1
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Hernández-González M, de la Torre-Vázquez J, Barrera-Cobos FJ, Flores-Soto M, Guevara MA, González-Burgos I. Correlation between compulsive behaviors and plastic changes in the dendritic spines of the prefrontal cortex and dorsolateral striatum of male rats. Behav Brain Res 2024; 475:115199. [PMID: 39182621 DOI: 10.1016/j.bbr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Jahaziel de la Torre-Vázquez
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
3
|
Presta M, Zoratto F, Mulder D, Ottomana AM, Pisa E, Arias Vásquez A, Slattery DA, Glennon JC, Macrì S. Hyperglycemia and cognitive impairments anticipate the onset of an overt type 2 diabetes-like phenotype in TALLYHO/JngJ mice. Psychoneuroendocrinology 2024; 167:107102. [PMID: 38896988 DOI: 10.1016/j.psyneuen.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Type 2 Diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, resulting from deficits in insulin secretion, insulin action, or both. Whilst the role of insulin in the peripheral nervous system has been ascertained in countless studies, its role in the central nervous system (CNS) is emerging only recently. Brain insulin has been lately associated with brain disorders like Alzheimer's disease, obsessive compulsive disorder, and attention deficit hyperactivity disorder. Thus, understanding the role of insulin as a common risk factor for mental and somatic comorbidities may disclose novel preventative and therapeutic approaches. We evaluated general metabolism (glucose tolerance, insulin sensitivity, energy expenditure, lipid metabolism, and polydipsia) and cognitive capabilities (attention, cognitive flexibility, and memory), in adolescent, young adult, and adult male and female TALLYHO/JngJ mice (TH, previously reported to constitute a valid experimental model of T2DM due to impaired insulin signaling). Adult TH mice have also been studied for alterations in gut microbiota diversity and composition. While TH mice exhibited profound deficits in cognitive flexibility and altered glucose metabolism, we observed that these alterations emerged either much earlier (males) or independent of (females) a comprehensive constellation of symptoms, isomorphic to an overt T2DM-like phenotype (insulin resistance, polydipsia, higher energy expenditure, and altered lipid metabolism). We also observed significant sex-dependent alterations in gut microbiota alpha diversity and taxonomy in adult TH mice. Deficits in insulin signaling may represent a common risk factor for both T2DM and CNS-related deficits, which may stem from (partly) independent mechanisms.
Collapse
Affiliation(s)
- Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Danique Mulder
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Neuroscience Unit, Department of Medicine, University of Parma, Parma 43100, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Alejandro Arias Vásquez
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
4
|
Fanelli G, Franke B, Fabbri C, Werme J, Erdogan I, De Witte W, Poelmans G, Ruisch IH, Reus LM, van Gils V, Jansen WJ, Vos SJ, Alam KA, Martinez A, Haavik J, Wimberley T, Dalsgaard S, Fóthi Á, Barta C, Fernandez-Aranda F, Jimenez-Murcia S, Berkel S, Matura S, Salas-Salvadó J, Arenella M, Serretti A, Mota NR, Bralten J. Local patterns of genetic sharing challenge the boundaries between neuropsychiatric and insulin resistance-related conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303921. [PMID: 38496672 PMCID: PMC10942494 DOI: 10.1101/2024.03.07.24303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Josefin Werme
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Izel Erdogan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I. Hyun Ruisch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lianne Maria Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, United States
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | | | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Norway
| | - Theresa Wimberley
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- iPSYCH - The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Aarhus, Denmark
| | - Søren Dalsgaard
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Child and Adolescent Psychiatry Glostrup, Mental Health Services of the Capital Region, Hellerup, Denmark
| | - Ábel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Fernando Fernandez-Aranda
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Jimenez-Murcia
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychological Services, University of Barcelona, Spain
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Biochemistry and biotechnology Department, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental, Unitat de Nutrició Humana, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Martina Arenella
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Nina Roth Mota
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janita Bralten
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Sultania A, Venkatesan S, Batra DR, Rajesh K, Vashishth R, Ravi S, Ahmad F. Potential biomarkers and therapeutic targets for obsessive compulsive disorder: Evidences from clinical studies. Biochem Med (Zagreb) 2024; 34:010503. [PMID: 38125619 PMCID: PMC10731732 DOI: 10.11613/bm.2024.010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 12/23/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a prevalent behavioral disorder with a complex etiology. However, the underlying pathogenic molecular pathways and the associated risk factors are largely obscure. This has hindered both the identification of relevant prognostic biomarkers and the development of effective treatment strategies. Because of the diverse range of clinical manifestations, not all patients benefit from therapies currently practiced in the clinical setting. Nevertheless, several lines of evidence indicate that neurotrophic, neurotransmitter, and oxidative signaling are involved in the pathophysiology of OCD. Based upon evidences from clinical (and pre-clinical studies), the present review paper sets out to decipher the utilities of three parameters (i.e. brain-derived neurotrophic factor; BDNF, noradrenalin-synthesizing enzyme dopamine beta-hydroxylase; DBH; and oxidative damage marker malondialdehyde; MDA) as diagnostic peripheral biomarkers as well as bio-targets for therapeutic strategies. While the data indicates promising results, there is necessitation for future studies to further confirm and establish these. Further, based again on the available clinical data, we investigated the possibilities of exploiting the etiological links between disruptions in the sleep-wake cycle and insulin signaling, and OCD for the identification of potential anti-OCD ameliorative agents with the ability to elicit multimodal effects, including attenuation of the alterations in BDNF, noradrenergic and redox pathways. In this respect, agomelatine and metformin may represent particularly interesting candidates; however, further clinical studies are warranted to establish these as singular or complementary medications in OCD subjects.
Collapse
Affiliation(s)
- Aarushi Sultania
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shashank Venkatesan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dhruv Rishb Batra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Keerthna Rajesh
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sudesh Ravi
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
7
|
Zhang X, Zhou J, Chen Y, Guo L, Yang Z, Robbins TW, Fan Q. Pathological Networking of Gray Matter Dendritic Density With Classic Brain Morphometries in OCD. JAMA Netw Open 2023; 6:e2343208. [PMID: 37955895 PMCID: PMC10644219 DOI: 10.1001/jamanetworkopen.2023.43208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Importance The pathogenesis of obsessive-compulsive disorder (OCD) may involve altered dendritic morphology, but in vivo imaging of neurite morphology in OCD remains limited. Such changes must be interpreted functionally within the context of the multimodal neuroimaging approach to OCD. Objective To examine whether dendritic morphology is altered in patients with OCD compared with healthy controls (HCs) and whether such alterations are associated with other brain structural metrics in pathological networks. Design, Setting, and Participants This case-control study used cross-sectional data, including multimodal brain images and clinical symptom assessments, from 108 patients with OCD and 108 HCs from 2014 to 2017. Patients with OCD were recruited from Shanghai Mental Health Center, Shanghai, China, and HCs were recruited via advertisements. The OCD group comprised unmedicated adults with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of OCD, while the HCs were adults without any DSM-IV diagnosis, matched for age, sex, and education level. Data were analyzed from September 2019 to April 2023. Exposure DSM-IV diagnosis of OCD. Main Outcomes and Measures Multimodal brain imaging was used to compare neurite microstructure and classic morphometries between patients with OCD and HCs. The whole brain was searched to identify regions exhibiting altered morphology in patients with OCD and explore the interplay between the brain metrics representing these alterations. Brain-symptom correlations were analyzed, and the performance of different brain metric configurations were evaluated in distinguishing patients with OCD from HCs. Results Among 108 HCs (median [IQR] age, 26 [23-31] years; 50 [46%] female) and 108 patients with OCD (median [IQR] age, 26 [24-31] years; 46 [43%] female), patients with OCD exhibited deficient neurite density in the right lateral occipitoparietal regions (peak t = 3.821; P ≤ .04). Classic morphometries also revealed widely-distributed alterations in the brain (peak t = 4.852; maximum P = .04), including the prefrontal, medial parietal, cingulate, and fusiform cortices. These brain metrics were interconnected into a pathological brain network associated with OCD symptoms (global strength: HCs, 0.253; patients with OCD, 0.941; P = .046; structural difference, 0.572; P < .001). Additionally, the neurite density index exhibited high discriminatory power in distinguishing patients with OCD from HCs (accuracy, ≤76.85%), and the entire pathological brain network also exhibited excellent discriminative classification properties (accuracy, ≤82.87%). Conclusions and Relevance The findings of this case-control study underscore the utility of in vivo imaging of gray matter dendritic density in future OCD research and the development of neuroimaging-based biomarkers. They also endorse the concept of connectopathy, providing a potential framework for interpreting the associations among various OCD symptom-related morphological anomalies.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Campos-Martin R, Bey K, Elsner B, Reuter B, Klawohn J, Philipsen A, Kathmann N, Wagner M, Ramirez A. Epigenome-wide analysis identifies methylome profiles linked to obsessive-compulsive disorder, disease severity, and treatment response. Mol Psychiatry 2023; 28:4321-4330. [PMID: 37587247 PMCID: PMC10827661 DOI: 10.1038/s41380-023-02219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent mental disorder affecting ~2-3% of the population. This disorder involves genetic and, possibly, epigenetic risk factors. The dynamic nature of epigenetics also presents a promising avenue for identifying biomarkers associated with symptom severity, clinical progression, and treatment response in OCD. We, therefore, conducted a comprehensive case-control investigation using Illumina MethylationEPIC BeadChip, encompassing 185 OCD patients and 199 controls recruited from two distinct sites in Germany. Rigorous clinical assessments were performed by trained raters employing the Structured Clinical Interview for DSM-IV (SCID-I). We performed a robust two-step epigenome-wide association study that led to the identification of 305 differentially methylated CpG positions. Next, we validated these findings by pinpointing the optimal set of CpGs that could effectively classify individuals into their respective groups. This approach identified a subset comprising 12 CpGs that overlapped with the 305 CpGs identified in our EWAS. These 12 CpGs are close to or in genes associated with the sweet-compulsive brain hypothesis which proposes that aberrant dopaminergic transmission in the striatum may impair insulin signaling sensitivity among OCD patients. We replicated three of the 12 CpGs signals from a recent independent study conducted on the Han Chinese population, underscoring also the cross-cultural relevance of our findings. In conclusion, our study further supports the involvement of epigenetic mechanisms in the pathogenesis of OCD. By elucidating the underlying molecular alterations associated with OCD, our study contributes to advancing our understanding of this complex disorder and may ultimately improve clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Björn Elsner
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Reuter
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
10
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
12
|
Abstract
Obsessive-compulsive disorder (OCD) has a bidirectional relationship with metabolic disorders. The purposes of this review are to decipher the links between OCD and metabolic disorders and to explore the etiological mechanism of OCD in metabolism, which may aid in early identification of and tailored interventions for OCD and metabolic disorders.
Collapse
|
13
|
Wimberley T, Horsdal HT, Brikell I, Laursen TM, Astrup A, Fanelli G, Bralten J, Poelmans G, Gils VV, Jansen WJ, Vos SJB, Bertaina-Anglade V, Camacho-Barcia L, Mora-Maltas B, Fernandez-Aranda F, Bonet MB, Salas-Salvadó J, Franke B, Dalsgaard S. Temporally ordered associations between type 2 diabetes and brain disorders - a Danish register-based cohort study. BMC Psychiatry 2022; 22:573. [PMID: 36028833 PMCID: PMC9413891 DOI: 10.1186/s12888-022-04163-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is linked with several neurodegenerative and psychiatric disorders, either as a comorbid condition or as a risk factor. We aimed to expand the evidence by examining associations with a broad range of brain disorders (psychiatric and neurological disorders, excluding late-onset neurodegenerative disorders), while also accounting for the temporal order of T2DM and these brain disorders. METHODS In a population-based cohort-study of 1,883,198 Danish citizens, born 1955-1984 and followed until end of 2016, we estimated associations between T2DM and 16 brain disorders first diagnosed between childhood and mid-adulthood. We calculated odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI) in temporally ordered analyses (brain disorder diagnosis after T2DM and vice versa), adjusted for sex, age, follow-up, birth year, and parental factors. RESULTS A total of 67,660 (3.6%) of the study population were identified as T2DM cases after age 30 and by a mean age of 45 years (SD of 8 years). T2DM was associated with most psychiatric disorders. Strongest associations were seen with other (i.e. non-anorectic) eating disorders (OR [95% CI]: 2.64 [2.36-2.94]) and schizophrenia spectrum disorder (2.73 [2.63-2.84]). Among neurological disorders especially inflammatory brain diseases (1.73 [1.57-1.91]) and epilepsy (1.67 [1.60-1.75]) were associated with T2DM. Most associations remained in both directions in the temporally ordered analyses. For most psychiatric disorders, associations were strongest in females. CONCLUSIONS T2DM was associated with several psychiatric and neurological disorders, and most associations were consistently found for both temporal order of disorders. This suggests a shared etiology of T2DM and those brain disorders. This study can form the starting point for studies directed at further elucidating potential causal links between disorders and shared biological mechanisms.
Collapse
Affiliation(s)
- Theresa Wimberley
- NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210, Aarhus V, Denmark. .,CIRRAU - Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark.
| | - Henriette T. Horsdal
- grid.7048.b0000 0001 1956 2722NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Denmark ,grid.7048.b0000 0001 1956 2722CIRRAU - Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Isabell Brikell
- grid.7048.b0000 0001 1956 2722NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Denmark ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas M. Laursen
- grid.7048.b0000 0001 1956 2722NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Denmark ,grid.7048.b0000 0001 1956 2722CIRRAU - Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Aske Astrup
- grid.7048.b0000 0001 1956 2722NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Denmark ,grid.7048.b0000 0001 1956 2722CIRRAU - Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Giuseppe Fanelli
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands ,grid.6292.f0000 0004 1757 1758Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Janita Bralten
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Geert Poelmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Veerle Van Gils
- grid.5012.60000 0001 0481 6099Department of Psychiatry and Neuropsychology, School for Mental Health and NeuroScience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Willemijn J. Jansen
- grid.5012.60000 0001 0481 6099Department of Psychiatry and Neuropsychology, School for Mental Health and NeuroScience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Stephanie J. B. Vos
- grid.5012.60000 0001 0481 6099Department of Psychiatry and Neuropsychology, School for Mental Health and NeuroScience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | | | - Lucia Camacho-Barcia
- grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Bernat Mora-Maltas
- grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Fernando Fernandez-Aranda
- grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mònica B. Bonet
- grid.413448.e0000 0000 9314 1427Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain ,grid.410367.70000 0001 2284 9230Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Reus, Spain ,grid.411136.00000 0004 1765 529XInstitut d’Investigació Sanitària Pere Virgili (IISPV). Hospital Universitari San Joan de Reus, Reus, Spain
| | - Jordi Salas-Salvadó
- grid.413448.e0000 0000 9314 1427Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain ,grid.411136.00000 0004 1765 529XInstitut d’Investigació Sanitària Pere Virgili (IISPV). Hospital Universitari San Joan de Reus, Reus, Spain ,grid.410367.70000 0001 2284 9230Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
| | - Barbara Franke
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Søren Dalsgaard
- grid.7048.b0000 0001 1956 2722NCRR - National Centre for Register-based Research, Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Denmark ,grid.452548.a0000 0000 9817 5300iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Aarhus, Denmark ,grid.466916.a0000 0004 0631 4836Center for Child and Adolescent Psychiatry, Mental Health Services of the Capital Region, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Grassi G, Figee M, Pozza A, Dell'Osso B. Obsessive-compulsive disorder, insulin signaling and diabetes - A novel form of physical health comorbidity: The sweet compulsive brain. Compr Psychiatry 2022; 117:152329. [PMID: 35679658 DOI: 10.1016/j.comppsych.2022.152329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND While a growing body of research highlights a bi-directional link between diabetes and mood disorders, little is known about the relationship between diabetes and obsessive-compulsive disorder (OCD). The aim of the present review is to investigate current evidence linking OCD, insulin-signaling and diabetes. METHODS A PubMed search was conducted to review all the available studies assessing diabetes, glucose metabolism and insulin-signaling in OCD patients and vice versa. RESULTS Some clinical and epidemiological studies show a higher prevalence of diabetes in OCD and vice versa compared to the general population. Animal and genetic studies suggest a possible role of insulin-signaling in the pathophysiology of OCD. Deep brain stimulation (DBS) studies suggest that abnormal dopaminergic transmission in the striatum may contribute to impaired insulin sensitivity in OCD. While DBS seems to increase insulin sensitivity, a possible protective role of serotonin reuptake-inhibitors on diabetic risk needs further studies. CONCLUSION Despite their preliminary nature, these data highlight the importance of further investigations aimed at assessing metabolic features in OCD patients and OCD symptoms in diabetes patients to understand the impact of each condition on the pathophysiology and course of the other. Understanding the role of insulin in the obsessive-compulsive brain could open new treatment pathways for OCD.
Collapse
Affiliation(s)
| | - Martijn Figee
- Department of Psychiatry, Icahn Medical School at Mount Sinai, New York, NY, USA
| | | | - Bernardo Dell'Osso
- University of Milan, Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Sacco-Polo Universitario, ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
15
|
Abdin E, Chong SA, Vaingankar JA, Shafie S, Seah D, Chan CT, Ma S, James L, Heng D, Subramaniam M. Changes in the prevalence of comorbidity of mental and physical disorders in Singapore between 2010 and 2016. Singapore Med J 2022; 63:196-202. [PMID: 32798362 PMCID: PMC9251260 DOI: 10.11622/smedj.2020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Few studies have examined the changes in the prevalence of comorbidity of mental and physical disorders in recent years. The present study sought to examine whether the prevalence of comorbidity of mental and physical disorders in Singapore showed any changes between 2010 and 2016. METHODS We extracted data from two repeated nationally representative cross-sectional surveys conducted among resident adults aged ≥ 18 years in Singapore. Significant changes were tested using pooled multinomial logistic regression analyses. RESULTS The prevalence of comorbid mental and physical disorders increased significantly from 5.8% in 2010 to 6.7% in 2016. Among those with physical disorders, there were significant increases over time in the prevalence of comorbid generalised anxiety disorder (GAD) (0.1% vs. 0.4%) and obsessive-compulsive disorder (OCD) (1.4% vs. 3.9%) in diabetes mellitus, and alcohol dependence in cardiovascular disorders (0.1% vs. 1.3%). Among those with mental disorders, there were significant increases over time in the prevalence of comorbid diabetes mellitus in OCD (4.1% vs. 10.9%), cancer in major depressive disorder (0.4% vs. 2.4%), and cardiovascular disorders in GAD (0.4% vs. 6.7%) and alcohol dependence (0.9% vs. 11.8%). Significant changes in the overall prevalence of comorbid mental and physical disorders were also observed across age group, education and employment status. CONCLUSION The prevalence of comorbid mental and physical disorders increased significantly over time. This finding supports the need for more appropriate clinical management with better integration between mental health and general medical care professionals across all aspects of the healthcare system to treat this comorbidity in Singapore.
Collapse
Affiliation(s)
| | - Siow Ann Chong
- Research Division, Institute of Mental Health, Singapore
| | | | - Saleha Shafie
- Research Division, Institute of Mental Health, Singapore
| | - Darren Seah
- Family Medicine Department, National Healthcare Group Polyclinics, Singapore
| | - Chun Ting Chan
- Department of Early Psychosis Intervention, Institute of Mental Health, Singapore
| | | | | | | | | |
Collapse
|
16
|
Fanelli G, Franke B, De Witte W, Ruisch IH, Haavik J, van Gils V, Jansen WJ, Vos SJB, Lind L, Buitelaar JK, Banaschewski T, Dalsgaard S, Serretti A, Mota NR, Poelmans G, Bralten J. Insulinopathies of the brain? Genetic overlap between somatic insulin-related and neuropsychiatric disorders. Transl Psychiatry 2022; 12:59. [PMID: 35165256 PMCID: PMC8844407 DOI: 10.1038/s41398-022-01817-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher in Alzheimer's disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these phenotypes. Having tested these hypotheses, other potential brain "insulinopathies" were also explored by estimating the genetic relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found between OCD and MetS (rg = -0.315, p = 3.9 × 10-8), OCD and obesity (rg = -0.379, p = 3.4 × 10-5), and OCD and T2DM (rg = -0.172, p = 3 × 10-4). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 × 10-4). Stratified analyses showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 × 10-4). Overall, our findings suggest the existence of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on "insulinopathies" of the brain.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - I Hyun Ruisch
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, PSYCH, Aarhus, Denmark
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
18
|
de Oliveira KC, Camilo C, Gastaldi VD, Sant'Anna Feltrin A, Lisboa BCG, de Jesus Rodrigues de Paula V, Moretto AC, Lafer B, Hoexter MQ, Miguel EC, Maschietto M, Brentani H. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation. BMC Genom Data 2021; 22:45. [PMID: 34717534 PMCID: PMC8557022 DOI: 10.1186/s12863-021-00993-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. Results There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. Conclusions DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00993-0.
Collapse
Affiliation(s)
- Kátia Cristina de Oliveira
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.,Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.
| | - Vinícius Daguano Gastaldi
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Arthur Sant'Anna Feltrin
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Bianca Cristina Garcia Lisboa
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Vanessa de Jesus Rodrigues de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | | | - Beny Lafer
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Helena Brentani
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Cao X, Liu WP, Cheng LG, Li HJ, Wu H, Liu YH, Chen C, Xiao X, Li M, Wang GD, Zhang YP. Whole genome analyses reveal significant convergence in obsessive-compulsive disorder between humans and dogs. Sci Bull (Beijing) 2021; 66:187-196. [PMID: 36654227 DOI: 10.1016/j.scib.2020.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023]
Abstract
Obsessive-compulsive disorder (OCD) represents a heterogeneous collection of diseases with diverse levels of phenotypic, genetic, and etiologic variability, making it difficult to identify the underlying genetic and biological mechanisms in humans. Domestic dogs exhibit several OCD-like behaviors. Using continuous circling as a representative phenotype for OCD, we screened two independent dog breeds, the Belgian Malinois and Kunming Dog and subsequently sequenced ten circling dogs and ten unaffected dogs for each breed. Using population differentiation analyses, we identified 11 candidate genes in the extreme tail of the differentiated regions between cases and controls. These genes overlap significantly with genes identified in a genome wide association study (GWAS) of human OCD, indicating strong convergence between humans and dogs. Through gene expressional analysis and functional exploration, we found that two candidate OCD risk genes, PPP2R2B and ADAMTSL3, affected the density and morphology of dendritic spines. Therefore, changes in dendritic spine may underlie some common biological and physiological pathways shared between humans and dogs. Our study revealed an unprecedented level of convergence in OCD shared between humans and dogs, and highlighted the importance of using domestic dogs as a model species for many human diseases including OCD.
Collapse
Affiliation(s)
- Xue Cao
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Lu-Guang Cheng
- Kunming Police Dog Base, Ministry of Public Security, Kunming 650204, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Wu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chao Chen
- Kunming Police Dog Base, Ministry of Public Security, Kunming 650204, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
20
|
Saraiva LC, Cappi C, Simpson HB, Stein DJ, Viswanath B, van den Heuvel OA, Reddy YCJ, Miguel EC, Shavitt RG. Cutting-edge genetics in obsessive-compulsive disorder. Fac Rev 2020; 9:30. [PMID: 33659962 PMCID: PMC7886082 DOI: 10.12703/r/9-30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article reviews recent advances in the genetics of obsessive-compulsive disorder (OCD). We cover work on the following: genome-wide association studies, whole-exome sequencing studies, copy number variation studies, gene expression, polygenic risk scores, gene–environment interaction, experimental animal systems, human cell models, imaging genetics, pharmacogenetics, and studies of endophenotypes. Findings from this work underscore the notion that the genetic architecture of OCD is highly complex and shared with other neuropsychiatric disorders. Also, the latest evidence points to the participation of gene networks involved in synaptic transmission, neurodevelopment, and the immune and inflammatory systems in this disorder. We conclude by highlighting that further study of the genetic architecture of OCD, a great part of which remains to be elucidated, could benefit the development of diagnostic and therapeutic approaches based on the biological basis of the disorder. Studies to date revealed that OCD is not a simple homogeneous entity, but rather that the underlying biological pathways are variable and heterogenous. We can expect that translation from bench to bedside, through continuous effort and collaborative work, will ultimately transform our understanding of what causes OCD and thus how best to treat it.
Collapse
Affiliation(s)
- Leonardo Cardoso Saraiva
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Helen Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- The New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Biju Viswanath
- Molecular Genetics Laboratory, National Institute of Mental Health & Neurosciences (NIMHANS); Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS) Laboratory, NIMHANS, Bangalore, India
| | - Odile A van den Heuvel
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - YC Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, NIMHANS, Bangalore, India
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
21
|
Torres T, Boloc D, Rodríguez N, Blázquez A, Plana MT, Varela E, Gassó P, Martinez-Pinteño A, Lázaro L, Arnaiz JA, Mas S. Response to fluoxetine in children and adolescents: a weighted gene co-expression network analysis of peripheral blood. Am J Transl Res 2020; 12:2028-2040. [PMID: 32509197 PMCID: PMC7269974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The inconclusive and non-replicated results of pharmacogenetic studies of antidepressant response could be related to the lack of acknowledgement of its mechanism of action. In this scenario, gene expression studies provide and interesting framework to reveal new candidate genes for pharmacogenetic studies or peripheral biomarkers of fluoxetine response. We propose a system biology approach to analyse changes in gene expression induced by eight weeks of treatment with fluoxetine in peripheral blood. 21 naïve child and adolescents participated in the present study. Our analysis include the identification of gene co-expression modules, using Weighted Gene Co-expression Network Analysis (WGCNA), followed by protein-protein interaction (PPi) network construction coupled with functional annotation. Our results revealed two modules of co-expression genes related to fluoxetine treatment. The constructed networks from these modules were enriched for biological processes related to cellular and metabolic processes, cell communication, immune system processes, cell death, response to stimulus and neurogenesis. Some of these processes, such as immune system, replicated previous findings in the literature, whereas, neurogenesis, a mechanism proposed to be involved in fluoxetine response, had been identified for first time using peripheral tissues. In conclusion, our study identifies several biological processes in relation to fluoxetine treatment in peripheral blood, offer new candidate genes for pharmacogenetic studies and valuable markers for peripheral moderator biomarkers discovery.
Collapse
Affiliation(s)
- Teresa Torres
- Department of Clinical Foundations, Pharmacology Unit, University of BarcelonaBarcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of BarcelonaBarcelona, Spain
| | | | - Ana Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de BarcelonaBarcelona, Spain
| | - Maria Teresa Plana
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de BarcelonaBarcelona, Spain
| | - Eva Varela
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de BarcelonaBarcelona, Spain
| | - Patricia Gassó
- Department of Clinical Foundations, Pharmacology Unit, University of BarcelonaBarcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS)Barcelona, Spain
| | - Albert Martinez-Pinteño
- Department of Clinical Foundations, Pharmacology Unit, University of BarcelonaBarcelona, Spain
| | - Luisa Lázaro
- Department of Medicine, University of BarcelonaBarcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de BarcelonaBarcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS)Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health InstituteMadrid, Spain
| | - Joan Albert Arnaiz
- Department of Clinical Foundations, Pharmacology Unit, University of BarcelonaBarcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS)Barcelona, Spain
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of BarcelonaBarcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS)Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health InstituteMadrid, Spain
| |
Collapse
|
22
|
Bralten J, Widomska J, Witte WD, Yu D, Mathews CA, Scharf JM, Buitelaar J, Crosbie J, Schachar R, Arnold P, Lemire M, Burton CL, Franke B, Poelmans G. Shared genetic etiology between obsessive-compulsive disorder, obsessive-compulsive symptoms in the population, and insulin signaling. Transl Psychiatry 2020; 10:121. [PMID: 32341337 PMCID: PMC7186226 DOI: 10.1038/s41398-020-0793-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Obsessive-compulsive symptoms (OCS) in the population have been linked to obsessive-compulsive disorder (OCD) in genetic and epidemiological studies. Insulin signaling has been implicated in OCD. We extend previous work by assessing genetic overlap between OCD, population-based OCS, and central nervous system (CNS) and peripheral insulin signaling. We conducted genome-wide association studies (GWASs) in the population-based Philadelphia Neurodevelopmental Cohort (PNC, 650 children and adolescents) of the total OCS score and six OCS factors from an exploratory factor analysis of 22 questions. Subsequently, we performed polygenic risk score (PRS)-based analysis to assess shared genetic etiologies between clinical OCD (using GWAS data from the Psychiatric Genomics Consortium), the total OCS score and OCS factors. We then performed gene-set analyses with a set of OCD-linked genes centered around CNS insulin-regulated synaptic function and PRS-based analyses for five peripheral insulin signaling-related traits. For validation purposes, we explored data from the independent Spit for Science population cohort (5,047 children and adolescents). In the PNC, we found a significant shared genetic etiology between OCD and 'guilty taboo thoughts'. In the Spit for Science cohort, we additionally observed genetic sharing between 'symmetry/counting/ordering' and 'contamination/cleaning'. The CNS insulin-linked gene-set also associated with 'symmetry/counting/ordering' in the PNC. Further, we identified genetic sharing between peripheral insulin signaling-related traits: type 2 diabetes with 'aggressive taboo thoughts', and levels of fasting insulin and 2 h glucose with OCD. In conclusion, OCD, OCS in the population and insulin-related traits share genetic risk factors, indicating a common etiological mechanism underlying somatic and psychiatric disorders.
Collapse
Affiliation(s)
- Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joanna Widomska
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Jennifer Crosbie
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Arnold
- Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry & Medical Genetics; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mathieu Lemire
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Christie L Burton
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Jager A, Amiri H, Bielczyk N, van Heukelum S, Heerschap A, Aschrafi A, Poelmans G, Buitelaar JK, Kozicz T, Glennon JC. Cortical control of aggression: GABA signalling in the anterior cingulate cortex. Eur Neuropsychopharmacol 2020; 30:5-16. [PMID: 29274996 DOI: 10.1016/j.euroneuro.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/14/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
Reduced top-down control by cortical areas is assumed to underlie pathological forms of aggression. While the precise underlying molecular mechanisms are still elusive, it seems that balancing the excitatory and inhibitory tones of cortical brain areas has a role in aggression control. The molecular mechanisms underpinning aggression control were examined in the BALB/cJ mouse model. First, these mice were extensively phenotyped for aggression and anxiety in comparison to BALB/cByJ controls. Microarray data was then used to construct a molecular landscape, based on the mRNAs that were differentially expressed in the brains of BALB/cJ mice. Subsequently, we provided corroborating evidence for the key findings from the landscape through 1H-magnetic resonance imaging and quantitative polymerase chain reactions, specifically in the anterior cingulate cortex (ACC). The molecular landscape predicted that altered GABA signalling may underlie the observed increased aggression and anxiety in BALB/cJ mice. This was supported by a 40% reduction of 1H-MRS GABA levels and a 20-fold increase of the GABA-degrading enzyme Abat in the ventral ACC. As a possible compensation, Kcc2, a potassium-chloride channel involved in GABA-A receptor signalling, was found increased. Moreover, we observed aggressive behaviour that could be linked to altered expression of neuroligin-2, a membrane-bound cell adhesion protein that mediates synaptogenesis of mainly inhibitory synapses. In conclusion, Abat and Kcc2 seem to be involved in modulating aggressive and anxious behaviours observed in BALB/cJ mice through affecting GABA signalling in the ACC.
Collapse
Affiliation(s)
- Amanda Jager
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Houshang Amiri
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Natalia Bielczyk
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Nieuwenhuis S, Okkersen K, Widomska J, Blom P, 't Hoen PAC, van Engelen B, Glennon JC. Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1. Front Neurol 2019; 10:1229. [PMID: 31849810 PMCID: PMC6901991 DOI: 10.3389/fneur.2019.01229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul Blom
- VDL Enabling Technologies Group B.V., Eindhoven, Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
25
|
Polat S, Gediz BS, Ercan AC, Kaim M, Hocaoglu C. The Place of Optical Coherence Tomography in Patients with Obsessive Compulsive Disorder. Eurasian J Med 2019; 51:237-241. [PMID: 31692778 DOI: 10.5152/eurasianjmed.2019.18306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective Optical coherence tomography (OCT) is an increasingly used new method that investigates changes in the retinal nerve fiber layer (RNFL) in neurodegenerative diseases. It provides high-resolution cross-sectional imaging of biological tissues. This study aimed to investigate the structural changes in RNFL in patients with obsessive compulsive disorder (OCD) using OCT and to investigate the possible effects of retinal function on the etiopathogenesis of OCD. Materials and Methods In this study, 30 patients diagnosed with OCD at the end of the Structured Clinical Interview for DSM (SCID-I), without any drug use status, and 31 healthy participants paired with the patients in terms of their sociodemographic characteristics were included. In the patient and control groups, the RNFL thickness was measured and compared at each locus using OCT. Results Statistically significant differences were found in RNFL, ganglion cell layer thickness, and central foveal thickness between the patients with OCD and the control group. In this study, the choroidal thickness values of the patient group were found to be higher than those of the control group; and a statistically significant difference was observed in the mean choroidal thickness values (p=0.045). Conclusion The findings of the study suggest that the RNFL thickness of patients with OCD does not decrease, but choroidal thickness may be an important biomarker to determine the etiopathogenesis of the disease and follow neurodegeneration.
Collapse
Affiliation(s)
- Selim Polat
- Department of Psychiatry, Recep Tayyip Erdogan University Training and Research Hospital Rize, Turkey
| | | | | | - Muhammet Kaim
- Department of Ophthalmology, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Cicek Hocaoglu
- Department of Psychiatry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| |
Collapse
|
26
|
Savaheli S, Ahmadiani A. Obsessive-compulsive disorder and growth factors: A comparative review. Behav Brain Res 2019; 372:111967. [PMID: 31136772 DOI: 10.1016/j.bbr.2019.111967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023]
Abstract
The goal of this article is to clarify the role of various growth factors in the establishment and progression of obsessive-compulsive disorder (OCD). OCD is a chronic mental disorder with recurrent intrusive thoughts and/or repetitive compulsive behaviors that increase during stressful periods. Growth and neurotrophic factors may be contributing factors in the pathophysiology of OCD. Many of them are synthesized and released within the central nervous system and act as trophic agents in neurons; some of them are involved in brain growth, development, neurogenesis, myelination and plasticity, while others take part in the protection of the nervous system following brain injuries. This paper attempts to identify all articles investigating the relationship between OCD and neurotrophic and growth factors, in both animal and human studies, with a focus on adult brain studies. Based on the PubMed and Scopus and Science Direct search tools, the available articles and studies are reviewed. Out of 230 records in total, the ones related to our review topic were taken into account to further understand the pathophysiological mechanism(s) of OCD, providing methods to improve its symptoms via the modification of neurotrophins and growth factor imbalances.
Collapse
Affiliation(s)
- Sara Savaheli
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
|
28
|
Converging evidence points towards a role of insulin signaling in regulating compulsive behavior. Transl Psychiatry 2019; 9:225. [PMID: 31515486 PMCID: PMC6742634 DOI: 10.1038/s41398-019-0559-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/28/2018] [Accepted: 07/24/2018] [Indexed: 01/04/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder with childhood onset, and is characterized by intrusive thoughts and fears (obsessions) that lead to repetitive behaviors (compulsions). Previously, we identified insulin signaling being associated with OCD and here, we aim to further investigate this link in vivo. We studied TALLYHO/JngJ (TH) mice, a model of type 2 diabetes mellitus, to (1) assess compulsive and anxious behaviors, (2) determine neuro-metabolite levels by 1 H magnetic resonance spectroscopy (MRS) and brain structural connectivity by diffusion tensor imaging (DTI), and (3) investigate plasma and brain protein levels for molecules previously associated with OCD (insulin, Igf1, Kcnq1, and Bdnf) in these subjects. TH mice showed increased compulsivity-like behavior (reduced spontaneous alternation in the Y-maze) and more anxiety (less time spent in the open arms of the elevated plus maze). In parallel, their brains differed in the white matter microstructure measures fractional anisotropy (FA) and mean diffusivity (MD) in the midline corpus callosum (increased FA and decreased MD), in myelinated fibers of the dorsomedial striatum (decreased FA and MD), and superior cerebellar peduncles (decreased FA and MD). MRS revealed increased glucose levels in the dorsomedial striatum and increased glutathione levels in the anterior cingulate cortex in the TH mice relative to their controls. Igf1 expression was reduced in the cerebellum of TH mice but increased in the plasma. In conclusion, our data indicates a role of (abnormal) insulin signaling in compulsivity-like behavior.
Collapse
|
29
|
Layer-specific reduced neuronal density in the orbitofrontal cortex of older adults with obsessive–compulsive disorder. Brain Struct Funct 2018; 224:191-203. [DOI: 10.1007/s00429-018-1752-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
|
30
|
Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC. Aggressive behavior in transgenic animal models: A systematic review. Neurosci Biobehav Rev 2018; 91:198-217. [DOI: 10.1016/j.neubiorev.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
|
31
|
Bralten J, van Hulzen KJ, Martens MB, Galesloot TE, Arias Vasquez A, Kiemeney LA, Buitelaar JK, Muntjewerff JW, Franke B, Poelmans G. Autism spectrum disorders and autistic traits share genetics and biology. Mol Psychiatry 2018; 23:1205-1212. [PMID: 28507316 PMCID: PMC5984081 DOI: 10.1038/mp.2017.98] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) and autistic traits in the general population may share genetic susceptibility factors. In this study, we investigated such potential overlap based on common genetic variants. We developed and validated a self-report questionnaire of autistic traits in adults. We then conducted genome-wide association studies (GWASs) of six trait scores derived from the questionnaire through exploratory factor analysis in 1981 adults from the general population. Using the results from the Psychiatric Genomics Consortium GWAS of ASDs, we observed genetic sharing between ASDs and the autistic traits 'childhood behavior', 'rigidity' and 'attention to detail'. Gene-set analysis subsequently identified 'rigidity' to be significantly associated with a network of ASD gene-encoded proteins that regulates neurite outgrowth. Gene-wide association with the well-established ASD gene MET reached significance. Taken together, our findings provide evidence for an overlapping genetic and biological etiology underlying ASDs and autistic population traits, which suggests that genetic studies in the general population may yield novel ASD genes.
Collapse
Affiliation(s)
- J Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - K J van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - T E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Arias Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - J W Muntjewerff
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Toma C, Shaw AD, Allcock RJN, Heath A, Pierce KD, Mitchell PB, Schofield PR, Fullerton JM. An examination of multiple classes of rare variants in extended families with bipolar disorder. Transl Psychiatry 2018; 8:65. [PMID: 29531218 PMCID: PMC5847564 DOI: 10.1038/s41398-018-0113-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is a complex psychiatric condition with high heritability, the genetic architecture of which likely comprises both common variants of small effect and rare variants of higher penetrance, the latter of which are largely unknown. Extended families with high density of illness provide an opportunity to map novel risk genes or consolidate evidence for existing candidates, by identifying genes carrying pathogenic rare variants. We performed whole-exome sequencing (WES) in 15 BD families (117 subjects, of whom 72 were affected), augmented with copy number variant (CNV) microarray data, to examine contributions of multiple classes of rare genetic variants within a familial context. Linkage analysis and haplotype reconstruction using WES-derived genotypes enabled exclusion of false-positive single-nucleotide variants (SNVs), CNV inheritance estimation, de novo variant identification and candidate gene prioritization. We found that rare predicted pathogenic variants shared among ≥3 affected relatives were overrepresented in postsynaptic density (PSD) genes (P = 0.002), with no enrichment in unaffected relatives. Genome-wide burden of likely gene-disruptive variants was no different in affected vs. unaffected relatives (P = 0.24), but correlated significantly with age of onset (P = 0.017), suggesting that a high disruptive variant burden may expedite symptom onset. The number of de novo variants was no different in affected vs. unaffected offspring (P = 0.89). We observed heterogeneity within and between families, with the most likely genetic model involving alleles of modest effect and reduced penetrance: a possible exception being a truncating X-linked mutation in IRS4 within a family-specific linkage peak. Genetic approaches combining WES, CNV and linkage analyses in extended families are promising strategies for gene discovery.
Collapse
Affiliation(s)
- Claudio Toma
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Alex D. Shaw
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Richard J. N. Allcock
- 0000 0004 1936 7910grid.1012.2School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Anna Heath
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia
| | - Kerrie D. Pierce
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia
| | - Philip B. Mitchell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, Australia ,grid.415193.bBlack Dog Institute, Prince of Wales Hospital, Sydney, Australia
| | - Peter R. Schofield
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Janice M. Fullerton
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Sydney, Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
33
|
O'Connell KS, McGregor NW, Lochner C, Emsley R, Warnich L. The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci 2018; 88:300-307. [PMID: 29505902 DOI: 10.1016/j.mcn.2018.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Considerable evidence suggests that autism spectrum disorders (ASD), schizophrenia (SCZ), bipolar disorder (BD) and obsessive-compulsive disorder (OCD) share a common molecular aetiology, despite their unique clinical diagnostic criteria. The aim of this study was therefore to determine and characterise the common and unique molecular architecture of ASD, SCZ, BD and OCD. Gene lists were obtained from previously published studies for ASD, BD, SCZ and for OCD. Genes identified to be common to all disorders, or unique to one specific disorder, were included for enrichment analyses using the web-server tool Enrichr. Ten genes were identified to be commonly associated with the aetiology of ASD, SCZ, BD and OCD. Enrichment analyses determined that these genes are predominantly involved in the dopaminergic and serotonergic pathways, the voltage-gated calcium ion channel gene network, folate metabolism, regulation of the hippo signaling pathway, and the regulation of gene silencing and expression. In addition to well-characterised and previously described pathways, regulation of the hippo signaling pathway was commonly associated with ASD, SCZ, BD and OCD, implicating neural development and neuronal maintenance as key in neuropsychiatric disorders. In contrast, a large number of previously associated genes were shown to be disorder-specific. And unique disorder-specific pathways and biological processes were presented for ASD, BD, SCZ and OCD aetiology. Considering the current global incidence and prevalence rates of mental health disorders, focus should be placed on cross-disorder commonalities in order to realise actionable and translatable results to combat mental health disorders.
Collapse
Affiliation(s)
- Kevin S O'Connell
- System Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa; Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Nathaniel W McGregor
- System Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa; Department of Genetics, Stellenbosch University, Stellenbosch, South Africa.
| | - Christine Lochner
- SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
34
|
Klemann CJHM, Martens GJM, Sharma M, Martens MB, Isacson O, Gasser T, Visser JE, Poelmans G. Integrated molecular landscape of Parkinson's disease. NPJ PARKINSONS DISEASE 2017. [PMID: 28649614 PMCID: PMC5460267 DOI: 10.1038/s41531-017-0015-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease is caused by a complex interplay of genetic and environmental factors. Although a number of independent molecular pathways and processes have been associated with familial Parkinson’s disease, a common mechanism underlying especially sporadic Parkinson’s disease is still largely unknown. In order to gain further insight into the etiology of Parkinson’s disease, we here conducted genetic network and literature analyses to integrate the top-ranked findings from thirteen published genome-wide association studies of Parkinson’s disease (involving 13.094 cases and 47.148 controls) and other genes implicated in (familial) Parkinson’s disease, into a molecular interaction landscape. The molecular Parkinson’s disease landscape harbors four main biological processes—oxidative stress response, endosomal-lysosomal functioning, endoplasmic reticulum stress response, and immune response activation—that interact with each other and regulate dopaminergic neuron function and death, the pathological hallmark of Parkinson’s disease. Interestingly, lipids and lipoproteins are functionally involved in and influenced by all these processes, and affect dopaminergic neuron-specific signaling cascades. Furthermore, we validate the Parkinson’s disease -lipid relationship by genome-wide association studies data-based polygenic risk score analyses that indicate a shared genetic risk between lipid/lipoprotein traits and Parkinson’s disease. Taken together, our findings provide novel insights into the molecular pathways underlying the etiology of (sporadic) Parkinson’s disease and highlight a key role for lipids and lipoproteins in Parkinson’s disease pathogenesis, providing important clues for the development of disease-modifying treatments of Parkinson’s disease. Lipids and lipoproteins play a central role in four key biological processes underlying Parkinson’s disease (PD). Using bioinformatics and other extensive analyses of previously published data, Geert Poelmans, Cornelius Klemann and colleagues in The Netherlands, Germany and the USA have mapped the interactions of proteins that are encoded by genes associated with both familial and sporadic forms of PD. They identify the oxidative stress response, lysosomal function, endoplasmic reticulum stress response and immune response activation as the main mechanisms leading to the death of dopaminergic neurons. Lipid signaling is implicated in all four of these processes and the authors find a link between the levels of particular lipids and lipoproteins and the risk of PD. These findings suggest that compounds that regulate lipid or lipoprotein levels offer a potential new treatment strategy for PD.
Collapse
Affiliation(s)
- C J H M Klemann
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands
| | - G J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands
| | - M Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - M B Martens
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - O Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA USA
| | - T Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - J E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - G Poelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Naaijen J, de Ruiter S, Zwiers MP, Glennon JC, Durston S, Lythgoe DJ, Williams SCR, Banaschewski T, Brandeis D, Franke B, Buitelaar JK. COMPULS: design of a multicenter phenotypic, cognitive, genetic, and magnetic resonance imaging study in children with compulsive syndromes. BMC Psychiatry 2016; 16:361. [PMID: 27782808 PMCID: PMC5080712 DOI: 10.1186/s12888-016-1072-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/14/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Compulsivity, the closely linked trait impulsivity and addictive behaviour are associated with several neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive compulsive disorder (OCD). All three disorders show impaired fronto-striatal functioning, which may be related to altered glutamatergic signalling. Genetic factors are also thought to play an important role in the aetiology of compulsivity-related disorders. METHODS The COMPULS study is a multi-center study designed to investigate the relationship between the traits compulsivity, impulsivity, and, to a lesser extent, addictive behaviour within and across the neurodevelopmental disorders ADHD, ASD, and OCD. This will be done at the phenotypic, cognitive, neural, and genetic level. In total, 240 participants will take part in COMPULS across four different sites in Europe. Data collection will include diagnostic interviews, behavioural questionnaires, cognitive measures, structural, functional and spectral neuroimaging, and genome-wide genetic information. DISCUSSION The COMPULS study will offer the unique opportunity to investigate several key aspects of compulsivity across a large cohort of ADHD, ASD and OCD patients.
Collapse
Affiliation(s)
- Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), 6525 EZ Nijmegen, The Netherlands
| | - Saskia de Ruiter
- Karakter child and adolescent psychiatry university center, Nijmegen, The Netherlands
| | - Marcel P. Zwiers
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), 6525 EZ Nijmegen, The Netherlands
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), 6525 EZ Nijmegen, The Netherlands
| | - Sarah Durston
- NICHE lab, department of psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - David J. Lythgoe
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Steven C. R. Williams
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), 6525 EZ Nijmegen, The Netherlands
- Karakter child and adolescent psychiatry university center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Forde NJ, Kanaan AS, Widomska J, Padmanabhuni SS, Nespoli E, Alexander J, Rodriguez Arranz JI, Fan S, Houssari R, Nawaz MS, Rizzo F, Pagliaroli L, Zilhäo NR, Aranyi T, Barta C, Boeckers TM, Boomsma DI, Buisman WR, Buitelaar JK, Cath D, Dietrich A, Driessen N, Drineas P, Dunlap M, Gerasch S, Glennon J, Hengerer B, van den Heuvel OA, Jespersgaard C, Möller HE, Müller-Vahl KR, Openneer TJC, Poelmans G, Pouwels PJW, Scharf JM, Stefansson H, Tümer Z, Veltman DJ, van der Werf YD, Hoekstra PJ, Ludolph A, Paschou P. TS-EUROTRAIN: A European-Wide Investigation and Training Network on the Etiology and Pathophysiology of Gilles de la Tourette Syndrome. Front Neurosci 2016; 10:384. [PMID: 27601976 PMCID: PMC4994475 DOI: 10.3389/fnins.2016.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022] Open
Abstract
Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.
Collapse
Affiliation(s)
- Natalie J Forde
- Department of Psychiatry, University of Groningen, University Medical Center GroningenGroningen, Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegen, Netherlands
| | - Ahmad S Kanaan
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical SchoolHannover, Germany; Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Shanmukha S Padmanabhuni
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandropoulos, Greece
| | - Ester Nespoli
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS ResearchBiberach an der Riss, Germany; Department of Child and Adolescent Psychiatry, University of UlmUlm, Germany
| | - John Alexander
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandropoulos, Greece
| | - Juan I Rodriguez Arranz
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Siyan Fan
- Department of Clinical and health Psychology, Utrecht UniversityUtrecht, Netherlands; Department of Psychiatry, VU University Medical CenterAmsterdam, Netherlands; Department of Anatomy and Neurosciences, VU University Medical CenterAmsterdam, Netherlands
| | - Rayan Houssari
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Muhammad S Nawaz
- deCODE Genetics/AmgenReykjavik, Iceland; Faculty of Medicine, University of IcelandReykjavik, Iceland
| | - Francesca Rizzo
- Department of Child and Adolescent Psychiatry, University of UlmUlm, Germany; Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany
| | - Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary; Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| | - Nuno R Zilhäo
- Department of Clinical and health Psychology, Utrecht UniversityUtrecht, Netherlands; Department of Biological Psychology, VU UniversityAmsterdam, Netherlands
| | - Tamas Aranyi
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary; Université d'Angers, BNMI (Institut national de la santé et de la recherche médicale 1083 / Centre National de la Recherche Scientifique 6214)Angers, France
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Hungary
| | - Tobias M Boeckers
- Department of Biological Psychology, VU University Amsterdam, Netherlands
| | - Dorret I Boomsma
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; EMGO+ Institute for Health and Care Research, VU University Medical CentreAmsterdam, Netherlands
| | | | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegen, Netherlands; Karakter Child and Adolescent Psychiatry, University CentreNijmegen, Netherlands
| | - Danielle Cath
- Department of Clinical and health Psychology, Utrecht University Utrecht, Netherlands
| | - Andrea Dietrich
- Department of Psychiatry, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Nicole Driessen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | | | | | - Sarah Gerasch
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School Hannover, Germany
| | - Jeffrey Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research Biberach an der Riss, Germany
| | - Odile A van den Heuvel
- Department of Psychiatry, VU University Medical CenterAmsterdam, Netherlands; Department of Anatomy and Neurosciences, VU University Medical CenterAmsterdam, Netherlands
| | - Cathrine Jespersgaard
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Kirsten R Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School Hannover, Germany
| | - Thaïra J C Openneer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegen, Netherlands; Department of Human Genetics, Radboud University Medical CenterNijmegen, Netherlands; Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences, Radboud UniversityNijmegen, Netherlands
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center Amsterdam, Netherlands
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Center for Human Genetic Research, Harvard Medical School, Massachusetts General Hospital Boston, MA, USA
| | | | - Zeynep Tümer
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical CenterAmsterdam, Netherlands; Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Andrea Ludolph
- Department of Child and Adolescent Psychiatry, University of Ulm Ulm, Germany
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandropoulos, Greece
| |
Collapse
|