1
|
Erdogan MA, Akbulut MC, Altuntaş İ, Tomruk C, Uyanıkgil Y, Erbaş O. Amelioration of propionic acid-induced autism-like behaviors in rats by fenofibrate: A focus on reduction of brain galectin-3 levels. Int J Dev Neurosci 2024. [PMID: 39533526 DOI: 10.1002/jdn.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and repetitive behaviors. This study examines the effects of fenofibrate on a propionic acid (PPA)-induced rat model of ASD, focusing on behavioral changes, inflammatory markers, and histological findings. MATERIALS AND METHODS Thirty male Wistar rats were divided into three groups: a control group, a group receiving PPA and saline, and a group treated with PPA and fenofibrate for 15 days. Behavioral assessments, including the three-chamber sociability test, open-field test, and passive avoidance learning, were conducted. Biochemical analyses measured TNF-α, NGF, IL-17, IL-2, and galectin-3 levels in brain tissues. Histological evaluations focused on Purkinje neuron counts in the cerebellum and neuronal changes in the CA1 and CA3 regions of the hippocampus, along with glial fibrillary acidic protein (GFAP) levels. RESULTS Fenofibrate treatment significantly improved behavioral outcomes, reducing autism-like behaviors compared to the PPA/saline group. Biochemically, the PPA/saline group showed elevated levels of malondialdehyde, TNF-α, IL-2, IL-17, and galectin-3, which were reduced following fenofibrate treatment. Histologically, the PPA/saline group exhibited fewer, dysmorphic Purkinje neurons and increased glial activity in the CA1 region, both of which were ameliorated by fenofibrate treatment. CONCLUSION Fenofibrate shows promise in mitigating autism-like behaviors in a rat model of ASD, likely due to its antioxidative and neuroprotective properties, which contribute to preserving neuronal integrity and reducing inflammation.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Department of Physiology, Izmir Katip Celebi University, Faculty of Medicine, Izmir, Türkiye
| | - Mine Ceren Akbulut
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Türkiye
| | - İlknur Altuntaş
- Department of Molecular Biology, Ankara University, Institute of Natural and Applied Sciences, Ankara, Türkiye
| | - Canberk Tomruk
- Histology and Embryology, Samsun University, Samsun Education and Research Hospital, Samsun, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Türkiye
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkiye
| |
Collapse
|
2
|
Erdoğan MA, Tunç KC, Daştan Aİ, Tomruk C, Uyanıkgil Y, Erbaş O. Therapeutic effects of pentoxifylline in propionic acid-induced autism symptoms in rat models: A behavioral, biochemical, and histopathological study. Int J Dev Neurosci 2024. [PMID: 39520226 DOI: 10.1002/jdn.10394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The role of propionic acid (PPA) in eliciting behaviors analogous to autism in rat models is a documented phenomenon. This study examines the therapeutic implications of pentoxifylline-an agent traditionally used for peripheral vascular diseases-on these autism-like behaviors by modulating brain proteins and reducing pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) in a rat model. METHODS This research involved 30 male Wistar albino rats, which were divided into three distinct groups: a baseline control set, a PPA-treated cluster receiving a 250 mg/kg/day dose of PPA via intraperitoneal injection for a span of five days followed by saline orally, and a PPA group administered an oral dose of pentoxifylline at 300 mg/kg/day over 15 days. Subsequent to the treatment phase, euthanasia was carried out for the extraction of brain and blood samples, which were then analyzed for histopathological and biochemical markers. RESULTS The pentoxifylline-treated subjects demonstrated a significant mitigation in the manifestation of autistic-like behaviors, as assessed through a triad of social interaction tests. A noteworthy decline in TNF-α levels was observed, alongside a significant rise in the concentration of adenosine triphosphate and nerve growth factor in brain tissue (p < 0.05). Histopathological analysis underscored a reduction in oxidative stress and a significant preservation of neuronal cell types, specifically pyramidal neurons in the hippocampal CA1 and CA3 regions and Purkinje cells in the cerebellum (p < 0.001). CONCLUSION Pentoxifylline treatment has been found to effectively reduce the behavioral symptoms associated with autism, as well as biochemical and histopathological disruptions induced by PPA in rat models, highlighting its potential as a neurotherapeutic agent.
Collapse
Affiliation(s)
- Mümin Alper Erdoğan
- Faculty of Medicine, Department of Physiology, Izmir Katip Çelebi University, Izmir, Turkey
| | - Kerem Can Tunç
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Ali İmran Daştan
- Department of Medical Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Türkiye
| | - Canberk Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Türkiye
| |
Collapse
|
3
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Arda DB, Tunç KC, Bozkurt MF, Bora ES, Çiğel A, Erbaş O. Intranasal Insulin Eases Autism in Rats via GDF-15 and Anti-Inflammatory Pathways. Curr Issues Mol Biol 2024; 46:10530-10544. [PMID: 39329976 PMCID: PMC11431515 DOI: 10.3390/cimb46090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
In rat models, it is well-documented that chronic administration of propionic acid (PPA) leads to autism-like behaviors. Although the intranasal (IN) insulin approach is predominantly recognized for its effects on food restriction, it has also been shown to enhance cognitive memory by influencing various proteins, modulating anti-inflammatory pathways in the brain, and reducing signaling molecules such as interleukins. This study seeks to explore the potential therapeutic benefits of IN insulin in a rat model of autism induced by PPA. Thirty male Wistar albino rats were categorized into three cohorts: the control group, the PPA-induced autism (250 mg/kg/day intraperitoneal PPA dosage for five days) group, treated with saline via IN, and the PPA-induced autism group, treated with 25 U/kg/day (250 µL/kg/day) insulin via IN. All treatments were administered for 15 days. After behavioral testing, all animals were euthanized, and brain tissue and blood samples were collected for histopathological and biochemical assessments. Following insulin administration, a substantial reduction in autism symptoms was observed in all three social behavior tests conducted on the rats. Moreover, insulin exhibited noteworthy capabilities in decreasing brain MDA, IL-2, IL-17, and TNF-α levels within autism models. Additionally, there is a notable elevation in the brain nerve growth factor level (p < 0.05) and GDF-15 (p < 0.05). The assessment of cell counts within the hippocampal region and cerebellum revealed that insulin displayed effects in decreasing glial cells and inducing a significant augmentation in cell types such as the Purkinje and Pyramidal cells. The administration of insulin via IN exhibits alleviating effects on autism-like behavioral, biochemical, and histopathological alterations induced by PPA in rats. Insulin-dependent protective effects show anti-inflammatory, anti-oxidative, and neuroprotective roles of insulin admitted nasally.
Collapse
Affiliation(s)
- Duygu Burcu Arda
- Department of Pediatrics, Taksim Research and Training Hospital, Istanbul 34365, Türkiye;
| | - Kerem Can Tunç
- Department of Biology, Faculty of Science, Adnan Menderes University, Aydın 09010, Türkiye;
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon 03100, Türkiye;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Faculty of Medicine, Izmir Katip Çelebi University, Izmir 35150, Türkiye
| | - Ayşe Çiğel
- Department of Physiology, Faculty of Medicine, Izmir Democracy University, Izmir 35150, Türkiye;
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul 34381, Türkiye;
| |
Collapse
|
5
|
Reeves KD, Figuereo YF, Weis VG, Hsu FC, Engevik MA, Krigsman A, Walker SJ. Mapping the geographical distribution of the mucosa-associated gut microbiome in GI-symptomatic children with autism spectrum disorder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G217-G234. [PMID: 38887795 PMCID: PMC11637567 DOI: 10.1152/ajpgi.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by cognitive, behavioral, and communication impairments. In the past few years, it has been proposed that alterations in the gut microbiota may contribute to an aberrant communication between the gut and brain in children with ASD. Consistent with this notion, several studies have demonstrated that children with ASD have an altered fecal microbiota compared with typically developing (TD) children. However, it is unclear where along the length of the gastrointestinal (GI) tract these alterations in microbial communities occur. In addition, the variation between specific mucosa-associated communities remains unknown. To address this gap in knowledge of the microbiome associated with ASD, biopsies from the antrum, duodenum, ileum, right colon, and rectum of children with ASD and age- and sex-matched TD children were examined by 16S rRNA sequencing. We observed an overall elevated abundance of Bacillota and Bacteroidota and a decreased abundance of Pseudomonadota in all GI tract regions of both male and female children with ASD compared with TD children. Further analysis at the genera level revealed unique differences in the microbiome in the different regions of the GI tract in children with ASD compared with TD children. We also observed sex-specific differences in the gut microbiota composition in children with ASD. These data indicate that the microbiota of children with ASD is altered in multiple regions of the GI tract and that different anatomic locations have unique alterations in mucosa-associated bacterial genera.NEW & NOTEWORTHY Analysis in stool samples has shown gut microbiota alterations in children with autism spectrum disorder (ASD) compared with typically developing (TD) children. However, it is unclear which segment(s) of the gut exhibit alterations in microbiome composition. In this study, we examined microbiota composition along the gastrointestinal (GI) tract in the stomach, duodenum, ileum, right colon, and rectum. We found site-specific and sex-specific differences in the gut microbiota of children with ASD, compared with controls.
Collapse
Affiliation(s)
- Kimberly D Reeves
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem North Carolina, United States
| | - Yosauri F Figuereo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Melinda A Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, Georgetown, Texas, United States
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
6
|
Borrego-Ruiz A, Borrego JJ. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:796. [PMID: 39062245 PMCID: PMC11275248 DOI: 10.3390/children11070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2-3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome-brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, 29010 Málaga, Spain
| |
Collapse
|
7
|
Zhvania MG, Lobzhanidze G, Pochkhidze N, Japaridze N, Tchelidze P, Rzayev F, Gasimov E. Propionic acid affects the synaptic architecture of rat hippocampus and prefrontal cortex. Micron 2024; 181:103624. [PMID: 38492241 DOI: 10.1016/j.micron.2024.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
It is well documented that propionic acid (PPA) produces behavioral, morphological, molecular and immune responses in rats that are characteristic of autism spectrum disorder in humans. However, whether PPA affects the ultrastructure and synaptic architecture of regions of autistic brain has not been adequately addressed. Earlier we show that single intraperitoneal (IP) injection of PPA (175 mg/kg) produces superficial changes in the spatial memory and learning of adolescent male Wistar rats. However, in neurons, synapses and glial cells of hippocampal CA1 area and medial prefrontal cortex transient (mainly) or enduring alterations were detected. In this study, we used electron microscopic morphometric analysis to test the effect of PPA on different structural parameters of axodendritic synapses of the hippocampus and prefrontal cortex. The animals were treated with a single IP injection of PPA (175 mg/kg). The length and width of synaptic active zone, the area of presynaptic and postsynaptic mitochondria, the distance between presynaptic mitochondria and the synapse active zone, the distance between postsynaptic mitochondria and postsynaptic density and the depth and opening diameter of neuronal porosome complex were evaluated. Our results show that synaptic mitochondria of the hippocampus and prefrontal cortex are the most vulnerable to PPA treatment: in both regions, the area of postsynaptic mitochondria were increased. In general, our results show that even small dose of PPA, which produces only superficial effects on spatial memory and learning is able to alter the synapse architecture in brain regions involved in cognition and autism pathogenesis. Therefore, the microbiome may be involved in the control of neurotransmission in these regions.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia.
| | - Giorgi Lobzhanidze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K. Cholokashvili Avenue, Tbilisi 0162, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, Tbilisi 0160, Georgia; New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Pavel Tchelidze
- New Vision University, 1A Evgeni Mikeladze Street, Tbilisi 0159, Georgia
| | - Fuad Rzayev
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| | - Eldar Gasimov
- Azerbaijan Medical University, 23 Bakikhanov Street, Baku 1022, Azerbaijan
| |
Collapse
|
8
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
9
|
Cano ACSS, Santos D, Beltrão-Braga PCB. The Interplay of Astrocytes and Neurons in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2024; 39:269-284. [PMID: 39190079 DOI: 10.1007/978-3-031-64839-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Autism spectrum disorder (ASD) comprises a complex neurodevelopmental condition characterized by an impairment in social interaction, involving communication deficits and specific patterns of behaviors, like repetitive behaviors. ASD is clinically diagnosed and usually takes time, typically occurring not before four years of age. Genetic mutations affecting synaptic transmission, such as neuroligin and neurexin, are associated with ASD and contribute to behavioral and cognitive deficits. Recent research highlights the role of astrocytes, the brain's most abundant glial cells, in ASD pathology. Aberrant Ca2+ signaling in astrocytes is linked to behavioral deficits and neuroinflammation. Notably, the cytokine IL-6 overexpression by astrocytes impacts synaptogenesis. Altered neurotransmitter levels, disruptions in the blood-brain barrier, and cytokine dysregulation further contribute to ASD complexity. Understanding these astrocyte-related mechanisms holds promise for identifying ASD subtypes and developing targeted therapies.
Collapse
Affiliation(s)
- Amanda C S S Cano
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Santos
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Institut Pasteur de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
11
|
Chadaeva IV, Filonov SV, Zolotareva KA, Khandaev BM, Ershov NI, Podkolodnyy NL, Kozhemyakina RV, Rasskazov DA, Bogomolov AG, Kondratyuk EY, Klimova NV, Shikhevich SG, Ryazanova MA, Fedoseeva LA, Redina ОЕ, Kozhevnikova OS, Stefanova NA, Kolosova NG, Markel AL, Ponomarenko MP, Oshchepkov DY. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research. Vavilovskii Zhurnal Genet Selektsii 2023; 27:794-806. [PMID: 38213701 PMCID: PMC10777291 DOI: 10.18699/vjgb-23-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
The animal models used in biomedical research cover virtually every human disease. RatDEGdb, a knowledge base of the differentially expressed genes (DEGs) of the rat as a model object in biomedical research is a collection of published data on gene expression in rat strains simulating arterial hypertension, age-related diseases, psychopathological conditions and other human afflictions. The current release contains information on 25,101 DEGs representing 14,320 unique rat genes that change transcription levels in 21 tissues of 10 genetic rat strains used as models of 11 human diseases based on 45 original scientific papers. RatDEGdb is novel in that, unlike any other biomedical database, it offers the manually curated annotations of DEGs in model rats with the use of independent clinical data on equal changes in the expression of homologous genes revealed in people with pathologies. The rat DEGs put in RatDEGdb were annotated with equal changes in the expression of their human homologs in affected people. In its current release, RatDEGdb contains 94,873 such annotations for 321 human genes in 836 diseases based on 959 original scientific papers found in the current PubMed. RatDEGdb may be interesting first of all to human geneticists, molecular biologists, clinical physicians, genetic advisors as well as experts in biopharmaceutics, bioinformatics and personalized genomics. RatDEGdb is publicly available at https://www.sysbio.ru/RatDEGdb.
Collapse
Affiliation(s)
- I V Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S V Filonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - K A Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B M Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N L Podkolodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Yu Kondratyuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - N V Klimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Ryazanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L A Fedoseeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О Е Redina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O S Kozhevnikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Stefanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N G Kolosova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A L Markel
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M P Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D Yu Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
He J, Gong X, Hu B, Lin L, Lin X, Gong W, Zhang B, Cao M, Xu Y, Xia R, Zheng G, Wu S, Zhang Y. Altered Gut Microbiota and Short-chain Fatty Acids in Chinese Children with Constipated Autism Spectrum Disorder. Sci Rep 2023; 13:19103. [PMID: 37925571 PMCID: PMC10625580 DOI: 10.1038/s41598-023-46566-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Gastrointestinal symptoms are more prevalent in children with autism spectrum disorder (ASD) than in typically developing (TD) children. Constipation is a significant gastrointestinal comorbidity of ASD, but the associations among constipated autism spectrum disorder (C-ASD), microbiota and short-chain fatty acids (SCFAs) are still debated. We enrolled 80 children, divided into the C-ASD group (n = 40) and the TD group (n = 40). In this study, an integrated 16S rRNA gene sequencing and gas chromatography-mass spectrometry-based metabolomics approach was applied to explore the association of the gut microbiota and SCFAs in C-ASD children in China. The community diversity estimated by the Observe, Chao1, and ACE indices was significantly lower in the C-ASD group than in the TD group. We observed that Ruminococcaceae_UCG_002, Erysipelotrichaceae_UCG_003, Phascolarctobacterium, Megamonas, Ruminiclostridium_5, Parabacteroides, Prevotella_2, Fusobacterium, and Prevotella_9 were enriched in the C-ASD group, and Anaerostipes, Lactobacillus, Ruminococcus_gnavus_group, Lachnospiraceae_NK4A136_group, Ralstonia, Eubacterium_eligens_group, and Ruminococcus_1 were enriched in the TD group. The propionate levels, which were higher in the C-ASD group, were negatively correlated with the abundance of Lactobacillus taxa, but were positively correlated with the severity of ASD symptoms. The random forest model, based on the 16 representative discriminant genera, achieved a high accuracy (AUC = 0.924). In conclusion, we found that C-ASD is related to altered gut microbiota and SCFAs, especially decreased abundance of Lactobacillus and excessive propionate in faeces, which provide new clues to understand C-ASD and biomarkers for the diagnosis and potential strategies for treatment of the disorder. This study was registered in the Chinese Clinical Trial Registry ( www.chictr.org.cn ; trial registration number ChiCTR2100052106; date of registration: October 17, 2021).
Collapse
Affiliation(s)
- Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Xiuhua Gong
- School of Nursing, Qingdao University, Qingdao, China
| | - Bing Hu
- Department of Pediatrics, Yichun People's Hospital, Yichun, China
| | - Lin Lin
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Xiujuan Lin
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | - Wenxiu Gong
- Xiamen Institute of Big Data of TCM Constitution and PreventiveTreatment for Disease, Xiamen, China
| | | | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, China
| | - Yanzhi Xu
- Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, China
| | - Rongmu Xia
- Clinical Research Institute, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Shuijin Wu
- Xiamen Food and Drug Evaluation and Adverse Reaction Monitoring Center, Xiamen, China.
| | - Yuying Zhang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, China.
| |
Collapse
|
13
|
A Hosny S, M Abdelmenem A, Azouz T, S Kamar S, M ShamsEldeen A, A El-Shafei A. Beneficial Effect of Erythropoietin on Ameliorating Propionic Acid-Induced Autistic-Like Features in Young Rats. Acta Histochem Cytochem 2023; 56:77-86. [PMID: 37970239 PMCID: PMC10644041 DOI: 10.1267/ahc.23-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder that impairs communication and social interaction. This study investigated the possible beneficial effects of erythropoietin (EPO) on experimental autistic-like behaviors induced by propionic acid (PPA). Twenty-four rats were distributed into three groups: (i) control; (ii) PPA_Gp: daily injected subcutaneously with PPA for five consecutive days; PPA+EPO-Gp: injected with PPA, then received intraperitoneal injection of EPO once daily for two weeks. Behavioral changes in the rats were assessed. Specimens from the cerebellar hemispheres were subjected to histological and ultrastructure examination, immunohistochemistry for glial fibrillary acidic protein (GFAP) and calbindin-D28K, and biochemical analysis for glutathione peroxidase (GSH-Px), malondialdehyde (MDA), gamma amino-butyric acid (GABA), and serotonin. PPA-Gp showed significant behavioral impairment, with a significant depletion in GSH-px, GABA, and serotonin and a significant increase in MDA. Histological examination revealed reduced Purkinje cell count with ultrastructural degeneration, irregularly arranged nerve fibers in the molecular layer, astrogliosis, and significantly decreased calbindin-immunostaining compared to the control. EPO protected cerebellar structure, increased Purkinje cell count, improved neuronal morphology, reduced PPA-induced autistic-like features, alleviated neuronal oxidative stress, increased intercellular antioxidant levels, and suppressed inflammation. EPO provided significant protection against PPA-induced autistic features in rats, with structural preservation of Purkinje cells.
Collapse
Affiliation(s)
- Sara A Hosny
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | | | - Taha Azouz
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Samaa S Kamar
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa M ShamsEldeen
- Physiology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa A El-Shafei
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| |
Collapse
|
14
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
15
|
Benitah KC, Kavaliers M, Ossenkopp KP. The enteric metabolite, propionic acid, impairs social behavior and increases anxiety in a rodent ASD model: Examining sex differences and the influence of the estrous cycle. Pharmacol Biochem Behav 2023; 231:173630. [PMID: 37640163 DOI: 10.1016/j.pbb.2023.173630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Research suggests that certain gut and dietary factors may worsen behavioral features of autism spectrum disorder (ASD). Treatment with propionic acid (PPA) has been found to create both brain and behavioral responses in rats that are characteristic of ASD in humans. A consistent male bias in human ASD prevalence has been observed, and several sex-differential genetic and hormonal factors have been suggested to contribute to this bias. The majority of PPA studies in relation to ASD focus on male subjects; research examining the effects of PPA in females is scarce. The present study includes two experiments. Experiment 1 explored sex differences in the effects of systemic administration of PPA (500 mg/kg, ip) on adult rodent social behavior and anxiety (light-dark test). Experiment 2 investigated differential effects of systemic administration of PPA (500 mg/kg) on social behavior and anxiety in relation to fluctuating estrogen and progesterone levels during the adult rodent estrous cycle. PPA treatment impaired social behavior and increased anxiety in females to the same degree in comparison to PPA-treated males. As well, females treated with PPA in their diestrus phase did not differ significantly in comparison to females administered PPA in their proestrus phase, in terms of reduced social behavior and increased anxiety.
Collapse
Affiliation(s)
- Katie C Benitah
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
16
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|
17
|
Buchanan E, Mahony C, Bam S, Jaffer M, Macleod S, Mangali A, van der Watt M, de Wet S, Theart R, Jacobs C, Loos B, O'Ryan C. Propionic acid induces alterations in mitochondrial morphology and dynamics in SH-SY5Y cells. Sci Rep 2023; 13:13248. [PMID: 37582965 PMCID: PMC10427685 DOI: 10.1038/s41598-023-40130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Propionic acid (PPA) is used to study the role of mitochondrial dysfunction in neurodevelopmental conditions like autism spectrum disorders. PPA is known to disrupt mitochondrial biogenesis, metabolism, and turnover. However, the effect of PPA on mitochondrial dynamics, fission, and fusion remains challenging to study due to the complex temporal nature of these mechanisms. Here, we use complementary quantitative visualization techniques to examine how PPA influences mitochondrial ultrastructure, morphology, and dynamics in neuronal-like SH-SY5Y cells. PPA (5 mM) induced a significant decrease in mitochondrial area (p < 0.01), Feret's diameter and perimeter (p < 0.05), and in area2 (p < 0.01). Mitochondrial event localiser analysis demonstrated a significant increase in fission and fusion events (p < 0.05) that preserved mitochondrial network integrity under stress. Moreover, mRNA expression of cMYC (p < 0.0001), NRF1 (p < 0.01), TFAM (p < 0.05), STOML2 (p < 0.0001), and OPA1 (p < 0.01) was significantly decreased. This illustrates a remodeling of mitochondrial morphology, biogenesis, and dynamics to preserve function under stress. Our data provide new insights into the influence of PPA on mitochondrial dynamics and highlight the utility of visualization techniques to study the complex regulatory mechanisms involved in the mitochondrial stress response.
Collapse
Affiliation(s)
- Erin Buchanan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Sophia Bam
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Mohamed Jaffer
- Electron Microscope Unit, University of Cape Town, Cape Town, 7700, South Africa
| | - Sarah Macleod
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Asandile Mangali
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Mignon van der Watt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa
| | - Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Rensu Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Caron Jacobs
- Department of Pathology, Wellcome Centre for Infectious Diseases Research in Africa and IDM Microscopy Platform, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, 7700, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, 7700, South Africa.
| |
Collapse
|
18
|
Tamang MK, Ali A, Pertile RN, Cui X, Alexander S, Nitert MD, Palmieri C, Eyles D. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl Psychiatry 2023; 13:204. [PMID: 37316481 PMCID: PMC10267107 DOI: 10.1038/s41398-023-02513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-deficiency on a broad range of autism-relevant behavioural phenotypes and gut health. Vitamin D deficient rat dams exhibited altered maternal care, DVD-deficient pups showed increased ultrasonic vocalizations and as adolescents, social behaviour impairments and increased repetitive self-grooming behaviour. There were significant impacts of DVD-deficiency on gut health demonstrated by alterations to the microbiome, decreased villi length and increased ileal propionate levels. Overall, our animal model of this epidemiologically validated risk exposure for autism shows an expanded range of autism-related behavioural phenotypes and now alterations in gut microbiome that correlate with social behavioural deficits raising the possibility that DVD-deficiency induced ASD-like behaviours are due to alterations in gut health.
Collapse
Affiliation(s)
- Man Kumar Tamang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Centre for Mental Health Research, Wacol, Australia.
| |
Collapse
|
19
|
Kamalmaz N, Ben Bacha A, Alonazi M, Albasher G, Khayyat AIA, El-Ansary A. Unveiling sex-based differences in developing propionic acid-induced features in mice as a rodent model of ASD. PeerJ 2023; 11:e15488. [PMID: 37334116 PMCID: PMC10274690 DOI: 10.7717/peerj.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism.
Collapse
Affiliation(s)
- Nasreen Kamalmaz
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Zoology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Alsubaiei SRM, Alfawaz HA, Bhat RS, El-Ansary A. Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups. Metabolites 2023; 13:738. [PMID: 37367896 DOI: 10.3390/metabo13060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
Collapse
Affiliation(s)
- Sana Razhan M Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
21
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
22
|
Bagcioglu E, Solmaz V, Erbas O, Özkul B, Çakar B, Uyanikgil Y, Söğüt İ. Modafinil Improves Autism-like Behavior in Rats by Reducing Neuroinflammation. J Neuroimmune Pharmacol 2023; 18:9-23. [PMID: 37043086 DOI: 10.1007/s11481-023-10061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
To evaluate the ameliorating effect of Modafinil on neuroinflammation, behavioral, and histopathological alterations in rats induced by propionic acid (PPA). Thirty male Wistar rats were used in the study, divided into 3 groups of ten subjects. One group served as a control, the subjects in the other two were given 250 mg/kg/day of PPA by intraperitoneal injection over the course of 5 days to induce autism. The experimental design was as follows: Group 1: Normal control (orally-fed control, n = 10); Group 2 (PPA + saline, n = 10): PPA and 1 ml/kg/day % 0.9 NaCl saline via oral gavage; Group 3 (PPA + Modafinil, n = 10) PPA and 30 mg/kg/day Modafinil (Modiodal tablets 100 mg, Cephalon) via oral gavage. All of the groups were investigated for behavioral, biochemical, and histological abnormality. Autism-like behaviors were reduced significantly in the rats treated with PPA. TNF-α, Nerve Growth Factor (NGF), IL-17, IL-2, and NF-KB levels as well as MDA levels and lactate were significantly higher in those treated with PPA compared to the control group. Using immunohistochemical methods, the number of neurons and GFAP immunoreactivity was significantly altered in PPA-treated rats compared to the control. Using Magnetic Resonance Spectroscopy (MRS), we found that lactate levels were significantly higher in the PPA-treated rats, while creatinine levels were significantly decreased. In the rats administered with Modafinil, behavior, neuroinflammation, and histopathological changes brought about by PPA were significantly reversed. Our results demonstrate the potential role of Modafinil in ameliorating PPA-induced neuroinflammation in rats.
Collapse
Affiliation(s)
- Erman Bagcioglu
- Department of Clinical Psychology, Ruhr University, Bochum, Germany.
| | - Volkan Solmaz
- Department of Neurophysiology, Cologne University, Cologne, Germany
| | - Oytun Erbas
- Department of Physiology, Istanbul Bilim University School of Medicine, Istanbul, Turkey
| | - Bahattin Özkul
- Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Burak Çakar
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
23
|
Alonazi M, Ben Bacha A, Alharbi MG, Khayyat AIA, Al-Ayadhi L, El-Ansary A. Bee Pollen and Probiotics' Potential to Protect and Treat Intestinal Permeability in Propionic Acid-Induced Rodent Model of Autism. Metabolites 2023; 13:metabo13040548. [PMID: 37110206 PMCID: PMC10143803 DOI: 10.3390/metabo13040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.
Collapse
Affiliation(s)
- Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona G Alharbi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Arwa Ishaq A Khayyat
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
24
|
Elgamal MA, Khodeer DM, Abdel-Wahab BA, Ibrahim IAA, Alzahrani AR, Moustafa YM, Ali AA, El-Sayed NM. Canagliflozin alleviates valproic acid-induced autism in rat pups: Role of PTEN/PDK/PPAR-γ signaling pathways. Front Pharmacol 2023; 14:1113966. [PMID: 36909191 PMCID: PMC9992196 DOI: 10.3389/fphar.2023.1113966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Autism is complex and multifactorial, and is one of the fastest growing neurodevelopmental disorders. Canagliflozin (Cana) is an antidiabetic drug that exhibits neuroprotective properties in various neurodegenerative syndromes. This study investigated the possible protective effect of Cana against the valproic acid (VPA)-induced model of autism. VPA was injected subcutaneously (SC) into rat pups at a dose of 300 mg/kg, twice daily on postnatal day-2 (PD-2) and PD-3, and once on PD-4 to induce an autism-like syndrome. Graded doses of Cana were administered (5 mg/kg, 7.5 mg/kg, and 10 mg/kg, P.O.) starting from the first day of VPA injections and continued for 21 days. At the end of the experiment, behavioral tests and histopathological alterations were assessed. In addition, the gene expression of peroxisome proliferator-activated receptor γ (PPAR γ), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase (PDK), cellular myeloctomatosis (c-Myc) with protein expression of glucose transporter-1 (GLUT-1), phosphatase and tensin homolog (PTEN), and level of acetylcholine (ACh) were determined. Treatment with Cana significantly counteracted histopathological changes in the cerebellum tissues of the brain induced by VPA. Cana (5 mg/kg, 7.5 mg/kg, and 10 mg/kg) improved sociability and social preference, enhanced stereotypic behaviors, and decreased hyperlocomotion activity, in addition to its significant effect on the canonical Wnt/β-catenin pathway via the downregulation of gene expression of LDHA (22%, 64%, and 73% in cerebellum tissues with 51%, 60%, and 75% in cerebrum tissues), PDK (27%, 50%, and 67% in cerebellum tissues with 34%, 66%, and 77% in cerebrum tissues), c-Myc (35%, 44%, and 72% in cerebellum tissues with 19%, 58%, and 79% in cerebrum tissues), protein expression of GLUT-1 (32%, 48%, and 49% in cerebellum tissues with 30%, 50%, and 54% in cerebrum tissues), and elevating gene expression of PPAR-γ (2, 3, and 4 folds in cerebellum tissues with 1.5, 3, and 9 folds in cerebrum tissues), protein expression of PTEN (2, 5, and 6 folds in cerebellum tissues with 6, 6, and 10 folds in cerebrum tissues), and increasing the ACh levels (4, 5, and 7 folds) in brain tissues. The current study confirmed the ameliorating effect of Cana against neurochemical and behavioral alterations in the VPA-induced model of autism in rats.
Collapse
Affiliation(s)
- Mariam A Elgamal
- Egypt Healthcare Authority, Comprehensive Health Insurance, Port-Said, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yasser M Moustafa
- Dean of Faculty of Pharmacy, Badr University in Cairo, Badr City, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
25
|
Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat 2023; 19:841-850. [PMID: 37077706 PMCID: PMC10106330 DOI: 10.2147/ndt.s390053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023] Open
Abstract
A distinct pathology for autism spectrum disorder (ASD) remains elusive. Human and animal studies have focused on investigating the role of neurons in ASD. However, recent studies have hinted that glial cell pathology could be a characteristic of ASD. Astrocytes are the most abundant glial cell in the brain and play an important role in neuronal function, both during development and in adult. They regulate neuronal migration, dendritic and spine development, and control the concentration of neurotransmitters at the synaptic cleft. They are also responsible for synaptogenesis, synaptic development, and synaptic function. Therefore, any change in astrocyte number and/or function could contribute to the impairment of connectivity that has been reported in ASD. Data available to date is scarce but indicates that while the number of astrocytes is reduced, their state of activation and their GFAP expression is increased in ASD. Disruption of astrocyte function in ASD may affect proper neurotransmitter metabolism, synaptogenesis, and the state of brain inflammation. Astrocytes alterations are common to ASD and other neurodevelopmental disorders. Future studies about the role of astrocytes in ASD are required to better understand this disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Correspondence: Veronica Martinez-Cerdeño, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA, Tel +916 453-2163, Email
| |
Collapse
|
26
|
Alsubaiei SRM, Alfawaz HA, Almubarak AY, Alabdali NA, Ben Bacha A, El-Ansary A. Independent and Combined Effects of Probiotics and Prebiotics as Supplements or Food-Rich Diets on a Propionic-Acid-Induced Rodent Model of Autism Spectrum Disorder. Metabolites 2022; 13:metabo13010050. [PMID: 36676975 PMCID: PMC9863040 DOI: 10.3390/metabo13010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The link between nutrition and autism spectrum disorder (ASD) as a neurodevelopmental condition, which is clinically presented as significant delays or deviations in interaction and communication, has provided a fresh point of view and signals that nutrition may play a role in the etiology of ASD, as well as playing an effective role in treatment by improving symptoms. In this study, 36 male albino rat pups were used. They were randomly divided into five groups. The control group was fed only a standard diet and water for the 30 days of the experiment. The second group, which served as a propionic acid (PPA)-induced rodent model of ASD, received orally administered PPA (250 mg/kg body weight (BW)) for 3 days, followed by feeding with a standard diet until the end of the experiment. The three other groups were given PPA (250 mg/kg body weight (BW)) for 3 days and then fed a standard diet and orally administered yogurt (3 mL/kg BW/day), artichokes (400 mL/kg BW/day), and a combination of Lacticaseibacillus rhamnosus GG at 0.2 mL daily (1 × 109 CFU; as the probiotic of yogurt) and luteolin (50 mg/kg BW/day; as the major antioxidant and anti-inflammatory ingredient of artichokes) for 27 days. Biochemical markers, including gamma-aminobutyric acid (GABA), reduced glutathione (GSH), glutathione peroxidase (GPx1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were measured in brain homogenates in all groups. The data showed that while PPA demonstrated oxidative stress and neuroinflammation in the treated rats, yogurt, Lacticaseibacillus rhamnosus GG as a probiotic, and luteolin as a prebiotic ingredient in artichokes were effective in alleviating the biochemical features of ASD. In conclusion, nutritional supplementation seems to be a promising intervention strategy for ASD. A combined dietary approach using pro- and prebiotics resulted in significant amelioration of most of the measured variables, suggesting that multiple interventions might be more relevant for the improvement of biochemical autistic features, as well as psychological traits. Prospective controlled trials are needed before recommendations can be made regarding the ideal ASD diet.
Collapse
Affiliation(s)
- Sana Razhan M. Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| | - Abdullah Yaseen Almubarak
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Nouf Ahmed Alabdali
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Correspondence: (H.A.A.); (A.E.-A.); Tel.: +00966-508462529 (A.E.-A.); Fax: +00966-4683579 (A.E.-A.)
| |
Collapse
|
27
|
Elhefnawei DM, Mahmoud AH, Kadry MO, AL-Mokaddem AK, Badawy MA, EL-Desouky MA. Calcium voltage-gated channel subunit alpha 1 C and glial fibrillary acidic protein signaling pathways as a selective biomarker in predicting the efficacy of liposomal loaded co-enzyme Q in the autistic rat model. Toxicol Rep 2022; 10:17-26. [PMID: 36561125 PMCID: PMC9763363 DOI: 10.1016/j.toxrep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is an extreme neuropsychotic disturbance with both environmental and genetic origins. Sodium propionate (PPA) a metabolic bioproduct of gut microbiota is well-thought-out as a successful autism animal model. Nevertheless, Liposomal drug delivery system possess the advantagous of biocompatibility, targeting organs, ability to carry large drug payloads and skipping macrophages for this purpose the current study was carried out to investigate the hypothesis that Calcium Voltage-Gated channel subunit alpha 1 C (CACNA1C) and glial fibrillary acidic protein (GFAP) signaling pathways crosstalk with the efficacy of Co-enzyme Q10 (Co-Q10) and liposomal loaded Co-enzyme Q10 (L Co-Q10) in PPA mediated autistic rat model. Autism was conducted by buffered PPA (500 mg/Kg b.wt) daily for 5 consecutive days subsequently treatment via Co-Q10 in a dose of (10 mg/kg b.wt) and L Co-Q10 (2 mg/kg b.wt) for four weeks then the autistic model was followed for signs of autism at different time intervals of (one, two and four weeks). The control, PPA intoxicated, and treated groups were subjected to behavioral tests (Y-Maze and open field), antioxidant analysis, gene expression analysis, and histological examination at different time intervals of the study. The results revealed that Co-Q10 and L Co-Q10 significantly elevated antioxidative stress biomarkers, comprising superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). In addition, they significantly ameliorated the oxidative stress biomarker malondialdehyde (MDA). Meanwhile, they significantly downregulated GFAP and CACNA1C mRNA gene expressions, Co-Q10 and LCo-Q10 showed improvement in almost brain regions post PPA histopathological alterations, even better results were manifested via LCo-Q10 groups. These results showed the superiority of LCo-Q10 over Co-Q10 in competing autism. In conclusion: The administration of anti-inflammatory and antioxidant agents such as Co-Q10 and L Co-Q10 may represent a promising strategy to counteract pathological behaviors in ASD model via targeting organs, increasing retention time, and reducing side effects.
Collapse
Affiliation(s)
- Doaa M. Elhefnawei
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mai O. Kadry
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author.
| | - Asmaa K. AL-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mohamed A. Badawy
- Department of Biochemistry, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
28
|
Bhalla S, Mehan S. 4-hydroxyisoleucine mediated IGF-1/GLP-1 signalling activation prevents propionic acid-induced autism-like behavioural phenotypes and neurochemical defects in experimental rats. Neuropeptides 2022; 96:102296. [PMID: 36307249 DOI: 10.1016/j.npep.2022.102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Autism is a neuropsychiatric disorder characterized by a neurotransmitter imbalance that impairs neurodevelopment processes. Autism development is marked by communication difficulties, poor socio-emotional health, and cognitive impairment. Insulin-like growth factor-1 (IGF-1) and glucagon-like growth factor-1 (GLP-1) are responsible for regular neuronal growth and homeostasis. Autism progression has been linked to dysregulation of IGF-1/GLP-1 signalling. 4-hydroxyisoleucine (HI), a pharmacologically active amino acid produced from Trigonella foenum graecum, works as an insulin mimic and has neuroprotective properties. The GLP-1 analogue liraglutide (LRG) was employed in our investigation to compare the efficacy of 4-HI in autism prevention. The current study explores the protective effects of 4-HI 50 and 100 mg/kg orally on IGF-1/GLP-1 signalling activation in a PPA-induced experimental model of autism. Propionic acid (PPA) injections to rats by intracerebroventricular (ICV) route for the first 11 days of the experiment resulted in autism-like neurobehavioral, neurochemical, gross morphological, and histopathological abnormalities. In addition, we investigated the dose-dependent neuroprotective effects of 4-HI on the levels of several neurotransmitters and neuroinflammatory cytokines in rat brain homogenate and blood plasma. Neuronal apoptotic and anti-oxidant cellular markers were also studied in blood plasma and brain homogenate samples. Furthermore, the luxol fast blue (LFB) staining results demonstrated significant demyelination in the brains of PPA-induced rats reversed by 4-HI treatment. Rats were assessed for spontaneous locomotor impairments, neuromuscular coordination, stress-like behaviour, learning, and memory to assess neurobehavioral abnormalities. The administration of 4-HI and LRG significantly reversed the behavioural, gross and histological abnormalities in the PPA-treated rat brains. After treatment with 4-HI and LRG, LFB-stained photomicrographs of PPA-treated rats' brains demonstrated the recovery of white matter loss. Our findings indicate that 4-HI protects neurons in rats with autism by enhancing the IGF-1 and GLP-1 protein levels.
Collapse
Affiliation(s)
- Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
29
|
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37:1909-1929. [PMID: 35687217 DOI: 10.1007/s11011-022-01026-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
30
|
Mehta R, Kuhad A, Bhandari R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin Ther Targets 2022; 26:659-679. [DOI: 10.1080/14728222.2022.2100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| |
Collapse
|
31
|
Acetyl-L-carnitine and/or liposomal co-enzyme Q10 prevent propionic acid-induced neurotoxicity by modulating oxidative tissue injury, inflammation, and ALDH1A1-RA-RARα signaling in rats. Biomed Pharmacother 2022; 153:113360. [PMID: 35785703 DOI: 10.1016/j.biopha.2022.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Propionic acid (PPA) is a short-chain fatty acid produced endogenously by gut microbiota and found in foodstuffs and pharmaceutical products as an additive. Exposure to PPA has been associated with the development of autism spectrum disorder (ASD). The purpose of this study was to investigate the protective effect of acetyl-L-carnitine (ALCAR) and liposomal Co-enzyme Q10 (CoQ10) against cerebral and cerebellar oxidative injury, inflammation, and cell death, and alterations in ALDH1A1-RA-RARα signaling in an autism-like rat model induced by PPA. The rats were treated with PPA and concurrently received ALCAR and/or CoQ10 for 5 days. The animals were sacrificed, and the cerebral cortex and cerebellum were collected for analysis. PPA caused histopathological alterations along with increased malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 in the cerebrum and cerebellum of rats. Reduced glutathione (GSH) and antioxidant enzymes were declined in the brain of rats that received PPA. Concurrent treatment with ALCAR and/or CoQ10 prevented tissue injury, decreased MDA, NF-κB p65, and pro-inflammatory cytokines, and enhanced cellular antioxidants in PPA-administered rats. ALCAR and/or CoQ10 upregulated Bcl-2 and decreased Bax and caspase-3 in the brain of rats. In addition, ALCAR and/or CoQ10 upregulated cerebral and cerebellar ALDH1A1 and RARα in PPA-treated rats. The combination of ALCAR and CoQ10 showed more potent effects when compared with the individual treatments. In conclusion, ALCAR and/or CoQ10 prevented tissue injury, ameliorated oxidative stress, inflammatory response, and apoptosis, and upregulated ALDH1A1-RA-RARα signaling in the brain of autistic rats.
Collapse
|
32
|
Özkul B, Urfalı FE, Sever İH, Bozkurt MF, Söğüt İ, Elgörmüş ÇS, Erdogan MA, Erbaş O. Demonstration of Ameliorating Effect of Vardenafil Through Its Anti-Inflammatory and Neuroprotective Properties in Autism Spectrum Disorder Induced by Propionic Acid on Rat Model. Int J Neurosci 2022; 132:1150-1164. [PMID: 35584252 DOI: 10.1080/00207454.2022.2079507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. In this study, we aimed to determine the ameliorating effects of vardenafil in the ASD rat model induced by propionic acid (PPA) in terms of neurobehavioral changes and also support these effects with histopathological changes, brain biochemical analysis and magnetic resonance spectroscopy (MRS) findings.Materials and Methods: Twenty-one male rats were randomly assigned into 3 groups. Group 1 (control, 7 rats) did not receive treatment. Rats in groups 2 and 3 were given PPA at the dose of 250 mg/kg/day intraperitoneally for 5 days. After PPA administration, animals in group 2 (PPAS, 7 rats) were given saline and animals in group 3 (PPAV, 7 rats) were given vardenafil. Behavioral tests were performed between the 20th and 24th days of the study. The rats were taken for MRS on the 25th day. At the end of the study, brain levels of interleukin-2 (IL-2), IL-17, tumor necrosis factor-α, nerve growth factor, cGMP and lactate levels were measured. In the cerebellum and the CA1 and CA3 regions of the hippocampus, counts of neurons and Purkinje cells and glial fibrillary acidic protein (associated with gliosis) were evaluated histologically.Results: Three chamber sociability and passive avoiding test, histopathological results, lactate levels derived from MRS, and biochemical biomarkers revealed significant differences among the PPAV and PPAS groups.Conclusion: We concluded that vardenafil improves memory and social behaviors and prevent loss of neuronal and Purkinje cell through its anti-inflammatory and neuroprotective effect.
Collapse
Affiliation(s)
- Bahattin Özkul
- Faculty of Medicine, Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Furkan Ertürk Urfalı
- Department of Radiology, Faculty of Medicine, Kutahya Saglık Bilimleri, Kutahya, Turkey
| | - İbrahim Halil Sever
- Department of Radiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Mehmet Fatih Bozkurt
- Department of Pathology, Faculty of Veterinary, Afyon Kocatepe University, Afyon, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Çağrı Serdar Elgörmüş
- Department of Emergency, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
33
|
Shor EK, Brown SP, Freeman DA. Bacteria and Bellicosity: Photoperiodic Shifts in Gut Microbiota Drive Seasonal Aggressive Behavior in Male Siberian Hamsters. J Biol Rhythms 2022; 37:296-309. [PMID: 35502701 DOI: 10.1177/07487304221092105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.
Collapse
Affiliation(s)
- Elyan K Shor
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - Shawn P Brown
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| | - David A Freeman
- Department of Biological Sciences, Center for Biodiversity Research, The University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Therapeutic Effect of Finasteride through its Antiandrogenic and Antioxidant Role in a Propionic acid-induced Autism Model: Demonstrated by Behavioral tests, Histological Findings and MR Spectroscopy’. Neurosci Lett 2022; 779:136622. [DOI: 10.1016/j.neulet.2022.136622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022]
|
35
|
Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats. Nutrients 2022; 14:nu14061280. [PMID: 35334937 PMCID: PMC8955994 DOI: 10.3390/nu14061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Magnesium biotinate (MgB) is a novel biotin complex with superior absorption and anti-inflammatory effects in the brain than D-Biotin. This study aimed to investigate the impact of different doses of MgB on social behavior deficits, learning and memory alteration, and inflammatory markers in propionic acid (PPA)-exposed rats. In this case, 35 Wistar rats (3 weeks old) were distributed into five groups: 1, Control; 2, PPA treated group; 3, PPA+MgBI (10 mg, HED); 4, PPA+MgBII (100 mg, HED); 5, PPA+MgBIII (500 mg, HED). PPA was given subcutaneously at 500 mg/kg/day for five days, followed by MgB for two weeks. PPA-exposed rats showed poor sociability and a high level of anxiety-like behaviors and cognitive impairments (p < 0.001). In a dose-dependent manner, behavioral and learning-memory disorders were significantly improved by MgB supplementation (p < 0.05). PPA decreased both the numbers and the sizes of Purkinje cells in the cerebellum. However, MgB administration increased the sizes and the densities of Purkinje cells. MgB improved the brain and serum Mg, biotin, serotonin, and dopamine concentrations, as well as antioxidant enzymes (CAT, SOD, GPx, and GSH) (p < 0.05). In addition, MgB treatment significantly regulated the neurotoxicity-related cytokines and neurotransmission-related markers. For instance, MgB significantly decreased the expression level of TNF-α, IL-6, IL-17, CCL-3, CCL-5, and CXCL-16 in the brain, compared to the control group (p < 0.05). These data demonstrate that MgB may ameliorate dysfunctions in social behavior, learning and memory and reduce the oxidative stress and inflammation indexes of the brain in a rat model.
Collapse
|
36
|
SANTOSA IRENA, SHOJI HIROMICHI, ITOH SHIGERU, SHIMIZU TOSHIAKI. Roles of Probiotics in Reduction of Neonatal Jaundice in Term Newborns. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:140-146. [PMID: 38912278 PMCID: PMC11189792 DOI: 10.14789/jmj.jmj21-0044-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/25/2024]
Abstract
Objective the primary objective was to examine the effect of Bifidobacterium on decreasing the bilirubin level in term neonates delivered by Caesarean Section (CS). Materials and Methods A total of 153 healthy term neonates delivered by CS were included in this study and were divided into the non-probiotic group (n=99) and probiotic group (n=54) based on the history of probiotics administration. There were no infants who underwent phototherapy. A total of 20 doses of probiotics were given orally from the first day of life. The transcutaneous bilirubin (TcB) levels were measured every day for the first 5 days of life. Data of each infant and mother were gathered from medical records. Results The bilirubin level per day (day-1 to day-5) in the non-probiotic group was no different from the probiotic group. Differences in bilirubin level between day-5 and day-1, and also between day-5 and day-2 were not different between the two groups. There was a significant (p = 0.03) body weight gain in the probiotic groups with a mean of 36.09 ± 8.23 gram/day. No obvious adverse reactions were seen in both the non-probiotic group and probiotic group. Conclusions Our findings suggest no significant effects of probiotics on lowering bilirubin levels in the first five days of life. Also, probiotics have a positive effect on body weight gain in healthy term infants, and it is safe to be given to newborns.
Collapse
Affiliation(s)
| | - HIROMICHI SHOJI
- Corresponding author: Hiromichi Shoji, Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3813-3111 FAX: +81-3-5800-0216 E-mail:
| | | | | |
Collapse
|
37
|
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53:1821-1833. [PMID: 34857900 PMCID: PMC8741890 DOI: 10.1038/s12276-021-00703-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.
Collapse
Affiliation(s)
- Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Mehta R, Bhandari R, Kuhad A. Effects of catechin on a rodent model of autism spectrum disorder: implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology (Berl) 2021; 238:3249-3271. [PMID: 34448020 DOI: 10.1007/s00213-021-05941-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
AIM The present research work aims at deciphering the involvement of nitric oxide pathway and its modulation by ( ±)catechin hydrate in experimental paradigm of autism spectrum disorders (ASD). METHOD An intracerebroventricular infusion of 4 μl of 1 M propanoic acid was given in the anterior region of the lateral ventricle to induce autism-like phenotype in male rats. Oral administration of ( ±)catechin hydrate (25, 50, and 100 mg/kg) was initiated from the 3rd day lasting till the 28th day. L-NAME (50 mg/kg) and L-arginine (800 mg/kg) were also given individually as well as in combination to explore the ability of ( ±)catechin hydrate to act via nitric oxide pathway. Behavior test for sociability, stereotypy, anxiety, depression, and novelty, repetitive, and perseverative behavior was carried out between the 14th and 28th day. On the 29th day, animals were sacrificed, and levels of mitochondrial complexes and oxidative stress parameters were evaluated. We also estimated the levels of neuroinflammatory and apoptotic markers such as TNF-α, IL-6, NF-κB, IFN-γ, HSP-70, and caspase-3. To evaluate the involvement of nitric oxide pathway, the levels of iNOS and homocysteine were estimated. RESULTS Treatment with ( ±)catechin hydrate significantly ameliorated behavioral, biochemical, neurological, and molecular deficits. Hence, ( ±)catechin hydrate has potential to be used as neurotherapeutic agent in ASD targeting nitric oxide pathway-mediated oxidative and nitrosative stress responsible for behavioral, biochemical, and molecular alterations via modulating nitric oxide pathway. CONCLUSION The evaluation of the levels of iNOS and homocysteine conclusively establishes the role of nitric oxide pathway in causing behavioral, biochemical, and molecular deficits and the beneficial effect of ( ±)catechin hydrate in restoring these alterations.
Collapse
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
39
|
Erten F. Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J Food Biochem 2021; 45:e13922. [PMID: 34476820 DOI: 10.1111/jfbc.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023]
Abstract
This study was conducted to study lycopene efficacy in brain-behavior, pro-inflammatory and apoptotic markers, and antioxidant levels in a rodent model. Rats were administered with propionic acid (PPA) (500 mg/kg BW) to induce autism-like disorders, then treated with different lycopene (L) concentrations (5, 10, 20 mg kg-1 day-1 ) for 35 days. The groups were: (i);control, (ii);PPA, (iii);PPA + L5, (iv);PPA + L10, and (v);PPA + L20. In this study, serum and brain malondialdehyde (MDA) levels decreased with lycopene supplements compared to the PPA group, similarly to the brain levels of inflammatory factors (IL-1α, IL-8, NF-κB, TNF-α; p < .05). Besides, brain levels of anti-apoptotic Bcl-2 decreased, whereas pro-apoptotic Bax, antioxidant Nrf2, and HO-1 levels in brain increased compared with PPA (p < .05). This study showed that lycopene might have therapeutic value to improve the dysfunctions in learning and memory in a dose-dependent way, along with the antioxidant, anti-inflammatory, and antiapoptotic molecular responses in a rat model of ASD-like disorders. PRACTICAL APPLICATIONS: This study suggested that lycopene can reduce propionic acid (PPA)-induced learning and memory impairment and oxidative damage by participating in multiple biological activities such as antioxidant, and anti-inflammatory effects. Lycopene protects serum and brain tissues against PPA induced oxidative damage in rats. These effects may be realized through up-regulation of the brain Nrf2/HO-1 pathway and down-regulation of the IL-1α, IL-8, TNF-α, and NF-κB levels. Lycopene may also contribute to memory and learning function, apoptotic/antiapoptotic modulation, and antioxidant and possible therapeutic efficacy in PPA-induced- Autism spectrum disorder cases.
Collapse
Affiliation(s)
- Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Turkey
| |
Collapse
|
40
|
Sharma AR, Batra G, Saini L, Sharma S, Mishra A, Singla R, Singh A, Singh RS, Jain A, Bansal S, Modi M, Medhi B. Valproic acid and Propionic acid modulated mechanical pathways associated with Autism Spectrum Disorder at prenatal and neonatal exposure. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:399-408. [PMID: 34365961 DOI: 10.2174/1871527320666210806165430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Autism Spectrum Disorder (ASD) is a composite disorder of brain development with uncertain etiology and pathophysiology. Genetic factors are important in ASD causation, although environmental factors are also involved in ASD pathophysiology. Environmental factors might affect the genetic processes of brain development through the modulation of molecular pathways that might be involved with ASD. Valproic acid and Propionic acid are the major environmental factors that serve as medicine and food preservative. VPA is used as an anti-epileptic medicine, but it has adverse effects on pregnant women and alters the developmental patterns of the embryo. It is a multi-targeting agent and affects through the 5-HT, GABA, etc. PPA is a secondary metabolite of gut microbiota that is commonly used as a food preservative. PPA plays a significant role in ASD causation by altering the several developmental molecular pathways like PTEN/Akt, mTOR/Gskβ, Cytokines activated pathways, etc., at the prenatal and neonatal stage. Moreover, ASD complexity might be increased by some other important factors like vitamin A deficiency and Vitamin A is important for cortical brain development and neuronal cell differentiation. Additionally, several important genes such as RELN, Lhx2, CREB, IL-6, NMDA, BDNF, etc. also altered in ASD that involved in brain development, Central Nervous System, Enteric Nervous System. These genes affect the neuronal differentiation, hyperactivity, oxidative stress, oxytocin, and GABA imbalance that lead the improper behavior in autistic individuals. These genes are also studied in VPA and PPA ASD-like animal models. In this review, we explored the mechanical pathways that might be altered with VPA and PPA exposures at the embryonic developmental stage or neonatal developmental stage.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Department of Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Gitika Batra
- Department of Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Lokesh Saini
- Department of Paediatric Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Saurabh Sharma
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Rubal Singla
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Ashutosh Singh
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Rahul Soloman Singh
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Seema Bansal
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Manish Modi
- Department of Neurology,Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| |
Collapse
|
41
|
Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sci 2021; 11:brainsci11081038. [PMID: 34439657 PMCID: PMC8391663 DOI: 10.3390/brainsci11081038] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Autism is associated with gastrointestinal dysfunction and gut microbiota dysbiosis, including an overall increase in Clostridium. Modulation of the gut microbiota is suggested to improve autistic symptoms. In this study, we explored the implementation of two different interventions that target the microbiota in a rodent model of autism and their effects on social behavior: the levels of different fecal Clostridium spp., and hippocampal transcript levels. Autism was induced in young Sprague Dawley male rats using oral gavage of propionic acid (PPA) for three days, while controls received saline. PPA-treated animals were divided to receive either saline, fecal transplant from healthy donor rats, or Bifidobacterium for 22 days, while controls continued to receive saline. We found that PPA attenuated social interaction in animals, which was rescued by the two interventions. PPA-treated animals had a significantly increased abundance of fecal C. perfringens with a concomitant decrease in Clostridium cluster IV, and exhibited high hippocampal Bdnf expression compared to controls. Fecal microbiota transplantation or Bifidobacterium treatment restored the balance of fecal Clostridium spp. and normalized the level of Bdnf expression. These findings highlight the involvement of the gut-brain axis in the etiology of autism and propose possible interventions in a preclinical model of autism.
Collapse
|
42
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
43
|
Davoli-Ferreira M, Thomson CA, McCoy KD. Microbiota and Microglia Interactions in ASD. Front Immunol 2021; 12:676255. [PMID: 34113350 PMCID: PMC8185464 DOI: 10.3389/fimmu.2021.676255] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are serious, highly variable neurodevelopmental disorders, commonly characterized by the manifestation of specific behavioral abnormalities, such as stereotypic behaviors and deficits in social skills, including communication. Although the neurobiological basis for ASD has attracted attention in recent decades, the role of microglial cells, which are the main resident myeloid cell population in the brain, is still controversial and underexplored. Microglia play several fundamental roles in orchestrating brain development and homeostasis. As such, alterations in the intrinsic functions of these cells could be one of the driving forces responsible for the development of various neurodevelopmental disorders, including ASD. Microglia are highly sensitive to environmental cues. Amongst the environmental factors known to influence their intrinsic functions, the gut microbiota has emerged as a central player, controlling both microglial maturation and activation. Strikingly, there is now compelling data suggesting that the intestinal microbiota can play a causative role in driving the behavioural changes associated with ASD. Not only is intestinal dysbiosis commonly reported in ASD patients, but therapies targeting the microbiome can markedly alleviate behavioral symptoms. Here we explore the emerging mechanisms by which altered microglial functions could contribute to several major etiological factors of ASD. We then demonstrate how pre- and postnatal environmental stimuli can modulate microglial cell phenotype and function, underpinning the notion that reciprocal interactions between microglia and intestinal microbes could play a crucial role in ASD aetiology.
Collapse
Affiliation(s)
- Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
44
|
Rahi S, Gupta R, Sharma A, Mehan S. Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum Exp Toxicol 2021; 40:1880-1898. [PMID: 33906504 DOI: 10.1177/09603271211013456] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disease characterized by cognitive and sensorimotor impairment. Numerous research findings have consistently shown that alteration of Smo-Shh (smoothened-sonic hedgehog) signaling during the developmental process plays a significant role in ASD and triggers neuronal changes by promoting neuroinflammation and apoptotic markers. Purmorphamine (PUR), a small purine-derived agonist of the Smo-Shh pathway, shows resistance to hippocampal neuronal cell oxidation and decreases neuronal cell death. The goal of this study was to investigate the neuroprotective potential of PUR in brain intoxication induced by intracerebroventricular-propionic acid (ICV-PPA) in rats, with a focus on its effect on Smo-Shh regulation in the brain of rats. In addition, we analyze the impact of PUR on myelin basic protein (MBP) and apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic) in rat brain homogenates. Chronic ICV-PPA infusion was administered consecutively for 11 days to induce autism in rats. In order to investigate behavioral alterations, rats were tested for spatial learning in the Morris Water Maze (MWM), locomotive alterations using actophotometer, and beam crossing task, while Forced Swimming Test (FST) for depressive behavior. PUR treatment with 5 mg/kg and 10 mg/kg (i.p.) was administered from day 12 to 44. Besides cellular, molecular and neuroinflammatory analyses, neurotransmitter levels and oxidative markers have also been studied in brain homogenates. The results of this study have shown that PUR increases the level of Smo-Shh and restores the neurochemical levels, and potentially prevents morphological changes, including demyelination.
Collapse
Affiliation(s)
- S Rahi
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - R Gupta
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - A Sharma
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - S Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
45
|
Ahmed OG, Shehata GA, Ali RM, Makboul R, Abd Allah ESH, Abd El-Rady NM. Folic acid ameliorates neonatal isolation-induced autistic like behaviors in rats: epigenetic modifications of BDNF and GFAP promotors. Appl Physiol Nutr Metab 2021; 46:964-975. [PMID: 33635721 DOI: 10.1139/apnm-2020-0923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study investigated the role of epigenetic dysregulation of brain derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP) genes and oxidative stress as possible mechanisms of autistic-like behaviors in neonatal isolation model in rats and the impact of folic acid administration on these parameters. Forty Wistar albino pups were used as follows: control, folic acid administered, isolated, and isolated folic acid treated groups. Isolated pups were separated from their mothers for 90 min daily from postnatal day (PND) 1 to 11. Pups (isolated or control) received either the vehicle or folic acid (4 mg/kg/day) orally from PND 1 to 29. Behavioral tests were done from PND 30 to 35. Oxidative stress markers and antioxidant defense in the frontal cortex homogenate were determined. DNA methylation of BDNF and GFAP genes was determined by qPCR. Histopathological examination was carried out. Neonatal isolation produced autistic-like behaviors that were associated with BDNF and GFAP hypomethylation, increased oxidative stress, increased inflammatory cell infiltration, and structural changes in the frontal cortex. Folic acid administration concurrently with isolation reduced neonatal isolation-induced autistic-like behaviors, decreased oxidative stress, regained BDNF and GFAP gene methylation, and ameliorated structural changes in the frontal cortices of isolated folic acid treated rats. Novelty: Neonatal isolation induces "autistic-like" behavior and these behaviors are reversed by folic acid supplementation. Neonatal isolation induces DNA hypomethylation of BDNF and GFAP, increased oxidative stress markers, and neuroinflammation. All of these changes were reversed by daily folic acid supplementation.
Collapse
Affiliation(s)
- Omyma G Ahmed
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghaydaa A Shehata
- Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt
| | - Rasha M Ali
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rania Makboul
- Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman S H Abd Allah
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nessren M Abd El-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
46
|
Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A. Neuroprotective Effect of α-Mangostin in the Ameliorating Propionic Acid-Induced Experimental Model of Autism in Wistar Rats. Brain Sci 2021; 11:288. [PMID: 33669120 PMCID: PMC7996534 DOI: 10.3390/brainsci11030288] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have documented the role of hyper-activation of extracellular signal-regulated kinases (ERK) in Autism pathogenesis. Alpha-mangostin (AMG) is a phytoconstituents with anti-oxidants, anti-inflammatory, and ERK inhibition properties in many diseases. Our research aims to investigate the neuroprotective effect of AMG in the rat model of intracerebroventricular-propionic acid (ICV-PPA) induced autism with a confirmation of its effect on the ERK signaling. Autism was induced in Wistar rats (total 36 rats; 18 male/18 female) by multiple doses of PPA through ICV injection for 11 days. Actophotometer and beam walking tasks were used to evaluate animals' motor abilities, and the Morris water maze task was utilized to confirm the cognition and memory in animals. Long term administration of AMG 100 mg/kg and AMG 200mg/kg continued from day 12 to day 44 of the experiment. Before that, animals were sacrificed, brains isolated, morphological, gross pathological studies were performed, and neurochemical analysis was performed in the brain homogenates. Cellular and molecular markers, including ERK, myelin basic protein, apoptotic markers including caspase-3, Bax, Bcl-2, neuroinflammatory markers, neurotransmitters, and oxidative stress markers, have been tested throughout the brain. Thus, AMG reduces the overactivation of the ERK signaling and also restored autism-like behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Aarti Tiwari
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Rishabh Khera
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Saloni Rahi
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Sidharth Mehan
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Yahya H. Khormi
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
47
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
48
|
Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial. Nutrients 2021; 13:nu13020693. [PMID: 33671493 PMCID: PMC7926808 DOI: 10.3390/nu13020693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
A few studies suggested high stereo-specifically numbered (sn)-2 palmitate in a formula might favor the gut Bifidobacteria of infants. The initial colonization and subsequent development of gut microbiota in early life might be associated with development and later life functions of the central nervous system via the microbiota–gut–brain axis, such as children with autism. This study aims to assess the hypothesized effect of increasing the amount of palmitic acid esterified in the sn-2 position in infant formula on neurodevelopment in healthy full-term infants and to explore the association of this effect with the altered gut Bifidobacteria. One hundred and ninety-nine infants were enrolled in this cluster randomized clinical trial: 66 breast-fed (BF group) and 133 formula-fed infants who were clustered and randomly assigned to receive formula containing high sn-2 palmitate (sn-2 group, n = 66) or low sn-2 palmitate (control group, n = 67), where 46.3% and 10.3% of the palmitic acid (PA) was sn-2-palmitate, respectively. Infants’ neurodevelopmental outcomes were measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Stool samples were collected for the analysis of Bifidobacteria (Trial registration number: ChiCTR1800014479). At week 16, the risk of scoring close to the threshold for fine motor skills (reference: scoring above the typical development threshold) was significantly lower in the sn-2 group than the control group after adjustment for the maternal education level (p = 0.036) but did not differ significantly versus the BF group (p = 0.513). At week 16 and week 24, the sn-2 group (week 16: 15.7% and week 24: 15.6%) had a significantly higher relative abundance of fecal Bifidobacteria than the control group (week 16: 6.6%, p = 0.001 and week 24:11.2%, p = 0.028) and did not differ from the BF group (week 16: 14.4%, p = 0.674 and week 24: 14.9%, p = 0.749). At week 16, a higher relative abundance of Bifidobacteria was associated with the decreased odds of only one domain scoring close to the threshold in the formula-fed infants group (odds ratio (OR), 95% confidence interval (CI): 0.947 (0.901–0.996)). Elevating the sn-2 palmitate level in the formula improved infants’ development of fine motor skills, and the beneficial effects of high sn-2 palmitate on infant neurodevelopment was associated with the increased gut Bifidobacteria level.
Collapse
|
49
|
Mepham JR, MacFabe DF, Boon FH, Foley KA, Cain DP, Ossenkopp KP. Examining the non-spatial pretraining effect on a water maze spatial learning task in rats treated with multiple intracerebroventricular (ICV) infusions of propionic acid: Contributions to a rodent model of ASD. Behav Brain Res 2021; 403:113140. [PMID: 33508348 DOI: 10.1016/j.bbr.2021.113140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Propionic acid (PPA) is produced by enteric gut bacteria and is a dietary short chain fatty acid. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioural changes, including adverse effects on cognition, similar to those seen in autism spectrum disorders (ASD). Previous research has shown that repeated ICV infusions of PPA result in impaired spatial learning in a Morris water maze (MWM) as evidenced by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than control rats. In the current study rats were first given non-spatial pretraining (NSP) in the water maze in order to familiarize the animals with the general requirements of the non-spatial aspects of the task before spatial training was begun. Then the effects of ICV infusions of PPA on acquisition of spatial learning were examined. PPA treated rats failed to show the positive effects of the non-spatial pretraining procedure, relative to controls, as evidenced by increased search latencies, longer distances travelled, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. Thus, PPA treatment blocked the effects of the pretraining procedure, likely by impairing sensorimotor components or memory of the pretraining.
Collapse
Affiliation(s)
- Jennifer R Mepham
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Derrick F MacFabe
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Francis H Boon
- Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Kelly A Foley
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Donald P Cain
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; The Kilee Patchell-Evans Autism Research Group, Department of Psychology, Western University, London, Ontario, Canada.
| |
Collapse
|
50
|
Hao C, Gao Z, Liu X, Rong Z, Jia J, Kang K, Guo W, Li J. Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Sci Rep 2020; 10:19917. [PMID: 33199803 PMCID: PMC7670463 DOI: 10.1038/s41598-020-77085-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Propionate has been reported to exert antidepressant effects, but high-dose propionate may induce autism-like symptoms in experimental animals through induction of dysbiosis of neurotransmitters. The bi-directional effects of propionate seem to be dose-dependent. However, due to the pathological discrepancies between depression and autism, conclusions drawn from autism may not be simply transferable to depression. The effect and underlying action mechanisms of high-dose propionate on depression remains undetermined. To investigate the effects of propionate on depression, propionate dose gradients were intravenously administrated to rats exposed to chronic unpredictable mild stress (CUMS) for 1 week. Results of these behavioral tests demonstrate that low-dose propionate (2 mg/kg body weight/day) induces antidepressant effect through bodyweight recovery, elevated reward-seeking behaviors, and reduced depression-like behaviors, while high-dose propionate (200 mg/kg body weight/day) induces prodepressant effects opposite of those of low-dose propionate. A comprehensive profiling of neurotransmitters in the hippocampus demonstrated that CUMS induces reduction of NE (Norepinephrine), DA (Dopamine). GABA (γ-aminobutyric acid) was recovered by low-dose propionate, while high-dose propionate exerted more complicated effects on neurotransmitters, including reduction of NE, DA, 5-Hydroxytryptamine and Tryptophan, and increase of GABA, Kynurenine, Homovanillic acid, 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine. The neurotransmitters disturbed by high-dose propionate suggest metabolic disorders in the hippocampus, which were confirmed by the clear group separation in PCA of metabolomic profiling. The results of this study demonstrate the double-edged dose-dependent effects of propionate on depression and suggest potential cumulative toxicity of propionate as a food additive to mood disorders.
Collapse
Affiliation(s)
- Chunyan Hao
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zefeng Gao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China
| | - XianJun Liu
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zhijiang Rong
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Jingjing Jia
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Kaiqi Kang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Weiwei Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jianguo Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China.
| |
Collapse
|