1
|
Oidor-Chan VH, Arellano-Mauricio AB, Del Valle-Mondragón L, Ibarra-Lara L, Ponce-Sánchez C, Rodríguez-Maldonado E, Mendoza-Espinoza JA, Cruz-Sosa F, Guarner-Lans V, Patlán M, Díaz de León-Sánchez F, Castrejón-Téllez V. Chemical analysis of freeze-dried seeds of Stenocereus stellatus (white tunillo) components and evaluation of their effect on prediabetes reversion in an experimental model in female Wistar rats. Food Funct 2024; 15:9235-9253. [PMID: 39162034 DOI: 10.1039/d4fo01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Prediabetes is defined as a state of moderate hyperglycemia. Here, we used freeze-dried seeds of Stenocereus stellatus (white tunillo) as a possible therapeutic strategy for the treatment of prediabetes. In the aqueous extract of freeze-dried seeds of white tunillo, polyphenols were identified using the Folin-Ciocalteu technique, separated by UPLC and analyzed by infrared spectrophotometry. Five well-defined peaks with good resolution were observed in the chromatogram of the aqueous extract obtained by UPLC. Two of these peaks corresponded to polyphenols with similarity to quercetin and rutin. The subchronic oral administration of freeze-dried seeds of white tunillo for 14 days in a prediabetes model in female Wistar rats reversed hyperglycemia and glucose intolerance. Treatment with the freeze-dried seeds reversed the decrease in the hepatic expression of Akt, eNOS, and p-eNOSSer1177 but did not reverse the decrease in MnSOD, catalase, and GPx1. No changes in the expression of GPx4 and p-AktSer473 were observed in the pathological state or with the treatment but there was an increase in the expression and activity of eNOS. The bioactive compounds present in the freeze-dried seeds of Stenocereus stellatus could provide guidelines for studying the mechanisms of action through which they reverse signs of prediabetes.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | | | | | - Luz Ibarra-Lara
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Claudia Ponce-Sánchez
- Experimental Biology Program, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | | | - Francisco Cruz-Sosa
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| | - M Patlán
- Subdirection of Basic and Technological Research, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P. 09310, Ciudad de México, Mexico.
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
3
|
Li J, Xie L, Dou Z, Zhou Y, Mo J, Chen W. Genipin Activates Autophagy and Promotes Myoblast Differentiation by Activating AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15190-15197. [PMID: 38807430 DOI: 10.1021/acs.jafc.3c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cultured meat technology is expected to solve problems such as resource shortages and environmental pollution, but the muscle fiber differentiation efficiency of cultured meat is low. Genipin is the active compound derived from Gardenia jasminoides Ellis, which has a variety of activities. Additionally, genipin serves as a noncytotoxic agent for cross-linking, which is suitable as a foundational scaffold for in vitro tissue regeneration. However, the impact of genipin on myoblast differentiation remains to be studied. The research revealed that genipin was found to improve the differentiation efficiency of myoblasts. Genipin improved mitochondrial membrane potential by activating the AMPK signaling pathway of myoblasts, promoting mitochondrial biogenesis, and mitochondrial network remodeling. Genipin activated autophagy in myoblasts and maintained cellular homeostasis. Autophagy inhibitors blocked the pro-differentiation effect of genipin. These results showed that genipin improved the differentiation efficiency of myoblasts, which provided a theoretical basis for the development of cultured meat technology.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zishan Dou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Lee H, Kim SY, Lim Y. Solanum melongena extract supplementation protected skeletal muscle and brain damage by regulation of BDNF/PGC1α/irisin pathway via brain function-related myokines in high-fat diet induced obese mice. J Nutr Biochem 2024; 124:109537. [PMID: 38030047 DOI: 10.1016/j.jnutbio.2023.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
In this study, we investigated the protective effects of SM on skeletal muscle and brain damage by regulation of BDNF/PGC1α/irisin pathway via brain function related myokines in high-fat diet-induced OB mice. OB was induced by high-fat diet for 6 weeks. SM extract (SME) was administered with 200 mg/kg BW (LSM) and 500 mg/kg BW (HSM) by oral gavage every day for 12 weeks. Behavior tests such as grip strength, Y-maze, and passive avoidance test were conducted to analyze muscle and cognitive function. Histopathological changes in skeletal muscle and brain were examined by hematoxylin and eosin staining and the protein levels of biomarkers related to oxidative stress, inflammation, protein degradation, neuro-plasticity, and cell cycling were measured by western blot. SME regulated morphological changes (muscle cross-sectional area: 1.23%, 1.40%; density of neurons in hippocampus:1.74%, 1.73%) in T2DM mice. Importantly, SME supplementation significantly increased several muscle-derived myokines which might influence the expression of neuronal markers in OB mice (FGF21: 1.27%, 1.34%; PGC1α: 1.0%, 1.32%; IRISIN: 1.9%, 1.08%; BDNF: 1.35%, 1.23%). Accordingly, SME activated hippocampal neurotrophic factors including BDNF (1.0%, 1.2%) and its associated PGC1α/irisin pathway (PGC1α :1.1%, 1.1%; IRISIN:1.1%, 0.9%) significantly. This study demonstrated the possibliy that protective myokines increased by SME supplementation may contribute to neuro-protection in OB mice. Taken together, the current study suggests that SME can be used to prevent skeletal muscle and brain damage in OB by protecting against oxidative stress and inflammatin via modulation of the BDNF/PGC1α/irisin pathway in the therapeutic approach of obese patients.
Collapse
Affiliation(s)
- Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
6
|
Lee H, Kim SY, Lim Y. Annona muricate Extract Supplementation Contributes to Improve Aberrant Multi-Organ Energy Metabolism via Muscle-Brain Connectivity in Diabetic Mice. Nutrients 2023; 15:nu15112559. [PMID: 37299522 DOI: 10.3390/nu15112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is related with the incidence of sarcopenia and cognitive impairment that reduces quality of life in the elderly. Recent evidence has demonstrated that sarcopenia is associated with cognitive dysfunction, and muscle-derived endocrine factors might contribute to cognitive function by the skeletal muscle-brain endocrine loop. This study investigated the beneficial effects of Annona muricata (AM, graviola) on multi-organ energy metabolism with muscle-brain connectivity via brain function-related myokines in mice. Body composition, fasting blood glucose level, insulin, HbA1c%, histopathological changes, and the protein levels of insulin-signaling, energy metabolism, neuroprotection, inflammation, and protein-degradation pathways were measured. AM extract (AME) treatment selectively enhanced insulin signaling in the skeletal muscle and hippocampus of T2DM mice. Furthermore, AME treatment effectively increased muscle-derived fibroblast growth factor 21 (FGF21), cathepsin-B (CTSB), irisin, brain-derived neurotrophic factor (BDNF), and liver-derived FGF21 that contribute to whole-body energy homeostasis. In particular, AME increased the levels of circulating myokines (FGF21, BDNF, irisin, and CTSB), and these were accordance with the hippocampal neurotrophic factors (BDNF and CTSB) in T2DM mice. In conclusion, we suggest that AME would be a potential nutraceutical for improving the energy metabolism associated with muscle-brain connectivity via brain function-related myokines in T2DM.
Collapse
Affiliation(s)
- Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Batool Z, Wang M, Chen J, Ma M, Chen F. Regulation of physiological pH and consumption of potential food ingredients for maintaining homeostasis and metabolic function: An overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zahra Batool
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jiehua Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
10
|
Simultaneous Tests of Theaflavin-3,3'-digallate as an Anti-Diabetic Drug in Human Hepatoma G2 Cells and Zebrafish ( Danio rerio). Nutrients 2021; 13:nu13124379. [PMID: 34959930 PMCID: PMC8704303 DOI: 10.3390/nu13124379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/17/2023] Open
Abstract
Theaflavin-3,3′-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve β cells regeneration in diabetic zebrafish at low concentrations (5 μg/mL and 10 μg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting β cells. TF3 might be a promising agent for combating diabetes.
Collapse
|
11
|
Quercetin as a supplement improving endurance exercise capacity – review. Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci Rep 2021; 11:22959. [PMID: 34824300 PMCID: PMC8617296 DOI: 10.1038/s41598-021-02248-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Quercetin has demonstrated antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic activities, suggesting therapeutic potential against type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). In this study, potential molecular targets of quercetin were first identified using the Swiss Target Prediction platform and pathogenic targets of T2DM and AD were identified using online Mendelian inheritance in man (OMIM), DisGeNET, TTD, DrugBank, and GeneCards databases. The 95 targets shared among quercetin, T2DM, and AD were used to establish a protein-protein interaction (PPI) network, top 25 core genes, and protein functional modules using MCODE. Metascape was then used for gene ontology and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. A protein functional module with best score was obtained from the PPI network using CytoHubba, and 6 high-probability quercetin targets (AKT1, JUN, MAPK, TNF, VEGFA, and EGFR) were confirmed by docking simulations. Molecular dynamics simulation was carried out according to the molecular docking results. KEGG pathway enrichment analysis suggested that the major shared mechanisms for T2DM and AD include "AGE-RAGE signaling pathway in diabetic complications," "pathways in cancer," and "MAPK signaling pathway" (the key pathway). We speculate that quercetin may have therapeutic applications in T2DM and AD by targeting MAPK signaling, providing a theoretical foundation for future clinical research.
Collapse
|
13
|
Zhu Y, Kim SQ, Zhang Y, Liu Q, Kim KH. Pharmacological inhibition of acyl-coenzyme A:cholesterol acyltransferase alleviates obesity and insulin resistance in diet-induced obese mice by regulating food intake. Metabolism 2021; 123:154861. [PMID: 34371065 DOI: 10.1016/j.metabol.2021.154861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND/OBJECTIVES Acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyze the formation of cholesteryl ester (CE) from free cholesterol to regulate intracellular cholesterol homeostasis. Despite the well-documented role of ACATs in hypercholesterolemia and their emerging role in cancer and Alzheimer's disease, the role of ACATs in adipose lipid metabolism and obesity is poorly understood. Herein, we investigated the therapeutic potential of pharmacological inhibition of ACATs in obesity. METHODS We administrated avasimibe, an ACAT inhibitor, or vehicle to high-fat diet-induced obese (DIO) mice via intraperitoneal injection and evaluated adiposity, food intake, energy expenditure, and glucose homeostasis. Moreover, we examined the effect of avasimibe on the expressions of the genes in adipogenesis, lipogenesis, inflammation and adipose pathology in adipose tissue by real-time PCR. We also performed a pair feeding study to determine the mechanism for body weight lowering effect of avasimibe. RESULTS Avasimibe treatment markedly decreased body weight, body fat content and food intake with increased energy expenditure in DIO mice. Avasimibe treatment significantly lowered blood levels of glucose and insulin, and improved glucose tolerance in obese mice. The beneficial effects of avasimibe were associated with lower levels of adipocyte-specific genes in adipose tissue and the suppression of food intake. Using a pair-feeding study, we further demonstrated that avasimibe-promoted weight loss is attributed mainly to the reduction of food intake. CONCLUSIONS These results indicate that avasimibe ameliorates obesity and its-related insulin resistance in DIO mice through, at least in part, suppression of food intake.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Sora Q Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yuan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qing Liu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Aoi W, Iwasa M, Marunaka Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 2021; 88:102163. [PMID: 34098453 DOI: 10.1016/j.npep.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Dietary flavonoid intake is associated with the regulation of nutrient metabolism in the living body. Observational and cohort studies have reported a negative association between flavonoid intake and the risk of metabolic and cardiovascular diseases. Several intervention trials in humans have also supported the benefits of dietary flavonoids. In experimental studies using animal models, a daily diet rich in typical flavonoids such as catechins, anthocyanin, isoflavone, and quercetin was shown to improve whole-body energy expenditure, mitochondrial activity, and glucose tolerance. For some flavonoids, molecular targets for the metabolic modulations have been suggested. Although the effect of flavonoids on neurons has been unclear, several flavonoids have been shown to regulate thermogenesis and feeding behavior through modulating autonomic and central nervous systems. Based on epidemiological and experimental studies, this review summarizes the evidence on the metabolic benefits of flavonoids and their potential mechanism of action in metabolic regulation.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Masayo Iwasa
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Qu Z, Zhou S, Li P, Liu C, Yuan B, Zhang S, Liu A. Natural products and skeletal muscle health. J Nutr Biochem 2021; 93:108619. [DOI: 10.1016/j.jnutbio.2021.108619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
|
16
|
Hashim KN, Chin KY, Ahmad F. The Mechanism of Honey in Reversing Metabolic Syndrome. Molecules 2021; 26:808. [PMID: 33557218 PMCID: PMC7913905 DOI: 10.3390/molecules26040808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Metabolic syndrome is a constellation of five risk factors comprising central obesity, hyperglycaemia, dyslipidaemia, and hypertension, which predispose a person to cardiometabolic diseases. Many studies reported the beneficial effects of honey in reversing metabolic syndrome through its antiobesity, hypoglycaemic, hypolipidaemic, and hypotensive actions. This review aims to provide an overview of the mechanism of honey in reversing metabolic syndrome. The therapeutic effects of honey largely depend on the antioxidant and anti-inflammatory properties of its polyphenol and flavonoid contents. Polyphenols, such as caffeic acid, p-coumaric acid, and gallic acid, are some of the phenolic acids known to have antiobesity and antihyperlipidaemic properties. They could inhibit the gene expression of sterol regulatory element-binding transcription factor 1 and its target lipogenic enzyme, fatty acid synthase (FAS). Meanwhile, caffeic acid and quercetin in honey are also known to reduce body weight and fat mass. In addition, fructooligosaccharides in honey are also known to alter lipid metabolism by reducing FAS activity. The fructose and phenolic acids might contribute to the hypoglycaemic properties of honey through the phosphatidylinositol 3-kinase/protein kinase B insulin signalling pathway. Honey can increase the expression of Akt and decrease the expression of nuclear factor-kappa B. Quercetin, a component of honey, can improve vasodilation by enhancing nitric oxide production via endothelial nitric oxide synthase and stimulate calcium-activated potassium channels. In conclusion, honey can be used as a functional food or adjuvant therapy to prevent and manage metabolic syndrome.
Collapse
Affiliation(s)
- Khairun-Nisa Hashim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
17
|
Pei Y, Otieno D, Gu I, Lee SO, Parks JS, Schimmel K, Kang HW. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J Nutr Biochem 2020; 88:108532. [PMID: 33130188 DOI: 10.1016/j.jnutbio.2020.108532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Activating nonshivering thermogenesis in brown adipose tissue (BAT) is a promising strategy to prevent obesity. This study investigated whether quercetin supplementation improves obesity in mice by increasing nonshivering thermogenesis in BAT and white adipose tissue (WAT) browning. Compared to high-fat diet (HFD)-fed mice, mice fed a HFD supplemented with 1% quercetin (HFDQ) had reduced body weight and total plasma cholesterol. In HFDQ-fed mice, retroperitoneal WAT (RWAT) weight was decreased, and browning effect and lipolysis were increased. HFDQ-fed mice had increased expression of nonshivering thermogenesis genes in BAT, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α), cell death-inducing DFFA-like effector A (CIDEA), and mitochondrial transcriptional factor A (mtTFA). Quercetin supplementation increased genes and proteins in β3-adrenergic receptor (ADRB3), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK) pathways in HFD-fed mice, which were suppressed by an AMPK inhibitor or an ADRB3 antagonist. Energy expenditure and core body temperature were not changed by quercetin, but physical activity was increased in HFDQ mice during dark periods at room and cold temperatures. Quercetin also decreased the Firmicutes to Bacteroidetes ratio and increased short-chain fatty acid production in the feces of HFD-fed mice. In summary, quercetin supplementation in HFD-fed mice may attenuate obesity. Although the study did not show consistency in data at molecular and pathophysiological levels between BAT function and obesity, it also shows promising health effects of quercetin, accompanied by improved physical activity and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Ya Pei
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Dammah Otieno
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Inah Gu
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - John S Parks
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Keith Schimmel
- Applied Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Hye Won Kang
- Food and Nutritional Sciences, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA.
| |
Collapse
|
18
|
Cortés-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodríguez-Orozco AR, Calderón-Cortés E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165801. [PMID: 32305451 DOI: 10.1016/j.bbadis.2020.165801] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are characterized by high NADH/NAD+ ratios due to excessive electron supply, causing defective mitochondrial function and impaired sirtuin-3 (SIRT-3) activity, the latter driving to oxidative stress and altered fatty acid β-oxidation. NADH is oxidized by the complex I in the electron transport chain, thereby factors inhibiting complex I like acetylation, cardiolipin peroxidation, and glutathionylation by low GSH/GSSG ratios affects SIRT3 function by increasing the NADH/NAD+ ratio. In this review, we summarized the evidence supporting a role of the above events in the development of insulin resistance, which is relevant in the pathogenesis of obesity and diabetes. We propose that maintenance of proper NADH/NAD+ and GSH/GSSG ratios are central to ameliorate insulin resistance, as alterations in these redox couples lead to complex I dysfunction, disruption of SIRT-3 activity, ROS production and impaired β-oxidation, the latter two being key effectors of insulin resistance.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México.
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58020, México
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58260, México
| |
Collapse
|
19
|
Effect of Quercetin Treatment on Mitochondrial Biogenesis and Exercise-Induced AMP-Activated Protein Kinase Activation in Rat Skeletal Muscle. Nutrients 2020; 12:nu12030729. [PMID: 32164219 PMCID: PMC7146161 DOI: 10.3390/nu12030729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to evaluate the effect of chronic quercetin treatment on mitochondrial biogenesis, endurance exercise performance and activation levels of AMP-activated protein kinase (AMPK) in rat skeletal muscle. Rats were assigned to a control or quercetin group and were fed for 7 days. Rats treated with quercetin showed no changes in the protein levels of citrate synthase or cytochrome C oxidase IV or those of sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1α or phosphorylated AMPK. After endurance swimming exercise, quercetin-treated rats demonstrated no differences in blood and muscle lactate levels or glycogen utilization speed compared to control rats. These results indicate that quercetin treatment does not stimulate mitochondrial biogenesis in skeletal muscle and does not influence metabolism in a way that might enhance endurance exercise capacity. On the other hand, the AMPK phosphorylation level immediately after exercise was significantly lower in quercetin-treated muscles, suggesting that quercetin treatment might provide a disadvantage to muscle adaptation when administered with exercise training. The molecular results of this study indicate that quercetin treatment may not be advantageous for improving endurance exercise performance, at least after high-dose and short-term therapy.
Collapse
|
20
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
21
|
He J, Wang H, Vijg J. New Insights into Bioactive Compounds of Traditional Chinese Medicines for Insulin Resistance Based on Signaling Pathways. Chem Biodivers 2019; 16:e1900176. [PMID: 31368177 DOI: 10.1002/cbdv.201900176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes is a serious metabolic disease as a long-term threat to human health. Insulin resistance is not only the basis and major feature of type 2 diabetes, but also the main etiology of diseases such as hypertension, hyperlipidemia and coronary heart disease. It has been shown that Traditional Chinese Medicines (TCMs) play an important role in the treatment of type 2 diabetes, through attenuating insulin resistance, whereas the mechanism involved is not yet well understood. Therefore, it is important to elucidate the pharmacological mechanism of these bioactive compounds so that one can pave the way for the modernization of TCMs. In this review, we focus on the recent progresses of some bioactive ingredients from TCMs with different functional groups, which exhibit therapeutic potential for the treatment of diabetic insulin resistance. It is expected that this review can provide new references for developing TCM-derived drugs against diabetes and insulin resistance in the future.
Collapse
Affiliation(s)
- Jian He
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
22
|
Koch W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019; 11:nu11051039. [PMID: 31075905 PMCID: PMC6566812 DOI: 10.3390/nu11051039] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
The improvement of the social and economic conditions of society has eliminated the threat of death from the majority of infectious diseases. However, the rapid progress of civilization has created new possibilities for the appearance of factors with adverse effects for the health of society. This has led to increased morbidity from certain diseases, the presence of which had not been observed several centuries ago. Chronic noncommunicable diseases (e.g., cancers, cardio-vascular disorders, diabetes, obesity, neurodegenerative diseases) result from an inappropriate relationship between people and their environment. The common characteristic for all chronic diseases is a “new” form of inflammation, very often called metaflammation, which is considered as a subclinical, permanent inflammation. As a result, metabolic cascade, including cellular oxidative stress, atherosclerotic process, and insulin resistance, occurs, which slowly generates significant deterioration in the organism. Polyphenols are the major group of non-nutrients, considering their diversity, food occurrence, and biological properties. The current review aims to present a wide spectrum of literature data, including the molecular mechanism of their activity and experimental model used, and summarize the recent findings on the multitude of physiological effects of dietary polyphenols towards the prevention of several chronic diseases. However, despite several studies, the estimation of their dietary intake is troublesome and inconclusive, which will be also discussed.
Collapse
Affiliation(s)
- Wojciech Koch
- Chair and Department of Food and Nutrition, Faculty of Pharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland.
| |
Collapse
|
23
|
Bule M, Abdurahman A, Nikfar S, Abdollahi M, Amini M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem Toxicol 2019; 125:494-502. [DOI: 10.1016/j.fct.2019.01.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
|
24
|
Aoi W, Zou X, Xiao JB, Marunaka Y. Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods. EFOOD 2019. [DOI: 10.2991/efood.k.190924.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Theaflavins Improve Insulin Sensitivity through Regulating Mitochondrial Biosynthesis in Palmitic Acid-Induced HepG2 Cells. Molecules 2018; 23:molecules23123382. [PMID: 30572687 PMCID: PMC6320999 DOI: 10.3390/molecules23123382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improving effects on insulin resistance-associated metabolic abnormalities, including obesity and type 2 diabetes mellitus. However, the related molecular mechanisms are still unclear. In this research, we investigated the protective effects of theaflavins against insulin resistance in HepG2 cells induced by palmitic acid. Theaflavins significantly increased glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the total and membrane bound glucose transporter 4 protein expressions, increasing the phosphor-Akt (Ser473) level, and decreasing the phosphorylation of IRS-1 at Ser307. Moreover, theaflavins were found to enhance the mitochondrial DNA copy number, down-regulate the PGC-1β mRNA level and increase the PRC mRNA expression. Mdivi-1, a selective mitochondrial division inhibitor, could attenuate TFs-induced promotion of glucose uptake in insulin-resistant HepG2 cells. Taken together, these results suggested that theaflavins could improve hepatocellular insulin resistance induced by free fatty acids, at least partly through promoting mitochondrial biogenesis. Theaflavins are promising functional food ingredients and medicines for improving insulin resistance-related disorders.
Collapse
|
26
|
Takami M, Aoi W, Terajima H, Tanimura Y, Wada S, Higashi A. Effect of dietary antioxidant-rich foods combined with aerobic training on energy metabolism in healthy young men. J Clin Biochem Nutr 2018; 64:79-85. [PMID: 30705516 PMCID: PMC6348409 DOI: 10.3164/jcbn.18-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Although supplementation with several antioxidants has been suggested to improve aerobic metabolism during exercise, whether dietary foods containing such antioxidants can exert the metabolic modulation is unclear. This study aimed to investigate the effect of intake of the specific antioxidant-rich foods coupled with exercise training on energy metabolism. Twenty young healthy, untrained men were assigned to antioxidant and control groups: participants in the antioxidant group were encouraged to consume foods containing catechin, astaxanthin, quercetin, glutathione, and anthocyanin. All participants performed cycle training at 60% maximum oxygen consumption for 30 min, 3 days per week for 4 weeks. Maximum work load was significantly increased by training in both groups, while oxygen consumption during exercise was significantly increased in the antioxidant group only. There were positive correlations between maximum work load and fat/carbohydrate oxidations in the antioxidant group. Carbohydrate oxidation during rest was significantly higher in the post-training than that in the pre-training only in the antioxidant group. More decreased levels of serum insulin and HOMA-IR after training were observed in the antioxidant group than in the control group. This study suggests that specific antioxidant-rich foods could modulate training-induced aerobic metabolism of carbohydrate and fat during rest and exercise.
Collapse
Affiliation(s)
- Maki Takami
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hitomi Terajima
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuko Tanimura
- Faculty of Human Health, Aichi-Toho University, 3-11 Heiwagaoka, Meito-ku, Nagoya 465-8515, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
27
|
Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner. Int J Mol Sci 2018; 19:ijms19030895. [PMID: 29562620 PMCID: PMC5877756 DOI: 10.3390/ijms19030895] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.
Collapse
|
28
|
Funakoshi T, Kanzaki N, Otsuka Y, Izumo T, Shibata H, Machida S. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro. Biochem Biophys Rep 2017; 13:39-44. [PMID: 29379887 PMCID: PMC5773448 DOI: 10.1016/j.bbrep.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
Muscle satellite cells are committed myogenic progenitors capable of contributing to myogenesis to maintain adult muscle mass and function. Several experiments have demonstrated that muscle satellite cells can differentiate into adipocytes in vitro, supporting the mesenchymal differentiation potential of these cells. Moreover, muscle satellite cells may be a source of ectopic muscle adipocytes, explaining the lipid accumulation often observed in aged skeletal muscle (sarcopenia) and in muscles of patients` with diabetes. Quercetin, a polyphenol, is one of the most abundant flavonoids distributed in edible plants, such as onions and apples, and possesses antioxidant, anticancer, and anti-inflammatory properties. In this study, we examined whether quercetin inhibited the adipogenesis of muscle satellite cells in vitro with primary cells from rat limbs by culture in the presence of quercetin under adipogenic conditions. Morphological observations, Oil Red-O staining results, triglyceride content analysis, and quantitative reverse transcription polymerase chain reaction revealed that quercetin was capable of inhibiting the adipogenic induction of muscle satellite cells into adipocytes in a dose-dependent manner by suppressing the transcript levels of adipogenic markers, such as peroxisome proliferator-activated receptor-γ and fatty acid binding protein 4. Our results suggested that quercetin inhibited the adipogenesis of muscle satellite cells in vitro by suppressing the transcription of adipogenic markers. Quercetin inhibited the adipogenesis of muscle satellite cells in vitro. The effect of quercetin might be based on suppression at the transcriptional levels. Quercetin could limit ectopic lipid accumulation as observed in aged muscles.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiragagakuendai, Inzai-shi, Chiba 270-1695, Japan
| | - Noriyuki Kanzaki
- Institute for Health Care Science, Suntory Wellness Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Yuta Otsuka
- Institute for Health Care Science, Suntory Wellness Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiragagakuendai, Inzai-shi, Chiba 270-1695, Japan
| |
Collapse
|
29
|
Cialdella-Kam L, Ghosh S, Meaney MP, Knab AM, Shanely RA, Nieman DC. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice. Nutrients 2017; 9:nu9070773. [PMID: 28753942 PMCID: PMC5537887 DOI: 10.3390/nu9070773] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Quercetin (Q) and green tea extract (E) are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ) could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD) fed to mice. Male C57BL/6 mice (n = 40) were put on HFD (fat = 60%kcal) for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW)/day), E (3 mg of epigallocatechin gallate/kg BW/day), EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT), followed by area-under-the-curve (AUC) estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR) on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA), and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05). Plasma cytokines were similar among groups (p > 0.05). AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311), but non-significant from control (p = 0.0809). Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.
Collapse
Affiliation(s)
- Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine-WG 48, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Diseases and Center for Computational Biology, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Mary Pat Meaney
- Department of Exercise Physiology, School of Health Sciences, Winston-Salem State University, 601 S. Martin Luther King Jr. Drive, Winston-Salem, NC 27110, USA.
| | - Amy M Knab
- Levine Center for Health and Wellness, Queens University of Charlotte, 1900 Selwyn Avenue, Charlotte, NC 28274, USA.
| | - R Andrew Shanely
- Department of Health & Exercise Science, Appalachian State University, ASU Box 32071, 111 Rivers Street, 050 Convocation Center, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
30
|
Mehta V, Parashar A, Sharma A, Singh TR, Udayabanu M. Quercetin ameliorates chronic unpredicted stress-mediated memory dysfunction in male Swiss albino mice by attenuating insulin resistance and elevating hippocampal GLUT4 levels independent of insulin receptor expression. Horm Behav 2017; 89:13-22. [PMID: 28025042 DOI: 10.1016/j.yhbeh.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023]
Abstract
Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21days, during which 30mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling.
Collapse
Affiliation(s)
- Vineet Mehta
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Arun Parashar
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Arun Sharma
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Tiratha Raj Singh
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India
| | - Malairaman Udayabanu
- Department of Bioinformatics, Biotechnology and Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh -173234, India.
| |
Collapse
|
31
|
Quercetin and Quercetin-Rich Red Onion Extract Alter Pgc-1α Promoter Methylation and Splice Variant Expression. PPAR Res 2017; 2017:3235693. [PMID: 28191013 PMCID: PMC5278221 DOI: 10.1155/2017/3235693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/06/2016] [Accepted: 12/18/2016] [Indexed: 11/29/2022] Open
Abstract
Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and function. Here, mice were fed a low fat (LF), high fat (HF), high fat plus quercetin (HF + Q), or high fat plus red onion extract (HF + RO) diet for 9 wks and skeletal muscle Pgc-1α isoform expression and DNA methylation were determined. Quantification of various Pgc-1α isoforms, including isoforms Pgc-1α-a, Pgc-1α-b, Pgc-1α-c, Pgc-1α4, total NT-Pgc-1α, and FL-Pgc-1α, showed that only total NT-Pgc-1α expression was increased in LF, HF + Q, and HF + RO compared to HF. Furthermore, Q supplementation decreased Pgc-1α-a expression compared to LF and HF, and ROE decreased Pgc-1α-a expression compared to LF. FL-Pgc-1α was decreased in HF + Q and HF + RO compared to LF and HF. HF exhibited hypermethylation at the −260 nucleotide (nt) in the Pgc-1α promoter. Q and ROE prevented HFD-induced hypermethylation. −260 nt methylation levels were associated with NT-Pgc-1α expression only. Pgc-1α isoform expression may be epigenetically regulated by Q and ROE through DNA methylation.
Collapse
|
32
|
Arias N, Picó C, Teresa Macarulla M, Oliver P, Miranda J, Palou A, Portillo MP. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring) 2017; 25:111-121. [PMID: 27874268 DOI: 10.1002/oby.21706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To analyze whether a combination of quercetin (Q) and resveratrol (RSV) would induce a white adipose tissue (WAT) browning effect. METHODS Thirty-six rats were fed an obesogenic diet and divided into four groups: control, treated with RSV (15 mg/kg body weight/day; RSV group), treated with Q (30 mg/kg body weight/day; Q group), or treated with both polyphenols (RSV + Q group). RESULTS After 6 weeks, body and WAT weights were significantly reduced in the RSV + Q group. In perirenal WAT of the control, RSV, and Q groups, white unilocular adipocytes appeared in the majority of cells, while in the RSV + Q group numerous multilocular adipocytes with positive immunostaining for UCP1 were observed. The presence of UCP1 was confirmed by Western blot. This group also revealed increased mRNA levels of Cidea, Hocx9, Bmp4, Slc27a1, Pat2, Atgl, and Atp5d. Interscapular brown adipose tissue weight showed no differences between groups, but the Cidea mRNA level was increased in the RSV group, the Cox-2 mRNA level in the RSV + Q group, and UCP1 protein expression in the RSV and the RSV + Q groups. CONCLUSIONS This study demonstrated that the RSV + Q combination produces a brown-like remodeling effect in perirenal WAT, as well as increased UCP1 protein expression in interscapular brown adipose tissue.
Collapse
Affiliation(s)
- Noemí Arias
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Teresa Macarulla
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jonatan Miranda
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - María P Portillo
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| |
Collapse
|
33
|
Kaikini AA, Kanchan DM, Nerurkar UN, Sathaye S. Targeting Mitochondrial Dysfunction for the Treatment of Diabetic Complications: Pharmacological Interventions through Natural Products. Pharmacogn Rev 2017; 11:128-135. [PMID: 28989247 PMCID: PMC5628518 DOI: 10.4103/phrev.phrev_41_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is a chronic hyperglycemic condition with deleterious effects on microcirculation, resulting in diabetic complications. Chronic hyperglycemia induces the generation of reactive oxygen species (ROS), which are the key pathological triggers in the development of diabetic complications. ROS are responsible for the activation of various pathways involved in the genesis of diabetic complications, mitochondrial dysfunction, as well as insulin resistance. The review describes normal mitochondrial physiology and abnormal alterations, which occur in response to hyperglycemia. Mitochondrial biogenesis is a highly regulated process mediated by several transcription factors, wherein mitochondrial fusion and fission occur in harmony in a normal healthy cell. However, this harmony is disrupted in hyperglycemic condition indicated by alteration in functions of essential transcription factors. Hyperglycemia-induced mitochondrial dysfunction plays a key role in diabetic complications, pancreatic β-cell dysfunction, as well as skeletal muscle insulin resistance as demonstrated by various in vitro, preclinical, and clinical studies. The review focuses on the various factors involved in mitochondrial biogenesis and maintenance of healthy mitochondrial function. Several phytoconstituents act through these pathways, either directly by stimulating biogenesis or indirectly by inhibiting or preventing dysfunction, and produce a beneficial effect on overall mitochondrial function. These phytoconstituents have enormous potential in amelioration of diabetic complications by restoring normal mitochondrial physiology and need detailed evaluation by preclinical and clinical studies. Such phytoconstituents can be included as nutraceuticals or adjuvant therapy to the mainstream treatment of diabetes.
Collapse
Affiliation(s)
- Aakruti Arun Kaikini
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Divya Manohar Kanchan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Urvi Narayan Nerurkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Enos RT, Velázquez KT, Carson MS, McClellan JL, Nagarkatti P, Nagarkatti M, Davis JM, Murphy EA. A Low Dose of Dietary Quercetin Fails to Protect against the Development of an Obese Phenotype in Mice. PLoS One 2016; 11:e0167979. [PMID: 27959936 PMCID: PMC5154532 DOI: 10.1371/journal.pone.0167979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to examine the effect of a 40% high-fat diet (HFD) supplemented with a dietary attainable level of quercetin (0.02%) on body composition, adipose tissue (AT) inflammation, Non-Alcoholic Fatty-Liver Disease (NAFLD), and metabolic outcomes. Diets were administered for 16 weeks to C57BL/6J mice (n = 10/group) beginning at 4 weeks of age. Body composition and fasting blood glucose, insulin, and total cholesterol concentrations were examined intermittently. AT and liver mRNA expression (RT-PCR) of inflammatory mediators (F4/80, CD206 (AT only), CD11c (AT only) TLR-2 (AT only), TLR-4 (AT only), MCP-1, TNF-α, IL-6 (AT only), and IL-10 (AT only)) were measured along with activation of NFκB-p65, and JNK (western blot). Hepatic lipid accumulation, gene expression (RT-PCR) of hepatic metabolic markers (ACAC1, SREBP-1, PPAR-γ), protein content of Endoplasmic Reticulum (ER) Stress markers (BiP, phosphorylated and total EIF2α, phosphorylated and total IRE1α, CHOP), and hepatic oxidative capacity were assessed (western blot). Quercetin administration had no effect at mitigating increases in visceral AT, AT inflammation, hepatic steatosis, ER Stress, decrements in hepatic oxidative capacity, or the development of insulin resistance and hypercholesterolemia. In conclusion, 0.02% quercetin supplementation is not an effective therapy for attenuating HFD-induced obesity development. It is likely that a higher dose of quercetin supplementation is needed to elicit favorable outcomes in obesity.
Collapse
Affiliation(s)
- Reilly T. Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Meredith S. Carson
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Jamie L. McClellan
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - J. Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - E. Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Pereira TMC, Pimenta FS, Porto ML, Baldo MP, Campagnaro BP, Gava AL, Meyrelles SS, Vasquez EC. Coadjuvants in the Diabetic Complications: Nutraceuticals and Drugs with Pleiotropic Effects. Int J Mol Sci 2016; 17:ijms17081273. [PMID: 27527163 PMCID: PMC5000671 DOI: 10.3390/ijms17081273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
Because diabetes mellitus (DM) is a multifactorial metabolic disease, its prevention and treatment has been a constant challenge for basic and clinical investigators focused on translating their discoveries into clinical treatment of this complex disorder. In this review, we highlight recent experimental and clinical evidences of potential coadjuvants in the management of DM, such as polyphenols (quercetin, resveratrol and silymarin), cultured probiotic microorganisms and drugs acting through direct/indirect or pleiotropic effects on glycemic control in DM. Among several options, we highlight new promising therapeutic coadjuvants, including chemical scavengers, the probiotic kefir and the phosphodiesterase 5 inhibitors, which besides the reduction of hyperglycemia and ameliorate insulin resistance, they reduce oxidative stress and improve endothelial dysfunction in the systemic vascular circulation. In the near future, experimental studies are expected to clear the intracellular pathways involving coadjuvants. The design of clinical trials may also contribute to new strategies with coadjuvants against the harmful effects of diabetic complications.
Collapse
Affiliation(s)
- Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Federal Institute of Education, Science and Technology (IFES), 29106-010 Vila Velha, Brazil.
| | - Fabio Silva Pimenta
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Burn Treatment Center, Children State Hospital, 29056-030 Vitoria, Brazil.
| | - Marcella Lima Porto
- Federal Institute of Education, Science and Technology (IFES), 29106-010 Vila Velha, Brazil.
| | - Marcelo Perim Baldo
- Department of Pathophysiology, Montes Claros State University, 39401-089, Montes Claros, Brazil.
| | - Bianca Prandi Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
| | - Agata Lages Gava
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
- Division of Nephrology, McMaster University, Hamilton, ON L8N 4A6, Canada.
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
| | - Elisardo Corral Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Av. Comissario Jose Dantas Melo 21, Boa Vista, 29102-920 Vila Velha, Brazil.
- Laboratory of Translational Physiology, Federal University of Espirito Santo (Ufes), 29047-100 Vitoria, Brazil.
| |
Collapse
|
36
|
Henagan TM, Laeger T, Navard AM, Albarado D, Noland RC, Stadler K, Elks CM, Burk D, Morrison CD. Hepatic autophagy contributes to the metabolic response to dietary protein restriction. Metabolism 2016; 65:805-15. [PMID: 27173459 PMCID: PMC4867053 DOI: 10.1016/j.metabol.2016.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/07/2016] [Accepted: 02/23/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction.
Collapse
Affiliation(s)
- Tara M Henagan
- Neurosignaling, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Thomas Laeger
- Neurosignaling, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Alexandra M Navard
- Neurosignaling, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Diana Albarado
- Neurosignaling, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Robert C Noland
- Skeletal Muscle Metabolism, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Krisztian Stadler
- Oxidative Stress and Disease, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Carrie M Elks
- Matrix Biology, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - David Burk
- Cell Biology, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Christopher D Morrison
- Neurosignaling, Imaging and Culture Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808.
| |
Collapse
|
37
|
Abstract
As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.
Collapse
|
38
|
Mukai R, Matsui N, Fujikura Y, Matsumoto N, Hou DX, Kanzaki N, Shibata H, Horikawa M, Iwasa K, Hirasaka K, Nikawa T, Terao J. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. J Nutr Biochem 2016; 31:67-76. [PMID: 27133425 DOI: 10.1016/j.jnutbio.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
Quercetin is a major dietary flavonoid in fruits and vegetables. We aimed to clarify the preventive effect of dietary quercetin on disuse muscle atrophy and the underlying mechanisms. We established a mouse denervation model by cutting the sciatic nerve in the right leg (SNX surgery) to lack of mobilization in hind-limb. Preintake of a quercetin-mixed diet for 14days before SNX surgery prevented loss of muscle mass and atrophy of muscle fibers in the gastrocnemius muscle (GM). Phosphorylation of Akt, a key phosphorylation pathway of suppression of protein degradation, was activated in the quercetin-mixed diet group with and without SNX surgery. Intake of a quercetin-mixed diet suppressed the generation of hydrogen peroxide originating from mitochondria and elevated mitochondrial peroxisome proliferator-activated receptor-γ coactivator 1α mRNA expression as well as NADH dehydrogenase 4 expression in the GM with SNX surgery. Quercetin and its conjugated metabolites reduced hydrogen peroxide production in the mitochondrial fraction obtained from atrophied muscle. In C2C12 myotubes, quercetin reached the mitochondrial fraction. These findings suggest that dietary quercetin can prevent disuse muscle atrophy by targeting mitochondria in skeletal muscle tissue through protecting mitochondria from decreased biogenesis and reducing mitochondrial hydrogen peroxide release, which can be related to decreased hydrogen peroxide production and/or improvements on antioxidant capacity of mitochondria.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Naoko Matsui
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Yutaka Fujikura
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Norifumi Matsumoto
- Department of Biochemical Science and Technology Faculty of Agriculture, Kagoshima University, 1-12-24, Korimoto, Kagoshima, 890-0065, Japan
| | - De-Xing Hou
- Department of Biochemical Science and Technology Faculty of Agriculture, Kagoshima University, 1-12-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Noriyuki Kanzaki
- Institute for Health Care Science, Suntory Wellness Ltd, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences
| | - Keiko Iwasa
- Research Institute, Suntory Global Innovation Center, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Oksaka, 618-8503, Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8503, Japan.
| |
Collapse
|
39
|
Hoek-van den Hil EF, van Schothorst EM, van der Stelt I, Swarts HJM, van Vliet M, Amolo T, Vervoort JJM, Venema D, Hollman PCH, Rietjens IMCM, Keijer J. Direct comparison of metabolic health effects of the flavonoids quercetin, hesperetin, epicatechin, apigenin and anthocyanins in high-fat-diet-fed mice. GENES & NUTRITION 2015; 10:469. [PMID: 26022682 PMCID: PMC4447677 DOI: 10.1007/s12263-015-0469-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023]
Abstract
Dietary flavonoid intake is associated with reduced risk of cardiovascular diseases, possibly by affecting metabolic health. The relative potency of different flavonoids in causing beneficial effects on energy and lipid metabolism has not been investigated. Effects of quercetin, hesperetin, epicatechin, apigenin and anthocyanins in mice fed a high-fat diet (HF) for 12 weeks were compared, relative to normal-fat diet. HF-induced body weight gain was significantly lowered by all flavonoids (17-29 %), but most by quercetin. Quercetin significantly lowered HF-induced hepatic lipid accumulation (71 %). Mesenteric adipose tissue weight and serum leptin levels were significantly lowered by quercetin, hesperetin and anthocyanins. Adipocyte cell size and adipose tissue inflammation were not affected. The effect on body weight and composition could not be explained by individual significant effects on energy intake, energy expenditure or activity. Lipid metabolism was not changed as measured by indirect calorimetry or expression of known lipid metabolic genes in liver and white adipose tissue. Hepatic expression of Cyp2b9 was strongly downregulated by all flavonoids. In conclusion, all flavonoids lowered parameters of HF-induced adiposity, with quercetin being most effective.
Collapse
Affiliation(s)
- Elise F. Hoek-van den Hil
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- />Division of Toxicology, Wageningen University, Wageningen, The Netherlands
- />RIKILT Wageningen UR, Wageningen, The Netherlands
| | | | - Inge van der Stelt
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Hans J. M. Swarts
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Marjanne van Vliet
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom Amolo
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Dini Venema
- />RIKILT Wageningen UR, Wageningen, The Netherlands
| | | | | | - Jaap Keijer
- />Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
40
|
Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats. Nutr Res 2015; 35:585-91. [DOI: 10.1016/j.nutres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 01/29/2023]
|
41
|
3,4-dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, protects against pancreatic β-cells dysfunction induced by high cholesterol. Exp Cell Res 2015; 334:270-82. [DOI: 10.1016/j.yexcr.2015.03.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 01/07/2023]
|
42
|
Zhang M, Sun D, Li S, Pan X, Zhang X, Zhu D, Li C, Zhang R, Gao E, Wang H. Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J Cell Mol Med 2015; 19:1174-82. [PMID: 25688987 PMCID: PMC4459833 DOI: 10.1111/jcmm.12369] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 01/18/2023] Open
Abstract
The insulin-PI3K-mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin-sensitivity via insulin-PI3K-mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre-treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p-Akt, p-mTOR and p-p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre-treatment abolished the effects of increased p-mTOR and p-p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin-PI3K-mTOR dependent pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Shuang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xietian Pan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xiaotian Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Di Zhu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Rongqing Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
43
|
Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, Devarshi PP. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 2015; 172:2782-98. [PMID: 25559882 DOI: 10.1111/bph.13058] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/24/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. EXPERIMENTAL APPROACH The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. KEY RESULTS NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the -1 nucleosome in association with altered gene expression. CONCLUSIONS AND IMPLICATIONS NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing -1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype.
Collapse
Affiliation(s)
- Tara M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Barbara Stefanska
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alexandra M Navard
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Natalie R Lenard
- Department of Sciences, Our Lady of the Lake College, Baton Rouge, LA, USA
| | - Prasad P Devarshi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
44
|
Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 2015; 26:651-60. [PMID: 25762527 DOI: 10.1016/j.jnutbio.2015.01.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022]
Abstract
Diet-induced obesity is associated to an imbalance in the normal gut microbiota composition. Resveratrol and quercetin, widely known for their health beneficial properties, have low bioavailability, and when they reach the colon, they are targets of the gut microbial ecosystem. Hence, the use of these molecules in obesity might be considered as a potential strategy to modulate intestinal bacterial composition. The purpose of this study was to determine whether trans-resveratrol and quercetin administration could counteract gut microbiota dysbiosis produced by high-fat sucrose diet (HFS) and, in turn, improve gut health. Wistar rats were randomised into four groups fed an HFS diet supplemented or not with trans-resveratrol [15 mg/kg body weight (BW)/day], quercetin (30 mg/kg BW/day) or a combination of both polyphenols at those doses. Administration of both polyphenols together prevented body weight gain and reduced serum insulin levels. Moreover, individual supplementation of trans-resveratrol and quercetin effectively reduced serum insulin levels and insulin resistance. Quercetin supplementation generated a great impact on gut microbiota composition at different taxonomic levels, attenuating Firmicutes/Bacteroidetes ratio and inhibiting the growth of bacterial species previously associated to diet-induced obesity (Erysipelotrichaceae, Bacillus, Eubacterium cylindroides). Overall, the administration of quercetin was found to be effective in lessening HFS-diet-induced gut microbiota dysbiosis. In contrast, trans-resveratrol supplementation alone or in combination with quercetin scarcely modified the profile of gut bacteria but acted at the intestinal level, altering the mRNA expression of tight-junction proteins and inflammation-associated genes.
Collapse
|
45
|
Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 2015; 6:1399-417. [DOI: 10.1039/c4fo01178c] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The physiological functions and mechanisms of action of quercetin and its related polyphenols are highlighted, including their effects on brain, blood vessels, muscle, and intestinal microflora.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Department of Bioscience
- Fukui Prefectural University
- Eiheiji-cho, Yoshida-gun, Fukui 910-1195
- Japan
| | - Rie Mukai
- Department of Food Science
- Institute of Health Biosciences
- The University of Tokushima Graduate School
- Tokushima 770-8503
- Japan
| | - Akari Ishisaka
- School of Human Science and Environment
- University of Hyogo
- Himeji 670-0092
- Japan
| |
Collapse
|
46
|
Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm 2014; 2014:834294. [PMID: 25614714 PMCID: PMC4295595 DOI: 10.1155/2014/834294] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle inflammation and atrophy are closely associated with metabolic impairment such as insulin resistance. Quercetin, a natural polyphenol flavonoid, is known to elicit anti-inflammatory and antioxidant activities. In this study, we investigated its effect on obesity-induced skeletal muscle inflammation and atrophy in mice. Male C57BL/6 mice were fed a regular diet, a high-fat diet (HFD), and an HFD supplemented with quercetin for nine weeks. Quercetin reduced levels of inflammatory cytokines and macrophage accumulation in the skeletal muscle of the HFD-fed obese mice. It also reduced transcript and protein levels of the specific atrophic factors, Atrogin-1 and MuRF1, in the skeletal muscle of the HFD-fed obese mice, and protected against the reduction of muscle mass and muscle fiber size. In vitro, quercetin markedly diminished transcript levels of inflammatory receptors and activation of their signaling molecules (ERK, p38 MAPK, and NF-κB) in cocultured myotubes/macrophages, and this was accompanied by reduced expression of the atrophic factors. Together, these findings suggest that quercetin reduces obesity-induced skeletal muscle atrophy by inhibiting inflammatory receptors and their signaling pathway. Quercetin may be useful for preventing obesity-induced muscle inflammation and sarcopenia.
Collapse
|
47
|
Henagan TM, Cefalu WT, Ribnicky DM, Noland RC, Dunville K, Campbell WW, Stewart LK, Forney LA, Gettys TW, Chang JS, Morrison CD. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity. GENES AND NUTRITION 2014; 10:451. [PMID: 25542303 DOI: 10.1007/s12263-014-0451-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/04/2014] [Indexed: 12/01/2022]
Abstract
Red onions and low doses of the flavonoid, quercetin, increase insulin sensitivity and improve glucose tolerance. We hypothesized that dietary supplementation with red onion extract (RO) would attenuate high fat diet (HFD)-induced obesity and insulin resistance similar to quercetin supplementation by increasing energy expenditure through a mechanism involving skeletal muscle mitochondrial adaptations. To test this hypothesis, C57BL/6J mice were randomized into four groups and fed either a low fat diet (LF), HFD (HF), HFD + quercetin (HF + Q), or HFD + RO (HF + RO) for 9 weeks. Food consumption and body weight and composition were measured weekly. Insulin sensitivity was assessed by insulin and glucose tolerance tests. Energy expenditure and physical activity were measured by indirect calorimetry. Skeletal muscle incomplete beta oxidation, mitochondrial number, and mtDNA-encoded gene expression were measured. Quercetin and RO supplementation decreased HFD-induced fat mass accumulation and insulin resistance (measured by insulin tolerance test) and increased energy expenditure; however, only HF + Q showed an increase in physical activity levels. Although quercetin and RO similarly increased skeletal muscle mitochondrial number and decreased incomplete beta oxidation, establishing mitochondrial function similar to that seen in LF, only HF + Q exhibited consistently lower mRNA levels of mtDNA-encoded genes necessary for complexes IV and V compared to LF. Quercetin- and RO-induced improvements in adiposity, insulin resistance, and energy expenditure occur through differential mechanisms, with quercetin-but not RO-induced energy expenditure being related to increases in physical activity. While both treatments improved skeletal muscle mitochondrial number and function, mtDNA-encoded transcript levels suggest that the antiobesogenic, insulin-sensitizing effects of purified quercetin aglycone, and RO may occur through differential mechanisms.
Collapse
Affiliation(s)
- T M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Taylor EM, Jones AD, Henagan TM. A Review of Mitochondrial-derived Fatty Acids in Epigenetic Regulation of Obesity and Type 2 Diabetes. ACTA ACUST UNITED AC 2014; 2:1-4. [PMID: 25364776 DOI: 10.15226/jnhfs.2014.00127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes, the leading metabolic disease, is characterized by insulin resistance and is associated with obesity. The onset of type 2 diabetes is largely due to environmental inputs, such as high dietary fat content and decreased levels of exercise. Insulin resistance resulting from high fat diet is associated with skeletal muscle mitochondrial dysfunction, leading to alterations in lipid accumulation and specific species of intracellular fatty acids; whereas, exercise training augments insulin resistance while improving skeletal muscle mitochondrial function and producing beneficial fatty acid profiles. Additionally, high fat diets and exercise alter epigenetic modifications, including DNA methylation and histone acetylation, to produce differences in metabolic gene expression that are associated with insulin resistance and sensitivity, respectively. Recent evidence suggests that short chain fatty acids that act as histone deacetylase inhibitors prevent and ameliorate obesity and insulin resistance. Here, we discuss the potential of mitochondrial-derived fatty acids, especially short chain fatty acids, to epigenetically regulate obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Aarin D Jones
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Tara M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|