1
|
Wallace Z, Heunis T, Paterson RL, Suckling RJ, Grant T, Dembek M, Donoso J, Brener J, Long J, Bunjobpol W, Gibbs-Howe D, Kay DP, Leneghan DB, Godinho LF, Walker A, Singh PK, Knox A, Leonard S, Dorrell L. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol Ther 2024; 32:678-688. [PMID: 38219014 PMCID: PMC10928138 DOI: 10.1016/j.ymthe.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.
Collapse
Affiliation(s)
- Zoë Wallace
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK.
| | - Tiaan Heunis
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Jose Donoso
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Joshua Long
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | - Daniel P Kay
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Andrew Knox
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Lucy Dorrell
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| |
Collapse
|
2
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Zhang Z, Chen X, Li B, Xia T, Wu X, Wu C. Helicobacter pylori induces urease subunit B-specific CD8 + T cell responses in infected individuals via cytosolic pathway of cross-presentation. Helicobacter 2023; 28:e13005. [PMID: 37382428 DOI: 10.1111/hel.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Urease subunit B (UreB), a conserved and key virulence factor of Helicobacter pylori (H. pylori), can induce the host CD4+ T cell immune responses to provide protection, but less is known regarding CD8+ T cell responses. The characteristics of H. pylori-specific CD8+ T cell responses and the mechanism underlying antigen processing and presentation pathways remain unclear. This study was focus on protective antigen recombinant UreB (rUreb) to detect specific CD8+ T cell responses in vitro and elucidate the mechanism of UreB antigen processing and presentation. METHODS The peripheral blood mononuclear cells (PBMCs) collected from H. pylori-infected individuals were stimulated with rUreB in vitro to detect specific CD8+ T cell responses after co-culture with rUreB-pulsed autologous hMDCs. Through blocking assay, we investigated the potential pathway of UreB antigen processing and presentation via the cytosolic pathway or vacuolar pathway. The cytokines production of UreB specific CD8+ T cell were evaluated as well. RESULTS We demonstrated UreB can induce specific CD8+ T cell immune responses in H. pylori infected individuals. Importantly, we characterized that UreB were mainly processed by proteasome instead of lysosomal proteases and presented through cytosolic pathway of cross-presentation, which requires endoplasmic reticulum-Golgi transport and newly synthesized MHC-I molecules, to induce functional-specific CD8+ T cell (IFN-γ + TNF-α + Grz A+ Grz B+) responses. CONCLUSIONS These results suggest that H. pylori UreB induces specific CD8+ T cell responses through cytosolic pathway of cross-presentation in infected individuals.
Collapse
Affiliation(s)
- Zelin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Xia
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Kawka M, Płocińska R, Płociński P, Pawełczyk J, Słomka M, Gatkowska J, Dzitko K, Dziadek B, Dziadek J. The functional response of human monocyte-derived macrophages to serum amyloid A and Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1238132. [PMID: 37781389 PMCID: PMC10540855 DOI: 10.3389/fimmu.2023.1238132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction In the course of tuberculosis (TB), the level of major acute phase protein, namely serum amyloid A (hSAA-1), increases up to a hundredfold in the pleural fluids of infected individuals. Tubercle bacilli infecting the human host can be opsonized by hSAA-1, which affects bacterial entry into human macrophages and their intracellular multiplication. Methods We applied global RNA sequencing to evaluate the functional response of human monocyte-derived macrophages (MDMs), isolated from healthy blood donors, under elevated hSAA-1 conditions and during infection with nonopsonized and hSAA-1-opsonized Mycobacterium tuberculosis (Mtb). In the same infection model, we also examined the functional response of mycobacteria to the intracellular environment of macrophages in the presence and absence of hSAA-1. The RNASeq analysis was validated using qPCR. The functional response of MDMs to hSAA-1 and/or tubercle bacilli was also evaluated for selected cytokines at the protein level by applying the Milliplex system. Findings Transcriptomes of MDMs cultured in the presence of hSAA-1 or infected with Mtb showed a high degree of similarity for both upregulated and downregulated genes involved mainly in processes related to cell division and immune response, respectively. Among the most induced genes, across both hSAA-1 and Mtb infection conditions, CXCL8, CCL15, CCL5, IL-1β, and receptors for IL-7 and IL-2 were identified. We also observed the same pattern of upregulated pro-inflammatory cytokines (TNFα, IL-6, IL-12, IL-18, IL-23, and IL-1) and downregulated anti-inflammatory cytokines (IL-10, TGFβ, and antimicrobial peptide cathelicidin) in the hSAA-1 treated-MDMs or the phagocytes infected with tubercle bacilli. At this early stage of infection, Mtb genes affected by the inside microenvironment of MDMs are strictly involved in iron scavenging, adaptation to hypoxia, low pH, and increasing levels of CO2. The genes for the synthesis and transport of virulence lipids, but not cholesterol/fatty acid degradation, were also upregulated. Conclusion Elevated serum hSAA-1 levels in tuberculosis enhance the response of host phagocytes to infection, including macrophages that have not yet been in contact with mycobacteria. SAA induces antigen processing and presentation processes by professional phagocytes reversing the inhibition caused by Mtb infection.
Collapse
Affiliation(s)
- Malwina Kawka
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Płocińska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Jakub Pawełczyk
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
5
|
Karamooz E, Peterson J, Tammen A, Soma S, Kim SJ, Lewinsohn D. Calcium Signaling in MR1-Dependent Antigen Presentation of Mycobacterium tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-3154465. [PMID: 37693580 PMCID: PMC10491339 DOI: 10.21203/rs.3.rs-3154465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
MR1 is a ubiquitously expressed MHC-Ib molecule that presents microbial metabolites to MR1-restricted T cells, but there are differences in the antigen presentation pathway of an intracellular microbe compared to exogenous antigen. We have shown the importance of endosomal trafficking proteins in MR1-dependent presentation of Mycobacterium tuberculosis (Mtb). Two pore channels (TPCs) are endosomal calcium channels that regulate endosomal trafficking. Due to their location on endosomes, we hypothesized that TPCs could be required for MR1-dependent presentation of antigens derived from the intracellular microbe Mtb. We found that TPCs are critical for the presentation of Mtb by MR1; inhibition of TPCs had no effect on MR1 presentation of extracellular (exogenous) antigens, HLA-B presentation, or HLA-II presentation. Finally, we found that the calcium sensitive trafficking protein Synaptotagmin 7 was also key in the presentation of Mtb by MR1. This calcium-dependent endosomal pathway is a novel mechanism by which the immune system can sample intracellular antigens.
Collapse
Affiliation(s)
| | | | | | | | | | - David Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
He W, Gea-Mallorquí E, Colin-York H, Fritzsche M, Gillespie GM, Brackenridge S, Borrow P, McMichael AJ. Intracellular trafficking of HLA-E and its regulation. J Exp Med 2023; 220:214089. [PMID: 37140910 PMCID: PMC10165540 DOI: 10.1084/jem.20221941] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Interest in MHC-E-restricted CD8+ T cell responses has been aroused by the discovery of their efficacy in controlling simian immunodeficiency virus (SIV) infection in a vaccine model. The development of vaccines and immunotherapies utilizing human MHC-E (HLA-E)-restricted CD8+ T cell response requires an understanding of the pathway(s) of HLA-E transport and antigen presentation, which have not been clearly defined previously. We show here that, unlike classical HLA class I, which rapidly exits the endoplasmic reticulum (ER) after synthesis, HLA-E is largely retained because of a limited supply of high-affinity peptides, with further fine-tuning by its cytoplasmic tail. Once at the cell surface, HLA-E is unstable and is rapidly internalized. The cytoplasmic tail plays a crucial role in facilitating HLA-E internalization, which results in its enrichment in late and recycling endosomes. Our data reveal distinctive transport patterns and delicate regulatory mechanisms of HLA-E, which help to explain its unusual immunological functions.
Collapse
Affiliation(s)
- Wanlin He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Ester Gea-Mallorquí
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Yang H, Sun H, Brackenridge S, Zhuang X, Wing PAC, Quastel M, Walters L, Garner L, Wang B, Yao X, Felce SL, Peng Y, Moore S, Peeters BWA, Rei M, Canto Gomes J, Tomas A, Davidson A, Semple MG, Turtle LCW, Openshaw PJM, Baillie JK, Mentzer AJ, Klenerman P, Borrow P, Dong T, McKeating JA, Gillespie GM, McMichael AJ. HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation. Sci Immunol 2023; 8:eabl8881. [PMID: 37390223 DOI: 10.1126/sciimmunol.abl8881] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells.
Collapse
Affiliation(s)
- Hongbing Yang
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Hong Sun
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simon Brackenridge
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Max Quastel
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lucy Walters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lee Garner
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shona Moore
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bas W A Peeters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Margarida Rei
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Oxford, UK
| | - Joao Canto Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Ana Tomas
- Unidada de Investigacao em Patobiologia Molecular, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, EPE Lisbon, Portugal
- Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Malcolm G Semple
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Unit, Alder Hey Children's Hospital, Eaton Road, Liverpool L12 2AP, UK
| | - Lance C W Turtle
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), Liverpool, UK
| | | | | | - Alexander J Mentzer
- Welcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| |
Collapse
|
8
|
Leddy O, White FM, Bryson BD. Immunopeptidomics reveals determinants of Mycobacterium tuberculosis antigen presentation on MHC class I. eLife 2023; 12:e84070. [PMID: 37073954 PMCID: PMC10159623 DOI: 10.7554/elife.84070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
CD8+ T cell recognition of Mycobacterium tuberculosis (Mtb)-specific peptides presented on major histocompatibility complex class I (MHC-I) contributes to immunity to tuberculosis (TB), but the principles that govern presentation of Mtb antigens on MHC-I are incompletely understood. In this study, mass spectrometry (MS) analysis of the MHC-I repertoire of Mtb-infected primary human macrophages reveals that substrates of Mtb's type VII secretion systems (T7SS) are overrepresented among Mtb-derived peptides presented on MHC-I. Quantitative, targeted MS shows that ESX-1 activity is required for presentation of Mtb peptides derived from both ESX-1 substrates and ESX-5 substrates on MHC-I, consistent with a model in which proteins secreted by multiple T7SSs access a cytosolic antigen processing pathway via ESX-1-mediated phagosome permeabilization. Chemical inhibition of proteasome activity, lysosomal acidification, or cysteine cathepsin activity did not block presentation of Mtb antigens on MHC-I, suggesting involvement of other proteolytic pathways or redundancy among multiple pathways. Our study identifies Mtb antigens presented on MHC-I that could serve as targets for TB vaccines, and reveals how the activity of multiple T7SSs interacts to contribute to presentation of Mtb antigens on MHC-I.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Center for Precision Cancer MedicineCambridgeUnited States
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
| |
Collapse
|
9
|
Lu T, Wang M, Liu N, Zhang S, Shi L, Bao L, Luo F, Shi L, Liu S, Yao Y. Transporter Associated with Antigen Processing 1 Gene Polymorphisms Increase the Susceptibility to Tuberculosis. Pharmgenomics Pers Med 2023; 16:325-336. [PMID: 37077653 PMCID: PMC10108862 DOI: 10.2147/pgpm.s404339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose Tuberculosis (TB) is known to result from a complex interaction between the host immune response and Mycobacterium infection. The transporter associated with antigen processing (TAP) plays an important role in the processing and presentation pathways for the Mycobacterium tuberculosis (M. tb) antigen. To investigate the possible association of the TAP1 and TAP2 genes with TB. Patients and Methods A total of 449 TB patients and 435 control subjects were included in this study, and single nucleotide polymorphisms (SNPs) in the TAP gene, as well as TAP1 and TAP2 alleles, were genotyped. Results TAP gene association analysis of TB diseases showed that rs41551515-T in the TAP1 gene was significantly associated with susceptibility to TB (P=7.96E-04, OR=4.124, 95% CI: 1.683-10.102), especially pulmonary TB (PTB, P=6.84E-04, OR=4.350, 95% CI: 1.727-10.945), and the combination of rs1057141-T-rs1135216-C in the TAP1 gene significantly increased the risk of TB susceptibility (P=5.51E-05, OR=10.899, 95% CI: 2.555-46.493). Five novel TAP1 alleles were detected in Yunnan Han people, and the allele frequency of TAP1*unknown_3 (rs41555220-rs41549617-rs1057141-rs1135216-rs1057149-rs41551515: C-A-T-C-C-T) was notably increased in all TB patients, including in the PTB and EPTB subgroups, and was significantly associated with the risk of susceptibility to TB. However, no association between the TAP2 gene and TB was found in this study. Conclusion Host genetic variants of rs41551515-T and the combination rs1057141-T-rs1135216-C, as well as TAP1*unknown_3 may play a critical role in susceptibility to TB disease.
Collapse
Affiliation(s)
- Tianchang Lu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Minyi Wang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- School of Life Science, Yunnan University, Kunming, 650500, People’s Republic of China
| | - Nannan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuqiong Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Ling Bao
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Feng Luo
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- Correspondence: Shuyuan Liu, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China, Tel +86 871 68334483, Email
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China
- Yufeng Yao, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China, Tel +86 871 68335632, Email
| |
Collapse
|
10
|
Kim SJ, Karamooz E. MR1- and HLA-E-Dependent Antigen Presentation of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms232214412. [PMID: 36430890 PMCID: PMC9693577 DOI: 10.3390/ijms232214412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
MR1 and HLA-E are highly conserved nonclassical antigen-presenting molecules. They can present antigens derived from Mycobacterium tuberculosis to a distinct subset of MR1-restricted or HLA-restricted CD8+ T cells. MR1 presents small microbial metabolites, and HLA-E presents peptides and glycopeptides. In this review, we will discuss the current understanding of MR1 and HLA-E antigen presentation in the context of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
11
|
Hansen SG, Hancock MH, Malouli D, Marshall EE, Hughes CM, Randall KT, Morrow D, Ford JC, Gilbride RM, Selseth AN, Trethewy RE, Bishop LM, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Silipino L, Nekorchuk M, Busman-Sahay K, Estes JD, Axthelm MK, Smedley J, Shao D, Edlefsen PT, Lifson JD, Früh K, Nelson JA, Picker LJ. Myeloid cell tropism enables MHC-E-restricted CD8 + T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci Immunol 2022; 7:eabn9301. [PMID: 35714200 PMCID: PMC9387538 DOI: 10.1126/sciimmunol.abn9301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Emily E. Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Renee Espinosa Trethewy
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Lindsey M Bishop
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| |
Collapse
|
12
|
Lewinsohn DM, Lewinsohn DA. The Missing Link in Correlates of Protective Tuberculosis Immunity: Recognizing the Infected Cell. Front Immunol 2022; 13:869057. [PMID: 35493495 PMCID: PMC9040373 DOI: 10.3389/fimmu.2022.869057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
For most vaccination studies, the assessment of vaccine-induced CD4+ and CD8+ T cells has relied upon the measurement of antigen-specific polyfunctional cells, typically using recombinant antigen or peptide pools. However, this approach leaves open the question as to whether or not these cells are responsive to the Mtb-infected cell within the context of Mtb infection and hence leaves open the possibility that a key parameter of vaccine immunogenicity may be overlooked. In this review, we discuss the case that these measurements almost certainly over-estimate the capacity of both CD4+ and CD8+ T cells to recognize the Mtb-infected cell.
Collapse
Affiliation(s)
- David Michael Lewinsohn
- Department of Medicine, Oregon Health and Science University, Portland, OR, United States
- Pulmonary and Critical Care Medicine, Portland VA Medical Center, Portland, OR, United States
| | - Deborah Anne Lewinsohn
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
13
|
Voogd L, Ruibal P, Ottenhoff TH, Joosten SA. Antigen presentation by MHC-E: a putative target for vaccination? Trends Immunol 2022; 43:355-365. [PMID: 35370095 PMCID: PMC9058203 DOI: 10.1016/j.it.2022.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.
Collapse
|
14
|
Soma S, Lewinsohn DA, Lewinsohn DM. Donor Unrestricted T Cells: Linking innate and adaptive immunity. Vaccine 2021; 39:7295-7299. [PMID: 34740474 DOI: 10.1016/j.vaccine.2021.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Donor Unrestricted T Cells (DURTs) are characterized by their use of antigen presentation molecules that are often invariant. As these cells recognize diverse mycobacterial antigens, often found in BCG, these cells have the potential to either serve as targets for vaccination, or as a means to enable the induction of traditional T and B cell immunity. Here, we will review specific DURT family members, and their relationship to BCG.
Collapse
Affiliation(s)
- Shogo Soma
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Deborah A Lewinsohn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Oregon Health & Science University, Portland, OR. 97239, United States
| | - David M Lewinsohn
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Portland VA Medical Center, Oregon Health & Science University, United States.
| |
Collapse
|
15
|
Yang H, Rei M, Brackenridge S, Brenna E, Sun H, Abdulhaqq S, Liu MKP, Ma W, Kurupati P, Xu X, Cerundolo V, Jenkins E, Davis SJ, Sacha JB, Früh K, Picker LJ, Borrow P, Gillespie GM, McMichael AJ. HLA-E-restricted, Gag-specific CD8 + T cells can suppress HIV-1 infection, offering vaccine opportunities. Sci Immunol 2021; 6:eabg1703. [PMID: 33766848 PMCID: PMC8258078 DOI: 10.1126/sciimmunol.abg1703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Human leukocyte antigen-E (HLA-E) normally presents an HLA class Ia signal peptide to the NKG2A/C-CD94 regulatory receptors on natural killer (NK) cells and T cell subsets. Rhesus macaques immunized with a cytomegalovirus-vectored simian immunodeficiency virus (SIV) vaccine generated Mamu-E (HLA-E homolog)-restricted T cell responses that mediated post-challenge SIV replication arrest in >50% of animals. However, HIV-1-specific, HLA-E-restricted T cells have not been observed in HIV-1-infected individuals. Here, HLA-E-restricted, HIV-1-specific CD8 + T cells were primed in vitro. These T cell clones and allogeneic CD8 + T cells transduced with their T cell receptors suppressed HIV-1 replication in CD4 + T cells in vitro. Vaccine induction of efficacious HLA-E-restricted HIV-1-specific T cells should therefore be possible.
Collapse
MESH Headings
- Amino Acid Sequence
- Biomarkers
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HIV Infections/immunology
- HIV Infections/metabolism
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/immunology
- Histocompatibility Antigens Class I/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunophenotyping
- Jurkat Cells
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity/immunology
- gag Gene Products, Human Immunodeficiency Virus/immunology
- HLA-E Antigens
Collapse
Affiliation(s)
- Hongbing Yang
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Margarida Rei
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Elena Brenna
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Hong Sun
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Oxford Institute, NDM, Oxford University, Oxford, UK
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K P Liu
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Weiwei Ma
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Prathiba Kurupati
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Xiaoning Xu
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Edward Jenkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Simon J Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Persephone Borrow
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| |
Collapse
|
16
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Kulicke C, Karamooz E, Lewinsohn D, Harriff M. Covering All the Bases: Complementary MR1 Antigen Presentation Pathways Sample Diverse Antigens and Intracellular Compartments. Front Immunol 2020; 11:2034. [PMID: 32983150 PMCID: PMC7492589 DOI: 10.3389/fimmu.2020.02034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
The ubiquitously expressed, monomorphic MHC class Ib molecule MHC class I-related protein 1 (MR1) presents microbial metabolites to mucosal-associated invariant T (MAIT) cells. However, recent work demonstrates that both the ligands bound by MR1 and the T cells restricted by it are more diverse than originally thought. It is becoming increasingly clear that MR1 is capable of presenting a remarkable variety of both microbial and non-microbial small molecule antigens to a diverse group of MR1-restricted T cells (MR1Ts) and that the antigen presentation pathway differs between exogenously delivered antigen and intracellular microbial infection. These distinct antigen presentation pathways suggest that MR1 shares features of both MHC class I and MHC class II antigen presentation, enabling it to sample diverse intracellular compartments and capture antigen of both intracellular and extracellular origin. Here, we review recent developments and new insights into the cellular mechanisms of MR1-dependent antigen presentation with a focus on microbial MR1T cell antigens.
Collapse
Affiliation(s)
- Corinna Kulicke
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States
| | - Elham Karamooz
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States
| | - David Lewinsohn
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States.,Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular and Microbial Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Melanie Harriff
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States.,VA Portland Health Care System, Research and Development, Portland, OR, United States.,Department of Molecular and Microbial Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
19
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
20
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
La Manna MP, Orlando V, Prezzemolo T, Di Carlo P, Cascio A, Delogu G, Poli G, Sullivan LC, Brooks AG, Dieli F, Caccamo N. HLA-E-restricted CD8 + T Lymphocytes Efficiently Control Mycobacterium tuberculosis and HIV-1 Coinfection. Am J Respir Cell Mol Biol 2020; 62:430-439. [PMID: 31697586 DOI: 10.1165/rcmb.2019-0261oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
We investigated the contribution of human leukocyte antigen A2 (HLA-A2) and HLA-E-restricted CD8+ T cells in patients with Mycobacterium tuberculosis and human immunodeficiency virus 1 (HIV-1) coinfection. HIV-1 downregulates HLA-A, -B, and -C molecules in infected cells, thus influencing recognition by HLA class I-restricted CD8+ T cells but not by HLA-E-restricted CD8+ T cells, owing to the inability of the virus to downmodulate their expression. Therefore, antigen-specific HLA-E-restricted CD8+ T cells could play a protective role in Mycobacterium tuberculosis and HIV-1 coinfection. HLA-E- and HLA-A2-restricted Mycobacterium tuberculosis-specific CD8+ T cells were tested in vitro for cytotoxic and microbicidal activities, and their frequencies and phenotypes were evaluated ex vivo in patients with active tuberculosis and concomitant HIV-1 infection. HIV-1 and Mycobacterium tuberculosis coinfection caused downmodulation of HLA-A2 expression in human monocyte-derived macrophages associated with resistance to lysis by HLA-A2-restricted CD8+ T cells and failure to restrict the growth of intracellular Mycobacterium tuberculosis. Conversely, HLA-E surface expression and HLA-E-restricted cytolytic and microbicidal CD8 responses were not affected. HLA-E-restricted and Mycobacterium tuberculosis-specific CD8+ T cells were expanded in the circulation of patients with Mycobacterium tuberculosis/HIV-1 coinfection, as measured by tetramer staining, but displayed a terminally differentiated and exhausted phenotype that was rescued in vitro by anti-PD-1 (programmed cell death protein 1) monoclonal antibody. Together, these results indicate that HLA-E-restricted and Mycobacterium tuberculosis-specific CD8+ T cells in patients with Mycobacterium tuberculosis/HIV-1 coinfection have an exhausted phenotype and fail to expand in vitro in response to antigen stimulation, which can be restored by blocking the PD-1 pathway using the specific monoclonal antibody nivolumab.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory for Advanced Diagnosis and Biomedical Research
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, and
| | - Valentina Orlando
- Central Laboratory for Advanced Diagnosis and Biomedical Research
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, and
| | - Teresa Prezzemolo
- Central Laboratory for Advanced Diagnosis and Biomedical Research
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, and
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Giovanni Delogu
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
- Foundation Policlinico Universitario Gemelli, Institute for Scientific-based Care and Research (IRCCS) Rome, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University School of Medicine, Milano, Italy; and
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnosis and Biomedical Research
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, and
| | - Nadia Caccamo
- Central Laboratory for Advanced Diagnosis and Biomedical Research
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, and
| |
Collapse
|
22
|
Ogg G, Cerundolo V, McMichael AJ. Capturing the antigen landscape: HLA-E, CD1 and MR1. Curr Opin Immunol 2019; 59:121-129. [PMID: 31445404 DOI: 10.1016/j.coi.2019.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
T cell receptor (TCR) recognition of antigens presented by relatively non-polymorphic MHC-like molecules is emerging as a significant contributor to health and disease. These evolutionarily ancient pathways have been inappropriately labelled 'non-conventional' because their roles were discovered after viral-specific peptide presentation by polymorphic MHC class I molecules. We suggest that these pathways are complementary to mainstream peptide presentation. HLA-E, CD1 and MR1 can present diverse self and foreign antigens to TCRs and therefore contribute to tissue homeostasis, pathogen defence, inflammation and immune responses to cancer. Despite presenting different classes of antigens, they share many features and are under common selective pressures. Through understanding their roles in disease, therapeutic manipulation for disease prevention and treatment should become possible.
Collapse
Affiliation(s)
- Graham Ogg
- MRC Human Immunology Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | | | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, University of Oxford, UK.
| |
Collapse
|
23
|
Karamooz E, Harriff MJ, Narayanan GA, Worley A, Lewinsohn DM. MR1 recycling and blockade of endosomal trafficking reveal distinguishable antigen presentation pathways between Mycobacterium tuberculosis infection and exogenously delivered antigens. Sci Rep 2019; 9:4797. [PMID: 30886396 PMCID: PMC6423294 DOI: 10.1038/s41598-019-41402-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
The MHC-Ib molecule MR1 presents microbial metabolites to MR1-restricted T cells (MR1Ts). Given the ubiquitous expression of MR1 and the high prevalence of human MR1Ts, it is important to understand the mechanisms of MR1-dependent antigen presentation. Here, we show that MR1-dependent antigen presentation can be distinguished between intracellular Mycobacterium tuberculosis (Mtb) infection and exogenously added antigens. Although both Mtb infection and exogenously added antigens are presented by preformed MR1, only exogenously added antigens are capable of reusing MR1 that had been bound to the folic acid metabolite 6-formylpterin (6-FP). In addition, we identify an endosomal trafficking protein, Syntaxin 4, which is specifically involved in the presentation of exogenously delivered antigens but not Mtb-dependent antigen presentation. These data reveal there are multiple ways that MR1 can sample antigens and that MR1-mediated sampling of intracellular Mtb infection is distinguishable from the sampling of exogenously added antigens.
Collapse
Affiliation(s)
- Elham Karamooz
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| | - Melanie J Harriff
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Gitanjali A Narayanan
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Aneta Worley
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
| | - David M Lewinsohn
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| |
Collapse
|
24
|
Abstract
Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αβ and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered “unconventional,” in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, “Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens,” sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.
Collapse
|
25
|
McMichael AJ. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? Could a CD8 + T-Cell Vaccine Prevent Persistent HIV Infection? Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029124. [PMID: 29254977 DOI: 10.1101/cshperspect.a029124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that stimulate CD8+ T cells could clear early virus infection or control ongoing infection and prevent disease. This could be valuable to combat human immunodeficiency virus type 1 (HIV-1) where it has not yet been possible to generate broadly reacting neutralizing antibodies with a vaccine. However, HIV-1 vaccines aimed at stimulating CD8+ T cells have had no success. In contrast, a cytomegalovirus vectored simian immunodeficiency virus (SIV) vaccine enabled clearance of early SIV infection. This may open the door to the design of an effective HIV vaccine.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
26
|
Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, Walter TS, O'Callaghan CA, Borrow P, Toebes M, Hansen SG, Sacha JB, Abdulhaqq S, Greene JM, Früh K, Marshall E, Picker LJ, Jones EY, McMichael AJ, Gillespie GM. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun 2018; 9:3137. [PMID: 30087334 PMCID: PMC6081459 DOI: 10.1038/s41467-018-05459-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordan R Barrett
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Thomas S Walter
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, OX3 7BN, UK
| | - Persephone Borrow
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Mireille Toebes
- Department Molecular Oncology and Immunology, B6 Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Justin M Greene
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
27
|
Abstract
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4+ T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T-cell subsets, including classical and nonclassical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights into effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome, is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common comorbidities such as HIV, helminths and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease.
Collapse
Affiliation(s)
- Susanna Brighenti
- Karolinska Institutet, Department of Medicine, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simone A. Joosten
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, The Netherlands
| |
Collapse
|
28
|
Prezzemolo T, van Meijgaarden KE, Franken KLMC, Caccamo N, Dieli F, Ottenhoff THM, Joosten SA. Detailed characterization of human Mycobacterium tuberculosis specific HLA-E restricted CD8 + T cells. Eur J Immunol 2018; 48:293-305. [PMID: 29124751 PMCID: PMC6266868 DOI: 10.1002/eji.201747184] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022]
Abstract
HLA-E presented antigens are interesting targets for vaccination given HLA-Es' essentially monomorphic nature. We have shown previously that Mycobacterium tuberculosis (Mtb) peptides are presented by HLA-E to CD8+ effector T cells, but the precise phenotype and functional capacity of these cells remains poorly characterized. We have developed and utilized in this study a new protocol combining HLA-E tetramer with intracellular staining for cytokines, transcription factors and cytotoxic molecules to characterize these cells in depth. We confirm in this study the significantly increased ex vivo frequency of Mtb-peptide/HLA-E-TM+ CD8+ T cells in the circulation of patients with active tuberculosis (TB). HLA-E restricted CD8+ T cells from TB patients produced more IL-13 than cells from controls or subjects with latent tuberculosis infection (LTBI). Compared to total CD8+ T cells, HLA-E restricted cells produced more IFNγ, IL-4, IL-10, and granulysin but less granzyme-A. Moreover, compared to "classical" Mtb specific HLA-A2 restricted CD8+ T cells, HLA-E restricted CD8+ T cells produced less TNFα and perforin, but more IL-4. In conclusion, HLA-E restricted- Mtb specific cells can produce Th2 cytokines directly.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | | | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadia Caccamo
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol Cell Biol 2018; 96:137-148. [PMID: 29363167 DOI: 10.1111/imcb.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Abstract
Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
30
|
McMurtrey C, Harriff MJ, Swarbrick GM, Duncan A, Cansler M, Null M, Bardet W, Jackson KW, Lewinsohn DA, Hildebrand W, Lewinsohn DM. T cell recognition of Mycobacterium tuberculosis peptides presented by HLA-E derived from infected human cells. PLoS One 2017; 12:e0188288. [PMID: 29176828 PMCID: PMC5703486 DOI: 10.1371/journal.pone.0188288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
HLA-E is a non-conventional MHC Class I molecule that has been recently demonstrated to present pathogen-derived ligands, resulting in the TCR-dependent activation of αβ CD8+ T cells. The goal of this study was to characterize the ligandome displayed by HLA-E following infection with Mycobacterium tuberculosis (Mtb) using an in-depth mass spectrometry approach. Here we identified 28 Mtb ligands derived from 13 different source proteins, including the Esx family of proteins. When tested for activity with CD8+ T cells isolated from sixteen donors, nine of the ligands elicited an IFN-γ response from at least one donor, with fourteen of 16 donors responding to the Rv0634A19-29 peptide. Further evaluation of this immunodominant peptide response confirmed HLA-E restriction and the presence of Rv0634A19-29-reactive CD8+ T cells in the peripheral blood of human donors. The identification of an Mtb HLA-E ligand that is commonly recognized may provide a target for a non-traditional vaccine strategy.
Collapse
Affiliation(s)
- Curtis McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Melanie J. Harriff
- VA Portland Health Care System, Portland, OR, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Gwendolyn M. Swarbrick
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Amanda Duncan
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Meghan Cansler
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Megan Null
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Kenneth W. Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Deborah A. Lewinsohn
- Department of Pediatric Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - David M. Lewinsohn
- VA Portland Health Care System, Portland, OR, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, OR, United States of America
| |
Collapse
|
31
|
Durantel D, Kusters I, Louis J, Manel N, Ottenhoff THM, Picot V, Saaadatian-Elahi M. Mechanisms behind TB, HBV, and HIV chronic infections. INFECTION GENETICS AND EVOLUTION 2017; 55:142-150. [PMID: 28919545 DOI: 10.1016/j.meegid.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical for pathogens to maintain their presence within hosts, giving rise to chronic infections. Here, we examine the immune evasion strategies employed by three pathogens with high medical burden, namely, tuberculosis, HIV and HBV. Establishment of chronic infection by these pathogens is a multi-step process that involves an interplay between restriction factor, innate immunity and adaptive immunity. Engagement of these host defences is intimately linked with specific steps within the pathogen replication cycles. Critical host factors are increasingly recognized to regulate immune evasion and susceptibility to disease. Fuelled by innovative technology development, the understanding of these mechanisms provides critical knowledge for rational design of vaccines and therapeutic immune strategies.
Collapse
Affiliation(s)
- David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, CNRS, University of Lyon, UMR_5286, LabEx DEVweCAN, Lyon, France
| | - Inca Kusters
- Sanofi Pasteur, 2 Avenue du Pont Pasteur, 69367 Lyon Cedex 07, France
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institute Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Tom H M Ottenhoff
- Group Immunology and Immunogenetics of Bacterial Infectious Diseases, Dept. of Infectious Diseases, Leiden University Medical Center, Bldg. 1, Rm # C-05-43 Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Mitra Saaadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| |
Collapse
|
32
|
Danelishvili L, Chinison JJJ, Pham T, Gupta R, Bermudez LE. The Voltage-Dependent Anion Channels (VDAC) of Mycobacterium avium phagosome are associated with bacterial survival and lipid export in macrophages. Sci Rep 2017; 7:7007. [PMID: 28765557 PMCID: PMC5539096 DOI: 10.1038/s41598-017-06700-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/16/2017] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis is associated with infection of immunocompromised individuals as well as patients with chronic lung disease. M. avium infects macrophages and actively interfere with the host killing machinery such as apoptosis and autophagy. Bacteria alter the normal endosomal trafficking, prevent the maturation of phagosomes and modify many signaling pathways inside of the macrophage by secreting effector molecules into the cytoplasm. To investigate whether M. avium needs to attach to the internal surface of the vacuole membrane before releasing efferent molecules, vacuole membrane proteins were purified and binding to the surface molecules present in intracellular bacteria was evaluated. The voltage-dependent anion channels (VDAC) were identified as components of M. avium vacuoles in macrophages. M. avium mmpL4 proteins were found to bind to VDAC-1 protein. The inactivation of VDAC-1 function either by pharmacological means or siRNA lead to significant decrease of M. avium survival. Although, we could not establish a role of VDAC channels in the transport of known secreted M. avium proteins, we demonstrated that the porin channels are associated with the export of bacterial cell wall lipids outside of vacuole. Suppression of the host phagosomal transport systems and the pathogen transporter may serve as therapeutic targets for infectious diseases.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.
| | - Jessica J J Chinison
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.,Department of Microbiology, College of Science, Corvallis, OR, USA
| | - Tuan Pham
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Rashmi Gupta
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA.,College of Medicine, University of Central Florida, Orlando, Florida, 32827, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Corvallis, OR, USA. .,Department of Microbiology, College of Science, Corvallis, OR, USA.
| |
Collapse
|
33
|
Blischak JD, Tailleux L, Myrthil M, Charlois C, Bergot E, Dinh A, Morizot G, Chény O, Platen CV, Herrmann JL, Brosch R, Barreiro LB, Gilad Y. Predicting susceptibility to tuberculosis based on gene expression profiling in dendritic cells. Sci Rep 2017; 7:5702. [PMID: 28720766 PMCID: PMC5516010 DOI: 10.1038/s41598-017-05878-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Tuberculosis (TB) is a deadly infectious disease, which kills millions of people every year. The causative pathogen, Mycobacterium tuberculosis (MTB), is estimated to have infected up to a third of the world's population; however, only approximately 10% of infected healthy individuals progress to active TB. Despite evidence for heritability, it is not currently possible to predict who may develop TB. To explore approaches to classify susceptibility to TB, we infected with MTB dendritic cells (DCs) from putatively resistant individuals diagnosed with latent TB, and from susceptible individuals that had recovered from active TB. We measured gene expression levels in infected and non-infected cells and found hundreds of differentially expressed genes between susceptible and resistant individuals in the non-infected cells. We further found that genetic polymorphisms nearby the differentially expressed genes between susceptible and resistant individuals are more likely to be associated with TB susceptibility in published GWAS data. Lastly, we trained a classifier based on the gene expression levels in the non-infected cells, and demonstrated reasonable performance on our data and an independent data set. Overall, our promising results from this small study suggest that training a classifier on a larger cohort may enable us to accurately predict TB susceptibility.
Collapse
Affiliation(s)
- John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Ludovic Tailleux
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France.
| | - Marsha Myrthil
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Cécile Charlois
- Centre de Lutte Antituberculeuse de Paris, DASES Mairie de Paris, 75013, Paris, France
| | - Emmanuel Bergot
- Service de pneumologie et oncologie thoracique, CHU Côte de Nacre, 14033, Caen, France
| | - Aurélien Dinh
- Maladies Infectieuses, AP-HP, Hôpital Universitaire Raymond-Poincaré, Garches, 92380, France
| | - Gloria Morizot
- Clinical Investigation & Access Biological Resources (ICAReB), Institut Pasteur, Paris, France
| | - Olivia Chény
- Clinical Core, Centre for Translational Science, Institut Pasteur, Paris, France
| | - Cassandre Von Platen
- Clinical Core, Centre for Translational Science, Institut Pasteur, Paris, France
| | - Jean-Louis Herrmann
- INSERM, U1173, UFR Simone Veil, Université de Versailles Saint Quentin, Saint Quentin en Yvelines, France
- APHP, Groupe Hospitalo-Universitaire Paris Île-de-France Ouest, Garches et Boulogne-Billancourt, France
| | - Roland Brosch
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Québec, Canada.
- Department of Pediatrics, University of Montreal, Montreal, Québec, Canada.
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
34
|
Type II Secretion Substrates of Legionella pneumophila Translocate Out of the Pathogen-Occupied Vacuole via a Semipermeable Membrane. mBio 2017. [PMID: 28634242 PMCID: PMC5478897 DOI: 10.1128/mbio.00870-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Legionella pneumophila replicates in macrophages in a host-derived phagosome, termed the Legionella-containing vacuole (LCV). While the translocation of type IV secretion (T4S) effectors into the macrophage cytosol is well established, the location of type II secretion (T2S) substrates in the infected host cell is unknown. Here, we show that the T2S substrate ProA, a metalloprotease, translocates into the cytosol of human macrophages, where it associates with the LCV membrane (LCVM). Translocation is detected as early as 10 h postinoculation (p.i.), which is approximately the midpoint of the intracellular life cycle. However, it is detected as early as 6 h p.i. if ProA is hyperexpressed, indicating that translocation depends on the timing of ProA expression and that any other factors necessary for translocation are in place by that time point. Translocation occurs with all L. pneumophila strains tested and in amoebae, natural hosts for L. pneumophila. It was absent in murine bone marrow-derived macrophages and murine macrophage cell lines. The ChiA chitinase also associated with the cytoplasmic face of the LCVM at 6 h p.i. and in a T2S-dependent manner. Galectin-3 and galectin-8, eukaryotic proteins whose localization is influenced by damage to host membranes, appeared within the LCV of infected human but not murine macrophages beginning at 6 h p.i. Thus, we hypothesize that ProA and ChiA are first secreted into the vacuolar lumen by the activity of the T2S and subsequently traffic into the macrophage cytosol via a novel mechanism that involves a semipermeable LCVM. Infection of macrophages and amoebae plays a central role in the pathogenesis of L. pneumophila, the agent of Legionnaires’ disease. We have previously demonstrated that the T2S system of L. pneumophila greatly contributes to intracellular infection. However, the location of T2S substrates within the infected host cell is unknown. This report presents the first evidence of a L. pneumophila T2S substrate in the host cell cytosol and, therefore, the first evidence of a non-T4S effector trafficking out of the LCV. We also provide the first indication that the LCV is not completely intact but is instead semipermeable and that this occurs in human but not murine macrophages. Given this permeability, we hypothesize that other T2S substrates and LCV lumenal contents can escape into the host cell cytosol. Thus, these substrates may represent a battery of previously unidentified effectors that can interact with host factors and contribute to intracellular infection by L. pneumophila.
Collapse
|
35
|
Grotzke JE, Sengupta D, Lu Q, Cresswell P. The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin Immunol 2017; 46:89-96. [PMID: 28528219 PMCID: PMC5554740 DOI: 10.1016/j.coi.2017.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022]
Abstract
Cross-presentation is an MHC-I antigen processing pathway that results in the presentation of peptides from exogenous viral, bacterial, parasitic, and tumor antigens and ultimately leads to priming of naïve CD8+ T cells. This process involves several cellular compartments and multiple components. Successful generation of MHC-I-peptide complexes requires that these components act together in a coordinated fashion. We discuss recent findings on the source of MHC-I, the role of the TAP transporter, the importance of intracellular trafficking events, mechanisms of antigen access the cytosol, and how innate immune signals can affect presentation, with an emphasis on how these pathways compare to conventional antigen presentation and how they correlate with existing data.
Collapse
Affiliation(s)
- Jeff E Grotzke
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8011, United States.
| |
Collapse
|
36
|
McMichael AJ, Picker LJ. Unusual antigen presentation offers new insight into HIV vaccine design. Curr Opin Immunol 2017; 46:75-81. [PMID: 28505602 DOI: 10.1016/j.coi.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Deparment of Medicine, Oxford University, Old Road Campus, Oxford OX37FZ, UK.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| |
Collapse
|
37
|
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H, Wang CR. MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 2017; 13:e1006384. [PMID: 28475642 PMCID: PMC5435364 DOI: 10.1371/journal.ppat.1006384] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity. The disease tuberculosis (TB) is caused by the microbe Mycobacterium tuberculosis (Mtb), and remains a major public health concern. More research is needed to understand the diverse immune responses against Mtb to develop better vaccines. Mouse Qa-1 and its human counterpart HLA-E are nonclassical MHC I molecules that can activate or inhibit immune responses in a variety of diseases. However, their role during the immune response to Mtb remains unknown. We found that Qa-1 can present Mtb peptides to activate CD8+ T effector cells during aerosol Mtb infection. Further, Mtb-infected mice that lacked Qa-1 (Qa-1-/-) had higher numbers of bacteria and died more often than infected mice that expressed Qa-1 (Qa-1+/+). The lack of Qa-1 results in over-activation of the immune response upon infection, which is less efficient in controlling Mtb. Using mice expressing different mutant forms of Qa-1, we showed that Qa-1 can regulate immune responses against Mtb through the interaction with inhibitory CD94/NKG2A receptors as well as the activation of regulatory CD8+ T cells. We believe our study sheds light on the diverse mechanisms at play in generating protective immune responses against Mtb and will inform future mouse and human studies.
Collapse
Affiliation(s)
- Yao Bian
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Shaobin Shang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Jie Zhao
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School Boston, Massachusetts, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J Immunol Res 2016; 2016:2695396. [PMID: 27699181 PMCID: PMC5028793 DOI: 10.1155/2016/2695396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+ T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
39
|
Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, Reed JS, Gilbride RM, Ainslie E, Morrow DW, Ford JC, Selseth AN, Pathak R, Malouli D, Legasse AW, Axthelm MK, Nelson JA, Gillespie GM, Walters LC, Brackenridge S, Sharpe HR, López CA, Früh K, Korber BT, McMichael AJ, Gnanakaran S, Sacha JB, Picker LJ. Broadly targeted CD8⁺ T cell responses restricted by major histocompatibility complex E. Science 2016; 351:714-20. [PMID: 26797147 PMCID: PMC4769032 DOI: 10.1126/science.aac9475] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αβ(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Helen L. Wu
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - David W. Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Reesab Pathak
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - Lucy C. Walters
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - Hannah R. Sharpe
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - César A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
- The New Mexico Consortium, Los Alamos, NM 87545
| | - Andrew J. McMichael
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
40
|
Camilli G, Cassotta A, Battella S, Palmieri G, Santoni A, Paladini F, Fiorillo MT, Sorrentino R. Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation. J Leukoc Biol 2016; 99:121-30. [PMID: 26310830 DOI: 10.1189/jlb.1a0415-172r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
HLA-E is a nonclassical HLA-class I molecule whose best known role is to protect from the natural killer cells. More recently, an additional function more similar to that of classical HLA-class I molecules, i.e., antigen presentation to T cells, is emerging. However, much remains to be explored about the intracellular trafficking of the HLA-E molecules. With the use of 3 different cellular contexts, 2 monocytic cell lines, U937 and THP1, and peripheral blood monocytes, we show here a remarkable increase of HLA-E during monocyte-macrophage differentiation. This goes independently from the classical HLA-class I, the main source of HLA-E-specific peptides, which is found strongly up-regulated upon differentiation of peripheral blood monocytes but not at all in the case of U937 and THP1 cell lines. Although in all cases, there was a moderate increase of HLA-E expressed in the cell surface, lysis by natural killer cells is comparably restored by an anti-NKG2A antibody in untreated as well as in PMA-differentiated U937 cells. Instead, the great majority of the HLA-E is retained in the vesicles of the autophagy-lysosome network, where they colocalize with the microtubule-associated protein light chain 3, as well as with the lysosomal-associated membrane protein 1. We conclude that differently from the classical HLA-class I molecules, the primary destination of the newly synthesized HLA-E molecules in macrophages is, rather than the cell membrane, the intracellular autophagy-lysosomal vesicles where they are stored and where they can encounter the exogenous antigens.
Collapse
Affiliation(s)
- Giorgio Camilli
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Antonino Cassotta
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Simone Battella
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Gabriella Palmieri
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Angela Santoni
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Fabiana Paladini
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Maria Teresa Fiorillo
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Rosa Sorrentino
- Departments of *Biology and Biotechnology "Charles Darwin," Experimental Medicine, and Molecular Medicine, and Institute Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| |
Collapse
|
41
|
Grotzke JE, Cresswell P. Are ERAD components involved in cross-presentation? Mol Immunol 2015; 68:112-5. [PMID: 26005101 DOI: 10.1016/j.molimm.2015.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 10/23/2022]
Abstract
A long unanswered question in the antigen presentation field is how exogenous antigens cross-presented by Major Histocompatibility Complex class I (MHC-I) molecules to CD8(+) T cells are translocated into the cytosol. Here we discuss the known mechanisms involved in this process with a focus on the hypothesized role of the machinery that functions in endoplasmic reticulum-associated degradation (ERAD). Other potential mechanisms of antigen entry to the cytosol are also discussed.
Collapse
Affiliation(s)
- Jeff E Grotzke
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Cresswell
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Caccamo N, Pietra G, Sullivan LC, Brooks AG, Prezzemolo T, La Manna MP, Di Liberto D, Joosten SA, van Meijgaarden KE, Di Carlo P, Titone L, Moretta L, Mingari MC, Ottenhoff THM, Dieli F. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 2015; 45:1069-81. [PMID: 25631937 DOI: 10.1002/eji.201445193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022]
Abstract
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB.
Collapse
Affiliation(s)
- Nadia Caccamo
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
van Meijgaarden KE, Haks MC, Caccamo N, Dieli F, Ottenhoff THM, Joosten SA. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog 2015; 11:e1004671. [PMID: 25803478 PMCID: PMC4372528 DOI: 10.1371/journal.ppat.1004671] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/08/2015] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial antigens are not exclusively presented to T-cells by classical HLA-class Ia and HLA-class II molecules, but also through alternative antigen presentation molecules such as CD1a/b/c, MR1 and HLA-E. We recently described mycobacterial peptides that are presented in HLA-E and recognized by CD8+ T-cells. Using T-cell cloning, phenotyping, microbiological, functional and RNA-expression analyses, we report here that these T-cells can exert cytolytic or suppressive functions, inhibit mycobacterial growth, yet express GATA3, produce Th2 cytokines (IL-4,-5,-10,-13) and activate B-cells via IL-4. In TB patients, Mtb specific cells were detectable by peptide-HLA-E tetramers, and IL-4 and IL-13 were produced following peptide stimulation. These results identify a novel human T-cell subset with an unorthodox, multifunctional Th2 like phenotype and cytolytic or regulatory capacities, which is involved in the human immune response to mycobacteria and demonstrable in active TB patients' blood. The results challenge the current dogma that only Th1 cells are able to inhibit Mtb growth and clearly show that Th2 like cells can strongly inhibit outgrowth of Mtb from human macrophages. These insights significantly expand our understanding of the immune response in infectious disease.
Collapse
Affiliation(s)
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadia Caccamo
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Abstract
Tuberculosis (TB) remains a devastating infectious disease and, with the emergence of multidrug-resistant forms, represents a major global threat. Much of our understanding of pathogenic and immunologic mechanisms in TB has derived from studies in experimental animals. However, it is becoming increasingly clear in TB as well as in other inflammatory diseases that there are substantial differences in immunological responses of humans not found or predicted by animal studies. Thus, it is critically important to understand mechanisms of pathogenesis and immunological protection in humans. In this review, we will address the key immunological question: What are the necessary and sufficient immune responses required for protection against TB infection and disease in people-specifically protection against infection, protection against the establishment of latency or persistence, and protection against transitioning from latent infection to active disease.
Collapse
Affiliation(s)
- Robert L Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Lindestam Arlehamn CS, Lewinsohn D, Sette A, Lewinsohn D. Antigens for CD4 and CD8 T cells in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018465. [PMID: 24852051 DOI: 10.1101/cshperspect.a018465] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (MTB), represents an important cause of morbidity and mortality worldwide for which an improved vaccine and immunodiagnostics are urgently needed. CD4(+) and CD8(+) T cells play an important role in host defense to TB. Definition of the antigens recognized by these T cells is critical for improved understanding of the immunobiology of TB and for development of vaccines and diagnostics. Herein, the antigens and epitopes recognized by classically HLA class I- and II-restricted CD4(+) and CD8(+) T cells in humans infected with MTB are reviewed. Immunodominant antigens and epitopes have been defined using approaches targeting particular TB proteins or classes of proteins and by genome-wide discovery approaches. Antigens and epitopes recognized by classically restricted CD4(+) and CD8(+) T cells show extensive breadth and diversity in MTB-infected humans.
Collapse
Affiliation(s)
| | - David Lewinsohn
- Oregon Health and Science University, Portland, Oregon 97239 Portland VA Medical Center, Portland, Oregon 97239
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | | |
Collapse
|
46
|
Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC, Lewinsohn DM. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8⁺ T cells. PLoS One 2014; 9:e97515. [PMID: 24828674 PMCID: PMC4020835 DOI: 10.1371/journal.pone.0097515] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/16/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8⁺ T cells (MAIT cells). Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8⁺ T cells.
Collapse
Affiliation(s)
- Melanie J. Harriff
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Katelynne Gardner Toren
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Elizabeth T. Canfield
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Stephen Kwak
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - David M. Lewinsohn
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| |
Collapse
|
47
|
Steinhäuser C, Dallenga T, Tchikov V, Schaible UE, Schütze S, Reiling N. Immunomagnetic Isolation of Pathogen‐Containing Phagosomes and Apoptotic Blebs from Primary Phagocytes. ACTA ACUST UNITED AC 2014; 105:14.36.1-14.36.26. [DOI: 10.1002/0471142735.im1436s105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Christine Steinhäuser
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Tobias Dallenga
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Vladimir Tchikov
- Institute of Immunology, Christian‐Albrechts‐University of Kiel Kiel Germany
| | - Ulrich E. Schaible
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| | - Stefan Schütze
- Institute of Immunology, Christian‐Albrechts‐University of Kiel Kiel Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel Germany
| |
Collapse
|
48
|
Mohammed NA, Qassem H, Hassen F. Association between HLA-Class I and HLA-Class II Alleles and Mycobacterium Tuberculosis Infection in Iraqi Patients from Baghdad City. IRANIAN JOURNAL OF MEDICAL SCIENCES 2014; 39:191-5. [PMID: 24753642 PMCID: PMC3993047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/29/2012] [Accepted: 10/21/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pulmonary tuberculosis (PT) is one of the endemic diseases in Iraq, and among the suggested predisposing factors are alleles of the human leukocyte antigen (HLA) system. We sought to investigate the association between HLA-class I (A and B) and -class II (DR and DQ) alleles in a sample of PT Iraqi patients. METHODS lymphocytes of 105 PT patients and 40 controls were phenotyped for HLA-A, -B, -DR, and -DQ alleles by means of the microlymphocytotoxicity test using a panel of monoclonal antisera. RESULTS HLA frequencies of B18 (16.2 vs. 2.5%; OD=7.53) and DR1 (51.4 vs. 10.0%; OD=9.53) alleles were significantly increased in the patients as compared with the controls, while B5 (6.7 vs. 25.0%), DR8 (1.9 vs. 17.5%), and DQ3 (11.4 vs. 45.0%) alleles were significantly decreased. However, a significant corrected level was maintained for only DR1, DR8, and DQ3 alleles (Pc=1.9×10(-5), 0.02 and 1.0×10(-4), respectively). CONCLUSION The results confirm the predisposing and protecting roles of HLA alleles in PT.
Collapse
Affiliation(s)
| | - Haitham Qassem
- Microbiologist, College of Pharmacy, Al Mustansiyria University, Baghdad, Iraq
| | - Farouk Hassen
- Department of Microbiology, College of Medicine, Al Mustansiyria University, Baghdad, Iraq
| |
Collapse
|
49
|
Cheng Y, Liu Y, Wu B, Zhang JZ, Gu J, Liao YL, Wang FK, Mao XH, Yu XJ. Proteomic analysis of the Ehrlichia chaffeensis phagosome in cultured DH82 cells. PLoS One 2014; 9:e88461. [PMID: 24558391 PMCID: PMC3928192 DOI: 10.1371/journal.pone.0088461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/07/2014] [Indexed: 02/02/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that resides and multiplies within cytoplasmic vacuoles of phagocytes. The Ehrlichia-containing vacuole (ECV) does not fuse with lysosomes, an essential condition for Ehrlichia to survive inside phagocytes, but the mechanism of inhibiting the fusion of the phagosome with lysosomes is not clear. Understanding the ECV molecular composition may decipher the mechanism by which Ehrlichia inhibits phagosome-lysosome fusion. In this study, we obtained highly purified ECVs from E. chaffeensis-infected DH82 cells by sucrose density gradient centrifugation and analyzed their composition by mass spectrometry-based proteomics. The ECV composition was compared with that of phagolysosomes containing latex beads. Lysosomal proteins such as cathepsin D, cathepsin S, and lysosomal acid phosphatase were not detected in E. chaffeensis phagosome preparations. Some small GTPases, involved in membrane dynamics and phagocytic trafficking, were detected in ECVs. A notable finding was that Rab7, a late endosomal marker, was consistently detected in E. chaffeensis phagosomes by mass spectrometry. Confocal microscopy confirmed that E. chaffeensis phagosomes contained Rab7 and were acidified at approximately pH 5.2, suggesting that the E. chaffeensis vacuole was an acidified late endosomal compartment. Our results also demonstrated by mass spectrometry and immunofluorescence analysis that Ehrlichia morulae were not associated with the autophagic pathway. Ehrlichia chaffeensis did not inhibit phagosomes containing latex beads from fusing with lysosomes in infected cells. We concluded that the E. chaffeensis vacuole was a late endosome and E. chaffeensis might inhibit phagosome-lysosome fusion by modifying its vacuolar membrane composition, rather than by regulating the expression of host genes involved in trafficking.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Yan Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Anhui Province Center for Disease Control and Prevention, Hefei, China
| | - Bin Wu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Jian-zhi Zhang
- School of Health Professions, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiang Gu
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | - Ya-ling Liao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | - Fu-kun Wang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
- * E-mail: (XJY); (XM)
| | - Xue-jie Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- School of Public Health, Shandong University, Jinan, China
- * E-mail: (XJY); (XM)
| |
Collapse
|
50
|
Harriff MJ, Burgdorf S, Kurts C, Wiertz EJHJ, Lewinsohn DA, Lewinsohn DM. TAP mediates import of Mycobacterium tuberculosis-derived peptides into phagosomes and facilitates loading onto HLA-I. PLoS One 2013; 8:e79571. [PMID: 24244525 PMCID: PMC3823705 DOI: 10.1371/journal.pone.0079571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 01/14/2023] Open
Abstract
Processing and presentation of antigen on MHC-I class I molecules serves to present peptides derived from cytosolic proteins to CD8+ T cells. Infection with bacteria that remain in phagosomal compartments, such as Mycobacterium tuberculosis (Mtb), provides a challenge to this immune recognition as bacterial proteins are segregated from the cytosol. Previously we identified the Mtb phagosome itself as an organelle capable of loading MHC Class I molecules with Mtb antigens. Here, we find that the TAP transporter, responsible for importing peptides into the ER for loading in Class I molecules, is both present and functional in Mtb phagosomes. Furthermore, we describe a novel peptide reagent, representing the N-terminal domain of the bovine herpes virus UL49.5 protein, which is capable of specifically inhibiting the lumenal face of TAP. Together, these results provide insight into the mechanism by which peptides from intra-phagosomal pathogens are loaded onto Class I molecules.
Collapse
Affiliation(s)
- Melanie J. Harriff
- Portland VA Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail: (DL); (MH)
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Emmanuel J. H. J. Wiertz
- University Medical Center Utrecht, Utrecht, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Deborah A. Lewinsohn
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - David M. Lewinsohn
- Portland VA Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail: (DL); (MH)
| |
Collapse
|