1
|
Mao S. Emerging role and the signaling pathways of uncoupling protein 2 in kidney diseases. Ren Fail 2024; 46:2381604. [PMID: 39090967 PMCID: PMC11299446 DOI: 10.1080/0886022x.2024.2381604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES Uncoupling protein 2 (UCP2) was involved in the pathogenesis and development of kidney diseases. Many signaling pathways and factors regulate the expression of UCP2. We aimed to investigate the precise role of UCP2 and its signaling pathways in kidney diseases. METHODS We summarized the available evidence to yield a more detailed conclusion of the signal transduction pathways of UCP2 and its role in the development and progression of kidney diseases. RESULTS UCP2 could interact with 14.3.3 family proteins, mitochondrial phospholipase iPLA2γ, NMDAR, glucokinase, PPARγ2. There existed a signaling pathway between UCP2 and NMDAR, PPARγ. UCP2 can inhibit the ROS production, inflammatory response, and apoptosis, which may protect against renal injury, particularly AKI. Meanwhile UCP2 can decrease ATP production and inhibit the secretion of insulin, which may alleviate chronic renal damages, such as diabetic nephropathy and kidney fibrosis. CONCLUSIONS Homeostasis of UCP2 is helpful for kidney health. UCP2 may play different roles in different kinds of renal injury.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Carrillo F, Palomba NP, Ghirimoldi M, Didò C, Fortunato G, Khoso S, Giloni T, Santilli M, Bocci T, Priori A, Pietracupa S, Modugno N, Barberis E, Manfredi M, Signorelli P, Esposito T. Multiomics approach discloses lipids and metabolites profiles associated to Parkinson's disease stages and applied therapies. Neurobiol Dis 2024; 202:106698. [PMID: 39427845 DOI: 10.1016/j.nbd.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Profiling circulating lipids and metabolites in Parkinson's disease (PD) patients could be useful not only to highlight new pathways affected in PD condition but also to identify sensitive and effective biomarkers for early disease detection and potentially effective therapeutic interventions. In this study we adopted an untargeted omics approach in three groups of patients (No L-Dopa, L-Dopa and DBS) to disclose whether long-term levodopa treatment with or without deep brain stimulation (DBS) could reflect a characteristic lipidomic and metabolomic signature at circulating level. Our findings disclosed a wide up regulation of the majority of differentially regulated lipid species that increase with disease progression and severity. We found a relevant modulation of triacylglycerols and acyl-carnitines, together with an altered profile in adiponectin and leptin, that can differentiate the DBS treated group from the others PD patients. We found a highly significant increase of exosyl ceramides (Hex2Cer) and sphingoid bases (SPB) in PD patients mainly in DBS group (p < 0.0001), which also resulted in a highly accurate diagnostic performance. At metabolomic level, we found a wide dysregulation of pathways involved in the biosynthesis and metabolism of several amino acids. The most interesting finding was the identification of a specific modulation of L-glutamic acid in the three groups of patients. L-glutamate levels increased slightly in No L-Dopa and highly in L-Dopa patients while decreased in DBS, suggesting that DBS therapy might have a beneficial effect on the glutamatergic cascade. All together, these data provide novel insights into the molecular and metabolic alterations underlying PD therapy and might be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Camilla Didò
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | | | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, IS, Italy; Department of Human Neuroscience, Sapienza University of Rome, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Signorelli
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Biochemistry Laboratory, IRCCS Policlinico San Donato, Milano Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
3
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
4
|
Li T, Yin D, Shi R. Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr 2024; 11:1418778. [PMID: 39221163 PMCID: PMC11362084 DOI: 10.3389/fnut.2024.1418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcopenia refers to an age-related systemic skeletal muscle disorder, which is characterized by loss of muscle mass and weakening of muscle strength. Gut microbiota can affect skeletal muscle through a variety of mechanisms. Gut microbiota present distinct features among elderly people and sarcopenia patients, including a decrease in microbial diversity, which might be associated with the quality and function of the skeletal muscle. There might be a gut-muscle axis; where gut microbiota and skeletal muscle may affect each other bi-directionally. Skeletal muscle can affect the biodiversity of the gut microbiota, and the latter can, in turn, affect the anabolism of skeletal muscle. This review examines recent studies exploring the relationship between gut microbiota and skeletal muscle, summarizes the effects of exercise on gut microbiota, and discusses the possible mechanisms of the gut-muscle axis.
Collapse
Affiliation(s)
| | | | - Rengfei Shi
- School of Health and Exercise, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
6
|
Ullah H, Arbab S, Tian Y, Chen Y, Liu CQ, Li Q, Li K. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol 2024; 15:1413485. [PMID: 39144142 PMCID: PMC11321976 DOI: 10.3389/fimmu.2024.1413485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024] Open
Abstract
Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Chang-qing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Qijie Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Altomare A, Giovanetti M, Baldaro F, Ciccozzi M, Cicala M, Guarino MPL. The Prevention of Viral Infections: The Role of Intestinal Microbiota and Nutritional Factors. Nutrients 2024; 16:2445. [PMID: 39125326 PMCID: PMC11314041 DOI: 10.3390/nu16152445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Viral infections pose significant global challenges due to their rapid transmissibility. Therefore, preventing and treating these infections promptly is crucial to curbing their spread. This review focuses on the vital link between nutrition and viral infections, underscoring how dietary factors influence immune system modulation. Malnutrition, characterized by deficiencies in essential nutrients such as vitamins A, C, D, E, and zinc, can impair the immune system, thereby increasing vulnerability to viral infections and potentially leading to more severe health outcomes that complicate recovery. Additionally, emerging evidence highlights the role of commensal microbiota in immune regulation, which can affect hosts' susceptibility to infections. Specific dietary components, including bioactive compounds, vitamins, and probiotics, can beneficially modify gut microbiota, thus enhancing immune response and offering protection against viral infections. This review aims to elucidate the mechanisms by which dietary adjustments and gut microbiota impact the pathogenesis of viral infections, with a particular focus on strengthening the immune system.
Collapse
Affiliation(s)
- Annamaria Altomare
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.A.); (M.G.)
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.A.); (M.G.)
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Bairro Floresta 31110-370, Brazil
| | - Francesca Baldaro
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Michele Cicala
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
- Unit of Gastroenterology and Digestive Endoscopy, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Michele Pier Luca Guarino
- Unit of Gastroenterology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.P.L.G.)
- Unit of Gastroenterology and Digestive Endoscopy, Fondazione Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
8
|
Xiao H, Song X, Wang P, Li W, Qin S, Huang C, Wu B, Jia B, Gao Q, Song Z. Termite Fungus Comb Polysaccharides Alleviate Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice by Regulating Hepatic Glucose/Lipid Metabolism and the Gut Microbiota. Int J Mol Sci 2024; 25:7430. [PMID: 39000541 PMCID: PMC11242180 DOI: 10.3390/ijms25137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weilin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Senhua Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Chaofu Huang
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Beimin Wu
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Bao Jia
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Qionghua Gao
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Lee MC, Hsu YJ, Ho CS, Tsai YS, Chen CC, Huang CC. Supplementation with Lactiplantibacillus brevis GKEX Combined with Resistance Exercise Training Improves Muscle Mass, Strength Performance, and Body Fat Condition in Healthy Humans. Foods 2024; 13:1030. [PMID: 38611334 PMCID: PMC11011920 DOI: 10.3390/foods13071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to maintaining good exercise and dietary habits, recent studies have shown that probiotics may have potential benefits for muscle mass and strength. It is worth noting that the effects may vary depending on the specific strains used. To date, no studies have analyzed the effects of Lactiplantibacillus brevis in this context. Here, we combine the L. brevis strain GKEX with resistance training to further understand its effects on muscle mass, thickness, performance, and fat loss. In a six-week intervention for a double-blind randomized trial, 52 healthy subjects were divided into two groups (10 male and 16 female participants in each group): a placebo group (two capsules/day, containing 0 CFU of GKEX per capsule) and a GKEX group (two capsules/day, containing 1 × 1010 CFU of GKEX per capsule). Before the intervention, no differences were observed between the two groups in any of the tests (body composition, muscle thickness, exercise performance, and blood parameters). However, supplementation with GKEX significantly improved muscle mass and thickness, as well as grip strength, muscle strength, and explosive performance, when compared to the associated parameters before the intervention. Additionally, GKEX supplementation promoted a reduction in the body fat percentage (p < 0.05). Through analysis of the change amount, we observed that GKEX supplementation yielded significantly improved benefits when compared to the placebo group (p < 0.05). In summary, our findings support the notion that a six-week resistance exercise training program combined with L. brevis GKEX supplementation has superior additive effects that enhance muscle mass and strength performance, while also reducing body fat percentage. This intervention can promote muscle gain and fat loss.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (C.-C.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (C.-C.C.)
- Institute of Food Science and Technology, National Taiwan University, Taipei 106319, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
10
|
El-Nashar HAS, Taleb M, El-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother Res 2024; 38:662-693. [PMID: 37966040 DOI: 10.1002/ptr.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Diabetes mellitus is a globally metabolic endocrine syndrome marked by a deficiency of insulin secretion (type-1 DM) or glucose intolerance arising from insulin response impairment (type-2 DM) leading to abnormal glucose metabolism. With an increasing interest in natural dietary components for diabetes management, the identification of novel agents witnessed major discoveries. Plant-derived mucilage, pectin, and inulin are important non-starch polysaccharides that exhibit effective antidiabetic properties often termed soluble dietary fiber (SDF). SDF affects sugar metabolism through multiple mechanisms affecting glucose absorption and diffusion, modulation of carbohydrate metabolizing enzymes (α-amylase and α-glucosidase), ameliorating β-pancreatic cell dysfunction, and improving insulin release or sensitivity. Certain SDFs inhibit dipeptidyl peptidase-4 and influence the expression levels of genes related to glucose metabolism. This review is designed to discuss holistically and critically the antidiabetic effects of major SDF and their underlying mechanisms of action. This review should aid drug discovery approaches in developing novel natural antidiabetic drugs from SDF.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Taleb
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University-Gaza, Gaza, Palestine
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Zhang Y, Zhu Y, Guo Q, Wang W, Zhang L. High-throughput sequencing analysis of the characteristics of the gut microbiota in aged patients with sarcopenia. Exp Gerontol 2023; 182:112287. [PMID: 37716483 DOI: 10.1016/j.exger.2023.112287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The gut microbiota is a complex microbial community that changes in response to various intestinal diseases, including aging-related diseases such as sarcopenia. Several studies have shown that the metabolites of the gut microbiota affect the dynamic balance of the skeletal muscle. However, the effect of gut microbiota imbalance on sarcopenia is still largely unknown. METHODS We collected the baseline characteristics and fecal samples of 14 patients with sarcopenia and 21 patients without sarcopenia, and used the 16S rRNA sequencing technology to analyze the differences in the gut microbiota in the two groups. α-diversity and β-diversity were employed to assess the abundance and diversity of species and variations in microflora composition, respectively. Moreover, Tax4Fun was employed to predict the functional capacities of the microbial communities. RESULTS In the sarcopenia group, the abundances of beneficial bacteria such as Bacteroides, Faecalibacterium, Fusobacterium, and Prevotella were reduced, whereas those of pathogenic bacteria, such as Escherichia-Shigella and Klebsiella, were increased. The genera and species of the family Enterobacteriaceae were the main pathogenic bacteria in patients with sarcopenia, and Escherichia-Shigella and Klebsiella could be used as key biomarkers of sarcopenia. The defective protein processing and amino acid synthesis pathways in patients with sarcopenia indicated that protein synthesis and nutrient transport may be damaged. Moreover, the abundances of Escherichia-Shigella and Enterobacteriaceae have been found to have a negative correlation with muscle mass and were the main parameters predicting the change in muscle mass. CONCLUSIONS In this study, we have identified changes in the gut microbiota of sarcopenic individuals, which were linked to the loss of muscle mass and function. Escherichia-Shigella is a conditional pathogen of sarcopenic patients, and its levels are found to have a significant negative correlation with muscle mass.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Qin Guo
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Wei Wang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Lei Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
12
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
13
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
14
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Bakr AF, Farag MA. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS OMEGA 2023; 8:24680-24694. [PMID: 37483202 PMCID: PMC10357562 DOI: 10.1021/acsomega.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
The number of hypercholesterolemic people is increasing rapidly worldwide, with elevated lipid profiles representing a major risk factor of coronary heart diseases. Dietary intervention was shown to improve the lipid profile, thus enhancing the quality of life. Dietary fiber is a nondigestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber, and is classified according to its water solubility properties as either soluble (SDF) or insoluble dietary fiber (IDF). Consumption of SDF is associated with several health benefits such as reduced lipid levels, lower blood pressure, improved blood glucose control, improved immune function, and reduced inflammation. SDF has been shown to lower blood cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums (gum arabic and guar gum), pectin, and inulin.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Pathology
Department, Faculty of Veterinary Medicine, Cairo University, Gamaa Street, 12211 Giza, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr el Aini Street, P.O. Box 11562, 12613 Cairo, Egypt
| |
Collapse
|
16
|
Canfora EE, Vliex LMM, Wang T, Nauta A, Bouwman FG, Holst JJ, Venema K, Zoetendal EG, Blaak EE. 2'-fucosyllactose alone or combined with resistant starch increases circulating short-chain fatty acids in lean men and men with prediabetes and obesity. Front Nutr 2023; 10:1200645. [PMID: 37529001 PMCID: PMC10388544 DOI: 10.3389/fnut.2023.1200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023] Open
Abstract
Background Infusion of short-chain fatty acids (SCFA) to the distal colon beneficially affects human substrate and energy metabolism. Here, we hypothesized that the combination of 2'-fucosyllactose (2'-FL) with resistant starch (RS) increases distal colonic SCFA production and improves metabolic parameters. Methods In this randomized, crossover study, 10 lean (BMI 20-24.9 kg/m2) and nine men with prediabetes and overweight/obesity (BMI 25-35 kg/m2) were supplemented with either 2'-FL, 2'-FL+RS, or placebo one day before a clinical investigation day (CID). During the CID, blood samples were collected after a overnight fast and after intake of a liquid high-fat mixed meal to determine plasma SCFA (primary outcomes). Secondary outcomes were fasting and postprandial plasma insulin, glucose, free fatty acid (FFA), glucagon-like peptide-1, and peptide YY concentrations. In addition, fecal SCFA and microbiota composition, energy expenditure and substrate oxidation (indirect calorimetry), and breath hydrogen excretion were determined. Results In lean men, supplementation with 2'-FL increased postprandial plasma acetate (P = 0.017) and fasting H2 excretion (P = 0.041) compared to placebo. Postprandial plasma butyrate concentration increased after 2'-FL and 2'-FL+RS as compared to placebo (P < 0.05) in lean men and men with prediabetes and overweight/obesity. Additionally, 2'-FL+RS decreased fasting and postprandial plasma FFA concentrations compared to placebo (P < 0.05) in lean men. Conclusion Supplementation of 2'-FL with/without RS the day before investigation increased systemic butyrate concentrations in lean men as well as in men with prediabetes and obesity, while acetate only increased in lean men. The combination of 2'-FL with RS showed a putatively beneficial metabolic effect by lowering plasma FFA in lean men, indicating a phenotype-specific effect. Clinical trial registration nr. NCT04795804.
Collapse
Affiliation(s)
- Emanuel E. Canfora
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Lars M. M. Vliex
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Taojun Wang
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Freek G. Bouwman
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jens J. Holst
- NovoNordisk Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Koen Venema
- Maastricht University—Campus Venlo, Centre for Healthy Eating and Food Innovation, Venlo, Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Ellen E. Blaak
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
17
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
18
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
19
|
Glyceryl triacetate feeding in mice increases plasma acetate levels but has no anticonvulsant effects in acute electrical seizure models. Epilepsy Behav 2022; 137:108964. [PMID: 36343532 DOI: 10.1016/j.yebeh.2022.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Acetate has been shown to have neuroprotective and anti-inflammatory effects. It is oxidized by astrocytes and can thus provide auxiliary energy to the brain in addition to glucose. Therefore, we hypothesized that it may protect against seizures, which is investigated here by feeding glyceryl triacetate (GTA), to provide high amounts of acetate without raising sodium or acid levels. METHOD CD1 male mice were fed controlled diets with or without GTA for up to three weeks. Body weights, blood glucose levels, plasma short-chain fatty acid levels, and other hematological parameters were monitored. Seizure thresholds were determined in 6 Hz and maximal electroshock seizure threshold (MEST) tests. Antioxidant capacities were evaluated in the cerebral cortex and plasma using a ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity assay. RESULTS Body weight gain was similar with both diets with and without GTA in two experiments. Glyceryl triacetate-fed groups showed 2-3- and 1.6-fold increased acetate and propionate levels in plasma, respectively. Glucose levels were unaltered in blood collected from the tail tip but increased in trunk blood. No differences were found in the activity of cerebral cortex acetyl-CoA synthetase. In the 6 Hz threshold test, seizure thresholds were lower by 3 mA and 2.4 mA after 8 and 14 days, respectively, in the GTA compared to the control diet-fed group, but showed no difference on day 16, showing that GTA has small, but inconsistent proconvulsant effects in this model. In MEST tests, a slightly increased seizure threshold (1 mA) was found on day 19 in the GTA-fed group, but not in another experiment on day 21. There were no differences in antioxidant capacity in plasma or cortex between the two groups. CONCLUSION Glyceryl triacetate feeding showed no antioxidant effects nor beneficial changes in acute electrical seizure threshold mouse models, despite its ability to increase plasma acetate levels.
Collapse
|
20
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
21
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
22
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
23
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
24
|
Chiang JH, Hua XY, Yu AHM, Peh EWY, See E, Jeyakumar Henry C. A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Hong Chiang
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Yi Hua
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ashley Hui Min Yu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elaine Wan Yi Peh
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - E’Ein See
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Khan A, Ali H, Rehman UU, Belduz AO, Bibi A, Abdurahman MA, Shah AA, Badshah M, Hasan F, Kilic AO, Ullah A, Jahan S, Rehman MMU, Mansoor R, Khan S. Prebiotic potential of enzymatically prepared resistant starch in reshaping gut microbiota and their respond to body physiology. PLoS One 2022; 17:e0267318. [PMID: 35576192 PMCID: PMC9109903 DOI: 10.1371/journal.pone.0267318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in consumer demand for high-quality food products has led to growth in the use of new technologies and ingredients. Resistant starch (RS) is a recently recognised source of fibre and has received much attention for its potential health benefits and functional properties. However, knowledge about the fate of RS in modulating complex intestinal communities, the microbial members involved in its degradation, enhancement of microbial metabolites, and its functional role in body physiology is still limited. For this purpose, the current study was designed to ratify the physiological and functional health benefits of enzymatically prepared resistant starch (EM-RSIII) from maize flour. To approve the beneficial health effects as prebiotic, EM-RSIII was supplemented in rat diets. After 21 days of the experiment, EM-RSIII fed rats showed a significant reduction in body weight gain, fecal pH, glycemic response, serum lipid profile, insulin level and reshaping gut microbiota, and enhancing short-chain fatty acid compared to control. The count of butyrate-producing and starch utilizing bacteria, such as Lactobacillus, Enterococcus, and Pediococcus genus in rat’s gut, elevated after the consumption of medium and high doses of EM-RSIII, while the E. coli completely suppressed in high EM-RSIII fed rats. Short-chain fatty acids precisely increased in feces of EM-RSIII feed rats. Correlation analysis demonstrated that the effect of butyrate on functional and physiological alteration on the body had been investigated during the current study. Conclusively, the present study demonstrated the unprecedented effect of utilising EM-RSIII as a diet on body physiology and redesigning gut microorganisms.
Collapse
Affiliation(s)
- Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ubaid Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Amna Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Kilic
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Asad Ullah
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Maqsood Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rashid Mansoor
- Department of Statistical Science, University College London, London, United Kingdom
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
26
|
Yeh WL, Hsu YJ, Ho CS, Ho HH, Kuo YW, Tsai SY, Huang CC, Lee MC. Lactobacillus plantarum PL-02 Supplementation Combined With Resistance Training Improved Muscle Mass, Force, and Exercise Performance in Mice. Front Nutr 2022; 9:896503. [PMID: 35571912 PMCID: PMC9094439 DOI: 10.3389/fnut.2022.896503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing numbers of researchers are investigating the benefits of probiotics in enhancing exercise performance and verifying the role of the gut–muscle axis. In our previous study, Lactobacillus plantarum PL-02 improved exercise performance and muscle mass. Therefore, the purpose of this study was to investigate whether supplementation with PL-02 combined with resistance training has a synergistic effect on exercise performance and muscle mass. All the animals were assigned into four groups (n = 8/group): a sedentary control with normal distilled water group (vehicle, n = 8); PL-02 supplementation group (PL-02, 2.05 × 109 CFU, n = 8); resistance training group (RT, n = 8); PL-02 supplementation combined with resistance training group (PL-02 + RT, 2.05 × 109 CFU, n = 8). Supplementation with PL-02 for four consecutive weeks combined with resistance exercise training significantly improved the grip strength and the maximum number of crawls; increased the time of exhaustive exercise; significantly reduced the time required for a single climb; and reduced the lactate, blood ammonia, creatine kinase, and blood urea nitrogen produced after exercise (p < 0.05). In addition, it produced substantial benefits for increasing muscle mass without causing any physical damage. In summary, our findings confirmed that PL-02 or RT supplementation alone is effective in improving muscle mass and exercise performance and in reducing exercise fatigue, but the combination of the two can achieve increased benefits.
Collapse
Affiliation(s)
- Wen-Ling Yeh
- Department of Orthopedic Surgery, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chin-Shen Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim D, Choi KC. Novel Bacillus ginsengihumi CMRO6 Inhibits Adipogenesis via p38MAPK/Erk44/42 and Stimulates Glucose Uptake in 3T3-L1 Pre-Adipocytes through Akt/AS160 Signaling. Int J Mol Sci 2022; 23:4727. [PMID: 35563118 PMCID: PMC9104516 DOI: 10.3390/ijms23094727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
The health benefits of probiotics have been known for decades, but there has only been limited use of probiotics in the treatment of obesity. In this study, we describe, for the first time, the role of cell-free metabolites (CM) from Bacillus ginsengihumi-RO6 (CMRO6) in adipogenesis and lipogenesis in 3T3-L1 pre-adipocytes. The experimental results show that CMRO6 treatment effectively reduced lipid droplet accumulation and the expression of CCAAT/enhancer-binding protein α and β (C/EBPα and C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-γ), serum regulatory binding protein 1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), phosphorylated p38MAPK, and Erk44/42. Additionally, CMRO6 treatment significantly increased glucose uptake and phosphorylated Akt (S473), AS160, and TBC1D1 protein expressions. Considering the results of this study, B. ginsengihumi may be a novel probiotic used for the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Kyung Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Soundharrajan Ilavenil
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Muthusamy Karnan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Chul-Ju Yang
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea;
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| |
Collapse
|
28
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
29
|
Canfora EE, Hermes GD, Müller M, Bastings J, Vaughan EE, van Den Berg MA, Holst JJ, Venema K, Zoetendal EG, Blaak EE. Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes 2022; 14:2009297. [PMID: 34923911 PMCID: PMC8726743 DOI: 10.1080/19490976.2021.2009297] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Infusions of the short-chain fatty acid (SCFA) acetate in the distal colon improved metabolic parameters in men. Here, we hypothesized that combining rapidly and slowly fermentable fibers will enhance distal colonic acetate production and improve metabolic health. In vitro cultivation studies in a validated model of the colon were used to identify fiber mixtures that yielded high distal colonic acetate production. Subsequently, in two randomized crossover studies, lean and prediabetic overweight/obese men were included. In one study, participants received supplements of either long-chain inulin+resistant starch (INU+RS), INU or maltodextrin (PLA) the day prior to a clinical investigation day (CID). The second trial studied beta glucan+RS (BG+RS) versus BG and PLA. During each CID, breath hydrogen, indirect calorimetry, plasma metabolites/hormones were assessed during fasting and postprandial conditions. Additionally, fecal microbiota composition and SCFA were determined. In prediabetic men, INU+RS increased plasma acetate compared to INU or PLA (P < .05), but did not affect metabolic parameters. In lean men, INU+RS increased breath hydrogen and fasting plasma butyrate, which was accompanied by increased energy expenditure, carbohydrate oxidation and PYY and decreased postprandial glucose concentrations (all P < .05) compared to PLA. BG+RS increased plasma butyrate compared to PLA (P < .05) in prediabetic individuals, but did not affect other fermentation/metabolic markers in both phenotypes. Fiber-induced shifts in fecal microbiota were individual-specific and more pronounced with INU+RS versus BG+RS. Administration of INU+RS (not BG+RS) the day prior to investigation improved metabolic parameters in lean but not in prediabetic individuals, demonstrating that effects were phenotype- and fiber-specific. Further research should study whether longer-term supplementation periods are required to elicit beneficial metabolic health in prediabetic individuals. Trial registration numbers: Clinical trial No. NCT03711383 (Inulin study) and Clinical trial No. NCT03714646 (Beta glucan study).
Collapse
Affiliation(s)
- Emanuel E. Canfora
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands,CONTACT Emanuel E. Canfora Department of Human Biology, Maastricht University Medical Center+, P.O. Box 616, Maastricht6200, The Netherlands
| | - Gerben D.A. Hermes
- Laboratory of Microbiology, Wageningen University&Research, Wageningen, The Netherlands
| | - Mattea Müller
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jacco Bastings
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Jens J. Holst
- NovoNordisk Center for Basic Metabolic Research and Department of Biomedical Sciences Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koen Venema
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands,Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University&Research, Wageningen, The Netherlands
| | - Ellen E. Blaak
- Human Biology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
30
|
Lan Y, Sun Q, Ma Z, Peng J, Zhang M, Wang C, Zhang X, Yan X, Chang L, Hou X, Qiao R, Mulati A, Zhou Y, Zhang Q, Liu Z, Liu X. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct 2022; 13:2925-2937. [PMID: 35191457 DOI: 10.1039/d1fo03147c] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity has been reported to be associated with gut microbiome dysbiosis. seabuckthorn fruits have traditionally been used in Tibetan foods and medicines for thousands of years. Seabuckthorn polysaccharide (SP) is one of the main functional components in seabuckthorn fruits. However, the effects of SP on a high-fat diet (HFD)-induced obesity have not yet been elucidated. The purpose of this study is to explore the amelioration effect of SP on obesity induced by HFD and to reveal its mechanism of gut microbiota and its metabolites. Results showed that 12-week SP (0.1%, w/w) dietary supplementation could significantly reduce body weight gain, serum lipid level and liver triglycerides level in obese mice. Notably, the SP treatment elevated p-AMPKα and PPARα proteins expression stimulated the phosphorylation of ACC1 and inhibited the protein expression of FAS, PPARγ, and CD36 in the mice liver. Further, SP also reorganized the gut microbiome by up-regulating the proportion of Muribaculaceae_unclassified, Bifidobacterium, Rikenellaceae_RC9_gut_group, Alistipes, and Bacteroides, and down-regulating the abundance of Lactobacillus, Firmicutes_unclassified, Dubosiella Bilophila, and Streptococcus in HFD-induced obese mice. Moreover, the production of microbial metabolites short-chain fatty acids (SCFAs) in feces has also increased. In addition, correlation analysis results showed that obesity-ameliorating effects of SP were highly associated with levels of SCFAs in feces. Therefore, the regulation of SP on liver lipid metabolism may be due to the variation of the gut microbiome and raised production of SCFAs. These results indicate that SP could play the part of a potential nutraceutical for ameliorating obesity through regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qingyang Sun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhiyuan Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jing Peng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Mengqi Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xinglin Hou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Ruixue Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Yuan Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qiang Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
31
|
Santibañez-Gutierrez A, Fernández-Landa J, Calleja-González J, Delextrat A, Mielgo-Ayuso J. Effects of Probiotic Supplementation on Exercise with Predominance of Aerobic Metabolism in Trained Population: A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14030622. [PMID: 35276980 PMCID: PMC8840281 DOI: 10.3390/nu14030622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The scientific literature about probiotic intake and its effect on sports performance is growing. Therefore, the main aim of this systematic review, meta-analysis and meta-regression was to review all information about the effects of probiotic supplementation on performance tests with predominance of aerobic metabolism in trained populations (athletes and/or Division I players and/or trained population: ≥8 h/week and/or ≥5 workouts/week). A structured search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA®) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus international databases from inception to 1 November 2021. Studies involving probiotic supplementation in trained population and execution of performance test with aerobic metabolism predominance (test lasted more than 5 min) were considered for inclusion. Fifteen articles were included in the final systematic review (in total, 388 participants were included). After 3 studies were removed due to a lack of data for the meta-analysis and meta-regression, 12 studies with 232 participants were involved. With the objective of assessing the risk of bias of included studies, Cochrane Collaboration Guidelines and the Physiotherapy Evidence Database (PEDro) scale were performed. For all included studies the following data was extracted: authors, year of publication, study design, the size of the sample, probiotic administration (dose and time), and characteristics of participants. The random effects model and pooled standardized mean differences (SMDs) were used according to Hedges’ g for the meta-analysis. In order to determine if dose and duration covariates could predict probiotic effects, a meta-regression was also conducted. Results showed a small positive and significant effect on the performance test with aerobic metabolic predominance (SMD = 0.29; CI = 0.08−0.50; p < 0.05). Moreover, the subgroup analysis displayed significant greater benefits when the dose was ≥30 × 109 colony forming units (CFU) (SMD, 0.47; CI, 0.05 to 0.89; p < 0.05), when supplementation duration was ≤4 weeks (SMD, 0.44; CI, 0.05 to 0.84; p < 0.05), when single strain probiotics were used (SMD, 0.33; CI, 0.06 to 0.60; p < 0.05), when participants were males (SMD, 0.30; CI, 0.04 to 0.56; p < 0.05), and when the test was performed to exhaustion (SMD, 0.45; CI, 0.05 to 0.48; p < 0.05). However, with references to the findings of the meta-regression, selected covariates did not predict probiotic effects in highly trained population. In summary, the current systematic review and meta-analysis supported the potential effects of probiotics supplementation to improve performance in a test in which aerobic metabolism is predominant in trained population. However, more research is needed to fully understand the mechanisms of action of this supplement.
Collapse
Affiliation(s)
- Asier Santibañez-Gutierrez
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julen Fernández-Landa
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Anne Delextrat
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Correspondence:
| |
Collapse
|
32
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
34
|
McCarty MF, DiNicolantonio JJ. Maintaining Effective Beta Cell Function in the Face of Metabolic Syndrome-Associated Glucolipotoxicity-Nutraceutical Options. Healthcare (Basel) 2021; 10:3. [PMID: 35052168 PMCID: PMC8775473 DOI: 10.3390/healthcare10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
In people with metabolic syndrome, episodic exposure of pancreatic beta cells to elevated levels of both glucose and free fatty acids (FFAs)-or glucolipotoxicity-can induce a loss of glucose-stimulated insulin secretion (GSIS). This in turn can lead to a chronic state of glucolipotoxicity and a sustained loss of GSIS, ushering in type 2 diabetes. Loss of GSIS reflects a decline in beta cell glucokinase (GK) expression associated with decreased nuclear levels of the pancreatic and duodenal homeobox 1 (PDX1) factor that drives its transcription, along with that of Glut2 and insulin. Glucolipotoxicity-induced production of reactive oxygen species (ROS), stemming from both mitochondria and the NOX2 isoform of NADPH oxidase, drives an increase in c-Jun N-terminal kinase (JNK) activity that promotes nuclear export of PDX1, and impairs autocrine insulin signaling; the latter effect decreases PDX1 expression at the transcriptional level and up-regulates beta cell apoptosis. Conversely, the incretin hormone glucagon-like peptide-1 (GLP-1) promotes nuclear import of PDX1 via cAMP signaling. Nutraceuticals that quell an increase in beta cell ROS production, that amplify or mimic autocrine insulin signaling, or that boost GLP-1 production, should help to maintain GSIS and suppress beta cell apoptosis in the face of glucolipotoxicity, postponing or preventing onset of type 2 diabetes. Nutraceuticals with potential in this regard include the following: phycocyanobilin-an inhibitor of NOX2; agents promoting mitophagy and mitochondrial biogenesis, such as ferulic acid, lipoic acid, melatonin, berberine, and astaxanthin; myo-inositol and high-dose biotin, which promote phosphatidylinositol 3-kinase (PI3K)/Akt activation; and prebiotics/probiotics capable of boosting GLP-1 secretion. Complex supplements or functional foods providing a selection of these agents might be useful for diabetes prevention.
Collapse
Affiliation(s)
| | - James J. DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, MO 64111, USA
| |
Collapse
|
35
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
36
|
Mohamed AB, Rémond D, Gual-Grau A, Bernalier-Donnadille A, Capel F, Michalski MC, Laugerette F, Cohade B, Hafnaoui N, Béchet D, Coudy-Gandilhon C, Gueugneau M, Salles J, Migné C, Dardevet D, David J, Polakof S, Savary-Auzeloux I. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients 2021; 13:nu13124202. [PMID: 34959754 PMCID: PMC8704711 DOI: 10.3390/nu13124202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.
Collapse
Affiliation(s)
- Ahmed Ben Mohamed
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Didier Rémond
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Andreu Gual-Grau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Annick Bernalier-Donnadille
- Unité de Microbiologie Environnement Digestif et Santé, Unité Mixte de Recherches 0454, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France;
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marie-Caroline Michalski
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Fabienne Laugerette
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Benoit Cohade
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Noureddine Hafnaoui
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Daniel Béchet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Cécile Coudy-Gandilhon
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jerome Salles
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Carole Migné
- MetaboHUB Clermont, Plateforme d’Exploration du Métabolisme, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Dominique Dardevet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jérémie David
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Sergio Polakof
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Isabelle Savary-Auzeloux
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
- Correspondence:
| |
Collapse
|
37
|
Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients 2021; 13:nu13103666. [PMID: 34684670 PMCID: PMC8538331 DOI: 10.3390/nu13103666] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its complications—including type 2 diabetes, cardiovascular disease, and certain cancers—constitute a rising global epidemic that has imposed a substantial burden on health and healthcare systems over the years. It is becoming increasingly clear that there is a link between obesity and the gut microbiota. Gut dysbiosis, characterized as microbial imbalance, has been consistently associated with obesity in both humans and animal models, and can be reversed with weight loss. Emerging evidence has shown that microbial-derived metabolites such as short-chain fatty acids (SCFAs)—including acetate, propionate, and butyrate—provide benefits to the host by impacting organs beyond the gut, including adipose tissue. In this review, we summarize what is currently known regarding the specific mechanisms that link gut-microbial-derived SCFAs with adipose tissue metabolism, such as adipogenesis, lipolysis, and inflammation. In addition, we explore indirect mechanisms by which SCFAs can modulate adipose tissue metabolism, such as via perturbation of gut hormones, as well as signaling to the brain and the liver. Understanding how the modulation of gut microbial metabolites such as SCFAs can impact adipose tissue function could lead to novel therapeutic strategies for the prevention and treatment of obesity.
Collapse
|
38
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Heiss CN, Mannerås-Holm L, Lee YS, Serrano-Lobo J, Håkansson Gladh A, Seeley RJ, Drucker DJ, Bäckhed F, Olofsson LE. The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep 2021; 35:109163. [PMID: 34038733 DOI: 10.1016/j.celrep.2021.109163] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Mice lacking a microbiota are protected from diet-induced obesity. Previous studies have shown that feeding a Western diet causes hypothalamic inflammation, which in turn can lead to leptin resistance and weight gain. Here, we show that wild-type (WT) mice with depleted gut microbiota, i.e., germ-free (GF) and antibiotic-treated mice, have elevated levels of glucagon-like peptide-1 (GLP-1), are protected against diet-induced hypothalamic inflammation, and have enhanced leptin sensitivity when fed a Western diet. Using GLP-1 receptor (GLP-1R)-deficient mice and pharmacological inhibition of the GLP-1R in WT mice, we demonstrate that intact GLP-1R signaling is required for preventing hypothalamic inflammation and enhancing leptin sensitivity. Furthermore, we show that astrocytes express the GLP-1R, and deletion of the receptor in glial fibrillary acidic protein (GFAP)-expressing cells diminished the antibiotic-induced protection against diet-induced hypothalamic inflammation. Collectively, our results suggest that depletion of the gut microbiota attenuates diet-induced hypothalamic inflammation and enhances leptin sensitivity via GLP-1R-dependent mechanisms.
Collapse
Affiliation(s)
- Christina N Heiss
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Ying Shiuan Lee
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Julia Serrano-Lobo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Anna Håkansson Gladh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Randy J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, ON M5G 1X5, Canada
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| |
Collapse
|
40
|
Nie Y, Luo F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542342. [PMID: 33897940 PMCID: PMC8052145 DOI: 10.1155/2021/5542342] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Dietary fiber has a long history in the intervention study of hyperlipidemia. In this review, current understandings of structures, sources, and natures of various kinds of dietary fibers (DFs) were analyzed first. Available evidences for the use of different varieties of DFs in the lipid-lowering action both in vitro and in vivo were subsequently classified, including both soluble ones, such as glucans, pectins, and gums, and insoluble ones, including arabinooxylans and chitosans, in order to draw a primary conclusion of their dose and molecular weight relationship with lipid-lowering effect. Their potential mechanisms, especially the related molecular mechanism of protective action in the treatment and prevention of hyperlipidemia, were summarized at last. Five major mechanisms are believed to be responsible for the antihyperlipidemic benefits of DFs, including low levels of energy, bulking effect, viscosity, binding capacity, and fermentation thus ameliorating the symptoms of hyperlipidemia. From the molecular level, DFs could possibly affect the activities of HMG-CoA reductase, LDL receptors, CYP7A1, and MAPK signaling pathway as well as other lipid metabolism-related target genes. In summary, dietary fibers could be used as alternative supplements to exert certain lipid-lowering effects on humans. However, more clinical evidence is needed to strengthen this proposal and its fully underlying mechanism still requires more investigation.
Collapse
Affiliation(s)
- Ying Nie
- School of Food Technology and Biological Science, Hanshan Normal University, Chaozhou 521041, China
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
41
|
Tippairote T, Bjørklund G, Yaovapak A. The continuum of disrupted metabolic tempo, mitochondrial substrate congestion, and metabolic gridlock toward the development of non-communicable diseases. Crit Rev Food Sci Nutr 2021; 62:6837-6853. [PMID: 33797995 DOI: 10.1080/10408398.2021.1907299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-communicable diseases (NCD) are the slow-motion disasters with imminent global health care burden. The current dietary management for NCD is dominated by the calorie balance model. Apart from the quantitative balance of calorie, healthy bioenergetics requires temporal eating and fasting rhythms, and the subsequent switching for different metabolic fuels. We herein term these three bioenergetic attributes, i.e., caloric balance, diurnal eating-fasting rhythm, and metabolic flexibility, as the metabolic tempo. These three attributes are intertwined with each other; alteration of one attribute affects one or more other attributes. Lifestyle-induced disrupted metabolic tempo presents a high flux of mixed carbon substrates to mitochondria, with the resulting congestion and indecisiveness of metabolic switches. Such indecisiveness impairs metabolic flexibility, promotes anabolism, and accumulates the energy storage pools. The triggers from hypoxic inducible factor expression could further promote the metabolic gridlock and adipocyte maladaptation. The maladaptive adipocytes lead to ectopic fat deposition, increased circulating lipid levels, insulin resistance, and chronic systemic inflammation. These continuum set stages for clinical NCDs. We propose that the restoration of all tempo attributes through the combined diet-, time-, and calorie-restricted interventions could be the preferred strategy for NCD management.
Collapse
Affiliation(s)
- Torsak Tippairote
- Nutritional and Environmental Section, Thailand Initiatives for Functional Medicine, Bangkok Thailand.,Nutritional and Environmental Medicine, Healing Passion Medical Center, Bangkok Thailand
| | - Geir Bjørklund
- Nutritional and Environmental Medicine, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Augchara Yaovapak
- Nutritional and Environmental Section, Thailand Initiatives for Functional Medicine, Bangkok Thailand.,Nutritional and Environmental Medicine, Healing Passion Medical Center, Bangkok Thailand
| |
Collapse
|
42
|
Wu W, Li Z, Qin F, Qiu J. Anti-diabetic effects of the soluble dietary fiber from tartary buckwheat bran in diabetic mice and their potential mechanisms. Food Nutr Res 2021; 65:4998. [PMID: 33613154 PMCID: PMC7869439 DOI: 10.29219/fnr.v65.4998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Tartary buckwheat has beneficial effects on glucose and lipid metabolism of patients with type 2 diabetes mellitus. However, the physiological effects of a soluble dietary fiber (SDF) from tartary buckwheat have rarely been studied, especially in vivo. Objective This study aimed to examine the hypoglycemic and hypolipidemic effects of SDF from tartary buckwheat bran on high-fat diet/streptozotocin-induced diabetic mice. Design The SDF of tartary buckwheat bran was collected according to the Association of Official Analytical Chemists method 991.43. Diabetic mice were treated with high-fat diets supplemented with 0.5, 1, and 2% SDF for 8 weeks. Parameters related to glucose and lipid metabolism and relevant mechanisms, including the excretion of short-chain fatty acids and the glycemic signaling pathway in the liver, were investigated. In addition, the structural characterization of a purified polysaccharide from SDF of tartary buckwheat bran was illustrated. Result Supplementation with SDF in the diet resulted in reduced levels of fasting blood glucose, improved oral glucose tolerance, increased levels of liver glycogen and insulin, as well as improved lipid profiles in both the serum and liver, in diabetic mice. The amelioration of glucose and lipid metabolism by SDF was accompanied by an increase in the short-chain fatty acid levels in the cecum and co-regulated by hepatic adenosine-5′-monophosphate-activated protein kinase (AMPK) phosphorylation. A neutral tartary buckwheat polysaccharide with an average molecular weight of 19.6 kDa was purified from the SDF, which consisted mainly of glucose with α-glycosidic bonds. Conclusions The SDF of tartary buckwheat bran exhibits hypoglycemic and hypolipidemic effects in diabetic mice, contributing to the anti-diabetic mechanisms of tartary buckwheat.
Collapse
Affiliation(s)
- Weijing Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, China
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| | - Fei Qin
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Haidian, Beijing, China
| |
Collapse
|
43
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|
44
|
Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2020; 246:778-789. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.
Collapse
Affiliation(s)
- Jisun Hj Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Aguirre-Calvo TR, Molino S, Perullini M, Rufián-Henares J, Santagapita PR. Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(ii)-alginate beads. Food Funct 2020; 11:10645-10654. [PMID: 33216078 DOI: 10.1039/d0fo02347g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present work was to analyze the effect of in vitro gastrointestinal digestion-fermentation on antioxidant capacity, total phenols and production of short chain fatty acids (SCFAs) from biocompounds derived from beet waste (leaf and stem) encapsulated in different formulations of Ca(ii)-alginate beads. The encapsulated systems presented higher antioxidant capacity in different phases (digested and fermented) than the extracts without encapsulation, making Ca(ii)-alginate beads a suitable delivery vehicle. Levels of total phenolic compounds and antioxidant capacity of the fermented fraction were up to ten times higher than those of the digested fraction, boosted by the contribution of bioactive compounds from the by-product of beet as well as by sugars and biopolymers. Among the formulations used, those that had excipients (sugars and/or biopolymers) presented a better overall antioxidant response than the beads with just alginate. Guar gum and sucrose lead to a promising enhancement of Ca(ii)-alginate beads not only for preservation and protection but also in terms of stability under in vitro digestion-fermentation and production of SCFAs.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
46
|
Gut Microbiota and Immune System Interactions. Microorganisms 2020; 8:microorganisms8101587. [PMID: 33076307 PMCID: PMC7602490 DOI: 10.3390/microorganisms8101587] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic interactions between gut microbiota and a host’s innate and adaptive immune systems play key roles in maintaining intestinal homeostasis and inhibiting inflammation. The gut microbiota metabolizes proteins and complex carbohydrates, synthesize vitamins, and produce an enormous number of metabolic products that can mediate cross-talk between gut epithelial and immune cells. As a defense mechanism, gut epithelial cells produce a mucosal barrier to segregate microbiota from host immune cells and reduce intestinal permeability. An impaired interaction between gut microbiota and the mucosal immune system can lead to an increased abundance of potentially pathogenic gram-negative bacteria and their associated metabolic changes, disrupting the epithelial barrier and increasing susceptibility to infections. Gut dysbiosis, or negative alterations in gut microbial composition, can also dysregulate immune responses, causing inflammation, oxidative stress, and insulin resistance. Over time, chronic dysbiosis and the translocation of bacteria and their metabolic products across the mucosal barrier may increase prevalence of type 2 diabetes, cardiovascular disease, inflammatory bowel disease, autoimmune disease, and a variety of cancers. In this paper, we highlight the pivotal role gut microbiota and their metabolites (short-chain fatty acids (SCFAs)) play in mucosal immunity.
Collapse
|
47
|
Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM. Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes. Antioxidants (Basel) 2020; 9:antiox9090848. [PMID: 32927712 PMCID: PMC7554719 DOI: 10.3390/antiox9090848] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and metabolism. Moreover, microbiota metabolites seem to interfere with mitochondrial oxidative/nitrosative stress and autophagosome formation, thus regulating the activation of the inflammasome and the production of inflammatory cytokines, key players in chronic metabolic disorders. This review focuses on the association between intestinal microbiota and mitochondrial function and examines the mechanisms that may be the key to their use as potential therapeutic strategies in obesity and T2D management.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | | | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| | - Víctor Manuel Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| |
Collapse
|
48
|
Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci 2020; 21:ijms21176356. [PMID: 32887215 PMCID: PMC7503625 DOI: 10.3390/ijms21176356] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), particularly acetate, propionate and butyrate, are mainly produced by anaerobic fermentation of gut microbes. SCFAs play an important role in regulating energy metabolism and energy supply, as well as maintaining the homeostasis of the intestinal environment. In recent years, many studies have shown that SCFAs demonstrate physiologically beneficial effects, and the signalling pathways related to SCFA production, absorption, metabolism, and intestinal effects have been discovered. Two major signalling pathways concerning SCFAs, G-protein-coupled receptors (GPRCs) and histone deacetylases (HDACs), are well recognized. In this review, we summarize the recent advances concerning the biological properties of SCFAs and the signalling pathways in inflammation and glucose and lipid metabolism.
Collapse
|
49
|
Honma K, Oshima K, Takami S, Goda T. Regulation of hepatic genes related to lipid metabolism and antioxidant enzymes by sodium butyrate supplementation. Metabol Open 2020; 7:100043. [PMID: 32812944 PMCID: PMC7424775 DOI: 10.1016/j.metop.2020.100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Rapid influx of energy caused by fasting/refeeding repeatedly enhances fatty acid synthesis leading to triacylglycerol accumulation and production of reactive oxygen species (ROS), increasing the risk of non-alcoholic steatohepatitis (NASH). Previous studies have reported that the ingestion of butyrate is effective at preventing hepatic disorders, which are accompanied by fat accumulation and inflammation. The aim of this study is to reveal the mechanism of action of butyrate, and thus we investigated the effects of dietary butyrate on the expressions of antioxidant enzymes in the livers of rats during refeeding following fasting. Methods Thirty-seven male rats were divided into six groups (6–7 animals per group): non-fasting, fasting, refeeding with a high sucrose diet as control for 12 or 24 h, and refeeding with a high sucrose diet containing 5% sodium butyrate (NaB) for 12 or 24 h. All groups except the non-fasting group were fasted for 72 h before refeeding. Statistical analysis was conducted among 4 refeeding groups (refeeding with the control diet for 12 or 24 h, and refeeding with a diet containing NaB for 12 or 24 h). Results Supplementation with NaB significantly reduced (p < 0.05) fatty acid synthase (Fas) gene expression and increased the expression of the carnitine palmitoyltransferase 1α (Cpt1a) gene, resulting in reduced triacylglycerol content in the livers of rats refed the NaB diet compared with controls at 24 h after the start of refeeding. The mRNA levels of the genes related to glutathione synthesis were significantly higher (p < 0.05) in the livers of the butyrate group than the control group. In addition, the mRNA level of Foxo3a, a transcription factor that regulates the expressions of antioxidant enzymes, was higher in the butyrate group than controls. The acetylation levels of histone H4 around the Foxo3a gene tended to be increased (p = 0.055) by refeeding with the NaB diet. Conclusion NaB supplementation in the diet for refeeding reduced the rate of lipid synthesis and stimulated fatty acid oxidation in the liver, which inhibited fat accumulation and the risk of NASH. The transcriptional regulation of Foxo3a involves histone acetylation around the gene.
Collapse
Affiliation(s)
- Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaho Oshima
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Saeko Takami
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
50
|
The Effect of Voluntary Exercise on Gut Microbiota in Partially Hydrolyzed Guar Gum Intake Mice under High-Fat Diet Feeding. Nutrients 2020; 12:nu12092508. [PMID: 32825157 PMCID: PMC7551544 DOI: 10.3390/nu12092508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Although dietary fiber treatment alters the gut microbiota and its metabolite production, it is unclear whether or not exercise habits can have a supplemental effect on changes in gut microbiota in dietary fiber-treated mice. To clarify the supplemental effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum (PHGG), which is a soluble dietary fiber, treated mice under high-fat diet (HFD) feeding, 4-week-old male C57BL/6J mice (n = 80) were randomly divided into two dietary groups: the control-diet (CD) and HFD. Then, each dietary group was treated with or without PHGG, and with or without wheel running. After the experimental period, measurement of maximal oxygen consumption, a glucose tolerance test and fecal materials collection for analysis of gut microbiota were carried out. Voluntary exercise load in PHGG treatment under HFD feeding showed the supplemental effect of exercise on obesity (p < 0.01) and glucose tolerance (p < 0.01). Additionally, in both CD and HFD groups, voluntary exercise accelerated the decrease in the Firmicutes/Bacteroidetes ratio in mice fed with PHGG (p < 0.01). These findings suggest that voluntary exercise might activate the prevention of obesity and insulin resistance more via change in gut microbiota in mice administrated with PHGG.
Collapse
|