1
|
Geng Y, Xie C, Zhang C, Liu X, Zhou Y. Functions and Regulation of HAM Family Genes in Meristems During Gametophyte and Sporophyte Generations. PLANT, CELL & ENVIRONMENT 2025; 48:2125-2131. [PMID: 39558470 PMCID: PMC11788942 DOI: 10.1111/pce.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed-free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations. Recent findings have highlighted both conserved and lineage-specific roles of the HAIRY MERISTEM (HAM) family of GRAS-domain transcriptional regulators in various meristems throughout the land plant lifecycle. Here, we review and discuss how HAM genes maintain meristem indeterminacy in both sporophytes and gametophytes, with a focus on studies performed in two model species: the flowering plant Arabidopsis thaliana and the fern Ceratopteris richardii. Additionally, we summarize the crucial and tightly regulated functions of the microRNA171 (miR171)-HAM regulatory modules, which define HAM spatial patterns and activities during meristem development across various meristem identities in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Xie
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Cankui Zhang
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Yun Zhou
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Gu L, Lai Y, Zhang G, Yang Y, Zhang B, Wang J, Zhang Z, Li M. Genome-Wide Identification of the Rehmannia glutinosa miRNA Family and Exploration of Their Expression Characteristics Caused by the Replant Disease Formation-Related Principal Factor. Genes (Basel) 2024; 15:1239. [PMID: 39336830 PMCID: PMC11431045 DOI: 10.3390/genes15091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rehmannia glutinosa, a highly valuable medicinal plant in China, is encountering severe replant disease. Replant disease represents a complex stress driven by multiple principal factors (RDFs), including allelochemicals, microbes, and their interactions. miRNAs are recognized as key regulators of plant response to stresses; however, their specific roles within RDFs are not entirely clear. Methods: This study builds six RDF treatments, comprising R. glutinosa continuously planted (SP), normally planted (NP), and NP treated with ferulic acid (FA), Fusarium oxysporum (FO), and a combination of FA with FO (FAFO). sRNA-seq technology was used to identify crucial miRNAs in response to diverse RDFs. Results: In total, 30 sRNA datasets were generated from the SP, NP, FA, FO, and FAFO samples. A total of 160 known and 41 novel miRNAs (RgmiRNAs) were identified in the R. glutinosa genome based on the sRNA database. Abundance analysis revealed that RgmiRNAs in SP exhibited a distinct expression profile in comparison with others. Of these, 124, 86, 86, and 90 RgmiRNAs were differentially expressed in SP, FA, FO, and FAFO compared with NP. Target analysis indicated that RgmiRNAs downregulated in both SP and RDFs impede the organism growth of R. glutinosa. RgmiRNAs upregulated in SP can disrupt root formation and nutrient metabolism, in which, two RgmiR398 were uniquely expressed in SP. It was confirmed to target RgCSD genes. The expression patterns of RgmiR398 and RgCSD indicated that replant disease induces the oxidative damage of R. glutinosa through RgmiR398. Conclusions:RgmiRNA profiling under RDFs provides a theoretical basis for the further clarification of RgmiRNA function in replant disease.
Collapse
Affiliation(s)
- Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanlin Lai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guojun Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianming Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Li Q, Song M, Wang Y, Lu P, Ge W, Zhang K. Unraveling the Molecular Mechanisms by Which the miR171b- SCL6 Module Regulates Maturation in Lilium. Int J Mol Sci 2024; 25:9156. [PMID: 39273108 PMCID: PMC11394818 DOI: 10.3390/ijms25179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Lilium is one of the most widely cultivated ornamental bulbous plants in the world. Although research has shown that variable temperature treatments can accelerate the development process from vegetative to reproductive growth in Lilium, the molecular regulation mechanisms of this development are not clear. In this study, Lbr-miR171b and its target gene, LbrSCL6, were selected and validated using transgenic functional verification, subcellular localization, and transcriptional activation. This study also investigated the differential expression of Lbr-miR171b and LbrSCL6 in two temperature treatment groups (25 °C and 15 °C). Lbr-miR171b expression significantly increased after the temperature change, whereas that of LbrSCL6 exhibited the opposite trend. Through in situ hybridization experiments facilitated by the design of hybridization probes targeting LbrSCL6, a reduction in LbrSCL6 expression was detected following variable temperature treatment at 15 °C. The transgenic overexpression of Lbr-miR171b in plants promoted the phase transition, while LbrSCL6 overexpression induced a delay in the phase transition. In addition, LbrWOX4 interacted with LbrSCL6 in yeast two-hybrid and bimolecular fluorescence complementation assays. In conclusion, these results explain the molecular regulatory mechanisms governing the phase transition in Lilium.
Collapse
Affiliation(s)
- Qing Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Meiqi Song
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Yachen Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Ping Lu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (Q.L.); (M.S.); (Y.W.); (P.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
5
|
Long L, Xu FC, Yuan M, Shang SZ, Song HG, Zhao JR, Hu GY, Zhang ZN, Zhao XT, Ma JY, Hussain A, Wang P, Cai YF, Jin SX, Gao W. GhHAM regulates GoPGF-dependent gland development and contributes to broad-spectrum pest resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:879-894. [PMID: 38923085 DOI: 10.1111/tpj.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Fu-Chun Xu
- Changzhi Medical College, Changzhi, Shanxi, 046000, P.R. China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shen-Zhai Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Hao-Ge Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Gai-Yuan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
- Sanya Institute of Henan University, Sanya, Hainan, 572024, P.R. China
| | - Zhen-Nan Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Jia-Yi Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ping Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Ying-Fan Cai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Shuang-Xia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan, 475004, P.R. China
| |
Collapse
|
6
|
Xing JX, Zang QL, Ye ZL, Qi LW, Yang L, Li WF. Overexpression of Larch SCL6 Inhibits Transitions from Vegetative Meristem to Inflorescence and Flower Meristem in Arabidopsis thaliana (L.) Heynh. PLANTS (BASEL, SWITZERLAND) 2024; 13:1232. [PMID: 38732446 PMCID: PMC11085395 DOI: 10.3390/plants13091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
SCARECROW-LIKE6 (SCL6) plays a role in the formation and maintenance of the meristem. In Larix kaempferi (Lamb.) Carr., an important afforestation tree species in China, SCL6 (LaSCL6) has two alternative splicing variants-LaSCL6-var1 and LaSCL6-var2-which are regulated by microRNA171. However, their roles are still unclear. In this study, LaSCL6-var1 and LaSCL6-var2 were transformed into the Arabidopsis thaliana (L.) Heynh. genome, and the phenotypic characteristics of transgenic A. thaliana, including the germination percentage, root length, bolting time, flower and silique formation times, inflorescence axis length, and branch and silique numbers, were analyzed to reveal their functions. It was found that LaSCL6-var1 and LaSCL6-var2 overexpression shortened the root length by 41% and 31%, respectively, and increased the inflorescence axis length. Compared with the wild type, the bolting time in transgenic plants was delayed by approximately 2-3 days, the first flower and silique formation times were delayed by approximately 3-4 days, and the last flower and silique formation times were delayed by about 5 days. Overall, the life cycle in transgenic plants was prolonged by approximately 5 days. These results show that LaSCL6 overexpression inhibited the transitions from the vegetative meristem to inflorescence meristem and from the flower meristem to meristem arrest in A. thaliana, revealing the roles of LaSCL6-var1 and LaSCL6-var2 in the fate transition and maintenance of the meristem.
Collapse
Affiliation(s)
- Jun-Xia Xing
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China;
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Zha-Long Ye
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| |
Collapse
|
7
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Tong N, Li D, Zhang S, Tang M, Chen Y, Zhang Z, Huang Y, Lin Y, Cheng Z, Lai Z. Genome-wide identification and expression analysis of the GRAS family under low-temperature stress in bananas. FRONTIERS IN PLANT SCIENCE 2023; 14:1216070. [PMID: 37719217 PMCID: PMC10502232 DOI: 10.3389/fpls.2023.1216070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Introduction GRAS, named after GAI, RGA, and SCR, is a class of plant-specific transcription factors family that plays a crucial role in growth and development, signal transduction, and various stress responses. Methods To understand the biological functions of the banana GRAS gene family, a genome-wide identification and bioinformatics analysis of the banana GRAS gene family was performed based on information from the M. acuminata, M. balbisiana, and M. itinerans genomic databases. Result In the present study, we identified 73 MaGRAS, 59 MbGRAS, and 58 MiGRAS genes in bananas at the whole-genome scale, and 56 homologous genes were identified in the three banana genomes. Banana GRASs can be classified into 10 subfamilies, and their gene structures revealed that most banana GRAS gDNAs lack introns. The promoter sequences of GRASs had a large number of cis-acting elements related to plant growth and development, phytohormone, and adversity stress responsiveness. The expression pattern of seven key members of MaGRAS response to low-temperature stress and different tissues was also examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The microRNAs-MaGRASs target prediction showed perfect complementarity of seven GRAS genes with the five mac-miRNAs. The expression of all seven genes was lowest in roots, and the expression of five genes was highest in leaves during low-temperature stress. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 was significantly lower under low-temperature stress compared to the control, except for MaSCL27-2, which was slightly higher than the 28°C control at 4 h. The expression of MaSCL27-2, MaSCL27-3, and MaSCL6-1 dropped to the lowest levels at 24 h, 12 h, and 4 h, respectively. The MaSCL27-4 and MaSCL6-2 expression was intermittently upregulated, rising to the highest expression at 24h, while the expression of MaSCL22 was less variable, remaining at the control level with small changes. Discussion In summary, it is tentatively hypothesized that the GRAS family has an important function in low-temperature stress in bananas. This study provides a theoretical basis for further analyzing the function of the banana GRAS gene and the resistance of bananas to cold temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Pei LL, Zhang LL, Liu X, Jiang J. Role of microRNA miR171 in plant development. PeerJ 2023; 11:e15632. [PMID: 37456878 PMCID: PMC10340099 DOI: 10.7717/peerj.15632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA with 19-24 nucleotides (nts) in length, which play an essential role in regulating gene expression at the post-transcriptional level. As one of the first miRNAs found in plants, miR171 is a typical class of conserved miRNAs. The miR171 sequences among different species are highly similar, and the vast majority of them have both "GAGCCG" and "CAAUAU" fragments. In addition to being involved in plant growth and development, hormone signaling and stress response, miR171 also plays multiple and important roles in plants through interactions with microbe and other small-RNAs. The miRNA functions by regulating the expression of target genes. Most of miR171's target genes are in the GRAS gene family, but also include some NSP, miRNAs, lncRNAs, and other genes. This review is intended to summarize recent updates on miR171 regarding its function in plant life and hopefully provide new ideas for understanding miR171 function and regulatory mechanisms.
Collapse
Affiliation(s)
- Ling Ling Pei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Ling Ling Zhang
- College of Horticulture, Shenyang Agriculture University, Shenyang, Shenhe District, China
| | - Xin Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Jing Jiang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| |
Collapse
|
11
|
Niazi A, Iranbakhsh A, Esmaeel Zadeh M, Ebadi M, Oraghi Ardebili Z. Zinc oxide nanoparticles (ZnONPs) influenced seed development, grain quality, and remobilization by affecting the transcription of microRNA 171 (miR171), miR156, NAM, and SUT genes in wheat (Triticum aestivum): a biological advantage and risk assessment study. PROTOPLASMA 2023; 260:839-851. [PMID: 36318315 DOI: 10.1007/s00709-022-01817-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.
Collapse
Affiliation(s)
- Atefe Niazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Esmaeel Zadeh
- Seed and Plant Improvement Institute, Agricultural Research Education & Extension Organization, Karaj, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
12
|
Ramazan S, Jan N, John R. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature. BMC PLANT BIOLOGY 2023; 23:183. [PMID: 37020183 PMCID: PMC10074880 DOI: 10.1186/s12870-023-04198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Low temperature (LT) stress is one of the major environmental stress factors affecting the growth and yield of maize (Zea mays L.). Hence, it is important to unravel the molecular mechanisms behind LT stress tolerance to improve molecular breeding in LT tolerant genotypes. In the present study, two maize genotypes viz. Gurez local from Kashmir Himalaya and tropical grown GM6, were dissected for their LT stress response in terms of accumulation of differentially regulated proteins (DRPs). Leaf proteome analysis at three-leaf stage of maize seedlings subjected to LT stress of 6 °C for a total of 12 h duration was performed using two dimensional gel electrophoresis (2D-PAGE) followed by subsequent identification of the proteins involved. RESULTS After MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) and bioinformatics analysis, 19 proteins were successfully identified in Gurez local, while as 10 proteins were found to get successful identification in GM6. The interesting observations from the present investigation is the identification of three novel proteins viz. threonine dehydratase biosynthetic chloroplastic, thylakoidal processing peptidase 1 chloroplastic, and nodulin-like protein, whose role in abiotic stress tolerance, in general, and LT stress, in particular, has not been reported so far. It is important to highlight here that most of LT responsive proteins including the three novel proteins were identified from Gurez local only, owing to its exceptional LT tolerance. From the protein profiles, obtained in both genotypes immediately after LT stress perception, it was inferred that stress responsive protein accumulation and their expression fashion help the Gurez local in seedling establishment and withstand unfavorable conditions as compared to GM6. This was inferred from the findings of pathway enrichment analysis like regulation of seed growth, timing of floral transition, lipid glycosylation, and aspartate family amino acid catabolic processes, besides other key stress defense mechanisms. However, in GM6, metabolic pathways enriched were found to be involved in more general processes including cell cycle DNA replication and regulation of phenylpropanoid metabolism. Furthermore, majority of the qRT-PCR results of the selected proteins demonstrated positive correlation between protein levels and transcript abundance, thereby strengthening our findings. CONCLUSIONS In conclusion, our findings reported majority of the identified proteins in Gurez local exhibiting up-regulated pattern under LT stress as compared to GM6. Furthermore, three novel proteins induced by LT stress were found in Gurez local, requiring further functional validation. Therefore, our results offer more insights for elucidating the molecular networks mediating LT stress tolerance in maize.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Nelofer Jan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India.
| |
Collapse
|
13
|
Shi QF, Long JM, Yin ZP, Jiang N, Feng MQ, Zheng B, Guo WW, Wu XM. miR171 modulates induction of somatic embryogenesis in citrus callus. PLANT CELL REPORTS 2022; 41:1403-1415. [PMID: 35381869 DOI: 10.1007/s00299-022-02865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.
Collapse
Affiliation(s)
- Qiao-Fang Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Han H, Zhou Y. Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing. Int J Mol Sci 2022; 23:2544. [PMID: 35269685 PMCID: PMC8910752 DOI: 10.3390/ijms23052544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
MicroRNA171 (miR171), a group of 21-nucleotide single-strand small RNAs, is one ancient and conserved microRNA family in land plants. This review focuses on the recent progress in understanding the role of miR171 in plant stem cell homeostasis and developmental patterning, and the regulation of miR171 by developmental cues and environmental signals. Specifically, miR171 regulates shoot meristem activity and phase transition through repressing the HAIRYMERISTEM (HAM) family genes. In the model species Arabidopsis, miR171 serves as a short-range mobile signal, which initiates in the epidermal layer of shoot meristems and moves downwards within a limited distance, to pattern the apical-basal polarity of gene expression and drive stem cell dynamics. miR171 levels are regulated by light and various abiotic stresses, suggesting miR171 may serve as a linkage between environmental factors and cell fate decisions. Furthermore, miR171 family members also demonstrate both conserved and lineage-specific functions in land plants, which are summarized and discussed here.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Yan R, Song S, Li H, Sun H. Functional analysis of the eTM-miR171-SCL6 module regulating somatic embryogenesis in Lilium pumilum DC. Fisch. HORTICULTURE RESEARCH 2022; 9:uhac045. [PMID: 35184179 PMCID: PMC9171120 DOI: 10.1093/hr/uhac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 05/29/2023]
Abstract
Somatic embryogenesis (SE) is of great significance in Lilium bulb production, germplasm preservation and genetic improvement. miRNAs are important regulators of plant growth and development at the transcriptional level. Previous research by our group has shown that lpu-miR171 and its target gene SCARECROW-LIKE 6 (SCL6) play an important regulatory role in lily SE, and we predicted and identified that endogenous target mimics (eTMs) can regulate lpu-miR171. However, the associated mechanism and internal regulatory network are not yet clear. In the present study, lpu-miR171 was used as an entry point to explore the regulatory network between its upstream eTMs and its downstream target gene LpSCL6, as well as to identify the mechanism of this regulatory network in Lilium SE. Tobacco transient transformation confirmed that miRNA171 significantly inhibited the expression of LpSCL6. On this basis, the Lilium stable genetic transformation system was used to demonstrate that silencing lpu-miR171a and lpu-miR171b and overexpressing LpSCL6-II and LpSCL6-I promoted starch accumulation in calli and the expression of key cell cycle genes, thus providing energy to meet preconditions for SE and accelerate the formation and development of Lilium somatic embryos. LpSCL6-II and LpSCL6-I are nuclear proteins with self-activation activity in yeast cells. In addition, we confirmed in Lilium that lpu-eTM171 is the eTM of lpu-miR171 that binds lpu-miR171 to prevent cleavage of the target gene LpSCL6, thereby promoting SE. Therefore, the present study established a new mechanism whereby the eTM-miR171-SCL6 module regulates SE in Lilium pumilum DC. Fisch. and provided new insights clarifying the mechanism of SE.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Shengli Song
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| | - Hongyu Li
- College of Life Science and Bioengineering, Shenyang University, Shenyang 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
16
|
Um T, Choi J, Park T, Chung PJ, Jung SE, Shim JS, Kim YS, Choi I, Park SC, Oh S, Seo JS, Kim J. Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. PLANT DIRECT 2022; 6:e374. [PMID: 35028494 PMCID: PMC8743358 DOI: 10.1002/pld3.374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved sophisticated defense systems to enhance drought tolerance. These include the microRNA (miRNA) group of small noncoding RNAs that act as post-transcriptional regulators; however, details of the mechanisms by which they confer drought tolerance are not well understood. Here, we show that osa-MIR171f, a member of osa-MIR171 gene family, is mainly expressed in response to drought stress and regulates the transcript levels of SCARECROW-LIKE6-I (SCL6-I) and SCL6-II in rice (Oryza sativa). The SCL6 genes are known to be involved in shoot branching and flag leaf morphology. Osa-MIR171f-overexpressing (osa-MIR171f-OE) transgenic plants showed reduced drought symptoms compared with non-transgenic (NT) control plants under both field drought and polyethylene glycol (PEG)-mediated dehydration stress conditions. Transcriptome analysis of osa-MIR171f-OE plants and osa-mir171f-knockout (K/O) lines generated by clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) revealed that osa-mature-miR171a-f (osa-miR171) regulates the expression of flavonoid biosynthesis genes, consequently leading to drought tolerance. This upregulation in the osa-MIR171f-OE plants, which did not occur in NT control plants, was observed under both normal and drought conditions. Our findings indicate that osa-miR171 plays a role in drought tolerance by regulating SCL6-I and SCL6-II transcript levels.
Collapse
Affiliation(s)
- Taeyoung Um
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- Agriculture and Life Sciences Research InstituteKangwon National UniversityChuncheonSouth Korea
| | - Joohee Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- Novel Food DivisionNational Institute of Food and Drug Safety EvaluationCheongjuSouth Korea
| | - Taehyeon Park
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
| | - Se Eun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
| | - Jae Sung Shim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- School of Biological Sciences and TechnologyChonnam National UniversityGwangjuSouth Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- Agriculture and Life Sciences Research InstituteKangwon National UniversityChuncheonSouth Korea
| | - Ik‐Young Choi
- Department of Agricultural and life industryKangwon National UniversityChuncheonSouth Korea
| | - Soo Chul Park
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- Department of Agricultural Biotechnology, National Academy of Agricultural ScienceRural Development AdministrationJeonjuSouth Korea
| | - Se‐Jun Oh
- LaSemilla Co. LtdPyeongchangSouth Korea
| | - Jun Sung Seo
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
| | - Ju‐Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangSouth Korea
- LaSemilla Co. LtdPyeongchangSouth Korea
| |
Collapse
|
17
|
Kandpal M, Dhaka N, Sharma R. Genome-wide in silico analysis of long intergenic non-coding RNAs from rice peduncles at the heading stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2389-2406. [PMID: 34744373 PMCID: PMC8526681 DOI: 10.1007/s12298-021-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Long intergenic non-coding RNAs (lincRNAs) belong to the category of long non-coding RNAs (lncRNAs), originated from intergenic regions, which do not code for proteins. LincRNAs perform prominent role in regulation of gene expression during plant development and stress response by directly interacting with DNA, RNA, or proteins, or triggering production of small RNA regulatory molecules. Here, we identified 2973 lincRNAs and investigated their expression dynamics during peduncle elongation in two Indian rice cultivars, Pokkali and Swarna, at the time of heading. Differential expression analysis revealed common and cultivar-specific expression patterns, which we utilized to infer the lincRNA candidates with potential involvement in peduncle elongation and panicle exsertion. Their putative targets were identified using in silico prediction methods followed by pathway mapping and literature-survey based functional analysis. Further, to infer the mechanism of action, we identified the lincRNAs which potentially act as miRNA precursors or target mimics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01059-2.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan 333031 India
| |
Collapse
|
18
|
Zhou Q, Shi J, Li Z, Zhang S, Zhang S, Zhang J, Bao M, Liu G. miR156/157 Targets SPLs to Regulate Flowering Transition, Plant Architecture and Flower Organ Size in Petunia. PLANT & CELL PHYSIOLOGY 2021; 62:839-857. [PMID: 33768247 DOI: 10.1093/pcp/pcab041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
miR156/157 plays multiple pivotal roles during plant growth and development. In this study, we identified 11 miR156- and 5 miR157-encoding loci from the genome of Petunia axillaris and Petunia inflata, designated as PaMIR0156/157s and PiMIR0156/157s, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated that PhmiR156/157 was expressed predominantly in cotyledons, germinating seeds, flower buds, young fruits and seedlings. PhmiR156/157 levels declined in shoot apical buds and leaves of petunia before flowering as the plant ages; moreover, the temporal expression patterns of most miR156/157-targeted PhSPLs were complementary to that of PhmiR156/157. Ectopic expression of PhMIR0157a in Arabidopsis and petunia resulted in delayed flowering, dwarf plant stature, increased branches and reduced organ size. However, PhMIR0156f-overexpressing Arabidopsis and petunia plants showed only delayed flowering. In addition, downregulation of PhmiR156/157 level by overexpressing STTM156/157 led to taller plants with less branches, longer internodes and precocious flowering. qRT-PCR analysis indicated that PhmiR156/157 modulates these traits mainly by downregulating their PhSPL targets and subsequently decreasing the expression of flowering regulatory genes. Our results demonstrate that the PhmiR156/157-PhSPL module has conserved but also divergent functions in growth and development, which will help us decipher the genetic basis for the improvement of flower transition, plant architecture and organ development in petunia.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiewei Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan 430081, China
| | - Shuting Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
| |
Collapse
|
19
|
Fan T, Lv T, Xie C, Zhou Y, Tian C. Genome-Wide Analysis of the IQM Gene Family in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091949. [PMID: 34579481 PMCID: PMC8469326 DOI: 10.3390/plants10091949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 06/01/2023]
Abstract
Members of the IQM (IQ-Motif Containing) gene family are involved in plant growth and developmental processes, biotic and abiotic stress response. To systematically analyze the IQM gene family and their expression profiles under diverse biotic and abiotic stresses, we identified 8 IQM genes in the rice genome. In the current study, the whole genome identification and characterization of OsIQMs, including the gene and protein structure, genome localization, phylogenetic relationship, gene expression and yeast two-hybrid were performed. Eight IQM genes were classified into three subfamilies (I-III) according to the phylogenetic analysis. Gene structure and protein motif analyses showed that these IQM genes are relatively conserved within each subfamily of rice. The 8 OsIQM genes are distributed on seven out of the twelve chromosomes, with three IQM gene pairs involved in segmental duplication events. The evolutionary patterns analysis revealed that the IQM genes underwent a large-scale event within the last 20 to 9 million years. In addition, quantitative real-time PCR analysis of eight OsIQMs genes displayed different expression patterns at different developmental stages and in different tissues as well as showed that most IQM genes were responsive to PEG, NaCl, jasmonic acid (JA), abscisic acid (ABA) treatment, suggesting their crucial roles in biotic, and abiotic stress response. Additionally, a yeast two-hybrid assay showed that OsIQMs can interact with OsCaMs, and the IQ motif of OsIQMs is required for OsIQMs to combine with OsCaMs. Our results will be valuable to further characterize the important biological functions of rice IQM genes.
Collapse
|
20
|
Chen J, Yan Q, Li J, Feng L, Zhang Y, Xu J, Xia R, Zeng Z, Liu Y. The GRAS gene family and its roles in seed development in litchi (Litchi chinensis Sonn). BMC PLANT BIOLOGY 2021; 21:423. [PMID: 34535087 PMCID: PMC8447652 DOI: 10.1186/s12870-021-03193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The GRAS gene family plays crucial roles in multiple biological processes of plant growth, including seed development, which is related to seedless traits of litchi (Litchi chinensis Sonn.). However, it hasn't been fully identified and analyzed in litchi, an economic fruit tree cultivated in subtropical regions. RESULTS In this study, 48 LcGRAS proteins were identified and termed according to their chromosomal location. LcGRAS proteins can be categorized into 14 subfamilies through phylogenetic analysis. Gene structure and conserved domain analysis revealed that different subfamilies harbored various motif patterns, suggesting their functional diversity. Synteny analysis revealed that the expansion of the GRAS family in litchi may be driven by their tandem and segmental duplication. After comprehensively analysing degradome data, we found that four LcGRAS genes belong to HAM subfamily were regulated via miR171-mediated degradation. The various expression patterns of LcGRAS genes in different tissues uncovered they were involved in different biological processes. Moreover, the different temporal expression profiles of LcGRAS genes between abortive and bold seed indicated some of them were involved in maintaining the normal development of the seed. CONCLUSION Our study provides comprehensive analyses on GRAS family members in litchi, insight into a better understanding of the roles of GRAS in litchi development, and lays the foundation for further investigations on litchi seed development.
Collapse
Affiliation(s)
- Jingwen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qian Yan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture / Guangdong ProvinceKey Laboratary of Tropical and Subtropical Fruit Tree Research / Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiawei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Ma JJ, Chen X, Song YT, Zhang GF, Zhou XQ, Que SP, Mao F, Pervaiz T, Lin JX, Li Y, Li W, Wu HX, Niu SH. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. PLANT PHYSIOLOGY 2021; 187:247-262. [PMID: 34618133 PMCID: PMC8418398 DOI: 10.1093/plphys/kiab250] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gui-Fang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xian-Qing Zhou
- Qigou State-Owned Forest Farm, Pingquan, Hebei Province 067509, PR China
| | - Shu-Peng Que
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Fei Mao
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
22
|
Tang Z, Song N, Peng W, Yang Y, Qiu T, Huang C, Dai L, Wang B. Genome Identification and Expression Analysis of GRAS Family Related to Development, Hormone and Pathogen Stress in Brachypodium distachyon. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.675177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
GRAS transcription factors are widely present in the plant kingdom and play important roles in regulating multiple plant physiological processes. Brachypodium distachyon is a model for grasses for researching plant-pathogen interactions. However, little is known about the BdGRAS family genes involved in plant response to biotic stress. In this study, we identified 63 genes of the GRAS family in B. distachyon. The phylogenetic analysis showed that BdGRAS genes were divided into ten subfamilies and unevenly distributed on five chromosomes. qRT-PCR results showed that the BdGRAS family genes were involved in the growth and development of B. distachyon. Moreover, the expression of the HAM subfamily genes of BdGRAS changed during the interaction between B. distachyon and Magnaporthe oryzae. Interestingly, BdGRAS31 in the HAM subfamily was regulated by miR171 after inoculation with M. oryzae. These results provide insight into the potential functions of the BdGRAS family in disease resistance.
Collapse
|
23
|
Geng Y, Guo L, Han H, Liu X, Banks JA, Wisecaver JH, Zhou Y. Conservation and diversification of HAIRY MERISTEM gene family in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:366-378. [PMID: 33484592 DOI: 10.1111/tpj.15169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, the HAIRY MERISTEM (HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non-angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type-II HAM members are widely present in angiosperms, whereas type-I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non-angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type-II HAM genes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lei Guo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Geng Y, Cai C, McAdam SAM, Banks JA, Wisecaver JH, Zhou Y. A De Novo Transcriptome Assembly of Ceratopteris richardii Provides Insights into the Evolutionary Dynamics of Complex Gene Families in Land Plants. Genome Biol Evol 2021; 13:6157829. [PMID: 33681974 PMCID: PMC7975763 DOI: 10.1093/gbe/evab042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
As the closest extant sister group to seed plants, ferns are an important reference point to study the origin and evolution of plant genes and traits. One bottleneck to the use of ferns in phylogenetic and genetic studies is the fact that genome-level sequence information of this group is limited, due to the extreme genome sizes of most ferns. Ceratopteris richardii (hereafter Ceratopteris) has been widely used as a model system for ferns. In this study, we generated a transcriptome of Ceratopteris, through the de novo assembly of the RNA-seq data from 17 sequencing libraries that are derived from two sexual types of gametophytes and five different sporophyte tissues. The Ceratopteris transcriptome, together with 38 genomes and transcriptomes from other species across the Viridiplantae, were used to uncover the evolutionary dynamics of orthogroups (predicted gene families using OrthoFinder) within the euphyllophytes and identify proteins associated with the major shifts in plant morphology and physiology that occurred in the last common ancestors of euphyllophytes, ferns, and seed plants. Furthermore, this resource was used to identify and classify the GRAS domain transcriptional regulators of many developmental processes in plants. Through the phylogenetic analysis within each of the 15 GRAS orthogroups, we uncovered which GRAS family members are conserved or have diversified in ferns and seed plants. Taken together, the transcriptome database and analyses reported here provide an important platform for exploring the evolution of gene families in land plants and for studying gene function in seed-free vascular plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Chao Cai
- Purdue University Libraries and School of Information Studies, Purdue University, West Lafayette, Indiana, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Geng Y, Zhou Y. HAM Gene Family and Shoot Meristem Development. FRONTIERS IN PLANT SCIENCE 2021; 12:800332. [PMID: 34987539 PMCID: PMC8720772 DOI: 10.3389/fpls.2021.800332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 05/18/2023]
Abstract
Land plants develop highly diversified shoot architectures, all of which are derived from the pluripotent stem cells in shoot apical meristems (SAMs). As sustainable resources for continuous organ formation in the aboveground tissues, SAMs play an important role in determining plant yield and biomass production. In this review, we summarize recent advances in understanding one group of key regulators - the HAIRY MERISTEM (HAM) family GRAS domain proteins - in shoot meristems. We highlight the functions of HAM family members in dictating shoot stem cell initiation and proliferation, the signaling cascade that shapes HAM expression domains in shoot meristems, and the conservation and diversification of HAM family members in land plants. We also discuss future directions that potentially lead to a more comprehensive view of the HAM gene family and stem cell homeostasis in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Yun Zhou,
| |
Collapse
|
26
|
Wang L, Yin Y, Jing X, Wang M, Zhao M, Yu J, Qiu Z, Li YF. Profiling of MicroRNAs Involved in Mepiquat Chloride-Mediated Inhibition of Internode Elongation in Cotton ( Gossypium hirsutum L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:643213. [PMID: 33719323 PMCID: PMC7943613 DOI: 10.3389/fpls.2021.643213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 05/06/2023]
Abstract
Mepiquat chloride (MC) is the most important plant growth retardant that is widely used in cotton (Gossypium hirsutum L.) production to suppress excessive vegetative growth and improve plant architecture. MicroRNAs (miRNAs) are important gene expression regulators that control plant growth and development. However, miRNA-mediated post-transcriptional regulation in MC-induced growth inhibition remains unclear. In this study, the dynamic expression profiles of miRNAs responsive to MC in cotton internodes were investigated. A total of 508 known miRNAs belonging to 197 families and five novel miRNAs were identified. Among them, 104 miRNAs were differentially expressed at 48, 72, or 96 h post MC treatment compared with the control (0 h); majority of them were highly conserved miRNAs. The number of differentially expressed miRNAs increased with time after treatment. The expression of 14 known miRNAs was continuously suppressed, whereas 12 known miRNAs and one novel miRNA were continuously induced by MC. The expression patterns of the nine differentially expressed miRNAs were verified using qRT-PCR. The targets of the known and novel miRNAs were predicted. Four conserved and six novel targets were validated using the RLM-5' RACE assay. This study revealed that miRNAs play crucial regulatory roles in the MC-induced inhibition of internode elongation. It can improve our understanding of post-transcriptional gene regulation in MC-mediated growth inhibition and could potentially facilitate the breeding of dwarf cotton.
Collapse
Affiliation(s)
- Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
- Li Wang,
| | - Ying Yin
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiuxiu Jing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
| | - Zongbo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, China
- *Correspondence: Yong-Fang Li,
| |
Collapse
|
27
|
Cao H, Zhang X, Ruan Y, Zhang L, Cui Z, Li X, Jia B. miRNA expression profiling and zeatin dynamic changes in a new model system of in vivo indirect regeneration of tomato. PLoS One 2020; 15:e0237690. [PMID: 33332392 PMCID: PMC7745965 DOI: 10.1371/journal.pone.0237690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Callus formation and adventitious shoot differentiation could be observed on the cut surface of completely decapitated tomato plants. We propose that this process can be used as a model system to investigate the mechanisms that regulate indirect regeneration of higher plants without the addition of exogenous hormones. This study analyzed the patterns of trans-zeatin and miRNA expression during in vivo regeneration of tomato. Analysis of trans-zeatin revealed that the hormone cytokinin played an important role in in vivo regeneration of tomato. Among 183 miRNAs and 1168 predicted target genes sequences identified, 93 miRNAs and 505 potential targets were selected based on differential expression levels for further characterization. Expression patterns of six miRNAs, including sly-miR166, sly-miR167, sly-miR396, sly-miR397, novel 156, and novel 128, were further validated by qRT-PCR. We speculate that sly-miR156, sly-miR160, sly-miR166, and sly-miR397 play major roles in callus formation of tomato during in vivo regeneration by regulating cytokinin, IAA, and laccase levels. Overall, our microRNA sequence and target analyses of callus formation during in vivo regeneration of tomato provide novel insights into the regulation of regeneration in higher plants.
Collapse
Affiliation(s)
- Huiying Cao
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Yanye Ruan
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Lijun Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
- * E-mail: (YR); (LZ)
| | - Zhenhai Cui
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Xuxiao Li
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| | - Bing Jia
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Zhao S, Jang S, Lee YK, Kim DG, Jin Z, Koh HJ. Genetic Basis of Tiller Dynamics of Rice Revealed by Genome-Wide Association Studies. PLANTS 2020; 9:plants9121695. [PMID: 33276582 PMCID: PMC7761586 DOI: 10.3390/plants9121695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022]
Abstract
A tiller number is the key determinant of rice plant architecture and panicle number and consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller number, considering the development stage, tiller type, and related traits, are lacking. In this study, we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism (SNP) dataset. We also evaluate the tiller number at different development stages and heading traits involved in phase transitions. By genome-wide association studies (GWASs), we detected 20 significant association signals for all traits. Five signals were detected in genomic regions near known candidate genes. Most of the candidate genes were involved in the phase transition from vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage, productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was validated using independent japonica rice collections, implying that the lead SNPs included in the linear regression model were generally applicable to the tiller number prediction. We revealed the genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction model by linear regression. Our results improve our understanding of tillering in rice plants and provide a basis for breeding high-yield rice varieties with the optimum the tiller number.
Collapse
Affiliation(s)
- Shuyu Zhao
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Z.); (S.J.); (Y.K.L.)
- Department of Agronomy, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Su Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Z.); (S.J.); (Y.K.L.)
| | - Yoon Kyung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Z.); (S.J.); (Y.K.L.)
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea;
| | - Zhengxun Jin
- Department of Agronomy, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Z.); (S.J.); (Y.K.L.)
- Correspondence:
| |
Collapse
|
29
|
Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, Tarniceriu CC, Maranduca MA, Lacatusu CM, Floria M, Serban IL. Genetic Basis of Tiller Dynamics of Rice Revealed by Genome-Wide Association Studies. Nutrients 2020; 12:nu12123719. [PMID: 33276482 PMCID: PMC7760723 DOI: 10.3390/nu12123719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
A tiller number is the key determinant of rice plant architecture and panicle number and consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller number, considering the development stage, tiller type, and related traits, are lacking. In this study, we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism (SNP) dataset. We also evaluate the tiller number at different development stages and heading traits involved in phase transitions. By genome-wide association studies (GWASs), we detected 20 significant association signals for all traits. Five signals were detected in genomic regions near known candidate genes. Most of the candidate genes were involved in the phase transition from vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage, productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was validated using independent japonica rice collections, implying that the lead SNPs included in the linear regression model were generally applicable to the tiller number prediction. We revealed the genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction model by linear regression. Our results improve our understanding of tillering in rice plants and provide a basis for breeding high-yield rice varieties with the optimum the tiller number.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
- Correspondence:
| | - Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| |
Collapse
|
30
|
Genome-Wide Analysis of the GRAS Gene Family in Barley ( Hordeum vulgare L.). Genes (Basel) 2020; 11:genes11050553. [PMID: 32423019 PMCID: PMC7290968 DOI: 10.3390/genes11050553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
The GRAS (named after first three identified proteins within this family, GAI, RGA, and SCR) family contains plant-specific genes encoding transcriptional regulators that play a key role in gibberellin (GA) signaling, which regulates plant growth and development. Even though GRAS genes have been characterized in some plant species, little research is known about the GRAS genes in barley (Hordeum vulgare L.). In this study, we observed 62 GRAS members from barley genome, which were grouped into 12 subgroups by using phylogenomic analysis together with the GRAS genes from Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). Chromosome localization and gene structure analysis suggested that duplication events and abundant presence of intronless genes might account for the massive expansion of GRAS gene family in barley. The analysis of RNA-seq data indicates the expression pattern of GRAS genes in various tissues at different stages in barley. Noteworthy, our qRT-PCR analysis showed the expression of 18 candidate GRAS genes abundantly in the developing inflorescence, indicating their potential roles in the barley inflorescence development and reproduction. Collectively, our evolutionary and expression analysis of GRAS family are useful for future functional characterization of GA signaling in barley and agricultural improvement.
Collapse
|
31
|
Guo P, Wen J, Yang J, Ke Y, Wang M, Liu M, Ran F, Wu Y, Li P, Li J, Du H. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. PLANTA 2019; 250:1051-1072. [PMID: 31161396 DOI: 10.1007/s00425-019-03199-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots.
Collapse
Affiliation(s)
- Pengcheng Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunwen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Pengfeng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Zang QL, Li WF, Qi LW. Regulation of LaSCL6 expression by genomic structure, alternative splicing, and microRNA in Larix kaempferi. TREE GENETICS & GENOMES 2019. [PMID: 0 DOI: 10.1007/s11295-019-1362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
33
|
Overexpression of SlGRAS7 Affects Multiple Behaviors Leading to Confer Abiotic Stresses Tolerance and Impacts Gibberellin and Auxin Signaling in Tomato. Int J Genomics 2019; 2019:4051981. [PMID: 31355243 PMCID: PMC6636567 DOI: 10.1155/2019/4051981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022] Open
Abstract
Abiotic stresses remain the key environmental issues that reduce plant development and therefore affect crop production. Transcription factors, such as the GRAS family, are involved in various functions of abiotic stresses and plant growth. The GRAS family of tomato (Solanum lycopersicum), SlGRAS7, is described in this study. We produced overexpressing SlGARS7 plants to learn more about the GRAS transcription factors. Plants overexpressing SlGARS7 (SlGRAS7-OE) showed multiple phenotypes related to many behaviors, including plant height, root and shoot length, and flowering time. We observed that many genes in the SlGRAS7-OE seedlings that are associated with auxin and gibberellin (GA) are downregulated and have altered sensitivity to GA3/IAA. SlGRAS7 was upregulated during abiotic stresses following treatment with sodium chloride (NaCl) and D-mannitol in the wild-type (WT) tomato. Tomato plants overexpressing SlGRAS7 showed more resistance to drought and salt stress comparison with WT. Our study of SlGRAS7 in tomato demonstrates how GRAS showed an integrative role, improving resistance to abiotic stresses and enhancing gibberellin/auxin signaling through reproductive as well as vegetative processes.
Collapse
|
34
|
Li K, Liu Z, Xing L, Wei Y, Mao J, Meng Y, Bao L, Han M, Zhao C, Zhang D. miRNAs associated with auxin signaling, stress response, and cellular activities mediate adventitious root formation in apple rootstocks. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:66-81. [PMID: 30878839 DOI: 10.1016/j.plaphy.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/27/2019] [Accepted: 03/05/2019] [Indexed: 05/09/2023]
Abstract
Adventitious root (AR) formation is essential for the vegetative propagation of apple rootstocks. miRNAs play a significant role in regulating AR development, however, large-scale transcriptomic data on miRNA mediated AR formation in apple rootstocks is lacking. Therefore, in order to identify the molecular mechanisms underlying AR formation in 'M9-T337' apple rootstocks, transcriptomic changes occurring during key time points of AR formation (0, 3, and 16 days) were analyzed using high-throughput sequencing with a focus on miRNAs. A total of 84 known miRNAs and 56 novel miRNAs have differentially expressed were identified. Additionally, a total of 88 target genes of known miRNAs and 76 target genes of novel miRNAs were identified by degradome sequencing. The expression levels of the miRNAs and target genes were quantified by RT-qPCR. Results indicate that miRNAs and their target genes are associated with auxin signal-related (miR160 and miR390), stress response-related (miR398, miR395 and miR408), cell fate transformation-, proliferation- and enlargement-related (miR171, miR156, miR166, miR319 and miR396). These all involve pathways that participate in AR formation in 'M9-T337' apple rootstock. In addition, hormones (AUX, CTK, GA3, BR, JA, and ABA) are also involved in regulating AR formation. The candidate genes belonging to pathways associated with AR formation exhibited significantly higher expression levels, providing evidence that they may be involved in the regulation of AR development. The collective results of the present study indicate that the developmental process associated with AR formation in apple rootstock is extremely complex. The known and novel miRNAs and target genes that were identified by high-throughput and degradome sequencing, respectively, provide a framework for the future analysis of miRNAs associated with AR development in apple rootstocks, and provide new information that can be used to better understand AR development in woody plants.
Collapse
Affiliation(s)
- Ke Li
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Zhen Liu
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Libo Xing
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Yanhong Wei
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Jiangping Mao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Yuan Meng
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Lu Bao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Mingyu Han
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Caiping Zhao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| | - Dong Zhang
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, China.
| |
Collapse
|
35
|
Ali A, Xu P, Riaz A, Wu X. Current Advances in Molecular Mechanisms and Physiological Basis of Panicle Degeneration in Rice. Int J Mol Sci 2019; 20:ijms20071613. [PMID: 30939720 PMCID: PMC6479839 DOI: 10.3390/ijms20071613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
Panicle degeneration, also known as panicle abortion, is a serious defect and causes heavy losses to reproductive yield in cereals. Several mutants have been reported to display the phenotype of spikelet abortion in rice. Recent findings have resulted in significant breakthroughs, but comprehensive understanding about the molecular pathways and physiological basis of panicle degeneration still remain a dilemma. In this review, we have summarized all the responsible genes and mechanisms underlying the panicle development with a special focus on degeneration. Here, we hypothesized a model by using knowledge and coherent logic in order to understand the molecular regulation of panicle degeneration. In addition to this, we included all the previous discoveries, schools of thoughts, ancient working theories, and crosstalk of phytohormones and provided new insights for future studies.
Collapse
Affiliation(s)
- Asif Ali
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Peizhou Xu
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asad Riaz
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xianjun Wu
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
36
|
TA KN, KHONG NG, HA TL, NGUYEN DT, MAI DC, HOANG TG, PHUNG TPN, BOURRIE I, COURTOIS B, TRAN TTH, DINH BY, LA TN, DO NV, LEBRUN M, GANTET P, JOUANNIC S. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits. BMC PLANT BIOLOGY 2018; 18:282. [PMID: 30428844 PMCID: PMC6234598 DOI: 10.1186/s12870-018-1504-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/26/2018] [Indexed: 05/20/2023]
Abstract
CONTEXT Yield improvement is an important issue for rice breeding. Panicle architecture is one of the key components of rice yield and exhibits a large diversity. To identify the morphological and genetic determinants of panicle architecture, we performed a detailed phenotypic analysis and a genome-wide association study (GWAS) using an original panel of Vietnamese landraces. RESULTS Using a newly developed image analysis tool, morphological traits of the panicles were scored over two years: rachis length; primary, secondary and tertiary branch number; average length of primary and secondary branches; average length of internode on rachis and primary branch. We observed a high contribution of spikelet number and secondary branch number per panicle to the overall phenotypic diversity in the dataset. Twenty-nine stable QTLs associated with seven traits were detected through GWAS over the two years. Some of these QTLs were associated with genes already implicated in panicle development. Importantly, the present study revealed the existence of new QTLs associated with the spikelet number, secondary branch number and primary branch number traits. CONCLUSIONS Our phenotypic analysis of panicle architecture variation suggests that with the panel of samples used, morphological diversity depends largely on the balance between indeterminate vs. determinate axillary meristem fate on primary branches, supporting the notion of differences in axillary meristem fate between rachis and primary branches. Our genome-wide association study led to the identification of numerous genomic sites covering all the traits studied and will be of interest for breeding programs aimed at improving yield. The new QTLs detected in this study provide a basis for the identification of new genes controlling panicle development and yield in rice.
Collapse
Affiliation(s)
- Kim Nhung TA
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- Present address: Plant Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Ngan Giang KHONG
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- Present address: Department of Molecular Biology, Palacký University, Olomouc, Czech Republic
| | - Thi Loan HA
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Dieu Thu NGUYEN
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Duc Chung MAI
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Thi Giang HOANG
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Thi Phuong Nhung PHUNG
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | | | - Brigitte COURTOIS
- CIRAD, UMR AGAP, University of Montpellier, INRA, Montpellier, France
| | | | | | | | - Nang Vinh DO
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Michel LEBRUN
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR LSTM, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Pascal GANTET
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Stefan JOUANNIC
- LMI RICE, University of Montpellier, IRD, CIRAD, USTH, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| |
Collapse
|
37
|
Li H, Zhang Q, Li L, Yuan J, Wang Y, Wu M, Han Z, Liu M, Chen C, Song W, Wang C. Ectopic Overexpression of bol-miR171b Increases Chlorophyll Content and Results in Sterility in Broccoli ( Brassica oleracea L var. italica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9588-9597. [PMID: 30142272 DOI: 10.1021/acs.jafc.8b01531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MiR171 plays pleiotropic roles in the growth and development of several plant species. However, the mechanism underlying the miR171-mediated regulation of organ development in broccoli remains unknown. In this study, bol-miR171b was characterized and found to be differentially expressed in various broccoli organs. The ectopic overexpression of bol-miR171b in Arabidopsis affected the leaf and silique development of transgenic lines. In particular, the chlorophyll content of leaves from overexpressed bol-miR171b transgenic Arabidopsis was higher than that of the vector controls. The fertility and seed yield of Arabidopsis with overexpressed bol-miR171b were markedly lower than those of the vector controls. Similarly, overexpressed bol-miR171b transgenic broccoli exhibited dark green leaves with high chlorophyll content, and nearly all of the flowers were sterile. These results demonstrated that overexpression of bol-miR171b could increase the chlorophyll content of transgenic plants. Degradome sequencing was conducted to identify the targets of bol-miR171b. Two members of the GRAS gene family, BolSCL6 and BolSCL27, were cleaved by bol-miR171b-3p in broccoli. In addition to the genes targeted by bol-miR171b-3p, adenylylsulfate reductase 3 ( APSR3), which played important roles in plant sulfate assimilation and reduction, was speculated to be cleaved by bol-miR171b-5p, suggesting that the star sequence of bol-miR171b may also have functions in broccoli. Comparative transcriptome analysis further revealed that the genes involved in chloroplast development and sulfate homeostasis should participate in the bol-miR171b -mediated regulatory network. Taken together, these findings provided new insights into the function and regulation of bol-miR171b in broccoli and indicated the potential of bol-miR171b as a small RNA molecule that increased leaf chlorophyll in plants by genetic engineering.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
- College of Horticulture and Landscape , Tianjin Agricultural University , Tianjin , People's Republic of China
| | - Qingli Zhang
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Lihong Li
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Jiye Yuan
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Yu Wang
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Mei Wu
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Zhanpin Han
- College of Horticulture and Landscape , Tianjin Agricultural University , Tianjin , People's Republic of China
| | - Min Liu
- College of Life Sciences , Shandong Normal University , Jinan , Shandong , People's Republic of China
| | - Chengbin Chen
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Wenqin Song
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| | - Chunguo Wang
- College of Life Sciences , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
38
|
Wang J, Long Y, Zhang J, Xue M, Huang G, Huang K, Yuan Q, Pei X. Combined analysis and miRNA expression profiles of the flowering related genes in common wild rice (oryza rufipogon Griff.). Genes Genomics 2018; 40:835-845. [PMID: 30047109 PMCID: PMC6060991 DOI: 10.1007/s13258-018-0688-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Common wild rice (Oryza rufipogon Griff.) is the most closely related ancestral species to Asian cultivated rice (Oryza sativa L.). It contains various valuable traits with regard to tolerance to cold, drought and salinity, flowering diversity and many quantitative trait loci with agronomic important traits. Flowering is one of the most important agronomic traits. However, flowering-related transcriptome and how to be regulated by miRNAs have not been estimated in O.rufipogon. To identify how the genes and miRNAs regulating flowering in O.rufipogon. Three O.rufipogon RNA libraries, two vegetative stages (CWRT-V1 and CWRT-V2) and one flowering stage (CWRT-F2) were constructed using leaves tissue and sequenced using Illumina deep sequencing. 27,405, 27,333, 28,979 unique genes were obtained after mapping to the reference genome from CWRT-V1, CWRT-V2 and CWRT-F2, respectively. Then differentially expressed genes (DEGs) were screened and got 1419 unique genes are likely to involve in flower development. Detailed information showed that MADS box and floral meristem identity genes, such as MADS 1, MADS14, Hd1 are involved in common wild rice. Then, combined analysis of miRNA and mRNA expression profiles was performed. Twenty three known miRNA-mRNA pairs and five new candidates were presented an anti-correlationship. Interestingly, 12 miRNAs were negatively correlated with 20 mRNAs encoding flowering-related proteins, indicating that miRNAs regulated target genes to promote flowering in CWRT-F2 group. The results provided here genomic resources for flowering related genes and how these flowering genes were regulated by miRNAs in common wild rice.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwen Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mande Xue
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Ke Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Qianhua Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Sánchez-Retuerta C, Suaréz-López P, Henriques R. Under a New Light: Regulation of Light-Dependent Pathways by Non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2018; 9:962. [PMID: 30140270 PMCID: PMC6095000 DOI: 10.3389/fpls.2018.00962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/14/2018] [Indexed: 05/18/2023]
Abstract
The biological relevance of non-protein coding RNAs in the regulation of critical plant processes has been firmly established in recent years. This has been mostly achieved with the discovery and functional characterization of small non-coding RNAs, such as small interfering RNAs and microRNAs (miRNAs). However, recent next-generation sequencing techniques have widened our view of the non-coding RNA world, which now includes long non-coding RNAs (lncRNAs). Small and lncRNAs seem to diverge in their biogenesis and mode of action, but growing evidence highlights their relevance in developmental processes and in responses to particular environmental conditions. Light can affect MIRNA gene transcription, miRNA biogenesis, and RNA-induced silencing complex (RISC) activity, thus controlling not only miRNA accumulation but also their biological function. In addition, miRNAs can mediate several light-regulated processes. In the lncRNA world, few reports are available, but they already indicate a role in the regulation of photomorphogenesis, cotyledon greening, and photoperiod-regulated flowering. In this review, we will discuss how light controls MIRNA gene expression and the accumulation of their mature forms, with a particular emphasis on those miRNAs that respond to different light qualities and are conserved among species. We will also address the role of small non-coding RNAs, particularly miRNAs, and lncRNAs in the regulation of light-dependent pathways. We will mainly focus on the recent progress done in understanding the interconnection between these non-coding RNAs and photomorphogenesis, circadian clock function, and photoperiod-dependent flowering.
Collapse
Affiliation(s)
| | - Paula Suaréz-López
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- *Correspondence: Rossana Henriques,
| |
Collapse
|
40
|
Li S, Shao Z, Fu X, Xiao W, Li L, Chen M, Sun M, Li D, Gao D. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genomics 2017; 18:938. [PMID: 29197334 PMCID: PMC5712094 DOI: 10.1186/s12864-017-4347-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress. As one of the most important model plants, peach (Prunus persica) has high agricultural significance and nutritional values. It is well adapted to be cultivated in greenhouse in which some auxiliary conditions like temperature, humidity, and UVB etc. are needed to ensure the fruit quality. However, little is known about the genomic information of P. persica under UVB supplement. Transcriptome and expression profiling data for this species are therefore important resources to better understand the biological mechanism of seed development, formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by qRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll and carbohydrate metabolism. Results A total of 164 known peach miRNAs belonging to 59 miRNA families and 109 putative novel miRNAs were identified. Some of these miRNAs were highly conserved in at least four other plant species. In total, 1794 and 1983 target genes for known and novel miRNAs were predicted, respectively. The differential expression profiles of miRNAs between the control and UVB-supplement group showed that UVB-responsive miRNAs were mainly involved in carbohydrate metabolism and signal transduction. UVB supplement stimulated peach to synthesize more chlorophyll and sugars, which was verified by qRT-PCR tests of related target genes and metabolites’ content measurement. Conclusion The high-throughput sequencing data provided the most comprehensive miRNAs resource available for peach study. Our results identified a series of differentially expressed miRNAs/target genes that were predicted to be low-dose UVB-responsive. The correlation between transcriptional profiles and metabolites contents in UVB supplement groups gave novel clues for the regulatory mechanism of miRNAs in Prunus. Low-dose UVB supplement could increase the chlorophyll and sugar (sorbitol) contents via miRNA-target genes and therefore improve the fruit quality in protected cultivation of peaches. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4347-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaoxuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ming Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
41
|
Zhang H, Cao Y, Shang C, Li J, Wang J, Wu Z, Ma L, Qi T, Fu C, Bai Z, Hu B. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification. PLoS One 2017; 12:e0185439. [PMID: 28945786 PMCID: PMC5612761 DOI: 10.1371/journal.pone.0185439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions.
Collapse
Affiliation(s)
- Hailing Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
- Pratacultural Sciences Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingping Cao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chen Shang
- Pratacultural Sciences Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jikai Li
- Pratacultural Sciences Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianli Wang
- Pratacultural Sciences Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhenying Wu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lichao Ma
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Tianxiong Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zetao Bai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (ZB); (BH)
| | - Baozhong Hu
- College of Life Science, Northeast Agricultural University, Harbin, China
- Harbin University, Harbin, China
- * E-mail: (ZB); (BH)
| |
Collapse
|
42
|
Xu X, Xu X, Zhou Y, Zeng S, Kong W. Identification of protoplast-isolation responsive microRNAs in Citrus reticulata Blanco by high-throughput sequencing. PLoS One 2017; 12:e0183524. [PMID: 28829800 PMCID: PMC5567906 DOI: 10.1371/journal.pone.0183524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023] Open
Abstract
Protoplast isolation is a stress-inducing process, during which a variety of physiological and molecular alterations take place. Such stress response affects the expression of totipotency of cultured protoplasts. MicroRNAs (miRNAs) play important roles in plant growth, development and stress responses. However, the underlying mechanism of miRNAs involved in the protoplast totipotency remains unclear. In this study, high-throughput sequencing technology was used to sequence two populations of small RNA from calli and callus-derived protoplasts in Citrus reticulata Blanco. A total of 67 known miRNAs from 35 families and 277 novel miRNAs were identified. Among these miRNAs, 18 known miRNAs and 64 novel miRNAs were identified by differentially expressed miRNAs (DEMs) analysis. The expression patterns of the eight DEMs were verified by qRT-PCR. Target prediction showed most targets of the miRNAs were transcription factors. The expression levels of half targets showed a negative correlation to those of the miRNAs. Furthermore, the physiological analysis showed high levels of antioxidant activities in isolated protoplasts. In short, our results indicated that miRNAs may play important roles in protoplast-isolation response.
Collapse
Affiliation(s)
- Xiaoyong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- * E-mail: (XYX); (WWK)
| | - Xiaoling Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yipeng Zhou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- * E-mail: (XYX); (WWK)
| |
Collapse
|
43
|
Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J, Yan F. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4357-4367. [PMID: 28922766 PMCID: PMC5853540 DOI: 10.1093/jxb/erx230] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/09/2017] [Indexed: 05/03/2023]
Abstract
Viral infection affects the pattern of plant miRNA expression. It has been presumed that reduction of miR171 and several other miRNAs influences viral symptoms in plants. We here experimentally demonstrate the association of osa-miR171b with rice stripe virus (RSV) symptoms in rice. Inhibition of osa-miR171b caused stunting with reduced chlorophyll content in leaves similar to viral symptoms. Overexpression of osa-miR171b by an artificial miRNA extended vegetative growth and enhanced chlorophyll accumulation in leaves. Tillers were thicker, and panicles were longer with more spikelets in plants overexpressing osa-miR171b than in controls, but there were no differences in tiller numbers. Targets of osa-miR171b, OsSCL6-IIa, OsSCL6-IIb, and OsSCL6-IIc, were respectively up- and down-regulated in plants where osa-miR171b was inhibited or overexpressed. In plants overexpressing osa-miR171b, five positive regulators for heading development, Ehd1, Ehd2, Ehd3, Ehd4, and Hd3a were up-regulated, while the negative regulator Ghd7 was down-regulated. Plants overexpressing osa-miR171b were less susceptible to RSV and virus symptoms were attenuated. Taken together, the results reveal that a reduction of osa-miR171b in RSV-infected rice contributes to RSV symptoms, and provide more insight into the roles of osa-miR171b in rice.
Collapse
Affiliation(s)
- Aizi Tong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Quan Yuan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Marine Sciences, Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, China
| | - Shu Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hairu Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yifu Gong
- School of Marine Sciences, Ningbo University, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo, China
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
44
|
Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A 2017; 114:5277-5282. [PMID: 28461499 DOI: 10.1073/pnas.1703752114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Improvements in plant agricultural productivity are urgently needed to reduce the dependency on limited natural resources and produce enough food for a growing world population. Human intervention over thousands of years has improved the yield of important crops; however, it is increasingly difficult to find new targets for genetic improvement. MicroRNAs (miRNAs) are promising targets for crop improvement, but their inactivation is technically challenging and has hampered functional analyses. We have produced a large collection of transgenic short tandem target mimic (STTM) lines silencing 35 miRNA families in rice as a resource for functional studies and crop improvement. Visual assessment of field-grown miRNA-silenced lines uncovered alterations in many valuable agronomic traits, including plant height, tiller number, and grain number, that remained stable for up to five generations. We show that manipulation of miR398 can increase panicle length, grain number, and grain size in rice. In addition, we discovered additional agronomic functions for several known miRNAs, including miR172 and miR156. Our collection of STTM lines thus represents a valuable resource for functional analysis of rice miRNAs, as well as for agronomic improvement that can be readily transferred to other important food crops.
Collapse
|
45
|
Huang W, Peng S, Xian Z, Lin D, Hu G, Yang L, Ren M, Li Z. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:472-488. [PMID: 27712008 PMCID: PMC5362688 DOI: 10.1111/pbi.12646] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the miR171-GRAS module has been clarified as key player in meristem maintenance. However, the knowledge about its role in fruit crops like tomato (Solanum lycopersicum) remains scarce. We previously identified tomato SlGRAS24 as a target gene of Sly-miR171. To study the role of this probable transcription factor, we generated transgenic tomato plants underexpressing SlGRAS24, overexpressing SlGRAS24, overexpressing Sly-miR171 and expressing β-glucuronidase (GUS) under the SlGRAS24 promoter (proSlGRAS24-GUS). Plants overexpressing SlGRAS24 (SlGRAS24-OE) had pleiotropic phenotypes associated with multiple agronomical traits including plant height, flowering time, leaf architecture, lateral branch number, root length, fruit set and development. Many GA/auxin-related genes were down-regulated and altered responsiveness to exogenous IAA/NAA or GA3 application was observed in SlGRAS24-OE seedlings. Moreover, compromised fruit set and development in SlGRAS24-OE was also observed. These newly identified phenotypes for SlGRAS24 homologs in tomato were later proved to be caused by impaired pollen sacs and fewer viable pollen grains. At anthesis, the comparative transcriptome results showed altered expression of genes involved in pollen development and hormone signalling. Taken together, our data demonstrate that SlGRAS24 participates in a series of developmental processes through modulating gibberellin and auxin signalling, which sheds new light on the involvement of hormone crosstalk in tomato development.
Collapse
Affiliation(s)
- Wei Huang
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Shiyuan Peng
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Zhiqiang Xian
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Dongbo Lin
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Guojian Hu
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Lu Yang
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Maozhi Ren
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- Genetic Engineering Research CenterSchool of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
46
|
Song C, Zhang D, Zheng L, Zhang J, Zhang B, Luo W, Li Y, Li G, Ma J, Han M. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant "Yanfu 6". FRONTIERS IN PLANT SCIENCE 2017; 8:441. [PMID: 28424721 PMCID: PMC5371658 DOI: 10.3389/fpls.2017.00441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/14/2017] [Indexed: 05/22/2023]
Abstract
The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of "Nagafu 2" (CF) and spur-type bud mutation "Yanfu 6" (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture.
Collapse
Affiliation(s)
- Chunhui Song
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Liwei Zheng
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- Tongchuan Fruit Tree Experiment StationTongchuan, China
| | - Baojuan Zhang
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Wenwen Luo
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Youmei Li
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Guangfang Li
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Mingyu Han
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
- *Correspondence: Mingyu Han
| |
Collapse
|
47
|
Wen M, Xie M, He L, Wang Y, Shi S, Tang T. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa). Genome Biol Evol 2016; 8:3529-3544. [PMID: 27797952 PMCID: PMC5203789 DOI: 10.1093/gbe/evw252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Munan Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Yushuai Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Wang T, Sun MY, Wang XS, Li WB, Li YG. Over-Expression of GmGIa-Regulated Soybean miR172a Confers Early Flowering in Transgenic Arabidopsis thaliana. Int J Mol Sci 2016; 17:E645. [PMID: 27136537 PMCID: PMC4881471 DOI: 10.3390/ijms17050645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022] Open
Abstract
Flowering is a pivotal event in the life cycle of plants. miR172 has been widely confirmed to play critical roles in flowering time control by regulating its target gene expression in Arabidopsis. However, the role of its counterpart in soybean remains largely unclear. In the present study, we found that the gma-miR172a was regulated by a GIGANTEA ortholog, GmGIa, in soybean through miRNA metabolism. The expression analysis revealed that gma-miR172a has a pattern of diurnal rhythm expression and its abundance increased rapidly as plants grew until the initiation of flowering phase in soybean. One target gene of gma-miR172a, Glyma03g33470, was predicted and verified using a modified RLM 5'-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-miR172a exhibited an early flowering phenotype and the expression of FT, AP1 and LFY were simultaneously increased in gma-miR172a-transgenic Arabidopsis plants, suggesting that the early flowering phenotype was associated with up-regulation of these genes. The overexpression of the gma-miR172a-resistant version of Glyma03g33470 weakened early flowering phenotype in the toe1 mutant of Arabidopsis. Taken together, our results suggested that gma-miR172a played an important role in GmGIa-mediated flowering by repressing Glyma03g33470, which in turn increased the expression of FT, AP1 and LFY to promote flowering in soybean.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Ming-Yang Sun
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Xue-Song Wang
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Wen-Bin Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| | - Yong-Guang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry (Northeastern Key Laboratory of Soybean Biology and Genetics & Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Soyars CL, James SR, Nimchuk ZL. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:163-8. [PMID: 26803586 DOI: 10.1016/j.pbi.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 05/13/2023]
Abstract
Plant shoot meristems contain stem cells that are continuously renewed to replenish cells that exit and differentiate during lateral organ formation. Complex cell-to-cell signaling systems balance division and differentiation. These center on ligand-receptor networks, hormone pathways, and transcriptional regulators that function in an integrated manner. In this review, we aim to highlight new findings in shoot stem cell regulation across species.
Collapse
Affiliation(s)
- Cara L Soyars
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States
| | - Sean R James
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States.
| |
Collapse
|