1
|
Falconieri GS, Bertini L, Fiaschetti M, Bizzarri E, Baccelli I, Caruso C, Proietti S. Arabidopsis GLYI4 Reveals Intriguing Insights into the JA Signaling Pathway and Plant Defense. Int J Mol Sci 2024; 25:12162. [PMID: 39596230 PMCID: PMC11594653 DOI: 10.3390/ijms252212162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a central role in various physiological functions and mediate defense responses against (a)biotic stresses. Jasmonic acid (JA) has emerged as one of the key phytohormones involved in the response to necrotrophic pathogens. Under stressful conditions, plants can also produce small molecules, such as methylglyoxal (MG), a cytotoxic aldehyde. The enzymes glyoxalase I (GLYI) and glyoxalase II primarily detoxify MG. In Arabidopsis thaliana, GLYI4 has been recently characterized as having a crucial role in MG detoxification and emerging involvement in the JA pathway. Here, we investigated the impact of a GLYI4 loss-of-function on the Arabidopsis JA pathway and how MG affects it. The results showed that the glyI4 mutant plant had stunted growth, a smaller rosette diameter, reduced leaf size, and an altered pigment concentration. A gene expression analysis of the JA marker genes showed significant changes in the JA biosynthetic and signaling pathway genes in the glyI4 mutant. Disease resistance bioassays against the necrotroph Botrytis cinerea revealed altered patterns in the glyI4 mutant, likely due to increased oxidative stress. The MG effect has a further negative impact on plant performance. Collectively, these results contribute to clarifying the intricate interconnections between the GLYI4, MG, and JA pathways, opening up new avenues for further explorations of the intricate molecular mechanisms controlling plant stress responses.
Collapse
Affiliation(s)
- Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Matteo Fiaschetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| |
Collapse
|
2
|
Yu T, Dong W, Hou X, Sun A, Li X, Yu S, Zhang J. The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants. Int J Mol Sci 2024; 25:10937. [PMID: 39456719 PMCID: PMC11507017 DOI: 10.3390/ijms252010937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Methylglyoxal (MG), a highly reactive and cytotoxic α-oxoaldehyde compound, can over-accumulate under abiotic stress, consequently injuring plants or even causing death. Glyoxalase I (GLYI), the first enzyme of the glyoxalase pathway, plays multiple roles in the detoxification of MG and in abiotic stress responses. However, the GLY1 gene in maize has been little studied in response to abiotic stress. In this study, we screened a glyoxalase I gene (ZmGLYI-8) and overexpressed in Arabidopsis. This gene was localized in the cytoplasm and can be induced in maize seedlings under multiple stress treatments, including salt, drought, MG, ABA, H2O2 and high temperature stress. Phenotypic analysis revealed that after MG, salt and drought stress treatments, overexpression of ZmGLYI-8 increased the tolerance of transgenic Arabidopsis to MG, salt and drought stress. Furthermore, we demonstrated that the overexpression of ZmGLYI-8 scavenges accumulated reactive oxygen species, detoxifies MG and enhances the activity of antioxidant enzymes to improve the resistance of transgenic Arabidopsis plants to salt and drought stress. In summary, this study preliminarily elucidates the molecular mechanism of the maize ZmGLYI-8 gene in transgenic Arabidopsis and provides new insight into the breeding of salt- and drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Wei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Xinwei Hou
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Aiqing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China;
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| |
Collapse
|
3
|
Kaur S, Grewal SK, Taggar GK, Bhardwaj RD. Methylglyoxal metabolism is altered during defence response in pigeonpea ( Cajanus cajan (L.) Millsp.) against the spotted pod borer ( Maruca vitrata). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23155. [PMID: 38266279 DOI: 10.1071/fp23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Gaurav Kumar Taggar
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
5
|
Emamverdian A, Ding Y, Barker J, Liu G, Li Y, Mokhberdoran F. Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation. Int J Mol Sci 2023; 24:1942. [PMID: 36768266 PMCID: PMC9916771 DOI: 10.3390/ijms24031942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant's tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Farzad Mokhberdoran
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Knocking Out the Transcription Factor OsNAC092 Promoted Rice Drought Tolerance. BIOLOGY 2022; 11:biology11121830. [PMID: 36552339 PMCID: PMC9776343 DOI: 10.3390/biology11121830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Environmental drought stress threatens rice production. Previous studies have reported that related NAC (NAM, ATAF1/2, and CUC) transcription factors play an important role in drought stress. Herein, we identified and characterized OsNAC092, encoding an NAC transcription factor that is highly expressed and induced during drought tolerance. OsNAC092 knockout lines created using the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system exhibited increased drought resistance in rice. RNA sequencing showed that the knockout of OsNAC092 caused a global expression change, and differential gene expression is chiefly associated with "response to light stimulus," "MAPK signaling pathway," "plant hormone signal transduction," "response to oxidative stress," "photosynthesis," and "water deprivation." In addition, the antioxidants and enzyme activities of the redox response were significantly increased. OsNAC092 mutant rice exhibited a higher ability to scavenge more ROS and maintained a high GSH/GSSG ratio and redox level under drought stress, which could protect cells from oxidant stress, revealing the importance of OsNAC092 in the rice's response to abiotic stress. Functional analysis of OsNAC092 will be useful to explore many rice resistance genes in molecular breeding to aid in the development of modern agriculture.
Collapse
|
7
|
Ashraf MA, Rasheed R, Hussain I, Hafeez A, Adrees M, Rehman MZU, Rizwan M, Ali S. Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119769. [PMID: 35850318 DOI: 10.1016/j.envpol.2022.119769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The present experiment was conducted to appraise the role of different seed priming agents in circumventing the negative impact of chromium (Cr) toxicity on canola plants. Chromium toxicity resulted in significant decline in photosynthetic pigments and growth attributes of two canola cultivars (Puriga and MS-007). Cr toxicity also resulted in higher oxidative stress mirrored as greater accumulation of hydrogen peroxide (H2O2) superoxide radical (O2•‒), electrolyte leakage (EL) and malondialdehyde (MDA). Further, lipoxygenase enzyme activity that catalyzes the peroxidation of membrane lipids was also enhanced due to Cr toxicity. Canola plants also manifested impaired methylglyoxal (MG) detoxification due to the downregulation of glyoxalase enzymes (GlyI and II) under Cr stress. Seed priming treatments viz. osmo-priming with calcium chloride (CaCl2) and hormonal priming with salicylic acid (SA) remarkably improved growth and chlorophyll content in both canola cultivars under Cr toxicity as compared to other priming treatments such as hydro-priming, redox priming (H2O2) and chemical priming (Se; selenium). Moreover, CaCl2 and SA seed priming also resulted in lower oxidative stress and improved enzymatic (SOD, POD, CAT, APX, GR, GST) and non-enzymatic (GSH, phenolics, flavonoids, proline) antioxidant system of both cultivars under Cr toxicity. Further, hormonal and osmo-priming strengthened glyoxalase and antioxidant systems, thus improving reactive oxygen species (ROS) and MG detoxification. In this background, the cultivar Puriga is considered Cr tolerant as it exhibited better growth and lesser oxidative stress in both seed priming and non-primed conditions under Cr toxicity than cv. MS-007.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Arslan Hafeez
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
El-Yazied AA, Ibrahim MFM, Ibrahim MAR, Nasef IN, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alaklabi A, Dessoky ES, Alabdallah NM, Omar MMA, Ibrahim MTS, Metwally AA, Hassan KM, Shehata SA. Melatonin Mitigates Drought Induced Oxidative Stress in Potato Plants through Modulation of Osmolytes, Sugar Metabolism, ABA Homeostasis and Antioxidant Enzymes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1151. [PMID: 35567152 PMCID: PMC9104148 DOI: 10.3390/plants11091151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/05/2023]
Abstract
The effect of melatonin (MT) on potato plants under drought stress is still unclear in the available literature. Here, we studied the effect of MT as a foliar application at 0, 0.05, 0.1, and 0.2 mM on potato plants grown under well-watered and drought stressed conditions during the most critical period of early tuberization stage. The results indicated that under drought stress conditions, exogenous MT significantly (p ≤ 0.05) improved shoot fresh weight, shoot dry weight, chlorophyll (Chl; a, b and a + b), leaf relative water content (RWC), free amino acids (FAA), non-reducing sugars, total soluble sugars, cell membrane stability index, superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX) compared to the untreated plants. Meanwhile, carotenoids, proline, methylglyoxal (MG), H2O2, lipid peroxidation (malondialdehyde; MDA) and abscisic acid (ABA) were significantly decreased compared to the untreated plants. These responses may reveal the protective role of MT against drought induced carbonyl/oxidative stress and enhancing the antioxidative defense systems. Furthermore, tuber yield was differentially responded to MT treatments under well-watered and drought stressed conditions. Since, applied-MT led to an obvious decrease in tuber yield under well-watered conditions. In contrast, under drought conditions, tuber yield was substantially increased by MT-treatments up to 0.1 mM. These results may imply that under water deficiency, MT can regulate the tuberization process in potato plants by hindering ABA transport from the root to shoot system, on the one hand, and by increasing the non-reducing sugars on the other hand.
Collapse
Affiliation(s)
- Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Mervat A. R. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Ibrahim N. Nasef
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, Tabuk University, P.O. Box 741, Tabuk 47512, Saudi Arabia; (S.M.A.-Q.); (N.A.A.-H.)
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Mariam T. S. Ibrahim
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (M.A.R.I.); (M.M.A.O.); (M.T.S.I.)
| | - Amr A. Metwally
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Karim. M. Hassan
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt; (A.A.E.-Y.); (A.A.M.); (K.M.H.)
| | - Said A. Shehata
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
9
|
Koschmieder J, Alseekh S, Shabani M, Baltenweck R, Maurino VG, Palme K, Fernie AR, Hugueney P, Welsch R. Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways. PLANT CELL REPORTS 2022; 41:961-977. [PMID: 35064799 PMCID: PMC9035014 DOI: 10.1007/s00299-022-02831-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Analysis of carotenoid-accumulating roots revealed that oxidative carotenoid degradation yields glyoxal and methylglyoxal. Our data suggest that these compounds are detoxified via the glyoxalase system and re-enter primary metabolic pathways. Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent metabolization pathways remain unresolved. Interestingly, we found that carotenoid-accumulating roots have increased levels of glutathione, suggesting apocarotenoid glutathionylation to occur. In vitro and in planta investigations did not, however, support the occurrence of non-enzymatic or enzymatic glutathionylation of β-apocarotenoids. An alternative breakdown pathway is the continued oxidative degradation of primary apocarotenoids or their derivatives into the shortest possible oxidation products, namely glyoxal and methylglyoxal, which also accumulated in carotenoid-accumulating roots. In fact, combined transcriptome and metabolome analysis suggest that the high levels of glutathione are most probably required for detoxifying apocarotenoid-derived glyoxal and methylglyoxal via the glyoxalase pathway, yielding glycolate and D-lactate, respectively. Further transcriptome analysis suggested subsequent reactions involving activities associated with photorespiration and the peroxisome-specific glycolate/glyoxylate transporter. Finally, detoxified primary apocarotenoid degradation products might be converted into pyruvate which is possibly re-used for the synthesis of carotenoid biosynthesis precursors. Our findings allow to envision carbon recycling during carotenoid biosynthesis, degradation and re-synthesis which consumes energy, but partially maintains initially fixed carbon via re-introducing reactive carotenoid degradation products into primary metabolic pathways.
Collapse
Affiliation(s)
| | - Saleh Alseekh
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Marzieh Shabani
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Klaus Palme
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000, Colmar, France
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. STRESSES 2022. [DOI: 10.3390/stresses2020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes.
Collapse
|
11
|
Li Y, Xin J, Ge W, Tian R. Tolerance mechanism and phytoremediation potential of Pistia stratiotes to zinc and cadmium co-contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1259-1266. [PMID: 35037542 DOI: 10.1080/15226514.2021.2025201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pistia stratiotes can not only effectively remediate eutrophic water, but also displays strong absorption and bioaccumulation abilities for heavy metals. However, it has not been well-understood how the plant resists the combined stress of heavy metals. In these experiments, the morphophysiological traits, the ascorbate-glutathione (AsA-GSH) cycle, the glyoxalase system, and the contents of zinc (Zn) and cadmium (Cd) were investigated under Zn and Cd co-pollution. The AsA-GSH cycle and glyoxalase system could coordinately alleviate the oxidative and carbonyl stress, which was identified as an important tolerance mechanism. With Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 18 days, 90.75-93.69% of Zn and 88.13-96.96% Cd accumulated in the roots. Treatments with Zn50Cd50, and Zn100Cd50 for 18 days resulted in a decrease of stress tolerance and chlorophyll content in leaves, an increase in plasma membrane permeability, a massive accumulation of methylglyoxal (MG), and visible toxic symptoms. Additionally, the bioaccumulation factor (BCF) for roots and shoots and the translocation factor (TF) were >1, and the content of Cd in shoots was no <100 mg·kg-1. This indicated P. stratiotes was a Cd hyperaccumulator and have great potential for the phytoremediation of heavy metal contaminated water.Novelty statement Pistia stratiotes, a cadmium hyperaccumulator, has great application potential for the phytoremediation of zinc and cadmium co-polluted water.
Collapse
Affiliation(s)
- Yan Li
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Jianpan Xin
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Wenjia Ge
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Runan Tian
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| |
Collapse
|
12
|
Anaya-Sanchez A, Feng Y, Berude JC, Portnoy DA. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009819. [PMID: 34407151 PMCID: PMC8372916 DOI: 10.1371/journal.ppat.1009819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive, food-borne pathogen that lives a biphasic lifestyle, cycling between the environment and as a facultative intracellular pathogen of mammals. Upon entry into host cells, L. monocytogenes upregulates expression of glutathione synthase (GshF) and its product, glutathione (GSH), which is an allosteric activator of the master virulence regulator PrfA. Although gshF mutants are highly attenuated for virulence in mice and form very small plaques in host cell monolayers, these virulence defects can be fully rescued by mutations that lock PrfA in its active conformation, referred to as PrfA*. While PrfA activation can be recapitulated in vitro by the addition of reducing agents, the precise biological cue(s) experienced by L. monocytogenes that lead to PrfA activation are not known. Here we performed a genetic screen to identify additional small-plaque mutants that were rescued by PrfA* and identified gloA, which encodes glyoxalase A, a component of a GSH-dependent methylglyoxal (MG) detoxification system. MG is a toxic byproduct of metabolism produced by both the host and pathogen, which if accumulated, causes DNA damage and protein glycation. As a facultative intracellular pathogen, L. monocytogenes must protect itself from MG produced by its own metabolic processes and that of its host. We report that gloA mutants grow normally in broth, are sensitive to exogenous MG and severely attenuated upon IV infection in mice, but are fully rescued for virulence in a PrfA* background. We demonstrate that transcriptional activation of gshF increased upon MG challenge in vitro, and while this resulted in higher levels of GSH for wild-type L. monocytogenes, the glyoxalase mutants had decreased levels of GSH, presumably due to the accumulation of the GSH-MG hemithioacetal adduct. These data suggest that MG acts as a host cue that leads to GSH production and activation of PrfA.
Collapse
Affiliation(s)
- Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - John C. Berude
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
13
|
Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111793. [PMID: 33360287 DOI: 10.1016/j.ecoenv.2020.111793] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/21/2023]
Abstract
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China; Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mahdi Tafteh
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Nasim Roudbari
- Faculty of Biology, Islamic Azad University, Kahnouj Branch, Kerman, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
| |
Collapse
|
14
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
15
|
Du F, Li Y, Shen J, Zhao Y, Kaboli PJ, Xiang S, Wu X, Li M, Zhou J, Zheng Y, Yi T, Li X, Li J, Xiao Z, Wen Q. Glyoxalase 1 gene improves the antistress capacity and reduces the immune inflammatory response. BMC Genet 2019; 20:95. [PMID: 31822263 PMCID: PMC6902355 DOI: 10.1186/s12863-019-0795-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fish immunity is not only affected by the innate immune pathways but is also triggered by stress. Transport and loading stress can induce oxidative stress and further activate the immune inflammatory response, which cause tissue damage and sudden death. Multiple genes take part in this process and some of these genes play a vital role in regulation of the immune inflammatory response and sudden death. Currently, the key genes regulating the immune inflammatory response and the sudden death caused by stress in Coilia nasus are unknown. RESULTS In this study, we studied the effects of the Glo1 gene on stress, antioxidant expression, and immune-mediated apoptosis in C. nasus. The full-length gene is 4356 bp, containing six exons and five introns. Southern blotting indicated that Glo1 is a single-copy gene in the C. nasus genome. We found two single-nucleotide polymorphisms (SNPs) in the Glo1 coding region, which affect the three-dimensional structure of Glo1 protein. An association analysis results revealed that the two SNPs are associated with stress tolerance. Moreover, Glo1 mRNA and protein expression of the heterozygous genotype was significantly higher than that of the homozygous genotype. Na+ and sorbitol also significantly enhanced Glo1 mRNA and protein expression, improved the fish's antioxidant capacity, and reduced the immune inflammatory response, thus sharply reducing the mortality caused by stress. CONCLUSIONS Glo1 plays a potential role in the stress response, antioxidant capacity, and immune-mediated apoptosis in C. nasus.
Collapse
Affiliation(s)
- Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jiangyao Zhou
- Sichuan Neijiang Medical School, Neijiang, Sichuan, China
| | - Yuan Zheng
- Neijiang Health and Health Vocational College, Neijiang, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A. Exogenous Nitric Oxide Mitigates Nickel-Induced Oxidative Damage in Eggplant by Upregulating Antioxidants, Osmolyte Metabolism, and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2019; 8:E562. [PMID: 31805747 PMCID: PMC6963868 DOI: 10.3390/plants8120562] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) at optimal levels is considered beneficial to plant functioning. The present study was carried out to investigate the role of exogenously applied NO (100 and 150 µM sodium nitropurusside, SNP) in amelioration of nickel (Ni)-mediated oxidative effects in eggplant. Ni stress declined growth and biomass production, relative water content (RWC), and chlorophyll pigment synthesis, thereby affecting the photosynthetic efficiency. Exogenously applied SNP proved beneficial in mitigating the Ni-mediated growth restrictions. NO-treated seedlings exhibited improved photosynthesis, stomatal conductance, and chlorophyll content with the effect of being apparent at lower concentration (100 µM SNP). SNP upregulated the antioxidant system mitigating the oxidative damage on membranes due to Ni stress. The activity of superoxide dismutase, catalase, glutathione S-transferase, ascorbate peroxidase, and glutathione reductase was upregulated due to SNP which also increased the ascorbate and reduced glutathione content. SNP-supplied seedlings also showed higher proline and glycine betaine accumulation, thereby improving RWC and antioxidant system. Glyoxalase I activity was induced due to SNP application declining the accumulation of methylglyoxal. NO-mediated mitigation of Ni toxicity was confirmed using NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), which reversed the influence of SNP almost entirely on the parameters studied. Uptake of nitrogen (N), potassium (K), and calcium (Ca) was increased due to SNP application and Ni was reduced significantly. Therefore, this study revealed the efficiency of exogenous SNP in enhancing Ni stress tolerance through upregulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Mona Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Haifa A. Alhaithloul
- Department of Biology, College of science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
- Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
17
|
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Timperio AM, Caruso C. GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100635. [PMID: 31652571 PMCID: PMC6843518 DOI: 10.3390/biom9100635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | | | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elena Paccosi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
18
|
Hasanuzzaman M, Alam MM, Nahar K, Mohsin SM, Bhuyan MHMB, Parvin K, Hawrylak-Nowak B, Fujita M. Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:261-276. [PMID: 30761430 DOI: 10.1007/s10646-019-02019-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 05/11/2023]
Abstract
Nickel (Ni), an essential nutrient of plant but very toxic to plant at supra-optimal concentration that causes inhibition of seed germination emergence and growth of plants as a consequence of physiological disorders. Hence, the present study investigates the possible mechanisms of Ni tolerance in rice seedlings by exogenous application of silicon (Si). Thirteen-day-old hydroponically grown rice (Oryza sativa L. cv. BRRI dhan54) were treated with Ni (NiSO4.7H2O, 0.25 and 0.5 mM) sole or in combination with 0.50 mM Na2SiO3 for a period of 3 days to investigate the effect of Si supply for revoking the Ni stress. Nickel toxicity gave rise to reactive oxygen species (ROS) and cytotoxic methylglyoxal (MG), accordingly, initiated oxidative stress in rice leaves, and accelerated peroxidation of lipids and consequent damage to membranes. Reduced growth, biomass accumulation, chlorophyll (chl) content, and water balance under Ni-stress were also found. However, free proline (Pro) content increased in Ni-exposed plants. In contrast, the Ni-stressed seedlings fed with supplemental Si reclaimed the seedlings from chlorosis, water retrenchment, growth inhibition, and oxidative stress. Silicon up-regulated most of the antioxidant defense components as well as glyoxalase systems, which helped to improve ROS scavenging and MG detoxification. Hence, these results suggest that the exogenous Si application can improve rice seedlings' tolerance to Ni-toxicity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Md Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Sayed Mohammad Mohsin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795, Japan
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795, Japan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet, Bangladesh
| | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795, Japan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-Gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
19
|
Quantitative Proteomic Analysis of the Response to Cold Stress in Jojoba, a Tropical Woody Crop. Int J Mol Sci 2019; 20:ijms20020243. [PMID: 30634475 PMCID: PMC6359463 DOI: 10.3390/ijms20020243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 02/08/2023] Open
Abstract
Jojoba (Simmondsia chinensis) is a semi-arid, oil-producing industrial crop that have been widely cultivated in tropical arid region. Low temperature is one of the major environmental stress that impair jojoba's growth, development and yield and limit introduction of jojoba in the vast temperate arid areas. To get insight into the molecular mechanisms of the cold stress response of jojoba, a combined physiological and quantitative proteomic analysis was conducted. Under cold stress, the photosynthesis was repressed, the level of malondialdehyde (MDA), relative electrolyte leakage (REL), soluble sugars, superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) were increased in jojoba leaves. Of the 2821 proteins whose abundance were determined, a total of 109 differentially accumulated proteins (DAPs) were found and quantitative real time PCR (qRT-PCR) analysis of the coding genes for 7 randomly selected DAPs were performed for validation. The identified DAPs were involved in various physiological processes. Functional classification analysis revealed that photosynthesis, adjustment of cytoskeleton and cell wall, lipid metabolism and transport, reactive oxygen species (ROS) scavenging and carbohydrate metabolism were closely associated with the cold stress response. Some cold-induced proteins, such as cold-regulated 47 (COR47), staurosporin and temperature sensitive 3-like a (STT3a), phytyl ester synthase 1 (PES1) and copper/zinc superoxide dismutase 1, might play important roles in cold acclimation in jojoba seedlings. Our work provided important data to understand the plant response to the cold stress in tropical woody crops.
Collapse
|
20
|
Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:993-1004. [PMID: 30425418 PMCID: PMC6214438 DOI: 10.1007/s12298-018-0531-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 04/05/2018] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an important plant signaling molecule that has a vital role in abiotic stress tolerance. In the present study, we assessed drought-induced (15 and 30% PEG, polyethylene glycol) damage in wheat (Triticum aestivum L. cv. Prodip) seedlings and mitigation by the synergistic effect of exogenous Arg (0.5 mM l-Arginine) and an NO donor (0.5 mM sodium nitroprusside, SNP). Drought stress sharply decreased the leaf relative water content (RWC) but markedly increased the proline (Pro) content in wheat seedlings. Drought stress caused overproduction of reactive oxygen species (ROS) and methylglyoxal (MG) due to the inefficiency of antioxidant enzymes, the glyoxalase system, and the ascorbate-glutathione pool. However, supplementation with the NO donor and Arg enhanced the antioxidant defense system (both non-enzymatic and enzymatic components) in drought-stressed seedlings. Application of the NO donor and Arg also enhanced the glyoxalase system and reduced the MG content by increasing the activities of the glyoxalase system enzymes (Gly I and Gly II), which restored the leaf RWC and further increased the Pro content under drought stress conditions. Exogenous NO donor and Arg application enhanced the endogenous NO content, which positively regulated the antioxidant system and reduced ROS production. Thus, the present study reveals the crucial roles of Arg and NO in enhancing drought stress tolerance in wheat seedlings by upgrading their water status and reducing oxidative stress and MG toxicity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Anisur Rahman
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences (COMB), Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0701 Japan
| |
Collapse
|
21
|
French and Mediterranean-style diets: Contradictions, misconceptions and scientific facts-A review. Food Res Int 2018; 116:840-858. [PMID: 30717015 DOI: 10.1016/j.foodres.2018.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Abstract
The determination of appropriate dietary strategies for the prevention of chronic degenerative diseases, cancer, diabetes, and cardiovascular diseases remains a challenging and highly relevant issue worldwide. Epidemiological dietary interventions have been studied for decades with contrasting impacts on human health. Moreover, research scientists and physicians have long debated diets encouraging alcohol intake, such as the Mediterranean and French-style diets, with regard to their impact on human health. Understanding the effects of these diets may help to improve in the treatment and prevention of diseases. However, further studies are warranted to determine which individual food components, or combinations thereof, have a beneficial impact on different diseases, since a large number of different compounds may occur in a single food, and their fate in vivo is difficult to measure. Most explanations for the positive effects of Mediterranean-style diet, and of the French paradox, have focused largely on the beneficial properties of antioxidants, among other compounds/metabolites, in foods and red wine. Wine is a traditional alcoholic beverage that has been associated with both healthy and harmful effects. Not withstanding some doubts, there is reasonable unanimity among researchers as to the beneficial effects of moderate wine consumption on cardiovascular disease, diabetes, osteoporosis, and longevity, which have been ascribed to polyphenolic compounds present in wine. Despite this, conflicting findings regarding the impact of alcohol consumption on human health, and contradictory findings concerning the effects of non-alcoholic wine components such as resveratrol, have led to confusion among consumers. In addition to these contradictions and misconceptions, there is a paucity of human research studies confirming known positive effects of polyphenols in vivo. Furthermore, studies balancing both known and unknown prognostic factors have mostly been conducted in vitro or using animal models. Moreover, current studies have shifted focus from red wine to dairy products, such as cheese, to explain the French paradox. The aim of this review is to highlight the contradictions, misconceptions, and scientific facts about wines and diets, giving special focus to the Mediterranean and French diets in disease prevention and human health improvement. To answer the multiplicity of questions regarding the effects of diet and specific diet components on health, and to relieve consumer uncertainty and promote health, comprehensive cross-demographic studies using the latest technologies, which include foodomics and integrated omics approaches, are warranted.
Collapse
|
22
|
Singh R, Gupta P, Khan F, Singh SK, Mishra T, Kumar A, Dhawan SS, Shirke PA. Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:42-54. [PMID: 29807605 DOI: 10.1016/j.plantsci.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 05/20/2023]
Abstract
In general medicinal plants grown under water limiting conditions show much higher concentrations of secondary metabolites in comparison to control plants. In the present study, Withania somnifera plants were subjected to water stress and data related to drought tolerance phenomenon was collected and a putative mechanistic concept considering growth responses, physiological behaviour, and metabolite content and gene expression aspects is presented. Drought induced metabolic and physiological responses as well as drastic decrease in CO2 uptake due to stomatal limitations. As a result, the consumption of reduction equivalents (NADPH2+) for CO2 assimilation via the calvin cycle declines significantly resulting in the generation of a large oxidative stress and an oversupply of antioxidant enzymes. Drought also results in the shifting of metabolic processes towards biosynthetic activities that consume reduction equivalents. Thus, biosynthesis of reduced compounds (isoprenoids, phenols and alkaloids) is enhanced. The dynamics of various metabolites have been discussed in the light of gene expression analysis of control and drought treated leaves. Gene encoding enzymes of pathways leading to glucose, fructose and fructan production, conversion of triose phosphates to hexoses and hexose phosphorylation were up-regulated in the drought stressed leaves. The down-regulated Calvin cycle genes were co-ordinately regulated with the down-regulation of chloroplast triosephosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Expression of gene encoding Squalene Synthase (SQS) was highly upregulated under drought stress which is responsible for the diversion of carbon flux towards withanolides biosynthesis from isoprenoid pathway.
Collapse
Affiliation(s)
- Ruchi Singh
- CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Pankhuri Gupta
- CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Furqan Khan
- CSIR - National Botanical Research Institute, Lucknow, 226001, India
| | - Susheel Kumar Singh
- CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Tripti Mishra
- CSIR - National Botanical Research Institute, Lucknow, 226001, India
| | - Anil Kumar
- CSIR - National Botanical Research Institute, Lucknow, 226001, India
| | - Sunita Singh Dhawan
- CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | | |
Collapse
|
23
|
Hasanuzzaman M, Nahar K, Alam MM, Bhuyan MB, Oku H, Fujita M. Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2018; 126:173-186. [PMID: 0 DOI: 10.1016/j.plaphy.2018.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
24
|
Schaub P, Rodriguez-Franco M, Cazzonelli CI, Álvarez D, Wüst F, Welsch R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS One 2018; 13:e0192158. [PMID: 29394270 PMCID: PMC5796706 DOI: 10.1371/journal.pone.0192158] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state β-carotene levels prior to their application in crops.
Collapse
Affiliation(s)
- Patrick Schaub
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | | | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Richmond, NSW Australia
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Florian Wüst
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| |
Collapse
|
25
|
Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:990-1001. [PMID: 29976011 DOI: 10.1016/j.ecoenv.2017.09.045] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a serious environmental threat because it accumulates in plants from soil and is subsequently transported into the food cycle. Increased Cd uptake in plants disrupts plant metabolism and hampers crop growth and development. Therefore, remediation of Cd from soil and enhancing plant tolerance to metal toxicity is vital. In the present study, we investigated the function of different doses of citric acid (CA) on Cd toxicity in terms of metal accumulation and stress tolerance in mustard (Brassica juncea L.). Brassica juncea seedlings (12-day-old) were treated with Cd (0.5mMCd and 1.0mM CdCl2) alone and in combination with CA (0.5mM and 1.0mM) in a semi-hydroponic medium for three days. Cadmium accumulation in the roots and shoots of the mustard seedlings increased in a dose-dependent manner and was higher in the roots. Increasing the Cd concentration led to reduced growth, biomass, water status, and chlorophyll (chl) content resulting from increased oxidative damage (elevated malondialdehyde, MDA content; hydrogen peroxide, H2O2 level; superoxide, O2•- generation; lipoxygenase, LOX activity; and methylglyoxal, MG content) and downregulating of the major enzymes of the antioxidant defense and glyoxalase systems. Under Cd stress, both doses of CA improved the growth of the plants by enhancing leaf relative water content (RWC) and chl content; reducing oxidative damage; enhancing the pool of ascorbate (AsA) and glutathione (GSH) and the activities of the antioxidant enzymes (ascorbate peroxidase, APX; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione reductase, GR; glutathione peroxidase, GPX; superoxide dismutase, SOD; catalase, CAT); improving the performance of the glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II activity); and increasing the phytochelatin (PC) content. Exogenous CA also increased the root and shoot Cd content and Cd translocation from the roots to the shoots in a dose-dependent manner. Our findings suggest that CA plays a dual role in mustard seedlings by increasing phytoremediation and enhancing stress tolerance through upregulating the antioxidant defense and glyoxalase systems.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
26
|
Szuba A, Lorenc-Plucińska G. Field proteomics of Populus alba grown in a heavily modified environment - An example of a tannery waste landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1557-1571. [PMID: 28712470 DOI: 10.1016/j.scitotenv.2017.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
Tannery waste is highly toxic and dangerous to living organisms because of the high heavy metal content, especially chromium [Cr(III)]. This study analysed the proteomic response of the Populus alba L. clone 'Villafranca' grown for 4years on a tannery waste landfill. In this extremely hostile environment, the plants struggled with continuous stress, which inhibited growth by 54%, with a 67% decrease in tree height and diameter at breast height compared to those of the forest reference plot, respectively. The leaves and roots of the tannery landfill-grown plants produced strong proteomic stress signals for protection against reactive oxygen species (ROS) and repair to ROS-damaged proteins and DNA as well as signals for protection of the photosynthetic apparatus. The content of HSP80 was also high. However, primary metabolic pathways were generally unaffected, and signals of increased protein protection, but not turnover, were found, indicating mechanisms of adaptation to long-term stress conditions present at the landfill. A proteomic tool, two-dimensional electrophoresis coupled with tandem mass spectrometry, was successfully applied in this environmental in situ study of distant plots (280km apart).
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | | |
Collapse
|
27
|
An B, Lan J, Deng X, Chen S, Ouyang C, Shi H, Yang J, Li Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2071. [PMID: 29259615 PMCID: PMC5723347 DOI: 10.3389/fpls.2017.02071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Collapse
Affiliation(s)
- Baoguang An
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Jie Lan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huiyun Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Turetschek R, Desalegn G, Epple T, Kaul HP, Wienkoop S. Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence. J Proteomics 2017; 169:189-201. [PMID: 28268116 DOI: 10.1016/j.jprot.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. SIGNIFICANCE The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death.
Collapse
Affiliation(s)
- Reinhard Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Getinet Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Tamara Epple
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Hans-Peter Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
29
|
Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:216-226. [PMID: 28624590 DOI: 10.1016/j.ecoenv.2017.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
Chromium (Cr) is a highly toxic environmental pollutant that negatively affects plant growth and development. Thus, remediating Cr from soil or increasing plant tolerance against Cr stress is urgent. Organic acids are recognized as agents of phytoremediation and as exogenous protectants, but using maleic acid (MA) to attain these results has not yet been studied. Therefore, our study investigated the effects of MA on Cr uptake and mitigation of Cr toxicity. We treated 8-d-old Indian mustard (Brassica juncea L.) seedlings with Cr (0.15mM and 0.3mM K2CrO4, 5 days) alone and in combination with MA (0.25mM) in a semi-hydroponic medium. Under Cr stress, plants accumulated Cr in both the roots and shoots in a dose-dependent manner, where the roots showed higher accumulation. Chromium stress reduced the growth and biomass of the Indian mustard plants by reducing water status and photosynthetic pigments, and increased oxidative damage due to generation of toxic reactive oxygen species (ROS) and methylglyoxal (MG). Chromium stress also interfered with the function of the antioxidant defense and glyoxalase systems. However, using MA in the Cr-stressed plants further increased Cr uptake in the roots, but it slightly reduced the translocation of Cr from the roots to the shoots at a lower dose of Cr and significantly at a higher dose. Moreover, MA also increased the other non-protein thiols (NPTs) containing phytochelatin (PC) content of the seedlings, which reduced Cr toxicity. Supplementing the stressed plants with MA upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH); the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT); and the enzymes of the glyoxalase system including glyoxalase I (Gly I) and glyoxalase II (Gly II); and finally reduced oxidative damage and increased the chlorophyll content and water status as well the growth and biomass of the plants. Our findings suggested two potential uses of MA: first, enhancing phytoremediation, principally phytostabilization and second, working as an exogenous protectant to enhance Cr tolerance.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
30
|
Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:675-690. [PMID: 28409415 DOI: 10.1007/s10646-017-1800-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 05/19/2023]
Abstract
Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. γ-aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 and 0.3 mM K2CrO4, 5 days) alone and in combination with GABA (125 µM) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide (H2O2) content; superoxide (O2•-) generation; lipoxygenase (LOX) activity], methylglyoxal (MG) content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
31
|
Hasanuzzaman M, Nahar K, Anee TI, Fujita M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:249-268. [PMID: 28461715 PMCID: PMC5391355 DOI: 10.1007/s12298-017-0422-2] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/28/2017] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
Glutathione (GSH; γ-glutamyl-cysteinyl-glycine) is a small intracellular thiol molecule which is considered as a strong non-enzymatic antioxidant. Glutathione regulates multiple metabolic functions; for example, it protects membranes by maintaining the reduced state of both α-tocopherol and zeaxanthin, it prevents the oxidative denaturation of proteins under stress conditions by protecting their thiol groups, and it serves as a substrate for both glutathione peroxidase and glutathione S-transferase. By acting as a precursor of phytochelatins, GSH helps in the chelating of toxic metals/metalloids which are then transported and sequestered in the vacuole. The glyoxalase pathway (consisting of glyoxalase I and glyoxalase II enzymes) for detoxification of methylglyoxal, a cytotoxic molecule, also requires GSH in the first reaction step. For these reasons, much attention has recently been directed to elucidation of the role of this molecule in conferring tolerance to abiotic stress. Recently, this molecule has drawn much attention because of its interaction with other signaling molecules and phytohormones. In this review, we have discussed the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
32
|
Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BHN, Fujita M. Hydrogen Peroxide Pretreatment Mitigates Cadmium-Induced Oxidative Stress in Brassica napus L.: An Intrinsic Study on Antioxidant Defense and Glyoxalase Systems. FRONTIERS IN PLANT SCIENCE 2017; 8:115. [PMID: 28239385 PMCID: PMC5300965 DOI: 10.3389/fpls.2017.00115] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/19/2017] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal detoxification. So, the major roles of H2O2 were improvement of antioxidant defense system and glyoxalase system which protected plants from the damage effects of ROS and MG. The mechanism of H2O2 to induce antioxidant defense and glyoxalase system and improving physiology under stress condition is not known clearly which should be elucidated. The signaling roles of H2O2 and its interaction with other signaling molecules, phytohormones or other biomolecules and their roles in stress protection should be explored.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversitySher-e-Bangla Nagar, Bangladesh
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversitySher-e-Bangla Nagar, Bangladesh
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki-cho, Japan
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Bam H. N. Razafindrabe
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the RyukyusNishihara, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityMiki-cho, Japan
| |
Collapse
|
33
|
Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach. Sci Rep 2017; 7:42131. [PMID: 28181537 PMCID: PMC5299611 DOI: 10.1038/srep42131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022] Open
Abstract
Traditional cultivars of rice in India exhibit tolerance to drought stress due to their inherent genetic variations. Here we present comparative physiological and transcriptome analyses of two contrasting cultivars, drought tolerant Dhagaddeshi (DD) and susceptible IR20. Microarray analysis revealed several differentially expressed genes (DEGs) exclusively in DD as compared to IR20 seedlings exposed to 3 h drought stress. Physiologically, DD seedlings showed higher cell membrane stability and differential ABA accumulation in response to dehydration, coupled with rapid changes in gene expression. Detailed analyses of metabolic pathways enriched in expression data suggest interplay of ABA dependent along with secondary and redox metabolic networks that activate osmotic and detoxification signalling in DD. By co-localization of DEGs with QTLs from databases or published literature for physiological traits of DD and IR20, candidate genes were identified including those underlying major QTL qDTY1.1 in DD. Further, we identified previously uncharacterized genes from both DD and IR20 under drought conditions including OsWRKY51, OsVP1 and confirmed their expression by qPCR in multiple rice cultivars. OsFBK1 was also functionally validated in susceptible PB1 rice cultivar and Arabidopsis for providing drought tolerance. Some of the DEGs mapped to the known QTLs could thus, be of potential significance for marker-assisted breeding.
Collapse
|
34
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
35
|
Nahar K, Hasanuzzaman M, Suzuki T, Fujita M. Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:58-73. [PMID: 27819117 DOI: 10.1007/s10646-016-1740-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
We investigated the roles of exogenously applied Spd (0.3 mM spermidine) in alleviating Al (AlCl3, 0.5 mM, 48 and 72 h)- induced injury in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Aluminum toxicity induced oxidative damage overproducing reactive oxygen species (ROS; H2O2 and O2•-), increasing lipoxygenase activity and membrane lipid peroxidation. The toxic compound methylglyoxal (MG) also overproduced under Al stress. In order to circumvent Al-induced oxidative stress, enzymatic and non-enzymatic antioxidant defense were activated by the application of exogenous Spd. Exogenous Spd increased ascorbate (AsA) and glutathione (GSH) content, AsA/dehydroascorbate (DHA) ratio, GSH/ glutathione disulfide (GSSG) ratio, activity of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT) which reduced ROS production and oxidative stress under Al stress. Spd-induced improvement of GSH pool and Gly II activity alleviated injurious effects of MG. Exogenous Spd positively modulated the endogenous PAs level. Regulating the osmoprotectant molecule (proline), Spd improved plant water status under Al stress. Exogenous Spd was potent to prevent breakdown of Al-induced photosynthetic pigment and to improve growth performances under Al stress. The mechanism by which Spd enhances antioxidant and glyoxalase components might be studied extensively. Spermidine-induced protection of photosynthetic pigment from damages and growth enhancement were remarkable and recommended for further detailed study to understand the mechanism.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Toshisada Suzuki
- Biomass Chemistry Laboratory, Bioresource Science for Manufacturing, Department of Applied Bioresource Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
36
|
Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Mahmud JA, Suzuki T, Fujita M. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. PROTOPLASMA 2017; 254:445-460. [PMID: 27032937 DOI: 10.1007/s00709-016-0965-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 05/07/2023]
Abstract
High temperature and drought stress often occur simultaneously, and due to global climate change, this kind of phenomenon occurs more frequently and severely, which exerts devastating effects on plants. Polyamines (PAs) play crucial roles in conferring abiotic stress tolerance in plants. Present study investigated how exogenous pretreatment of spermine (Spm, 0.2 mM) enhances mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings tolerance to high temperature (HT, 40 °C) and drought [induced by 5 % polyethyleneglycol (PEG)] stress individually and in combination. Spm pretreatment reduced reactive oxygen species (ROS) production including H2O2 and O2•-, lipoxygenase (LOX) activity, and membrane lipid peroxidation (indicated by malondialdehyde, MDA) under HT and/or drought stress. Histochemical staining of leaves with diaminobenzidine and nitro blue tetrazolium chloride also confirmed that Spm-pretreated seedlings accumulated less H2O2 and O2•- under HT and/or drought stress. Spermine pretreatment maintained the ascorbate (AsA) and glutathione (GSH) levels high, and upregulated the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which were vital for imparting ROS-induced oxidative stress tolerance under HT and/or drought stress. The cytotoxic compound methylglyoxal (MG) was overproduced due to HT and/or drought, but exogenous Spm pretreatment reduced MG toxicity enhancing the glyoxalase system. Spermine pretreatment modulated endogenous PA levels. Osmoregulation and restoration of plant water status were other major contributions of Spm under HT and/or drought stress. Preventing photosynthetic pigments and improving seedling growth parameters, Spm further confirmed its influential roles in HT and/or drought tolerance.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Mahabub Alam
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Jubayer-Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Toshisada Suzuki
- Biomass Chemistry Laboratory, Bioresource Science for Manufacturing, Department of Applied Bioresource Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
37
|
Paudel G, Bilova T, Schmidt R, Greifenhagen U, Berger R, Tarakhovskaya E, Stöckhardt S, Balcke GU, Humbeck K, Brandt W, Sinz A, Vogt T, Birkemeyer C, Wessjohann L, Frolov A. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6283-6295. [PMID: 27856706 PMCID: PMC5181577 DOI: 10.1093/jxb/erw395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Collapse
Affiliation(s)
- Gagan Paudel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Rico Schmidt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Robert Berger
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Stefanie Stöckhardt
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Ulrich Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Vogt
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | - Ludger Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Delineation of the structural and functional role of Arg111 in GSTU4-4 from Glycine max by chemical modification and site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1315-21. [PMID: 27375050 DOI: 10.1016/j.bbapap.2016.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022]
Abstract
The structural and functional role of Arg111 in GSTU4-4 from Glycine max (GmGSTU4-4) was studied by chemical modification followed by site-directed mutagenesis. The arginine-specific reagent 2,3-butanedione (BTD) inactivates the enzyme in borate buffer at pH8.0, with pseudo-first-order saturation kinetics. The rate of inactivation exhibited a non-linear dependence on the concentration of BTD which can be described by reversible binding of reagent to the enzyme (KD 81.2±9.2mM) prior to the irreversible reaction, with maximum rate constants of 0.18±0.01min(-1). Protection from inactivation was afforded by substrate analogues demonstrating the specificity of the reaction. Structural analysis suggested that the modified residue is Arg111, which was confirmed by protein chemistry experiments. Site-directed mutagenesis was used in dissecting the role of Arg111 in substrate binding, specificity and catalytic mechanism. The mutant Arg111Ala enzyme exhibited unchanged Km value for GSH but showed reduced affinity for the xenobiotic substrates, higher kcat and specific activities towards aromatic substrates and lower specific activities towards aliphatic substrates. The biological significance of the specific modification of Arg111 by dicarbonyl compounds and the role of Arg111 as a target for engineering xenobiotic substrate specificity were discussed.
Collapse
|
39
|
Comparative protein profiles of Butea superba tubers under seasonal changes. Mol Biol Rep 2016; 43:719-36. [PMID: 27198528 DOI: 10.1007/s11033-016-4010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Seasonal changes are major factors affecting environmental conditions which induce multiple stresses in plants, leading to changes in protein relative abundance in the complex cellular plant metabolic pathways. Proteomics was applied to study variations in proteome composition of Butea. superba tubers during winter, summer and rainy season throughout the year using two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight tandem mass spectrometry. A total of 191 protein spots were identified and also classified into 12 functional groups. The majority of these were mainly involved in carbohydrate and energy metabolism (30.37 %) and defense and stress (18.32 %). The results exhibited the highest numbers of identified proteins in winter-harvested samples. Forty-five differential proteins were found in different seasons, involving important metabolic pathways. Further analysis indicated that changes in the protein levels were due mainly to temperature stress during summer and to water stress during winter, which affected cellular structure, photosynthesis, signal transduction and homeostasis, amino-acid biosynthesis, protein destination and storage, protein biosynthesis and stimulated defense and stress mechanisms involving glycolytic enzymes and relative oxygen species catabolizing enzymes. The proteins with differential relative abundances might induce an altered physiological status within plant tubers for survival. The work provided new insights into the better understanding of the molecular basis of plant proteomes and stress tolerance mechanisms, especially during seasonal changes. The finding suggested proteins that might potentially be used as protein markers in differing seasons in other plants and aid in selecting B. superba tubers with the most suitable medicinal properties in the future.
Collapse
|
40
|
Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:245-255. [PMID: 26773834 DOI: 10.1016/j.ecoenv.2015.12.026] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) contamination is a serious agricultural and environmental hazard. The study investigates cross-protection roles of putrescine (Put, 0.2 mM) and nitric oxide (sodium nitroprusside; SNP, 1 mM) in conferring Cd (CdCl2, 1.5 mM) tolerance in mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings. Cadmium stress increased root and shoot Cd content, reduced growth, destroyed chlorophyll (chl), modulated proline (Pro) and reduced leaf relative water content (RWC), increased oxidative damage [lipid peroxidation, H2O2 content, O2(∙-) generation rate, lipoxygenase (LOX) activity], methylglyoxal (MG) toxicity. Put and/or SNP reduced Cd uptake, increasd phytochelatin (PC) content, reduced oxidative damage enhancing non-enzymatic antioxidants (AsA and GSH) and activities of enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX)]. Exogenous Put and/or SNP modulated endogenous polyamines, PAs (putrescine, Put; spermidine, Spd; spermine, Spm), and NO; improved glyoxalase system in detoxifying MG and improved physiology and growth where combined application showed better effects which designates possible crosstalk between NO and PAs to confer Cd-toxicity tolerance.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Mahabub Alam
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Toshisada Suzuki
- Biomass Chemistry Laboratory, Bioresource Science for Manufacturing, Department of Applied Bioresource Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
41
|
Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1341. [PMID: 27679640 PMCID: PMC5020096 DOI: 10.3389/fpls.2016.01341] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 05/04/2023]
Abstract
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
Collapse
Affiliation(s)
- Tahsina S. Hoque
- Department of Soil Science, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Mohammad G. Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipur, Bangladesh
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| | - Lam-Son P. Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh City, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- *Correspondence: Mohammad G. Mostofa, Lam-Son P. Tran, ;
| |
Collapse
|
42
|
Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:340812. [PMID: 26798635 PMCID: PMC4698539 DOI: 10.1155/2015/340812] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
Abstract
The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagor, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
43
|
Nahar K, Hasanuzzaman M, Alam MM, Fujita M. Exogenous Spermidine Alleviates Low Temperature Injury in Mung Bean (Vigna radiata L.) Seedlings by Modulating Ascorbate-Glutathione and Glyoxalase Pathway. Int J Mol Sci 2015; 16:30117-32. [PMID: 26694373 PMCID: PMC4691163 DOI: 10.3390/ijms161226220] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
The role of exogenous spermidine (Spd) in alleviating low temperature (LT) stress in mung bean (Vigna radiata L. cv. BARI Mung-3) seedlings has been investigated. Low temperature stress modulated the non-enzymatic and enzymatic components of ascorbate-glutathione (AsA-GSH) cycle, increased H₂O₂ content and lipid peroxidation, which indicate oxidative damage of seedlings. Low temperature reduced the leaf relative water content (RWC) and destroyed leaf chlorophyll, which inhibited seedlings growth. Exogenous pretreatment of Spd in LT-affected seedlings significantly increased the contents of non-enzymatic antioxidants of AsA-GSH cycle, which include AsA and GSH. Exogenous Spd decreased dehydroascorbate (DHA), increased AsA/DHA ratio, decreased glutathione disulfide (GSSG) and increased GSH/GSSG ratio under LT stress. Activities of AsA-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) increased after Spd pretreatment in LT affected seedlings. Thus, the oxidative stress was reduced. Protective effects of Spd are also reflected from reduction of methylglyoxal (MG) toxicity by improving glyoxalase cycle components, and by maintaining osmoregulation, water status and improved seedlings growth. The present study reveals the vital roles of AsA-GSH and glyoxalase cycle in alleviating LT injury.
Collapse
Affiliation(s)
- Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.
| | - Md Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
44
|
Turra GL, Agostini RB, Fauguel CM, Presello DA, Andreo CS, González JM, Campos-Bermudez VA. Structure of the novel monomeric glyoxalase I from Zea mays. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2009-20. [PMID: 26457425 PMCID: PMC4601366 DOI: 10.1107/s1399004715015205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/14/2015] [Indexed: 11/10/2022]
Abstract
The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.
Collapse
Affiliation(s)
- Gino L. Turra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Romina B. Agostini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Carolina M. Fauguel
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Daniel A. Presello
- Instituto Nacional de Tecnología Agropecuaria (INTA), CC 31, B2700KXC Pergamino, Argentina
| | - Carlos S. Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Javier M. González
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Valeria A. Campos-Bermudez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI–CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
45
|
Jain A, Singh A, Singh S, Singh V, Singh HB. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:79-94. [PMID: 26067380 DOI: 10.1016/j.jplph.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants.
Collapse
Affiliation(s)
- Akansha Jain
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Akanksha Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Surendra Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Vinay Singh
- Centre for Bioinformatics, Banaras Hindu University, Varanasi 221005, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
46
|
Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Blasco B, Ruiz JM. Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:110-21. [PMID: 25219313 DOI: 10.1016/j.plantsci.2014.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 05/27/2023]
Abstract
Tripepthide glutathione (GSH) is a pivotal molecule in tolerance to heavy metals, including Zinc (Zn). The aim of our work is to examine the role of GSH metabolism in two different horticultural plants under Zn toxicity in order to select and/or generate plants tolerant to Zn toxicity. We show a comparative analysis of the toxic effect of 0.5mM Zn between Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. In L. sativa the accumulation of Zn resulted in an increase in reactive oxygen species (ROS), while enzymes of GSH metabolism and the activities of the antioxidant enzymes were negatively affected. On the contrary, B. oleracea showed the existence of a detoxification mechanism of these ROS. Moreover, while in L. sativa increased the oxidized GSH (GSSG) and phytochelatins (PCs) concentration with the reduction of leaves biomass, in B. oleracea the higher concentration of reduced GSH and its use in the detoxification of ROS seems to be a major mechanism to provide tolerance to Zn toxicity without reducing leaf biomass. Our results suggested that under Zn toxicity, B. oleracea is more efficient and tolerant than L. sativa through the detoxification of lipid peroxidation products due to the reduced GSH.
Collapse
Affiliation(s)
- Yurena Barrameda-Medina
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - David Montesinos-Pereira
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Romero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
47
|
Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014; 5:196. [PMID: 25206336 PMCID: PMC4144092 DOI: 10.3389/fphar.2014.00196] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/06/2014] [Indexed: 12/26/2022] Open
Abstract
The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| | - Sara Baldelli
- Scientific Institute for Research, Hospitalization and Health Care, Università Telematica San Raffaele Roma Rome, Italy
| | - Maria R Ciriolo
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| |
Collapse
|
48
|
Hanssen NMJ, Brouwers O, Gijbels MJ, Wouters K, Wijnands E, Cleutjens JPM, De Mey JG, Miyata T, Biessen EA, Stehouwer CDA, Schalkwijk CG. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes. Cardiovasc Res 2014; 104:160-70. [PMID: 25139743 DOI: 10.1093/cvr/cvu189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS Advanced glycation end-products (AGEs) and their precursors have been associated with the development of atherosclerosis. We recently discovered that glyoxalase 1 (GLO1), the major detoxifying enzyme for AGE precursors, is decreased in ruptured human plaques, and that levels of AGEs are higher in rupture-prone plaques. We here investigated whether overexpression of human GLO1 in ApoE(-/-) mice could reduce the development of atherosclerosis. METHODS AND RESULTS We crossed C57BL/6 ApoE(-/-) mice with C57BL/6 GLO1 overexpressing mice (huGLO1(+/-)) to generate ApoE(-/-) (n = 16) and ApoE(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta, but aortic root lesion size and phenotype did not differ between mice with and without huGLO1(+/-) overexpression. We detected no differences in gene expression in aortic arches, in AGE levels and cytokines, in circulating cells, and endothelial function between ApoE(-/-) mice with and without huGLO1(+/-) overexpression. Although diabetic mice showed decreased GLO1 expression (P < 0.05) and increased lesion size (P < 0.05) in comparison with non-diabetic mice, GLO1 overexpression also did not affect the aortic root lesion size or inflammation in diabetic mice. CONCLUSION In ApoE(-/-) mice with or without diabetes, GLO1 overexpression did not lead to decreased atherosclerotic lesion size or systemic inflammation. Increasing GLO1 levels does not seem to be an effective strategy to reduce glycation in atherosclerotic lesions, likely due to increased AGE formation through GLO1-independent mechanisms.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Diseases/blood
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/physiopathology
- Apolipoproteins E
- Atherosclerosis/blood
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Cells, Cultured
- Cytokines/blood
- Cytokines/genetics
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Glycation End Products, Advanced/blood
- Humans
- Inflammation Mediators/blood
- Lactoylglutathione Lyase/genetics
- Lactoylglutathione Lyase/metabolism
- Lipoproteins, LDL/metabolism
- Macrophages/enzymology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidative Stress
- Plaque, Atherosclerotic
- RNA, Messenger/metabolism
- Severity of Illness Index
- Streptozocin
- Up-Regulation
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Olaf Brouwers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Marion J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands Department of Molecular Genetics, MUMC, Maastricht, The Netherlands Department of Medical Biochemistry, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Erwin Wijnands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Jack P M Cleutjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Jo G De Mey
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Erik A Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Pathology, MUMC, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, MUMC, Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
49
|
Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757219. [PMID: 24991566 PMCID: PMC4065706 DOI: 10.1155/2014/757219] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/03/2023]
Abstract
The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
50
|
Nawrot R, Zauber H, Schulze WX. Global proteomic analysis of Chelidonium majus and Corydalis cava (Papaveraceae) extracts revealed similar defense-related protein compositions. Fitoterapia 2014; 94:77-87. [DOI: 10.1016/j.fitote.2014.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/31/2022]
|