1
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
2
|
Rashid F, Zaongo SD, Iqbal H, Harypursat V, Song F, Chen Y. Interactions between HIV proteins and host restriction factors: implications for potential therapeutic intervention in HIV infection. Front Immunol 2024; 15:1390650. [PMID: 39221250 PMCID: PMC11361988 DOI: 10.3389/fimmu.2024.1390650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood. We therefore propose, in this review article, to examine and discuss the HIV proteins that counteract those host restriction proteins which results directly in increased infectivity of HIV. We elaborate on HIV proteins that antagonize host cellular proteins to promote HIV replication, and thus HIV infection. We examine the functions and mechanisms via which Nef, Vif, Vpu, Env, Vpr, and Vpx counteract host proteins such as Ser5, PSGL-1, IFITMS, A3G, tetherin, GBP5, SAMHD1, STING, HUSH, REAF, and TET2 to increase HIV infectivity. Nef antagonizes three host proteins, viz., Ser5, PSGL1, and IFITIMs, while Vpx also antagonizes three host restriction factors, viz., SAMHD1, STING, and HUSH complex; therefore, these proteins may be potential candidates for therapeutic intervention in HIV infection. Tetherin is targeted by Vpu and Env, PSGL1 is targeted by Nef and Vpu, while Ser5 is targeted by Nef and Env proteins. Finally, conclusive remarks and future perspectives are also presented.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hifza Iqbal
- School of science, University of Management and Technology, Lahore, Pakistan
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
3
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
5
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. Nat Commun 2024; 15:5514. [PMID: 38951492 PMCID: PMC11217462 DOI: 10.1038/s41467-024-49635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
Affiliation(s)
- Maria C Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barkha Ramnani
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - W Miguel Disbennett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Post-Baccalaureate Research Education Program (PREP), University of Michigan, Ann Arbor, MI, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Lubow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- ImmunoVec, Inc., Los Angeles, CA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
7
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
8
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.21.533528. [PMID: 36993393 PMCID: PMC10055223 DOI: 10.1101/2023.03.21.533528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
|
9
|
Marceau T, Braibant M. Role of Viral Envelope Proteins in Determining Susceptibility of Viruses to IFITM Proteins. Viruses 2024; 16:254. [PMID: 38400030 PMCID: PMC10892237 DOI: 10.3390/v16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of proteins which inhibit infections of various enveloped viruses. While their general mechanism of inhibition seems to be non-specific, involving the tightening of membrane structures to prevent fusion between the viral envelope and cell membrane, numerous studies have underscored the importance of viral envelope proteins in determining the susceptibility of viruses to IFITMs. Mutations in envelope proteins may lead to viral escape from direct interaction with IFITM proteins or result in indirect resistance by modifying the viral entry pathway, allowing the virus to modulate its exposure to IFITMs. In a broader context, the nature of viral envelope proteins and their interaction with IFITMs can play a crucial role in the context of adaptive immunity, leading to viral envelope proteins that are more susceptible to antibody neutralization. The precise mechanisms underlying these observations remain unclear, and further studies in this field could contribute to a better understanding of how IFITMs control viral infections.
Collapse
|
10
|
Verma S, Chen YC, Marin M, Gillespie SE, Melikyan GB. IFITM1 and IFITM3 Proteins Inhibit the Infectivity of Progeny HIV-1 without Disrupting Envelope Glycoprotein Clusters. Viruses 2023; 15:2390. [PMID: 38140631 PMCID: PMC10748374 DOI: 10.3390/v15122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Human interferon-induced transmembrane (IFITM) proteins inhibit the fusion of a broad spectrum of enveloped viruses, both when expressed in target cells and when present in infected cells. Upon expression in infected cells, IFITMs incorporate into progeny virions and reduce their infectivity by a poorly understood mechanism. Since only a few envelope glycoproteins (Envs) are present on HIV-1 particles, and Env clustering has been proposed to be essential for optimal infectivity, we asked if IFITM protein incorporation modulates HIV-1 Env clustering. The incorporation of two members of the IFITM family, IFITM1 and IFITM3, into HIV-1 pseudoviruses correlated with a marked reduction of infectivity. Super-resolution imaging of Env distribution on single HIV-1 pseudoviruses did not reveal significant effects of IFITMs on Env clustering. However, IFITM3 reduced the Env processing and incorporation into virions relative to the control and IFITM1-containing viruses. These results show that, in addition to interfering with the Env function, IFITM3 restricts HIV-1 Env cleavage and incorporation into virions. The lack of notable effect of IFITMs on Env clustering supports alternative restriction mechanisms, such as modification of the properties of the viral membrane.
Collapse
Affiliation(s)
- Smita Verma
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Yen-Cheng Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| | - Scott E. Gillespie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.V.); (Y.-C.C.); (M.M.)
- Children’s Hospital of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Marziali F, Song Y, Nguyen XN, Belmudes L, Burlaud-Gaillard J, Roingeard P, Couté Y, Cimarelli A. A Proteomics-Based Approach Identifies the NEDD4 Adaptor NDFIP2 as an Important Regulator of Ifitm3 Levels. Viruses 2023; 15:1993. [PMID: 37896772 PMCID: PMC10611234 DOI: 10.3390/v15101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
IFITMs are a family of highly related interferon-induced transmembrane proteins that interfere with the processes of fusion between viral and cellular membranes and are thus endowed with broad antiviral properties. A number of studies have shown how the antiviral potency of IFITMs is highly dependent on their steady-state levels, their intracellular distribution and a complex pattern of post-translational modifications, parameters that are overall tributary of a number of cellular partners. In an effort to identify additional protein partners involved in the biology of IFITMs, we devised a proteomics-based approach based on the piggyback incorporation of IFITM3 partners into extracellular vesicles. MS analysis of the proteome of vesicles bearing or not bearing IFITM3 identified the NDFIP2 protein adaptor protein as an important regulator of IFITM3 levels. NDFIP2 is a membrane-anchored adaptor protein of the E3 ubiquitin ligases of the NEDD4 family that have already been found to be involved in IFITM3 regulation. We show here that NDFIP2 acts as a recruitment factor for both IFITM3 and NEDD4 and mediates their distribution in lysosomal vesicles. The genetic inactivation and overexpression of NDFIP2 drive, respectively, lower and higher levels of IFITM3 accumulation in the cell, overall suggesting that NDFIP2 locally competes with IFITM3 for NEDD4 binding. Given that NDFIP2 is itself tightly regulated and highly responsive to external cues, our study sheds light on a novel and likely dynamic layer of regulation of IFITM3.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Yuxin Song
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Xuan-Nhi Nguyen
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, 38000 Grenoble, France; (L.B.); (Y.C.)
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (J.B.-G.); (P.R.)
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (J.B.-G.); (P.R.)
- INSERM U1259, Université de Tours et CHU de Tours, 37000 Tours, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, 38000 Grenoble, France; (L.B.); (Y.C.)
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| |
Collapse
|
12
|
Prikryl D, Marin M, Desai TM, Du Y, Fu H, Melikyan GB. Cyclosporines Antagonize the Antiviral Activity of IFITMProteins by Redistributing Them toward the Golgi Apparatus. Biomolecules 2023; 13:937. [PMID: 37371517 PMCID: PMC10296495 DOI: 10.3390/biom13060937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) block the fusion of diverse enveloped viruses, likely through increasing the cell membrane's rigidity. Previous studies have reported that the antiviral activity of the IFITM family member, IFITM3, is antagonized by cell pretreatment with rapamycin derivatives and cyclosporines A and H (CsA and CsH) that promote the degradation of IFITM3. Here, we show that CsA and CsH potently enhance virus fusion with IFITM1- and IFITM3-expressing cells by inducing their rapid relocalization from the plasma membrane and endosomes, respectively, towards the Golgi. This relocalization is not associated with a significant degradation of IFITMs. Although prolonged exposure to CsA induces IFITM3 degradation in cells expressing low endogenous levels of this protein, its levels remain largely unchanged in interferon-treated cells or cells ectopically expressing IFITM3. Importantly, the CsA-mediated redistribution of IFITMs to the Golgi occurs on a much shorter time scale than degradation and thus likely represents the primary mechanism of enhancement of virus entry. We further show that rapamycin also induces IFITM relocalization toward the Golgi, albeit less efficiently than cyclosporines. Our findings highlight the importance of regulation of IFITM trafficking for its antiviral activity and reveal a novel mechanism of the cyclosporine-mediated modulation of cell susceptibility to enveloped virus infection.
Collapse
Affiliation(s)
- David Prikryl
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Tanay M. Desai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Carl Zeiss Microscopy, White Plains, NY 10601, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Zhang L, Yang G, Wang J, Zhang J, Chen K, Xiong X, Zhu Y, Xu C, Wang J. Ethyl Gallate Inhibits Bovine Viral Diarrhea Virus by Promoting IFITM3 Expression, Lysosomal Acidification and Protease Activity. Int J Mol Sci 2023; 24:ijms24108637. [PMID: 37239983 DOI: 10.3390/ijms24108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a highly contagious viral disease which causes economic losses to the cattle industry. Ethyl gallate (EG) is a phenolic acid derivative which has various potentials to modulate the host response to pathogens, such as via antioxidant activity, antibacterial activity, inhibition of the production of cell adhesion factors, and so on. This study aimed to evaluate if EG influences BVDV infection in Madin-Darby Bovine Kidney (MDBK) cells, and to understand the antiviral mechanism. Data indicated that EG effectively inhibited BVDV infection by co-treatment and post-treatment in MDBK cells with noncytotoxic doses. In addition, EG suppressed BVDV infection at an early stage of the viral life cycle by blocking entry and replication steps but not viral attachment and release. Moreover, EG strongly inhibited BVDV infection by promoting interferon-induced transmembrane protein 3 (IFITM3) expression, which localized to the cytoplasm. The protein level of cathepsin B was significantly reduced by BVDV infection, whereas with treatment with EG, it was significantly enhanced. The fluorescence intensities of acridine orange (AO) staining were significantly decreased in BVDV-infected cells but increased in EG-treated cells. Finally, Western blot and immunofluorescence analyses demonstrated that EG treatment significantly enhanced the protein levels of autophagy markers LC3 and p62. Chloroquine (CQ) significantly increased IFITM3 expression, and Rapamycin significantly decreased it. Thus, EG may regulate IFITM3 expression through autophagy. Our results showed that EG could have a solid antiviral activity on BVDV replication in MDBK cells via increased IFITM3 expression, lysosomal acidification, protease activity, and regulated autophagy. EG might have value for further development as an antiviral agent.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Guanghui Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jun Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaoran Xiong
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
14
|
Unali G, Crivicich G, Pagani I, Abou‐Alezz M, Folchini F, Valeri E, Matafora V, Reisz JA, Giordano AMS, Cuccovillo I, Butta GM, Donnici L, D'Alessandro A, De Francesco R, Manganaro L, Cittaro D, Merelli I, Petrillo C, Bachi A, Vicenzi E, Kajaste‐Rudnitski A. Interferon‐inducible phospholipids govern
IFITM3
‐dependent endosomal antiviral immunity. EMBO J 2023; 42:e112234. [PMID: 36970857 PMCID: PMC10183820 DOI: 10.15252/embj.2022112234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.
Collapse
|
15
|
Confort MP, Duboeuf M, Thiesson A, Pons L, Marziali F, Desloire S, Ratinier M, Cimarelli A, Arnaud F. IFITMs from Naturally Infected Animal Species Exhibit Distinct Restriction Capacities against Toscana and Rift Valley Fever Viruses. Viruses 2023; 15:v15020306. [PMID: 36851520 PMCID: PMC9965546 DOI: 10.3390/v15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Rift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species.
Collapse
Affiliation(s)
- Marie-Pierre Confort
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
| | - Maëva Duboeuf
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
| | - Adrien Thiesson
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
| | - Léa Pons
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, F-69342 Lyon, France
| | - Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, F-69342 Lyon, France
| | - Sophie Desloire
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Nationale Supérieure de Lyon, F-69342 Lyon, France
- Correspondence: (A.C.); (F.A.); Tel.: +33-(0)-4-7272-8696 (A.C.); +33-4-3728-7612 (F.A.); Fax: +33-(0)-4-7272-8137 (A.C.); +33-4-3728-7605 (F.A.)
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL University, F-69007 Lyon, France
- Correspondence: (A.C.); (F.A.); Tel.: +33-(0)-4-7272-8696 (A.C.); +33-4-3728-7612 (F.A.); Fax: +33-(0)-4-7272-8137 (A.C.); +33-4-3728-7605 (F.A.)
| |
Collapse
|
16
|
IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem 2022; 299:102741. [PMID: 36435199 PMCID: PMC9800550 DOI: 10.1016/j.jbc.2022.102741] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are broad spectrum antiviral factors that inhibit the entry of a wide range of clinically important pathogens including influenza A virus, HIV-1, and Dengue virus. IFITMs are thought to act primarily by antagonizing virus-cell membrane fusion in this regard. However, recent work on these proteins has uncovered novel post-entry viral restriction mechanisms. IFITMs are also increasingly thought to have a role regulating immune responses, including innate antiviral and inflammatory responses as well as adaptive T-cell and B-cell responses. Further, IFITMs may have pathological activities in cancer, wherein IFITM expression can be a marker of therapeutically resistant and aggressive disease courses. In this review, we summarize the respective literatures concerning these apparently diverse functions with a view to identifying common themes and potentially yielding a more unified understanding of IFITM biology.
Collapse
|
17
|
Wang Z, Tuo X, Zhang J, Chai K, Tan J, Qiao W. Antiviral role of IFITM3 in prototype foamy virus infection. Virol J 2022; 19:195. [PMID: 36419065 PMCID: PMC9682733 DOI: 10.1186/s12985-022-01931-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) are retroviruses with unique replication strategies that cause lifelong latent infections in their hosts. FVs can also produce foam-like cytopathic effects in vitro. However, the effect of host cytokines on FV replication requires further investigation. Although interferon induced transmembrane (IFITMs) proteins have become the focus of antiviral immune response research due to their broad-spectrum antiviral ability, it remains unclear whether IFITMs can affect FV replication. METHOD In this study, the PFV virus titer was characterized by measuring luciferase activity after co-incubation of PFVL cell lines with the cell culture supernatants (cell-free PFV) or the cells transfected with pcPFV plasmid/infected with PFV (cell-associated PFV). The foam-like cytopathic effects of PFV infected cells was observed to reflect the virus replication. The total RNA of PFV infected cells was extracted, and the viral genome was quantified by Quantitative reverse transcription PCR to detect the PFV entry into target cells. RESULTS In the present study, we demonstrated that IFITM1-3 overexpression inhibited prototype foamy virus (PFV) replication. In addition, an IFITM3 knockdown by small interfering RNA increased PFV replication. We further demonstrated that IFITM3 inhibited PFV entry into host cells. Moreover, IFITM3 also reduced the number of PFV envelope proteins, which was related to IFITM3 promoted envelope degradation through the lysosomal pathway. CONCLUSIONS Taken together, these results demonstrate that IFITM3 inhibits PFV replication by inhibiting PFV entry into target cells and reducing the number of PFV envelope.
Collapse
Affiliation(s)
- Zhaohuan Wang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Xiaopeng Tuo
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,Present Address: Merck Sharp & Dohme Corp, Building 21, Rongda Road, Chaoyang District, Beijing, 1000102 People’s Republic of China
| | - Junshi Zhang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417031.00000 0004 1799 2675Present Address: Department of Hematology, Oncology Centrer, Tianjin People’s Hospital, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Keli Chai
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.417303.20000 0000 9927 0537Present Address: Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002 Jiangsu China
| | - Juan Tan
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Wentao Qiao
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
18
|
Pang Z, Hao P, Qu Q, Li L, Jiang Y, Xiao S, Jin N, Li C. Interferon-Inducible Transmembrane Protein 3 (IFITM3) Restricts Rotavirus Infection. Viruses 2022; 14:v14112407. [PMID: 36366505 PMCID: PMC9696312 DOI: 10.3390/v14112407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Rotavirus (RV) is a non-enveloped icosahedral virus with an 11-segment double-stranded RNA genome, belonging to the family of rotaviruses. RV is one of the pathogens causing diarrhea in infants and young animals, and it induces the production of type I interferons (IFNs), which can trigger antiviral function by inducing the production of interferon-stimulated genes (ISGs). Although IFITM3, an ISG localizing to late endosomes, can limit many viral infections, whether or not it restricts the infection of RV is still unknown. Therefore, we attempted to determine whether IFITM3 also restricts RV infection by using over-expression and knockout cell strains. It was found that IFITM3-expressing cell strains were less susceptible to RV infection, as the replication of RV in over-expressing cells was significantly less than in control group cells. Correspondingly, IFITM3-knockout cells were significantly susceptible compared to the normal cells. Furthermore, the IFN-induced antiviral effect was significantly attenuated in the absence of IFITM3, and IFITM3 delayed RV escape from endosomes in the presence of IFITM3, suggesting that endogenous IFITM3 is of great importance in type I IFN-mediated antiviral responses and may restrict infection by affecting the function of the late endosomal compartment. In conclusion, these data provide the first evidence that IFITM3 limits RV infection in vitro and delays RV escape from late endosomes into the cytoplasm.
Collapse
Affiliation(s)
- Zhaoxia Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pengfei Hao
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Qiaoqiao Qu
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Letian Li
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Yuhang Jiang
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| | - Chang Li
- Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Changchun 130122, China
- Correspondence: (S.X.); (N.J.); (C.L.)
| |
Collapse
|
19
|
Vavougios GD, Mavridis T, Artemiadis A, Krogfelt KA, Hadjigeorgiou G. Trained immunity in viral infections, Alzheimer's disease and multiple sclerosis: A convergence in type I interferon signalling and IFNβ-1a. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166430. [DOI: 10.1016/j.bbadis.2022.166430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
|
20
|
Cai S, Zheng Z, Cheng J, Zhong L, Shao R, Zheng F, Lai Z, Ou J, Xu L, Zhou P, Lu G, Zhang G. Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit African Swine Fever Virus Replication. Front Immunol 2022; 13:827709. [PMID: 35401540 PMCID: PMC8989734 DOI: 10.3389/fimmu.2022.827709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
African swine fever virus (ASFV) causes an acute, hemorrhagic, and highly contagious disease in domestic swine, leading to significant economic losses to the global porcine industry. Restriction factors of innate immunity play a critical in host antiviral action. However, function of swine restriction factors of innate immunity on ASFV has been seldomly investigated. In this study, we determined five homologues of swine interferon-induced transmembrane proteins (SwIFITM [named SwIFITM1a, -1b, -2, -3, and -5]), and we found that they all exhibit potent antiviral activity against ASFV. Expression profile analysis indicated that these SwIFITMs are constitutively expressed in most porcine tissues. Whether infected with ASFV or treated with swine interferon, the expression levels of SwIFITMs were induced in vitro. The subcellular localization of SwIFITMs was similar to that of their human homologues. SwIFITM1a and -1b localized to the plasma membrane, SwIFITM2 and -3 focused on the cytoplasm and the perinuclear region, while SwIFITM5 accumulated in the cell surface and cytoplasm. The overexpression of SwIFITM1a, -1b, -2, -3, or -5 could significantly inhibit ASFV replication in Vero cells, whereas knockdown of these genes could enhance ASFV replication in PAMs. We blocked the constitutive expression of endogenous IFITMs in Vero cells using a CRISPR-Cas9 system and then infected them with ASFV. The results indicated that the knockout of endogenous IFITMs could enhance ASFV replication. Finally, we expressed five SwIFITMs in knockout Vero cell lines and then challenged them with ASFV. The results showed that all of the SwIFITMs had a strong antiviral effect on ASFV. This research will further expand the understanding of the anti-ASFV activity of porcine IFITMs.
Collapse
Affiliation(s)
- Siqi Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - JiaoJiao Cheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Lintao Zhong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Ran Shao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Feiyan Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhiying Lai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Jiajun Ou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Pei Zhou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Gang Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
21
|
Lesage S, Chazal M, Beauclair G, Batalie D, Cerboni S, Couderc E, Lescure A, Del Nery E, Tangy F, Martin A, Manel N, Jouvenet N. Discovery of Genes that Modulate Flavivirus Replication in an Interferon-Dependent Manner. J Mol Biol 2022; 434:167277. [PMID: 34599939 PMCID: PMC8480147 DOI: 10.1016/j.jmb.2021.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.
Collapse
Affiliation(s)
- Sarah Lesage
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Guillaume Beauclair
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Damien Batalie
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Silvia Cerboni
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Institut Pasteur, Université de Paris, CNRS UMR 2000, Insect-Virus Interactions Unit, F-75015 Paris, France
| | - Aurianne Lescure
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Viral Genomics and Vaccination Unit, F-75015 Paris, France
| | - Annette Martin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France. https://twitter.com/NicolasManellab
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France.
| |
Collapse
|
22
|
Interferon-Induced Transmembrane Proteins Inhibit Infection by the Kaposi's Sarcoma-Associated Herpesvirus and the Related Rhesus Monkey Rhadinovirus in a Cell-Specific Manner. mBio 2021; 12:e0211321. [PMID: 34933450 PMCID: PMC8689460 DOI: 10.1128/mbio.02113-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit the entry of enveloped viruses. We analyzed the effect of IFITMs on the gamma-2 herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus monkey rhadinovirus (RRV). We used CRISPR/Cas9-mediated gene knockout to generate A549 cells, human foreskin fibroblasts (HFF), and human umbilical vein endothelial cells (HUVEC) with combined IFITM1/2/3 knockout and identified IFITMs as cell-dependent inhibitors of KSHV and RRV infection in A549 cells and HFF but not HUVEC. IFITM overexpression revealed IFITM1 as the relevant IFITM that inhibits KSHV and RRV infection. Fluorescent KSHV particles did not pronouncedly colocalize with IFITM-positive compartments. However, we found that KSHV and RRV glycoprotein-mediated cell-cell fusion is enhanced upon IFITM1/2/3 knockout. Taken together, we identified IFITM1 as a cell-dependent restriction factor of KSHV and RRV that acts at the level of membrane fusion. Of note, our results indicate that recombinant IFITM overexpression may lead to results that are not representative for the situation at endogenous levels. Strikingly, we observed that the endotheliotropic KSHV circumvents IFITM-mediated restriction in HUVEC despite high IFITM expression, while influenza A virus (IAV) glycoprotein-driven entry into HUVEC is potently restricted by IFITMs even in the absence of interferon. Mechanistically, we found that KSHV colocalizes less with IFITM1 and IFITM2 in HUVEC than in A549 cells immediately after attachment, potentially contributing to the observed difference in restriction. IMPORTANCE IFITM proteins are the first line of defense against infection by many pathogens and may also have therapeutic importance, as they, among other effectors, mediate the antiviral effect of interferons. Neither their function against herpesviruses nor their mechanism of action is well understood. We report here that in some cells but not in, for example, primary umbilical vein endothelial cells, IFITM1 restricts KSHV and RRV and that, mechanistically, this is likely effected by reducing the fusogenicity of the cell membrane. Further, we demonstrate potent inhibition of IAV glycoprotein-driven infection of cells of extrapulmonary origin by high constitutive IFITM expression.
Collapse
|
23
|
Stertz S, Hale BG. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol 2021; 29:973-982. [PMID: 33757684 PMCID: PMC7980109 DOI: 10.1016/j.tim.2021.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
Pandemics are caused by novel pathogens to which pre-existing antibody immunity is lacking. Under these circumstances, the body must rely on innate interferon-mediated defenses to limit pathogen replication and allow development of critical humoral protection. Here, we highlight studies on disease susceptibility during H1N1 influenza and COVID-19 (SARS-CoV-2) pandemics. An emerging concept is that genetic and non-genetic deficiencies in interferon system components lead to uncontrolled virus replication and severe illness in a subset of people. Intriguingly, new findings suggest that individuals with autoantibodies neutralizing the antiviral function of interferon are at increased risk of severe COVID-19. We discuss key questions surrounding how such autoantibodies develop and function, as well as the general implications of diagnosing interferon deficiencies for personalized therapies.
Collapse
Affiliation(s)
- Silke Stertz
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
24
|
Abstract
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in endemic regions of northern Asia and central and northern Europe. Interferon induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as the West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show the most significant role being that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of co-culture assays suggest that TBEV might partially escape IFN- and IFITM-mediated suppression during high-density co-culture infection when the virus enters naïve cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. Importance: TBEV infection may result in encephalitis, chronic illness or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new endemic centers arise. Although effective TBEV vaccines have been approved, vaccination coverage is low, and, due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. The IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies regarding the role of IFITM proteins in the TBEV infection have been published so far. Understanding of antiviral innate immune responses is crucial for future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both IFN- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
Collapse
|
25
|
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity). We found a high functional heterogeneity among IFITM homologs with respect to both antiviral modalities, with IFITM members that exhibit enhanced viral inhibition, while others have no ability to block HIV-1. These differences could not be ascribed to known regulatory domains and could only be partially explained through differential protein stability, implying the existence of additional mechanisms. Through the use of chimeras between active and inactive IFITMs, we demonstrate that the cross talk between distinct domains of IFITMs is an important contributor of their antiviral potency. Finally, we identified murine IFITMs as natural variants competent for target cell protection, but not for negative imprinting of virion particles' infectivity, suggesting that the two properties may, at least in principle, be uncoupled. Overall, our results shed new light on the complex relationship between IFITMs and viral infection and point to the cross talk between IFITM domains as a novel layer of regulation of their activity. IMPORTANCE IFITMs are broad viral inhibitors capable of interfering with both early and late phases of the replicative cycle of many different viruses. By comparing 21 IFITM proteins issued from different animal species for their ability to inhibit HIV-1, we have identified several that exhibit either enhanced or impaired antiviral behavior. This functional diversity is not driven by differences in known domains and can only be partly explained through differential protein stability. Chimeras between active and inactive IFITMs point to the cross talk between individual IFITM domains as important for optimal antiviral activity. Finally, we show that murine IFITMs are not capable of decreasing the infectivity of newly produced HIV-1 virion particles, although they retain target cell protection abilities, suggesting that these properties may be, in principle, disconnected. Overall, our results shed new light on the complex layers of regulation of IFITM proteins and enrich our current understanding of these broad antiviral factors.
Collapse
|
26
|
HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Curr Opin Virol 2021; 50:59-68. [PMID: 34390925 DOI: 10.1016/j.coviro.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence resonance energy transfer (smFRET) imaging allows observation of these conformational changes on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, some of which inhibit the entry process. The Env structure or its dynamics may determine the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env conformation changes on virus particles and inhibition of Env activities by virion-incorporated host transmembrane proteins.
Collapse
|
27
|
IFITM proteins that restrict the early stages of respiratory virus infection do not influence late-stage replication. J Virol 2021; 95:e0083721. [PMID: 34319159 DOI: 10.1128/jvi.00837-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins inhibit a broad range of enveloped viruses by blocking entry into host cells. We used an inducible overexpression system to investigate if IFITM1, IFITM2 and IFITM3 could modulate early and/or late stages of influenza A virus (IAV) or parainfluenza virus (PIV)-3 infection in human A549 airway epithelial cells. IAV and PIV-3 represent respiratory viruses which utilise distinct cellular entry pathways. We verify entry by endocytosis for IAV, whereas PIV-3 infection was consistent with fusion at the plasma membrane. Following induction prior to infection, all three IFITM proteins restricted the percentage of IAV-infected cells at 8 hours post-infection. In contrast, prior induction of IFITM1 and IFITM2 did not inhibit PIV-3 infection, although a modest reduction was observed with IFITM3. siRNA-mediated knockdown of endogenous IFITM1, IFITM2 and IFITM3 expression, in the presence or absence of pre-treatment with type I interferon, resulted in increased IAV, but not PIV-3, infection. This suggests that while all three IFITMs display antiviral activity against IAV, they do not restrict the early stages of PIV-3 infection. IAV and PIV-3 infection culminates in viral egress through budding at the plasma membrane. Inducible expression of IFITM1, IFITM2 or IFITM3 immediately after infection did not impact titres of infectious virus released from IAV or PIV-3 infected cells. Our findings show that IFITM proteins differentially restrict the early stages of infection of two respiratory viruses with distinct cellular entry pathways, but do not influence the late stages of replication for either virus. IMPORTANCE Interferon-induced transmembrane (IFITM) proteins restrict the initial stages of infection for several respiratory viruses, however their potential to modulate the later stages of virus replication has not been explored. In this study we highlight the utility of an inducible overexpression system to assess the impact of IFITM proteins on either early or late stage replication of two respiratory viruses. We demonstrate antiviral activity by IFITM1, IFITM2 and IFITM3 against influenza A virus (IAV) but not parainfluenza virus (PIV)-3 during the early stages of cellular infection. Furthermore, IFITM induction following IAV or PIV-3 infection does not restrict the late stages of replication of either virus. Our findings show that IFITM proteins can differentially restrict the early stages of infection of two viruses with distinct cellular entry pathways, yet do not influence the late stages of replication for either virus.
Collapse
|
28
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
29
|
Franz S, Pott F, Zillinger T, Schüler C, Dapa S, Fischer C, Passos V, Stenzel S, Chen F, Döhner K, Hartmann G, Sodeik B, Pessler F, Simmons G, Drexler JF, Goffinet C. Human IFITM3 restricts chikungunya virus and Mayaro virus infection and is susceptible to virus-mediated counteraction. Life Sci Alliance 2021; 4:e202000909. [PMID: 34078739 PMCID: PMC8200292 DOI: 10.26508/lsa.202000909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins restrict membrane fusion and virion internalization of several enveloped viruses. The role of IFITM proteins during alphaviral infection of human cells and viral counteraction strategies are insufficiently understood. Here, we characterized the impact of human IFITMs on the entry and spread of chikungunya virus and Mayaro virus and provide first evidence for a CHIKV-mediated antagonism of IFITMs. IFITM1, 2, and 3 restricted infection at the level of alphavirus glycoprotein-mediated entry, both in the context of direct infection and cell-to-cell transmission. Relocalization of normally endosomal IFITM3 to the plasma membrane resulted in loss of antiviral activity. rs12252-C, a naturally occurring variant of IFITM3 that may associate with severe influenza in humans, restricted CHIKV, MAYV, and influenza A virus infection as efficiently as wild-type IFITM3 Antivirally active IFITM variants displayed reduced cell surface levels in CHIKV-infected cells involving a posttranscriptional process mediated by one or several nonstructural protein(s) of CHIKV. Finally, IFITM3-imposed reduction of specific infectivity of nascent particles provides a rationale for the necessity of a virus-encoded counteraction strategy against this restriction factor.
Collapse
Affiliation(s)
- Sergej Franz
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fabian Pott
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, Venusberg-Campus 1, Bonn, Germany
| | - Christiane Schüler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Dapa
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Vânia Passos
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Saskia Stenzel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fangfang Chen
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Gunther Hartmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hanover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Guo X, Steinkühler J, Marin M, Li X, Lu W, Dimova R, Melikyan GB. Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Altering Mechanical Properties of Cell Membranes. ACS NANO 2021; 15:8155-8170. [PMID: 33656312 PMCID: PMC8159881 DOI: 10.1021/acsnano.0c10567] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) potently inhibits entry of diverse enveloped viruses by trapping the viral fusion at a hemifusion stage, but the underlying mechanism remains unclear. Here, we show that recombinant IFITM3 reconstituted into lipid vesicles induces negative membrane curvature and that this effect maps to its small amphipathic helix (AH). We demonstrate that AH (i) partitions into lipid-disordered domains where IAV fusion occurs, (ii) induces negative membrane curvature, and (iii) increases lipid order and membrane stiffness. These effects on membrane properties correlate with the fusion-inhibitory activity, as targeting the ectopically expressed AH peptide to the cytoplasmic leaflet of the cell plasma membrane diminishes IAV-cell surface fusion induced by exposure to acidic pH. Our results thus imply that IFITM3 inhibits the transition from hemifusion to full fusion by imposing an unfavorable membrane curvature and increasing the order and stiffness of the cytoplasmic leaflet of endosomal membranes. Our findings reveal a universal mechanism by which cells block entry of diverse enveloped viruses.
Collapse
Affiliation(s)
- Xiangyang Guo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mariana Marin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Corresponding author: Gregory B. Melikyan,
| |
Collapse
|
31
|
Marziali F, Cimarelli A. Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells 2021; 10:cells10051171. [PMID: 34065027 PMCID: PMC8151167 DOI: 10.3390/cells10051171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-1 is a complex retrovirus that is adapted to replicate in cells of the immune system. To do so, HIV-1, like other viruses, developed strategies to use several cellular processes to its advantage, but had also to come to terms with an arsenal of cellular innate defense proteins, or antiviral factors, that target more or less efficiently, virtually every step of the virus replicative cycle. Among antiviral restriction factors, the family of interferon-induced transmembrane proteins (IFITMs) has emerged as a crucial component of cellular innate defenses for their ability to interfere with both early and late phases of viral replication by inhibiting cellular and viral membranes fusion. Here, we review the enormous advances made since the discovery of IFITMs as interferon-regulated genes more than thirty years ago, with a particular focus on HIV-1 and on the elements that modulate its susceptibility or resistance towards members of this family. Given the recent advances of the field in the elucidation of the mechanism of IFITM inhibition and on the mechanism(s) of viral resistance, we expect that future years will bring novel insights into the definition of the multiple facets of IFITMs and on their possible use for novel therapeutical approaches.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
32
|
Lanz C, Schotsaert M, Magnus C, Karakus U, Hunziker A, Sempere Borau M, Martínez-Romero C, Spieler EE, Günther SC, Moritz E, Hale BG, Trkola A, García-Sastre A, Stertz S. IFITM3 incorporation sensitizes influenza A virus to antibody-mediated neutralization. J Exp Med 2021; 218:212014. [PMID: 33882122 PMCID: PMC8072448 DOI: 10.1084/jem.20200303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response.
Collapse
Affiliation(s)
- Caroline Lanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Milagros Sempere Borau
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eva E Spieler
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Sira C Günther
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Life Sciences Zurich Graduate School, Eidgenössische Technische Hochschule Zurich and University of Zurich, Zurich, Switzerland
| | - Eva Moritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. We show here that viruses differing only in the envelope glycoprotein (Env) expressed on their surface have different sensitivities to IFITM3. Measurements of the sensitivity of viruses to neutralizing antibodies showed that IFITM3 increased the sensitivity of IFITM3-sensitive viruses to PG16, which targets the V1V2 loop, suggesting that IFITM3 promotes exposure of the PG16 epitope of IFITM3-sensitive viruses. Exchanges of V1V2 loops between the Env proteins of sensitive and resistant viruses revealed that V1V2 and V3 act together to modulate viral sensitivity to IFITM3. Co-immunoprecipitation experiments showed that IFITM3 interacted with both the precursor (gp160) and cleaved (gp120) forms of Env from IFITM3-sensitive viruses, but only with the precursor (gp160) form of Env from IFITM3-resistant viruses. This finding suggests that the interaction between the Env of resistant viruses and IFITM3 was inhibited once Env had been processed in the Golgi apparatus. This hypothesis was supported by immunofluorescence experiments, which showed a strong colocalization of IFITM3 with the Env of sensitive viruses, but only weak colocalization with the Env of resistant viruses on the plasma membrane of virus-producing cells. Together, these results indicate that IFITM3 interacts with Env, inducing conformational changes that may decrease viral infectivity. This antiviral action is, nevertheless, modulated by the nature of the Env, in particular its V1V2 and V3 loops, which after maturation may be able to escape this interaction.IMPORTANCE Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. This study aimed to elucidate the role of the HIV-1 envelope glycoprotein (Env) in determining viral susceptibility to IFITM3. We found that viruses differing only in Env expressed on their surface had different sensitivities to IFITM3. By comparing the Env proteins of viruses that were highly sensitive or resistant to IFITM3, we obtained new insight in the mechanisms by which HIV-1 escapes this protein. We showed that IFITM3 interacts with the Env protein of sensitive viruses in virion-producing cells, inducing conformational changes that may decrease viral infectivity. However, this antiviral action is modulated by the nature of Env, particularly the V1V2 and V3 loops, which may be able to escape this interaction after processing in the Golgi.
Collapse
|
34
|
Interferon-Induced Transmembrane Protein 3 Is a Virus-Associated Protein Which Suppresses Porcine Reproductive and Respiratory Syndrome Virus Replication by Blocking Viral Membrane Fusion. J Virol 2020; 94:JVI.01350-20. [PMID: 32999030 PMCID: PMC7925183 DOI: 10.1128/jvi.01350-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is of great economic significance to the swine industry. Due to the complicated immune escape mechanisms of PRRSV, there are no effective vaccines or therapeutic drugs currently available against PRRS. Identification of cellular factors and underlying mechanisms that establish an effective antiviral state against PRRSV can provide unique strategies for developing antiviral vaccines or drugs. As an interferon (IFN)-stimulated gene, the role of IFN-induced transmembrane 3 (IFITM3) in PRRSV infection has not been reported as of yet. In the present study, it was shown that IFITM3 can exert a potent anti-PRRSV effect, and PRRS virions are trafficked to IFITM3-containing cell vesicles, where viral membrane fusion is impaired by cholesterol accumulation that is induced by IFITM3. Additionally, both endogenous and exogenous IFITM3 are incorporated into newly assembled progeny virions, and this decreased their intrinsic infectivity. Porcine reproductive and respiratory syndrome virus (PRRSV) infection eliminates production of type I interferons (IFNs) in host cells, which triggers an antiviral immune response through the induction of downstream IFN-stimulated genes (ISGs), thus escaping the fate of host-mediated clearance. The IFN-induced transmembrane 3 (IFITM3) has recently been identified as an ISG and plays a pivotal role against enveloped RNA viruses by restricting cell entry. However, the role of IFITM3 in PRRSV replication is unknown. The present study demonstrated that overexpression of IFITM3 suppresses PRRSV replication, while silencing of endogenous IFITM3 prominently promoted PRRSV replication. Additionally, it was shown that IFITM3 undergoes S-palmitoylation and ubiquitination modification, and both posttranslational modifications contribute to the anti-PRRSV activity of IFITM3. Further study showed that PRRSV particles are transported into endosomes and then into lysosomes during the early stages of infection, and confocal microscopy results revealed that PRRSV particles are transported to IFITM3-positive cellular vesicles. By using a single virus particle fluorescent labeling technique, we confirmed that IFITM3 can restrict PRRSV membrane fusion by inducing accumulation of cholesterol in cellular vesicles. Additionally, we found that both endogenous and exogenous IFITM3 are incorporated into newly producing PRRS virions and diminish viral intrinsic infectivity. By using cell coculture systems, we found that IFITM3 effectively restricted PRRSV intercellular transmission, which may have been caused by disrupted membrane fusion and reduced viral infectivity. In conclusion, our results demonstrate, for the first time, that swine IFITM3 interferes with the life cycle of PRRSV, and possibly other enveloped arteritis viruses, at multiple steps. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is of great economic significance to the swine industry. Due to the complicated immune escape mechanisms of PRRSV, there are no effective vaccines or therapeutic drugs currently available against PRRS. Identification of cellular factors and underlying mechanisms that establish an effective antiviral state against PRRSV can provide unique strategies for developing antiviral vaccines or drugs. As an interferon (IFN)-stimulated gene, the role of IFN-induced transmembrane 3 (IFITM3) in PRRSV infection has not been reported as of yet. In the present study, it was shown that IFITM3 can exert a potent anti-PRRSV effect, and PRRS virions are trafficked to IFITM3-containing cell vesicles, where viral membrane fusion is impaired by cholesterol accumulation that is induced by IFITM3. Additionally, both endogenous and exogenous IFITM3 are incorporated into newly assembled progeny virions, and this decreased their intrinsic infectivity.
Collapse
|
35
|
Rahman K, Coomer CA, Majdoul S, Ding SY, Padilla-Parra S, Compton AA. Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to its oligomeric state. eLife 2020; 9:58537. [PMID: 33112230 PMCID: PMC7665892 DOI: 10.7554/elife.58537] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, Amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.
Collapse
Affiliation(s)
- Kazi Rahman
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Charles A Coomer
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States.,Cellular Imaging Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Selena Y Ding
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Sergi Padilla-Parra
- Cellular Imaging Group, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.,Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
| |
Collapse
|
36
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
37
|
Thippeshappa R, Kimata JT, Kaushal D. Toward a Macaque Model of HIV-1 Infection: Roadblocks, Progress, and Future Strategies. Front Microbiol 2020; 11:882. [PMID: 32477302 PMCID: PMC7237640 DOI: 10.3389/fmicb.2020.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has complicated the development of a macaque model of HIV-1 infection/AIDS that is suitable for preclinical evaluation of vaccines and novel treatment strategies. Several innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2, and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells. Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor (Nef) have been shown to play key roles in overcoming these restriction factors in macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may enable HIV-1 replication in macaques. We and others have constructed macaque-tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins. Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques. Although these viruses replicate persistently in macaque species, they do not result in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication exist in macaques that prevent high-level viral replication. Furthermore, serial animal-to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic variants that cause AIDS in immunocompetent macaques. In this review, we discuss recent developments made toward developing macaque model of HIV-1 infection.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
38
|
Abstract
Interferon-induced transmembrane (IFITM) proteins are encoded by many vertebrate species and exhibit antiviral activities against a wide range of viruses. IFITM3, when present in virus-producing cells, reduces the fusion potential of HIV-1 virions, but the mechanism is poorly understood. To define the breadth and mechanistic basis for the antiviral activity of IFITM3, we took advantage of a murine leukemia virus (MLV)-based pseudotyping system. By carefully controlling amounts of IFITM3 and envelope protein (Env) in virus-producing cells, we found that IFITM3 potently inhibits MLV infectivity when Env levels are limiting. Loss of infectivity was associated with defective proteolytic processing of Env and lysosomal degradation of the Env precursor. Ecotropic and xenotropic variants of MLV Env, as well as HIV-1 Env and vesicular stomatitis virus glycoprotein (VSV-G), are sensitive to IFITM3, whereas Ebola glycoprotein is resistant, suggesting that IFITM3 selectively inactivates certain viral glycoproteins. Furthermore, endogenous IFITM3 in human and murine cells negatively regulates MLV Env abundance. However, we found that the negative impact of IFITM3 on virion infectivity is greater than its impact on decreasing Env incorporation, suggesting that IFITM3 may impair Env function, as well as reduce the amount of Env in virions. Finally, we demonstrate that loss of virion infectivity mediated by IFITM3 is reversed by the expression of glycoGag, a murine retrovirus accessory protein previously shown to antagonize the antiviral activity of SERINC proteins. Overall, we show that IFITM3 impairs virion infectivity by regulating Env quantity and function but that enhanced Env expression and glycoGag confer viral resistance to IFITM3.IMPORTANCE The viral envelope glycoprotein, known as "Env" in Retroviridae, is found on the virion surface and facilitates virus entry into cells by mediating cell attachment and fusion. Env is a major structural component of retroviruses and is targeted by all arms of the immune response, including adaptive and innate immunity. Less is known about how cell-intrinsic immunity prevents retrovirus replication at the level of individual cells. Here, we show that cellular IFITM3 and IFITM2 inhibit the fusion potential of retroviral virions by inhibiting Env protein via a two-pronged mechanism. IFITM proteins inhibit Env abundance in cells and also impair its function when levels are low. The posttranslational block of retroviral Env function by IFITM proteins is likely to impede both exogenous and endogenous retrovirus replication. In support of a relevant role for IFITM3 in retrovirus control, the retroviral accessory protein glycoGag counteracts IFITM3 function to promote virus infectivity.
Collapse
|
39
|
Winkler M, Gärtner S, Markus L, Hoffmann M, Nehlmeier I, Krawczak M, Sauermann U, Pöhlmann S. Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques. PLoS One 2019; 14:e0224082. [PMID: 31682595 PMCID: PMC6827983 DOI: 10.1371/journal.pone.0224082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
The experimental infection of rhesus macaques (rh) with simian immunodeficiency virus (SIV) is an important model for human immunodeficiency virus (HIV) infection of humans. The interferon-induced transmembrane protein 3 (IFITM3) inhibits HIV and SIV infection at the stage of host cell entry. However, it is still unclear to what extent the antiviral activity of IFITM3 observed in cell culture translates into inhibition of HIV/SIV spread in the infected host. We have shown previously that although rhIFITM3 inhibits SIV entry into cultured cells, polymorphisms in the rhIFITM3 gene are not strongly associated with viral load or disease progression in SIV infected macaques. Here, we examined whether rhIFITM3(2), which is closely related to rhIFITM3 at the sequence level, exerts antiviral activity and whether polymorphisms in the rhIFITM3(2) gene impact the course of SIV infection. We show that expression of rhIFITM3(2) is interferon-inducible and inhibits SIV entry into cells, although with reduced efficiency as compared to rhIFITM3. We further report the identification of 19 polymorphisms in the rhIFITM3(2) gene. However, analysis of a well characterized cohort of SIV infected macaques revealed that none of the polymorphisms had a significant impact upon the course of SIV infection. These results and our previous work suggest that polymorphisms in the rhIFITM3 and rhIFITM3(2) genes do not strongly modulate the course of SIV infection in macaques.
Collapse
Affiliation(s)
- Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (SP); (MW)
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lara Markus
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Ulrike Sauermann
- Infection Models Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
- * E-mail: (SP); (MW)
| |
Collapse
|
40
|
Wang Q, Su L. Vpr Enhances HIV-1 Env Processing and Virion Infectivity in Macrophages by Modulating TET2-Dependent IFITM3 Expression. mBio 2019; 10:e01344-19. [PMID: 31431548 PMCID: PMC6703422 DOI: 10.1128/mbio.01344-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1 Vpr enhances viral replication in human macrophages via multiple mechanisms that are not clearly defined. It does not affect HIV-1 virion production during the first round of infection. We have recently discovered that Vpr targets the DNA demethylase TET2 for degradation, which leads to sustained interleukin-6 (IL-6) expression and elevated HIV-1 replication. We report here that Vpr enhanced Env processing in infected macrophages, associated with increased Env incorporation into virions with higher infectivity. Interestingly, IFITM3 was constitutively expressed in macrophages in a TET2-dependent fashion. We showed that Vpr-enhanced Env processing depended genetically on TET2 and IFITM3. We further showed that Vpr reduced IFITM3 expression by reducing demethylation of the IFITM3 promoter in macrophages, associated with degradation of TET2 and reduced TET2 binding to the IFITIM3 promoter. Our findings indicate that the Vpr-TET2 axis enhances HIV-1 replication in macrophages via two independent mechanisms: reduced IFTIM3 expression to enhance Env processing and virion infectivity and sustained IL-6 expression to increase HIV-1 replication. The Vpr-TET2 axis may provide a novel target to develop therapeutics to inhibit HIV-1 infection and pathogenesis.IMPORTANCE How Vpr enhances HIV-1 replication in macrophages is still unclear. We report here that Vpr enhanced HIV-1 Env processing during the first round of HIV-1 replication, resulting in virions with higher Env incorporation and viral infectivity. These higher-quality viral particles contributed to elevated infection during the second round and spreading infection in macrophages and other HIV-1 target cells. We have recently discovered that TET2 is a novel host factor degraded by Vpr, which leads to sustained IL-6 expression in macrophages. Interestingly, Vpr-enhanced HIV-1 Env processing depended on both the IFITIM3 and TET2 genes. The constitutive expression of IFITIM3 expression in macrophages was maintained by TET2, which demethylated the IFITIM3 promoter. We conclude that the Vpr degrades TET2 to enhance HIV-1 replication in macrophages by reducing IFITIM3 expression to increase viral Env processing, virion incorporation, and infectivity and by sustaining IL-6 expression to increase HIV-1 gene expression. The Vpr-TET2 axis may serve as a novel target to develop anti-HIV drugs to inhibit HIV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
42
|
Liao Y, Goraya MU, Yuan X, Zhang B, Chiu SH, Chen JL. Functional Involvement of Interferon-Inducible Transmembrane Proteins in Antiviral Immunity. Front Microbiol 2019; 10:1097. [PMID: 31156602 PMCID: PMC6532022 DOI: 10.3389/fmicb.2019.01097] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
Interferons (IFNs) play crucial roles in host defense against viral infections by inducing the expression of numerous IFN-stimulated genes (ISGs) that can activate host antiviral immunity. Interferon-inducible transmembrane proteins (IFITMs), a family of small transmembrane proteins, are critical ISG products. Compelling evidence has implicated that IFITMs can establish an innate immune state to eliminate pathogens efficiently. IFITM proteins can impede broad-spectrum viral infection through various mechanisms. It is generally believed that IFITMs can block the viral entry by suppressing viral membrane fusion. However, some findings indicated that IFITMs might also inhibit viral gene expression and viral protein synthesis and thereby impair viral replication. IFITMs may incorporate into virions during viral assembly and thus reduce the infectivity of nascent virions. The precise inhibitory mechanism of IFITMs on viral infection and replication still requires further exploration. In this review, we highlight the recent findings regarding critical roles of IFITMs in host-virus interaction. We also discuss the molecular mechanisms underlying their functions in antiviral responses.
Collapse
Affiliation(s)
- Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Yuan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoge Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shih-Hsin Chiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
44
|
Beitari S, Wang Y, Liu SL, Liang C. HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion. Viruses 2019; 11:v11040311. [PMID: 30935048 PMCID: PMC6521621 DOI: 10.3390/v11040311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Without viral envelope proteins, viruses cannot enter cells to start infection. As the major viral proteins present on the surface of virions, viral envelope proteins are a prominent target of the host immune system in preventing and ultimately eliminating viral infection. In addition to the well-appreciated adaptive immunity that produces envelope protein-specific antibodies and T cell responses, recent studies have begun to unveil a rich layer of host innate immune mechanisms restricting viral entry. This review focuses on the exciting progress that has been made in this new direction of research, by discussing various known examples of host restriction of viral entry, and diverse viral countering strategies, in particular, the emerging role of viral envelope proteins in evading host innate immune suppression. We will also highlight the effective cooperation between innate and adaptive immunity to achieve the synergistic control of viral infection by targeting viral envelope protein and checking viral escape. Given that many of the related findings were made with HIV-1, we will use HIV-1 as the model virus to illustrate the basic principles and molecular mechanisms on host restriction targeting HIV-1 envelope protein.
Collapse
Affiliation(s)
- Saina Beitari
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Yimeng Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Chen Liang
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
45
|
Zhao X, Li J, Winkler CA, An P, Guo JT. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front Microbiol 2019; 9:3228. [PMID: 30687247 PMCID: PMC6338058 DOI: 10.3389/fmicb.2018.03228] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of small proteins that localize in the plasma and endolysosomal membranes. IFITMs not only inhibit viral entry into host cells by interrupting the membrane fusion between viral envelope and cellular membranes, but also reduce the production of infectious virions or infectivity of progeny virions. Not surprisingly, some viruses can evade the restriction of IFITMs and even hijack the antiviral proteins to facilitate their infectious entry into host cells or promote the assembly of virions, presumably by modulating membrane fusion. Similar to many other host defense genes that evolve under the selective pressure of microorganism infection, IFITM genes evolved in an accelerated speed in vertebrates and many single-nucleotide polymorphisms (SNPs) have been identified in the human population, some of which have been associated with severity and prognosis of viral infection (e.g., influenza A virus). Here, we review the function and potential impact of genetic variation for IFITM restriction of viral infections. Continuing research efforts are required to decipher the molecular mechanism underlying the complicated interaction among IFITMs and viruses in an effort to determine their pathobiological roles in the context of viral infections in vivo.
Collapse
Affiliation(s)
- Xuesen Zhao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Jiarui Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Cheryl A Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States
| |
Collapse
|
46
|
Functional Mapping of Regions Involved in the Negative Imprinting of Virion Particle Infectivity and in Target Cell Protection by Interferon-Induced Transmembrane Protein 3 against HIV-1. J Virol 2019; 93:JVI.01716-18. [PMID: 30355696 DOI: 10.1128/jvi.01716-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/19/2018] [Indexed: 01/31/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3.IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.
Collapse
|
47
|
Suddala KC, Lee CC, Meraner P, Marin M, Markosyan RM, Desai TM, Cohen FS, Brass AL, Melikyan GB. Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes. PLoS Pathog 2019; 15:e1007532. [PMID: 30640957 PMCID: PMC6347298 DOI: 10.1371/journal.ppat.1007532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/25/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Late endosome-resident interferon-induced transmembrane protein 3 (IFITM3) inhibits fusion of diverse viruses, including Influenza A virus (IAV), by a poorly understood mechanism. Despite the broad antiviral activity of IFITM3, viruses like Lassa virus (LASV), are fully resistant to its inhibitory effects. It is currently unclear whether resistance arises from a highly efficient fusion machinery that is capable of overcoming IFITM3 restriction or the ability to enter from cellular sites devoid of this factor. Here, we constructed and validated a functional IFITM3 tagged with EGFP or other fluorescent proteins. This breakthrough allowed live cell imaging of virus co-trafficking and fusion with endosomal compartments in cells expressing fluorescent IFITM3. Three-color single virus and endosome tracking revealed that sensitive (IAV), but not resistant (LASV), viruses become trapped within IFITM3-positive endosomes where they underwent hemifusion but failed to release their content into the cytoplasm. IAV fusion with IFITM3-containing compartments could be rescued by amphotericin B treatment, which has been previously shown to antagonize the antiviral activity of this protein. By comparison, virtually all LASV particles trafficked and fused with endosomes lacking detectable levels of fluorescent IFITM3, implying that this virus escapes restriction by utilizing endocytic pathways that are distinct from the IAV entry pathways. The importance of virus uptake and transport pathways is further reinforced by the observation that LASV glycoprotein-mediated cell-cell fusion is inhibited by IFITM3 and other members of the IFITM family expressed in target cells. Together, our results strongly support a model according to which IFITM3 accumulation at the sites of virus fusion is a prerequisite for its antiviral activity and that this protein traps viral fusion at a hemifusion stage by preventing the formation of fusion pores. We conclude that the ability to utilize alternative endocytic pathways for entry confers IFITM3-resistance to otherwise sensitive viruses.
Collapse
Affiliation(s)
- Krishna C Suddala
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Christine C Lee
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Paul Meraner
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mariana Marin
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Ruben M Markosyan
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Tanay M Desai
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Fredric S Cohen
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
- Gastroenterology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
- Children's Healthcare of Atlanta, Atlanta, GA, United States of America
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human IFITM3 gene and severe virus infections. RECENT FINDINGS Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the IFITM3 SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human IFITM3 promoter has also recently been reported to be a risk allele for severe influenza virus infections. SUMMARY There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.
Collapse
Affiliation(s)
- Ashley Zani
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| |
Collapse
|
49
|
From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:382-394. [PMID: 30290238 PMCID: PMC6334645 DOI: 10.1016/j.bbamcr.2018.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.
Collapse
|
50
|
Lee WYJ, Fu RM, Liang C, Sloan RD. IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep 2018; 8:14551. [PMID: 30266929 PMCID: PMC6162285 DOI: 10.1038/s41598-018-32785-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Interferon induced transmembrane proteins (IFITMs) inhibit the cellular entry of a broad range of viruses, but it has been suspected that for HIV-1 IFITMs may also inhibit a post-integration replicative step. We show that IFITM expression reduces HIV-1 viral protein synthesis by preferentially excluding viral mRNA transcripts from translation and thereby restricts viral production. Codon-optimization of proviral DNA rescues viral translation, implying that IFITM-mediated restriction requires recognition of viral RNA elements. In addition, we find that expression of the viral accessory protein Nef can help overcome the IFITM-mediated inhibition of virus production. Our studies identify a novel role for IFITMs in inhibiting HIV replication at the level of translation, but show that the effects can be overcome by the lentiviral protein Nef.
Collapse
Affiliation(s)
- Wing-Yiu Jason Lee
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Rebecca Menhua Fu
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Richard D Sloan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom.
- ZJU-UoE Institute, Zhejiang University, Haining, Zhejiang, 314400, P.R. China.
| |
Collapse
|