuptanon
- Department of Pediatrics, College of Medicine, Rangsit University, Bangkok, Thailand.,Division of Genetics, Queen Sirikit National Institute of Child Health, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin, Kerala, India
| | | | | | | | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Wannapa Chinadet
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
18
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Bar S, Prasad M, Datta R. Neuromuscular degeneration and locomotor deficit in a Drosophila model of mucopolysaccharidosis VII is attenuated by treatment with resveratrol. Dis Model Mech 2018; 11:dmm036954. [PMID: 30459155 PMCID: PMC6262814 DOI: 10.1242/dmm.036954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis VII (MPS VII) is a recessively inherited lysosomal storage disorder caused by β-glucuronidase enzyme deficiency. The disease is characterized by widespread accumulation of non-degraded or partially degraded glycosaminoglycans, leading to cellular and multiple tissue dysfunctions. The patients exhibit diverse clinical symptoms, and eventually succumb to premature death. The only possible remedy is the recently approved enzyme replacement therapy, which is an expensive, invasive and lifelong treatment procedure. Small-molecule therapeutics for MPS VII have so far remained elusive primarily due to lack of molecular insights into the disease pathogenesis and unavailability of a suitable animal model that can be used for rapid drug screening. To address these issues, we developed a Drosophila model of MPS VII by knocking out the CG2135 gene, the fly β-glucuronidase orthologue. The CG2135-/- fly recapitulated cardinal features of MPS VII, such as reduced lifespan, progressive motor impairment and neuropathological abnormalities. Loss of dopaminergic neurons and muscle degeneration due to extensive apoptosis was implicated as the basis of locomotor deficit in this fly. Such hitherto unknown mechanistic links have considerably advanced our understanding of the MPS VII pathophysiology and warrant leveraging this genetically tractable model for deeper enquiry about the disease progression. We were also prompted to test whether phenotypic abnormalities in the CG2135-/- fly can be attenuated by resveratrol, a natural polyphenol with potential health benefits. Indeed, resveratrol treatment significantly ameliorated neuromuscular pathology and restored normal motor function in the CG2135-/- fly. This intriguing finding merits further preclinical studies for developing an alternative therapy for MPS VII.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudipta Bar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
20
|
Haq IU, Akram F. Enhanced production, overexpression and characterization of a hyperthermophilic multimodular GH family 2 β‑glucuronidase (TpGUS) cloned from Thermotoga petrophila RKU-1 T in a mesophilic host. Int J Biol Macromol 2018; 123:1132-1142. [PMID: 30465846 DOI: 10.1016/j.ijbiomac.2018.11.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
A multimodular hyperthermophilic β‑glucuronidase (TpGUS) from Thermotoga petrophila RKU-1T, belongs to glycoside hydrolase family 2 (GH2), was cloned and overexpressed in Escherichia coli BL21 CodonPlus (DE3)-RIPL. Expression and production of extracellular TpGUS was enhanced through various specific cultivation and induction strategies. Extracellular TpGUS activity was improved by 3.44 and 7 fold in 4 × ZB medium induced with 0.5 mM IPTG and 100 mM lactose, respectively. The enzyme was purified to homogeneity with a single band of 65.6 kDa on SDS-PAGE, using two subsequent steps of anion exchange and hydrophobic interaction chromatography after heat precipitation (70 °C, 1 h). Optimal activity of TpGUS was observed at 95 °C and pH 6.0; and it displayed prodigious thermal stability over a temperature range of 50-85 °C for 12 h at pH 6.0-7.5. Km, Vmax, VmaxKm-1, kcat, and kcatKm-1 were calculated to be 0.7 mM, 227 mmol mg-1 min-1, 324.3 min-1, 164,492.7 s-1 and 234,989.6 mM-1 s-1, respectively using pNPGU as a substrate. Recombinant TpGUS exhibited favorable properties which make this a promising candidate for various biotechnological and pharmacological applications.
Collapse
Affiliation(s)
- Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan.
| | - Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan
| |
Collapse
|
21
|
Dashnyam P, Mudududdla R, Hsieh TJ, Lin TC, Lin HY, Chen PY, Hsu CY, Lin CH. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci Rep 2018; 8:16372. [PMID: 30401818 PMCID: PMC6219552 DOI: 10.1038/s41598-018-34678-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Gut bacterial β-D-glucuronidases (GUSs) catalyze the removal of glucuronic acid from liver-produced β-D-glucuronides. These reactions can have deleterious consequences when they reverse xenobiotic metabolism. The human gut contains hundreds of GUSs of variable sequences and structures. To understand how any particular bacterial GUS(s) contributes to global GUS activity and affects human health, the individual substrate preference(s) must be known. Herein, we report that representative GUSs vary in their ability to produce various xenobiotics from their respective glucuronides. To attempt to explain the distinct substrate preference, we solved the structure of a bacterial GUS complexed with coumarin-3-β-D-glucuronide. Comparisons of this structure with other GUS structures identified differences in loop 3 (or the α2-helix loop) and loop 5 at the aglycone-binding site, where differences in their conformations, hydrophobicities and flexibilities appear to underlie the distinct substrate preference(s) of the GUSs. Additional sequence, structural and functional analysis indicated that several groups of functionally related gut bacterial GUSs exist. Our results pinpoint opportunistic gut bacterial GUSs as those that cause xenobiotic-induced toxicity. We propose a structure-activity relationship that should allow both the prediction of the functional roles of GUSs and the design of selective inhibitors.
Collapse
Affiliation(s)
- Punsaldulam Dashnyam
- 0000 0000 9360 4962grid.469086.5Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529 Taiwan ,0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan ,0000 0004 0532 3749grid.260542.7Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227 Taiwan
| | - Ramesh Mudududdla
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Tung-Ju Hsieh
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Ting-Chien Lin
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Hsien-Ya Lin
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Peng-Yuan Chen
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Chia-Yi Hsu
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Chun-Hung Lin
- 0000 0000 9360 4962grid.469086.5Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529 Taiwan ,0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan ,0000 0004 0532 3749grid.260542.7Biotechnology Center, National Chung-Hsing University, Taichung, 40227 Taiwan ,0000 0004 0546 0241grid.19188.39Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617 Taiwan
| |
Collapse
|
22
|
Beg A, Khan FI, Lobb KA, Islam A, Ahmad F, Hassan MI. High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. J Biomol Struct Dyn 2018; 37:2179-2192. [PMID: 30044185 DOI: 10.1080/07391102.2018.1479310] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (-11.6 to -10.0 kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anam Beg
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faez Iqbal Khan
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Kevin A Lobb
- b Computational Mechanistic Chemistry and Drug Discovery , Rhodes University , Grahamstown , South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
23
|
Feng L, Yang Y, Huo X, Tian X, Feng Y, Yuan H, Zhao L, Wang C, Chu P, Long F, Wang W, Ma X. Highly Selective NIR Probe for Intestinal β-Glucuronidase and High-Throughput Screening Inhibitors to Therapy Intestinal Damage. ACS Sens 2018; 3:1727-1734. [PMID: 30149692 DOI: 10.1021/acssensors.8b00471] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
β-Glucuronidase (GLU) as a vital factor in enterohepatic circulation and drug-inducing enteropathy has been given more and more attention in recent years. In this study, an off-on near-infrared (NIR) fluorescent probe (DDAO-glu) for selectively and sensitively sensing GLU was developed on the basis of its substrate preference. DDAO-glu can rapidly and selectively respond to bacterial GLU under physiological conditions for detecting the real-time intestinal GLU bioactivity of complex biological systems such as human feces in clinic. Meantime, DDAO-glu has been successfully applied for visualization of endogenous GLU in bacterial biofilm, thallus, and even in vivo. Using this NIR probe, we successfully visualized the real distribution of intestinal GLU in the enterohepatic circulation. Furthermore, a high-throughput screening method was successfully established by our probe, and a potent natural inhibitor of GLU was identified as (-)-epicatechin-3-gallate (ECG) for effectively preventing NSAIDs-inducing enteropathy in vivo. DDAO-glu could serve as a powerful tool for exploring real physical functions of intestinal GLU in enterohepatic circulation, under physiological and pathological contexts, and developing the novel inhibitors of GLU to therapy acute drug-inducing enteropathy in clinic.
Collapse
Affiliation(s)
- Lei Feng
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaokui Huo
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Yujie Feng
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Sino-Pakistan TCM and Ethnomedicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lijian Zhao
- Bio/Medical Experiment Center, College of Biology, Hunan University, Changsha 410082, China
| | - Chao Wang
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Peng Chu
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Feida Long
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Sino-Pakistan TCM and Ethnomedicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaochi Ma
- College of Integrative Medicine, College of Pharmacy, the National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
24
|
Syed SB, Khan FI, Khan SH, Srivastava S, Hasan GM, Lobb KA, Islam A, Ahmad F, Hassan MI. Mechanistic insights into the urea-induced denaturation of kinase domain of human integrin linked kinase. Int J Biol Macromol 2018; 111:208-218. [DOI: 10.1016/j.ijbiomac.2017.12.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/01/2023]
|
25
|
Idrees D, Rahman S, Shahbaaz M, Haque MA, Islam A, Ahmad F, Hassan MI. Estimation of thermodynamic stability of human carbonic anhydrase IX from urea-induced denaturation and MD simulation studies. Int J Biol Macromol 2017; 105:183-189. [DOI: 10.1016/j.ijbiomac.2017.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
|
26
|
Shahbaaz M, Amir M, Rahman S, Mustafa Hasan G, Dohare R, Bisetty K, Ahmad F, Kim J, Hassan MI. Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1357813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mohd. Shahbaaz
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Mohd. Amir
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ravins Dohare
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, South Africa
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Pollet RM, D'Agostino EH, Walton WG, Xu Y, Little MS, Biernat KA, Pellock SJ, Patterson LM, Creekmore BC, Isenberg HN, Bahethi RR, Bhatt AP, Liu J, Gharaibeh RZ, Redinbo MR. An Atlas of β-Glucuronidases in the Human Intestinal Microbiome. Structure 2017; 25:967-977.e5. [PMID: 28578872 PMCID: PMC5533298 DOI: 10.1016/j.str.2017.05.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 01/16/2023]
Abstract
Microbiome-encoded β-glucuronidase (GUS) enzymes play important roles in human health by metabolizing drugs in the gastrointestinal (GI) tract. The numbers, types, and diversity of these proteins in the human GI microbiome, however, remain undefined. We present an atlas of GUS enzymes comprehensive for the Human Microbiome Project GI database. We identify 3,013 total and 279 unique microbiome-encoded GUS proteins clustered into six unique structural categories. We assign their taxonomy, assess cellular localization, reveal the inter-individual variability within the 139 individuals sampled, and discover 112 novel microbial GUS enzymes. A representative in vitro panel of the most common GUS proteins by read abundances highlights structural and functional variabilities within the family, including their differential processing of smaller glucuronides and larger carbohydrates. These data provide a sequencing-to-molecular roadmap for examining microbiome-encoded enzymes essential to human health.
Collapse
Affiliation(s)
- Rebecca M Pollet
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma H D'Agostino
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael S Little
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen A Biernat
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Loraine M Patterson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanna N Isenberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rohini R Bahethi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aadra P Bhatt
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raad Z Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Biochemistry, Microbiology, and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, Mason RW, Giugliani R, Suzuki Y, Orii KE, Orii T, Tomatsu S. Epidemiology of mucopolysaccharidoses. Mol Genet Metab 2017; 121:227-240. [PMID: 28595941 PMCID: PMC5653283 DOI: 10.1016/j.ymgme.2017.05.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to obtain data about the epidemiology of the different types of mucopolysaccharidoses in Japan and Switzerland and to compare with similar data from other countries. Data for Japan was collected between 1982 and 2009, and 467 cases with MPS were identified. The combined birth prevalence was 1.53 per 100,000 live births. The highest birth prevalence was 0.84 for MPS II, accounting for 55% of all MPS. MPS I, III, and IV accounted for 15, 16, and 10%, respectively. MPS VI and VII were more rare and accounted for 1.7 and 1.3%, respectively. A retrospective epidemiological data collection was performed in Switzerland between 1975 and 2008 (34years), and 41 living MPS patients were identified. The combined birth prevalence was 1.56 per 100,000 live births. The highest birth prevalence was 0.46 for MPS II, accounting for 29% of all MPS. MPS I, III, and IV accounted for 12, 24, and 24%, respectively. As seen in the Japanese population, MPS VI and VII were more rare and accounted for 7.3 and 2.4%, respectively. The high birth prevalence of MPS II in Japan was comparable to that seen in other East Asian countries where this MPS accounted for approximately 50% of all forms of MPS. Birth prevalence was also similar in some European countries (Germany, Northern Ireland, Portugal and the Netherlands) although the prevalence of other forms of MPS is also reported to be higher in these countries. Birth prevalence of MPS II in Switzerland and other European countries is comparatively lower. The birth prevalence of MPS III and IV in Switzerland is higher than in Japan but comparable to that in most other European countries. Moreover, the birth prevalence of MPS VI and VII was very low in both, Switzerland and Japan. Overall, the frequency of MPS varies for each population due to differences in ethnic backgrounds and/or founder effects that affect the birth prevalence of each type of MPS, as seen for other rare genetic diseases. Methods for identification of MPS patients are not uniform across all countries, and consequently, if patients are not identified, recorded prevalence rates will be aberrantly low.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Diana Ballhausen
- Centre for Molecular Diseases, Service for Genetic Medicine, University Hospital Lausanne, Switzerland
| | - Alfred Wiesbauer
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Matthias Gautschi
- Division of Endocrinology, Diabetology and Metabolism, University Children's Hospital, University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Dep. Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | | | - Kenji E Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Kubaski F, Brusius-Facchin AC, Mason RW, Patel P, Burin MG, Michelin-Tirelli K, Kessler RG, Bender F, Leistner-Segal S, Moreno CA, Cavalcanti DP, Giugliani R, Tomatsu S. Elevation of glycosaminoglycans in the amniotic fluid of a fetus with mucopolysaccharidosis VII. Prenat Diagn 2017; 37:435-439. [PMID: 28207930 DOI: 10.1002/pd.5028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study was to quantify glycosaminoglycans (GAGs) in amniotic fluid (AF) from an MPS VII fetus compared with age-matched fetuses obtained from normal pregnancies. METHOD Disaccharides were measured by liquid chromatography tandem mass spectrometry, compared to age-matched controls. Enzyme assay was performed in AF supernatant or cultured amniocytes. GUSB was analyzed by next generation sequencing using Ion Torrent Personal Genome Machine with a customized panel. RESULTS No activity of β-glucuronidase was detected in fetal cells. The pregnancy was spontaneously terminated in the third trimester. Genetic studies identified a homozygous mutation of p.N379D (c.1135A > G) in the GUSB gene. Liquid chromatography tandem mass spectrometry showed that chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate levels were markedly increased in the MPS VII AF, compared to those in age-matched control AF (dermatan sulfate, heparan sulfate, and chondroitin-6-sulfate more than 10 × than age-matched controls; chondroitin-4-sulfate and keratan sulfate more than 3 times higher). CONCLUSION This is the first report of specific GAG analysis in AF from an MPS VII fetus, indicating that GAG elevation in AF occurs by 21 weeks of gestation and could be an additional tool for prenatal diagnosis of MPS VII and potentially other MPS types. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Francyne Kubaski
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA.,INAGEMP, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Pravin Patel
- Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maira G Burin
- Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Fernanda Bender
- Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sandra Leistner-Segal
- Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduation Program on Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina A Moreno
- Perinatal Genetic Program, Department of Medical Genetics, UNICAMP, Campinas, Campinas, SP, Brazil
| | - Denise P Cavalcanti
- Perinatal Genetic Program, Department of Medical Genetics, UNICAMP, Campinas, Campinas, SP, Brazil
| | - Roberto Giugliani
- INAGEMP, Porto Alegre, Rio Grande do Sul, Brazil.,Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduation Program on Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
30
|
Shahbaaz M, Rahman S, Khan P, Kim J, Hassan MI. Classification and structural analyses of mutational landscapes in hemochromatosis factor E protein: A protein defective in the hereditary hemochromatosis. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Guillen KP, Ruben EA, Virani N, Harrison RG. Annexin-directed β-glucuronidase for the targeted treatment of solid tumors. Protein Eng Des Sel 2017; 30:85-94. [PMID: 27986920 PMCID: PMC5241760 DOI: 10.1093/protein/gzw063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted βG to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human βG, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 μg/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. βG fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design.
Collapse
Affiliation(s)
- Katrin P Guillen
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Eliza A Ruben
- Protein Production Core, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Needa Virani
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Roger G Harrison
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
- Stephenson Cancer Center, Health Sciences Center, University of Oklahoma, 800 Northeast 10th St., Oklahoma City, OK 73104, USA
| |
Collapse
|
32
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
33
|
Naqvi AAT, Anjum F, Khan FI, Islam A, Ahmad F, Hassan MI. Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors. Genomics Inform 2016; 14:125-135. [PMID: 27729842 PMCID: PMC5056897 DOI: 10.5808/gi.2016.14.3.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Farah Anjum
- Female College of Applied Medical Science, Taif University, Al-Taif 21974, Kingdom of Saudi Arabia
| | - Faez Iqbal Khan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, China
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
34
|
Khan FI, Bisetty K, Singh S, Permaul K, Hassan MI. Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles 2016; 19:1055-66. [PMID: 26462798 DOI: 10.1007/s00792-015-0792-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
Chitinases are ubiquitous class of extracellular enzymes, which have gained attention in the past few years due to their wide biotechnological applications. The effectiveness of conventional insecticides is increasingly compromised by the occurrence of resistance; thus, chitinase offers a potential alternative to the use of chemical fungicides. The thermostable enzymes from thermophilic microorganisms have numerous industrial, medical, environmental and biotechnological applications due to their high stability for temperature and pH. Thermomyces lanuginosus produced a large number of chitinases, of which chitinase I and II are successfully cloned and purified recently. Molecular dynamic simulations revealed that the stability of these enzymes are maintained even at higher temperature. In this review article we have focused on chitinases from different sources, mainly fungal chitinase of T. lanuginosus and its industrial application.
Collapse
|
35
|
Purification and characterization of RGA2, a Rho2 GTPase-activating protein from Tinospora cordifolia. 3 Biotech 2016; 6:85. [PMID: 28330155 PMCID: PMC4773375 DOI: 10.1007/s13205-016-0400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
Rho GTPases activating protein 2 (RGA2) is primarily involved in the modulation of numerous morphological events in eukaryotes. It protects plants by triggering the defense system which restricts the pathogen growth. This is the first report on the isolation, purification and characterization of RGA2 from the stems of Tinospora cordifolia, a medicinal plant. The RGA2 was purified using simple two-step process using DEAE-Hi-Trap FF and Superdex 200 chromatography columns, with a high yield. The purity of RGA2 was confirmed by SDS-PAGE and identified by MALDI-TOF/MS. The purified protein was further characterized for its secondary structural elements using the far-UV circular dichroism measurements. Our purification procedure is simple two-step process with high yield which can be further used to produce RGA2 for structural and functional studies.
Collapse
|
36
|
Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S. Current updates on computer aided protein modeling and designing. Int J Biol Macromol 2016; 85:48-62. [DOI: 10.1016/j.ijbiomac.2015.12.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
|
37
|
Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:54-65. [PMID: 26773169 DOI: 10.1016/j.pbiomolbio.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/23/2023]
Abstract
The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases.
Collapse
|
38
|
Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae. 3 Biotech 2015; 5:741-763. [PMID: 28324524 PMCID: PMC4569619 DOI: 10.1007/s13205-014-0274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Haemophilus influenzae, a Gram-negative bacterium and a member of the family Pasteurellaceae, causes chronic bronchitis, bacteremia, meningitis, etc. The H. influenzae is the first organism whose genome was completely sequenced and annotated. Here, we have extensively analyzed the genome of H. influenzae using available proteins structure and function analysis tools. The objective of this analysis is to assign a precise function to hypothetical proteins (HPs) whose functions are not determined so far. Function prediction of these proteins is helpful in precise understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. After an extensive analysis of H. Influenzae genome we have found 13 HPs showing high level of sequence and structural similarity to the enzyme isomerase. Consequently, the structures of HPs have been modeled and analyzed to determine their precise functions. We found these HPs are alanine racemase, lysine 2, 3-aminomutase, topoisomerase DNA-binding C4 zinc finger, pseudouridine synthase B, C and E (Rlu B, C and E), hydroxypyruvate isomerase, nucleoside-diphosphate-sugar epimerase, amidophosphoribosyltransferase, aldose-1-epimerase, tautomerase/MIF, Xylose isomerase-like, have TIM barrel domain and sedoheptulose-7-phosphate isomerase like activity, signifying their corresponding functions in the H. influenzae. This work provides a better understanding of the role HPs with isomerase activities in the survival and pathogenesis of H. influenzae.
Collapse
|
39
|
Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene 2015; 576:36-44. [PMID: 26415878 DOI: 10.1016/j.gene.2015.09.062] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022]
Abstract
The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-D-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp.
Collapse
|
40
|
Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, Venkatesh MK, Guthrie L, O'Neal SK, Robinson SJ, Dollinger M, Figueroa E, McShane SR, Cohen RD, Jin J, Frye SV, Zamboni WC, Pepe-Ranney C, Mani S, Kelly L, Redinbo MR. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. CHEMISTRY & BIOLOGY 2015; 22:1238-49. [PMID: 26364932 PMCID: PMC4575908 DOI: 10.1016/j.chembiol.2015.08.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes in the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Adam B Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Rebecca M Pollet
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - James D Ingle
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Kristen A Biernat
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | | | - Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sara K O'Neal
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Sara J Robinson
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Makani Dollinger
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Esteban Figueroa
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Sarah R McShane
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Rachel D Cohen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Jian Jin
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Stephen V Frye
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - William C Zamboni
- Department of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, NC 27599-3290, USA
| | - Charles Pepe-Ranney
- Department of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sridhar Mani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
41
|
Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. Correction: High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting. PLoS One 2015; 10:e0138401. [PMID: 26367146 PMCID: PMC4569263 DOI: 10.1371/journal.pone.0138401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets. 3 Biotech 2015; 5:561-576. [PMID: 28324558 PMCID: PMC4522726 DOI: 10.1007/s13205-014-0256-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
Candida dubliniensis is an emerging pathogenic yeast in humans and infections are usually restricted to mucosal parts of the body. However, its presence in specimens of immunocompromised individuals, especially in HIV-positive patients, is of major medical concern. There is a large fraction of genomes of C. dubliniensis in the database which are uncharacterized for their biochemical, biophysical, and/or cellular functions, and are identified as hypothetical proteins (HPs). Function annotation of Candida genome is, therefore, essentially required to facilitate the understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. Here, we carried out an extensive analysis to explain the functional properties of genome, using available protein structure and function analysis tools. We successfully modeled the structures of eight HPs for which a template with moderate sequence similarity was available in the protein data bank. All modeled structures were analyzed and we found that these proteins may act as transporter, kinase, transferase, ketosteroid, isomerase, hydrolase, oxidoreductase, and binding targets for DNA and RNA. Since these unique HPs of Candida showed no homologs in humans, these proteins are expected to be a potential target for future antifungal therapy.
Collapse
|
43
|
Wang P, Sorenson J, Strickland S, Mingus C, Haskins M, Giger U. Mucopolysaccharidosis VII in a Cat Caused by 2 Adjacent Missense Mutations in the GUSB Gene. J Vet Intern Med 2015; 29:1022-8. [PMID: 26118695 PMCID: PMC4624456 DOI: 10.1111/jvim.13569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mucopolysaccharidoses (MPS) are common lysosomal storage disorders causing typically progressive skeletal and ocular abnormalities. OBJECTIVES To describe the clinic features, metabolic profile and a unique mutation in a domestic shorthair (DSH) kitten with MPS VII. ANIMALS Affected kitten and 80 healthy cats. METHODS Serum lysosomal enzyme activities and urinary glycosaminoglycan (GAG) accumulation were assessed. Exons of the β-glucuronidase gene (GUSB) were sequenced from genomic DNA and genotyping was conducted. RESULTS A 3-month-old DSH cat was presented for stunted growth, paresis, facial dysmorphia, multiple skeletal deformities, and corneal opacities. Evaluation of blood smears disclosed metachromatic granules in leukocytes and a urinary mucopolysaccharide spot test was positive. The proband had no GUSB activity but normal or increased activities for other lysosomal enzymes. Sequencing of the GUSB gene from the proband and comparison to the sequence of 2 healthy cats and the published feline genome sequence demonstrated 2 unique single base transitions (c.1421T>G and c.1424C>T) in exon 9, altering 2 adjacent codons (p.Ser475Ala and p.Arg476Trp). These amino acid changes are in a highly conserved domain of the GUSB protein and nontolerable to maintain function. Moreover, the p.Arg476Trp mutation previously has been identified in human patients. None of the other clinically healthy cats had these mutations. CONCLUSIONS AND CLINIC IMPORTANCE The diagnostic approach to MPS disorders is delineated. This is only the second mutation known to cause MPS VII in cats. Similarly, 2 different mutations have been described in MPS VII dogs, thereby showing the molecular heterogeneity of MPS VII in companion animals.
Collapse
Affiliation(s)
- P. Wang
- Section of Medical GeneticsSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - J. Sorenson
- Section of Medical GeneticsSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - S. Strickland
- Section of Medical GeneticsSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - C. Mingus
- Jordan Creek Animal HospitalWest Des MoinesIA
| | - M.E. Haskins
- Section of Medical GeneticsSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPA
| | - U. Giger
- Section of Medical GeneticsSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
44
|
Burchett GG, Folsom CG, Lane KT. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase. PLoS One 2015; 10:e0130269. [PMID: 26121040 PMCID: PMC4484804 DOI: 10.1371/journal.pone.0130269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/19/2015] [Indexed: 11/23/2022] Open
Abstract
β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins.
Collapse
Affiliation(s)
- Gina G. Burchett
- Department of Chemistry, Radford University, Radford, VA, United States of America
| | - Charles G. Folsom
- Department of Chemistry, Radford University, Radford, VA, United States of America
| | - Kimberly T. Lane
- Department of Chemistry, Radford University, Radford, VA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:416-34. [PMID: 26076386 DOI: 10.1089/omi.2015.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Krishna Bisetty
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Faizan Ahmad
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|