1
|
Soheili-Nezhad S, Schijven D, Mars RB, Fisher SE, Francks C. Distinct impact modes of polygenic disposition to dyslexia in the adult brain. SCIENCE ADVANCES 2024; 10:eadq2754. [PMID: 39693421 DOI: 10.1126/sciadv.adq2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Dyslexia is a common and partially heritable condition that affects reading ability. In a study of up to 35,231 adults, we explored the structural brain correlates of genetic disposition to dyslexia. Individual dyslexia-disposing genetic variants showed distinct patterns of association with brain structure. Independent component analysis revealed various brain networks that each had their own genomic profiles related to dyslexia susceptibility. Circuits involved in motor coordination, vision, and language were implicated. Polygenic scores for eight traits genetically correlated with dyslexia, including cognitive, behavioral, and reading-related psychometric measures, showed partial similarities to dyslexia in terms of brain-wide associations. Notably, microstructure of the internal capsule was consistently implicated across all of these genetic dispositions, while lower volume of the motor cortex was more specifically associated with dyslexia genetic disposition alone. These findings reveal genetic and neurobiological features that may contribute to dyslexia and its associations with other traits at the population level.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2497-2510. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Paasonen J, Valjakka JS, Salo RA, Paasonen E, Tanila H, Michaeli S, Mangia S, Gröhn O. Whisker stimulation with different frequencies reveals non-uniform modulation of functional magnetic resonance imaging signal across sensory systems in awake rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623361. [PMID: 39605361 PMCID: PMC11601494 DOI: 10.1101/2024.11.13.623361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary sensory systems are classically considered to be separate units, however there is current evidence that there are notable interactions between them. We examined the cross-sensory interplay by applying a quiet and motion-tolerant zero echo time functional magnetic resonance imaging (fMRI) technique to elucidate the evoked brain-wide responses to whisker pad stimulation in awake and anesthetized rats. Specifically, characterized the brain-wide responses in core and non-core regions to whisker pad stimulation by the varying stimulation-frequency, and determined whether isoflurane-medetomidine anesthesia, traditionally used in preclinical imaging, confounded investigations related to sensory integration. We demonstrated that unilateral whisker pad stimulation not only elicited robust activity along the whisker-mediated tactile system, but also in auditory, visual, high-order, and cerebellar regions, indicative of brain-wide cross-sensory and associative activity. By inspecting the response profiles to different stimulation frequencies and temporal signal characteristics, we observed that the non-core regions responded to stimulation in a very different way compared to the primary sensory system, likely reflecting different encoding modes between the primary sensory, cross-sensory, and integrative processing. Lastly, while the activity evoked in low-order sensory structures could be reliably detected under anesthesia, the activity in high-order processing and the complex differences between primary, cross-sensory, and associative systems were visible only in the awake state. We conclude that our study reveals novel aspects of the cross-sensory interplay of whisker-mediated tactile system, and importantly, that these would be difficult to observe in anesthetized rats.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha S. Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Raimo A. Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Xiao Y, Kandala S, Huang J, Liu J, McGonigle T, Barch D, Tang Y, Fan G, Wang F, Womer FY. The involvement of the cerebellar vermis across the psychotic-affective spectrum in enriched samples of recent-onset schizophrenia, bipolar disorder, and major depressive disorder. J Psychiatr Res 2024; 181:14-22. [PMID: 39577028 DOI: 10.1016/j.jpsychires.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND The cerebellar vermis is implicated in cognition and emotion, two key components of the psychotic-affective spectrum that includes schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). METHODS Volumes [N = 391; 97 SCZ, 78 BD, 103 MDD, and 113 healthy controls (HC)] and seed-to-whole brain functional connectivity (FC) [N = 136; 33 SCZ, 23 BD, 51 MDD, and 29 HC] of total vermis and its subregions, V1 (anterior), V2 (posterior superior), and V3 (posterior inferior), were examined across SCZ, BD, MDD, and HC in samples enriched for first episode individuals. The relationship between vermis volumes and FC and cognitive measures were explored. RESULTS Significant diagnosis (p = 0.05) and diagnosis by subregion (p = 0.02) effects on vermis volumes were observed across the four groups, particularly in V2 (p = 0.01) with decreased V2 volumes in SCZ compared to BD (pFDR = 0.01). SCZ, BD, and MDD had significant effects on vermis FC, with SCZ having the greatest effects. SCZ had effects on FC of V1, V2, and V3 with broadly distributed cortical and subcortical regions, while BD and MDD effects were observed in FC of V2 and V3 with frontotemporal regions. Exploratory analyses found significant canonical correlation between V3 FC and WM and visual learning for SCZ and MDD. No significant associations were shown between vermis volumes and cognitive measures. CONCLUSIONS Structural and functional alterations of the vermis appear to vary across the psychotic-affective spectrum of SCZ, BD, and MDD. Posterior vermis may be a key neural intersection between affective and psychotic psychopathology.
Collapse
Affiliation(s)
- Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Rd, Nanjing, Jiangsu, 210029, China.
| | - Sri Kandala
- Department of Psychiatry, Washington University, 660 South Euclid Ave, St. Louis, MO, 63108, USA.
| | - Jenny Huang
- Department of Psychiatry, Washington University, 660 South Euclid Ave, St. Louis, MO, 63108, USA.
| | - Jinyuan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Ave, Nashville, TN, 37203, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Ave South, Nashville, TN, 37212, USA.
| | - Trey McGonigle
- Department of Biostatistics, Vanderbilt University Medical Center, 2525 West End Ave, Nashville, TN, 37203, USA.
| | - Deanna Barch
- Department of Psychiatry, Washington University, 660 South Euclid Ave, St. Louis, MO, 63108, USA; Department of Psychological Sciences, Washington University, 1 Brookings Dr, St. Louis, MO, 63130, USA; Department of Radiology, Washington University, 510 South Kingshighway Blvd, St. Louis, MO, 63108, USA.
| | - Yangqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, 155 Nanjing St, Shenyang, Liaoning, Shenyang, 110001, China.
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing St, Shenyang, Liaoning, Shenyang, 110001, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Rd, Nanjing, Jiangsu, 210029, China.
| | - Fay Y Womer
- Department of Psychiatry, Washington University, 660 South Euclid Ave, St. Louis, MO, 63108, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Ave South, Nashville, TN, 37212, USA.
| |
Collapse
|
5
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Yan Y, Murphy TH. Decoding state-dependent cortical-cerebellar cellular functional connectivity in the mouse brain. Cell Rep 2024; 43:114348. [PMID: 38865245 DOI: 10.1016/j.celrep.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Nietz AK, Popa LS, Carter RE, Gerhart ML, Manikonda K, Ranum LP, Ebner TJ. Cerebral cortical functional hyperconnectivity in a mouse model of spinocerebellar ataxia type 8 (SCA8). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599947. [PMID: 38948725 PMCID: PMC11212952 DOI: 10.1101/2024.06.20.599947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While primarily a motor disorder, psychiatric and cognitive symptoms have been reported. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca2+ imaging in a transgenic mouse model of SCA8. We observed that neocortical networks in SCA8+ mice were hyperconnected globally which led to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Keerthi Manikonda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laura P.W. Ranum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Olivito G, Siciliano L, Leggio M, Van Overwalle F. Effective connectivity analysis of resting-state mentalizing brain networks in spinocerebellar ataxia type 2: A dynamic causal modeling study. Neuroimage Clin 2024; 43:103627. [PMID: 38843759 PMCID: PMC11190556 DOI: 10.1016/j.nicl.2024.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Neuroimaging studies on healthy subjects described the causal effective connectivity of cerebellar-cerebral social mentalizing networks, revealing the presence of closed-loops. These studies estimated effective connectivity by applying Dynamic Causal Modeling on task-related fMRI data of healthy subjects performing mentalizing tasks. Thus far, few studies have applied Dynamic Causal Modeling to resting-state fMRI (rsfMRI) data to test the effective connectivity within the cerebellar-cerebral mentalizing network in the absence of experimental manipulations, and no study applied Dynamic Causal Modeling on fMRI data of patients with cerebellar disorders typically showing social cognition deficits. Thus, in this research we applied spectral Dynamic Causal Modeling, to rsfMRI data of 13 patients affected by spinocerebellar ataxia type 2 (SCA2) and of 23 matched healthy subjects. Specifically, effective connectivity was tested between acknowledged mentalizing regions of interest: bilateral cerebellar Crus II, dorsal and ventral medial prefrontal cortex, bilateral temporo-parietal junctions and precuneus. SCA2 and healthy subjects shared some similarities in cerebellar-cerebral mentalizing effective connectivity at rest, confirming the presence of closed-loops between cerebellar and cerebral mentalizing regions in both groups. However, relative to healthy subjects, SCA2 patients showed effective connectivity variations mostly in cerebellar-cerebral closed loops, namely weakened inhibitory connectivity from the cerebellum to the cerebral cortex, but stronger inhibitory connectivity from the cerebral cortex to the cerebellum. The present study demonstrated that effective connectivity changes affect a function-specific mentalizing network in SCA2 patients, allowing to deepen the direction and strength of the causal effective connectivity mechanisms driven by the cerebellar damage associated with SCA2.
Collapse
Affiliation(s)
- Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Italy; Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Italy; Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Italy; Ataxia Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Frank Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
9
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
10
|
Sendhilnathan N, Bostan AC, Strick PL, Goldberg ME. A cerebro-cerebellar network for learning visuomotor associations. Nat Commun 2024; 15:2519. [PMID: 38514616 PMCID: PMC10957870 DOI: 10.1038/s41467-024-46281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Consensus is rapidly building to support a role for the cerebellum beyond motor function, but its contributions to non-motor learning remain poorly understood. Here, we provide behavioral, anatomical and computational evidence to demonstrate a causal role for the primate posterior lateral cerebellum in learning new visuomotor associations. Reversible inactivation of the posterior lateral cerebellum of male monkeys impeded the learning of new visuomotor associations, but had no effect on movement parameters, or on well-practiced performance of the same task. Using retrograde transneuronal transport of rabies virus, we identified a distinct cerebro-cerebellar network linking Purkinje cells in the posterior lateral cerebellum with a region of the prefrontal cortex that is critical in learning visuomotor associations. Together, these results demonstrate a causal role for the primate posterior lateral cerebellum in non-motor, reinforcement learning.
Collapse
Affiliation(s)
- Naveen Sendhilnathan
- Doctoral program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Andreea C Bostan
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Department of Neurobiology, Systems Neuroscience Center, and Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael E Goldberg
- Dept. of Neuroscience, Mahoney Center for Brain and Behavior Research, Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neurology, Psychiatry, and Ophthalmology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
11
|
Christova M, Sylwester V, Gallasch E, Fresnoza S. Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:67-81. [PMID: 36502502 PMCID: PMC10864223 DOI: 10.1007/s12311-022-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.
Collapse
Affiliation(s)
- Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria.
- Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria.
| | | | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria
| | - Shane Fresnoza
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
12
|
Maurer L, Brown M, Saggi T, Cardiges A, Kolarcik CL. Hindlimb muscle representations in mouse motor cortex defined by viral tracing. Front Neuroanat 2023; 17:965318. [PMID: 37303816 PMCID: PMC10248224 DOI: 10.3389/fnana.2023.965318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Descending pathways from the cortex to the spinal cord are involved in the control of natural movement. Although mice are widely used to study the neurobiology of movement and as models of neurodegenerative disease, an understanding of motor cortical organization is lacking, particularly for hindlimb muscles. Methods In this study, we used the retrograde transneuronal transport of rabies virus to compare the organization of descending cortical projections to fast- and slow-twitch hindlimb muscles surrounding the ankle joint in mice. Results Although the initial stage of virus transport from the soleus muscle (predominantly slow-twitch) appeared to be more rapid than that associated with the tibialis anterior muscle (predominantly fast-twitch), the rate of further transport of virus to cortical projection neurons in layer V was equivalent for the two injected muscles. After appropriate survival times, dense concentrations of layer V projection neurons were identified in three cortical areas: the primary motor cortex (M1), secondary motor cortex (M2), and primary somatosensory cortex (S1). Discussion The origin of the cortical projections to each of the two injected muscles overlapped almost entirely within these cortical areas. This organization suggests that cortical projection neurons maintain a high degree of specificity; that is, even when cortical projection neurons are closely located, each neuron could have a distinct functional role (controlling fast- versus slow-twitch and/or extensor versus flexor muscles). Our results represent an important addition to the understanding of the mouse motor system and lay the foundation for future studies investigating the mechanisms underlying motor system dysfunction and degeneration in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy.
Collapse
Affiliation(s)
- Lauren Maurer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maia Brown
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tamandeep Saggi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexia Cardiges
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christi L. Kolarcik
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
14
|
Rodríguez-Borillo O, Roselló-Jiménez L, Guarque-Chabrera J, Palau-Batet M, Gil-Miravet I, Pastor R, Miquel M, Font L. Neural correlates of cocaine-induced conditioned place preference in the posterior cerebellar cortex. Front Behav Neurosci 2023; 17:1174189. [PMID: 37179684 PMCID: PMC10169591 DOI: 10.3389/fnbeh.2023.1174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Addictive drugs are potent neuropharmacological agents capable of inducing long-lasting changes in learning and memory neurocircuitry. With repeated use, contexts and cues associated with consumption can acquire motivational and reinforcing properties of abused drugs, triggering drug craving and relapse. Neuroplasticity underlying drug-induced memories takes place in prefrontal-limbic-striatal networks. Recent evidence suggests that the cerebellum is also involved in the circuitry responsible for drug-induced conditioning. In rodents, preference for cocaine-associated olfactory cues has been shown to correlate with increased activity at the apical part of the granular cell layer in the posterior vermis (lobules VIII and IX). It is important to determine if the cerebellum's role in drug conditioning is a general phenomenon or is limited to a particular sensory modality. Methods The present study evaluated the role of the posterior cerebellum (lobules VIII and IX), together with the medial prefrontal cortex (mPFC), ventral tegmental area (VTA), and nucleus accumbens (NAc) using a cocaine-induced conditioned place preference procedure with tactile cues. Cocaine CPP was tested using ascending (3, 6, 12, and 24 mg/kg) doses of cocaine in mice. Results Compared to control groups (Unpaired and Saline animals), Paired mice were able to show a preference for the cues associated with cocaine. Increased activation (cFos expression) of the posterior cerebellum was found in cocaine CPP groups and showed a positive correlation with CPP levels. Such increases in cFos activity in the posterior cerebellum significantly correlated with cFos expression in the mPFC. Discussion Our data suggest that the dorsal region of the cerebellum could be an important part of the network that mediates cocaine-conditioned behavior.
Collapse
Affiliation(s)
| | | | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - María Palau-Batet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raúl Pastor
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Laura Font
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
15
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
16
|
Ma Q, Pu M, Haihambo N, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. Effective cerebello-cerebral connectivity during implicit and explicit social belief sequence learning using dynamic causal modeling. Soc Cogn Affect Neurosci 2023; 18:6633246. [PMID: 35796503 PMCID: PMC9951265 DOI: 10.1093/scan/nsac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium.,Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
17
|
Pu M, Ma Q, Haihambo N, Li M, Baeken C, Baetens K, Deroost N, Heleven E, Van Overwalle F. Dynamic causal modeling of cerebello-cerebral connectivity when sequencing trait-implying actions. Cereb Cortex 2022; 33:6366-6381. [PMID: 36573440 DOI: 10.1093/cercor/bhac510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.
Collapse
Affiliation(s)
- Min Pu
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Qianying Ma
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Naem Haihambo
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Meijia Li
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Chris Baeken
- Ghent University Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, , 9000, Ghent , Belgium
- University Hospital (UZBrussel) Department of Psychiatry, , 1090, Brussels , Belgium
- Eindhoven University of Technology , Department of Electrical Engineering, 5612, Eindhoven, Th e Netherlands
| | - Kris Baetens
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Natacha Deroost
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Elien Heleven
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Frank Van Overwalle
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| |
Collapse
|
18
|
He P, He B, Li S, Chai W, Rao W, Zhu Y, Chen W, Zhang P, Zhang X, Pan H, Xu R. Distribution Features and Potential Effects of Serotonin in the Cerebrum of SOD1 G93A Transgenic Mice. eNeuro 2022; 9:ENEURO.0001-22.2022. [PMID: 36265904 PMCID: PMC9651208 DOI: 10.1523/eneuro.0001-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/23/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022] Open
Abstract
Serotonin (5-HT) participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), but its effects have not been completely clarified. Therefore, we observed the distribution features and potential effects of 5-HT in the cerebrum of G93A SOD1 transgenic (TG) and wild-type (WT) mice by fluorescence immunohistochemistry, Western blotting, ELISA, as well as motor function measurements. Both 5-HT and tryptophan hydroxylase-2 (TPH2) were mainly present in the limbic systems of the cerebrum, such as the glomerular layer of the olfactory bulb, nucleus accumbens, cingulate, fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus, lateral hypothalamus area, dorsal raphe nucleus, and piriform cortex. TPH2 and 5-HT were expressed in cell bodies in the dorsal raphe nucleus and piriform cortex, while in other regions they were distributed as filaments and clump shapes in axons. The TPH2 distribution in the cerebrum of TG was significantly lower than that in WT in preset, onset, and progression stages. TPH2 expression in the fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus and lateral hypothalamus area was increased in the onset stage and decreased in the progression stage, gradually decreased in the cingulate with disease progression and significantly decreased in the glomerular layer of the olfactory bulb and nucleus accumbens in the onset stage in TG. The number of mammalian achaete-scute homolog-1 in the subventricular zone (SVZ) in TG was significantly lower than that in WT, which was correlated with the TPH2 distribution. Double immunofluorescence staining showed that TPH2, mammalian achaete-scute homolog-1 and 5-HT were mainly expressed in neurons but rarely expressed in microglia or astrocytes in the piriform cortex. The relative fluorescence density of TPH2 in the cingulate region was negatively correlated with the disease severity. Our findings suggest that 5-HT plays a protective role in ALS, likely by regulating neural stem cells in the subventricular zone that might be involved in neuron development in the piriform cortex.
Collapse
Affiliation(s)
- Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Binjun He
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Rao
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yu Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiong Zhang
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong 525000, China
| | - Haili Pan
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, The First Affiliated Hospital of Nanchang Medical College, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
19
|
Parvez MSA, Ohtsuki G. Acute Cerebellar Inflammation and Related Ataxia: Mechanisms and Pathophysiology. Brain Sci 2022; 12:367. [PMID: 35326323 PMCID: PMC8946185 DOI: 10.3390/brainsci12030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.
Collapse
Affiliation(s)
- Md. Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
| |
Collapse
|
20
|
Metoki A, Wang Y, Olson IR. The Social Cerebellum: A Large-Scale Investigation of Functional and Structural Specificity and Connectivity. Cereb Cortex 2022; 32:987-1003. [PMID: 34428293 PMCID: PMC8890001 DOI: 10.1093/cercor/bhab260] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The cerebellum has been traditionally disregarded in relation to nonmotor functions, but recent findings indicate it may be involved in language, affective processing, and social functions. Mentalizing, or Theory of Mind (ToM), is the ability to infer mental states of others and this skill relies on a distributed network of brain regions. Here, we leveraged large-scale multimodal neuroimaging data to elucidate the structural and functional role of the cerebellum in mentalizing. We used functional activations to determine whether the cerebellum has a domain-general or domain-specific functional role, and effective connectivity and probabilistic tractography to map the cerebello-cerebral mentalizing network. We found that the cerebellum is organized in a domain-specific way and that there is a left cerebellar effective and structural lateralization, with more and stronger effective connections from the left cerebellar hemisphere to the right cerebral mentalizing areas, and greater cerebello-thalamo-cortical and cortico-ponto-cerebellar streamline counts from and to the left cerebellum. Our study provides novel insights to the network organization of the cerebellum, an overlooked brain structure, and mentalizing, one of humans' most essential abilities to navigate the social world.
Collapse
Affiliation(s)
- Athanasia Metoki
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
- Department of Neurology,Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
21
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
22
|
Yamawaki Y, Wada Y, Matsui S, Ohtsuki G. Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100028. [DOI: 10.1016/j.crneur.2022.100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022] Open
|
23
|
Han Z, Luo N, Kou J, Li L, Xu Z, Wei S, Wu Y, Wang J, Ye C, Lin K, Xu F. Brain-wide TVA compensation allows rabies virus to retrograde target cell-type-specific projection neurons. Mol Brain 2022; 15:13. [PMID: 35093138 PMCID: PMC8800268 DOI: 10.1186/s13041-022-00898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Retrograde tracers based on viral vectors are powerful tools for the imaging and manipulation of upstream neural networks projecting to a specific brain region, and they play important roles in structural and functional studies of neural circuits. However, currently reported retrograde viral tracers have many limitations, such as brain area selectivity or the inability to retrograde label genetically defined brain-wide projection neurons. To overcome these limitations, a new retrograde tracing method, AAV-PHP.eB assisted retrograde tracing systems (PARTS) based on rabies virus, was established through brain-wide TVA-dependent targeting using an AAV-PHP.eB that efficiently crosses the blood-brain barrier in C57BL/6 J mice, and complementation of EnvA-pseudotyped defective rabies virus that specifically recognizes the TVA receptor. Furthermore, combined with Cre transgenic mice, cell-type-specific PARTS (cPARTS) was developed, which can retrograde label genetically defined brain-wide projection neurons. Our research provides new tools and technical support for the analysis of neural circuits.
Collapse
Affiliation(s)
- Zengpeng Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, People's Republic of China
| | - Nengsong Luo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, People's Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jiaxin Kou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
| | - Zihong Xu
- College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Siyuan Wei
- HongYi Honor College, Wuhan University, Wuhan, People's Republic of China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Kunzhang Lin
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, People's Republic of China.
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen, 518055, People's Republic of China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
24
|
Viet NM, Wang T, Tran-Anh K, Sugihara I. Heterogeneity of intrinsic plasticity in cerebellar Purkinje cells linked with cortical molecular zones. iScience 2022; 25:103705. [PMID: 35059609 PMCID: PMC8760437 DOI: 10.1016/j.isci.2021.103705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.
Collapse
Affiliation(s)
- Nguyen-Minh Viet
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tianzhuo Wang
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khoa Tran-Anh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2022; 15:781527. [PMID: 35087384 PMCID: PMC8787113 DOI: 10.3389/fnsys.2021.781527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.
Collapse
Affiliation(s)
- Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Detlef H. Heck,
| |
Collapse
|
26
|
Microsurgical anatomy and surgical exposure of the cerebellar peduncles. Neurosurg Rev 2022; 45:2095-2117. [PMID: 34997381 DOI: 10.1007/s10143-021-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
A better understanding of the surgical anatomy of the cerebellar peduncles in different surgical approaches and their relationship with other neural structures are delineated through cadaveric dissections. We aimed to revisit the surgical anatomy of the cerebellar peduncles to describe their courses along the brain stem and the cerebellum and revise their segmental classification in surgical areas exposed through different approaches. Stepwise fiber microdissection was performed along the cerebellar tentorial and suboccipital surfaces. Multiple surgical approaches in each of the cerebellar peduncles were compared in eight silicone-injected cadaveric whole heads to evaluate the peduncular exposure areas. From a neurosurgical point of view, the middle cerebellar peduncle (MCP) was divided into a proximal cisternal and a distal intracerebellar segments; the inferior cerebellar peduncle (ICP) into a ventricular segment followed by a posterior curve and a subsequent intracerebellar segment; the superior cerebellar peduncle (SCP) into an initial congregated, an intermediate intraventricular, and a distal intramesencephalic segment. Retrosigmoid and anterior petrosectomy approaches exposed the junction of the MCP segments; telovelar, supratonsillar, and lateral ICP approaches each reached different segments of ICP; paramedian supracerebellar infratentorial, suboccipital transtentorial, and combined posterior transpetrosal approaches displayed the predecussation SCP within the cerbellomesencephalic fissure, whereas the telovelar approach revealed the intraventricular SCP within the superolateral recess of the fourth ventricle. Better understanding of the microsurgical anatomy of the cerebellar peduncles in various surgical approaches and their exposure limits constitute the most critical aspect for the prevention of surgical morbidity during surgery in and around the pons and the upper medulla. Our findings help in evaluating radiological data and planning an operative procedure for cerebellar peduncles.
Collapse
|
27
|
Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. J Neurosci Res 2021; 100:620-637. [PMID: 34850425 PMCID: PMC9300004 DOI: 10.1002/jnr.24993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro‐cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono‐ and disynaptic projections through the MDJ, this work establishes that cerebro‐cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
29
|
Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 2021; 36:109721. [PMID: 34551311 PMCID: PMC8506234 DOI: 10.1016/j.celrep.2021.109721] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cerebellar outputs take polysynaptic routes to reach the rest of the brain, impeding conventional tracing. Here, we quantify pathways between the cerebellum and forebrain by using transsynaptic tracing viruses and a whole-brain analysis pipeline. With retrograde tracing, we find that most descending paths originate from the somatomotor cortex. Anterograde tracing of ascending paths encompasses most thalamic nuclei, especially ventral posteromedial, lateral posterior, mediodorsal, and reticular nuclei. In the neocortex, sensorimotor regions contain the most labeled neurons, but we find higher densities in associative areas, including orbital, anterior cingulate, prelimbic, and infralimbic cortex. Patterns of ascending expression correlate with c-Fos expression after optogenetic inhibition of Purkinje cells. Our results reveal homologous networks linking single areas of the cerebellar cortex to diverse forebrain targets. We conclude that shared areas of the cerebellum are positioned to provide sensory-motor information to regions implicated in both movement and nonmotor function. Pisano et al. use transsynaptic tracing and whole-brain light-sheet microscopy to quantitatively map cerebellar paths to and from the forebrain, including relatively dense projections to the prefrontal neocortex. Divergence of paths from single injection sites suggests that a single cerebellar region can influence multiple thalamic and neocortical targets at once.
Collapse
|
30
|
Shuster SA, Wagner MJ, Pan-Doh N, Ren J, Grutzner SM, Beier KT, Kim TH, Schnitzer MJ, Luo L. The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proc Natl Acad Sci U S A 2021; 118:e2101826118. [PMID: 34088841 PMCID: PMC8201928 DOI: 10.1073/pnas.2101826118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.
Collapse
Affiliation(s)
- S Andrew Shuster
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305
| | - Mark J Wagner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Nathan Pan-Doh
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jing Ren
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Medical Research Council Laboratory of Molecular Biology, Cambridge University, Cambridge CB2 0QH, United Kingdom
| | - Sophie M Grutzner
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kevin T Beier
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Tony Hyun Kim
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Mark J Schnitzer
- HHMI, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Liqun Luo
- HHMI, Stanford University, Stanford, CA 94305;
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
31
|
Zhang X, Ibi M, Haga R, Iwata K, Matsumoto M, Asaoka N, Liu J, Katsuyama M, Yabe-Nishimura C. NOX1/NADPH oxidase affects the development of autism-like behaviors in a maternal immune activation model. Biochem Biophys Res Commun 2021; 534:59-66. [PMID: 33310189 DOI: 10.1016/j.bbrc.2020.11.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic and environmental factors. Among the environmental factors, maternal infection is known as one of the principal risk factors for ASD. On the other hand, postmortem studies suggested the relationship of oxidative stress with ASD etiology. However, the role of oxidative stress in the development of ASD remains unclear. Here, we report the involvement of NOX1/NADPH oxidase, an enzyme generating reactive oxygen species (ROS), in behavioral and anatomical abnormalities in a maternal immune activation (MIA) model. In the MIA model of gestational polyinosinic-polycytidylic acid (poly(I:C)) exposure, increased serum levels of IL-6 were observed in both wild-type (WT) and Nox1-deficient mice (Nox1KO). Following the comparable induction of MIA in the two genotypes, impairment of social preference and defects in motor coordination were observed in WT offspring but not in offspring deficient in Nox1. MIA up-regulated NOX1 mRNA in the cerebral cortex and cerebellum of the fetus but not in the adult offspring. Although the development of cortical neurons was unaffected by MIA in either genotype, the dropout of Purkinje cells in lobule VII of MIA-affected offspring was significantly ameliorated in Nox1KO. Taken together, these results suggested that NOX1/NADPH oxidase plays an essential role in some behavioral phenotypes observed in ASD, possibly by promoting the loss of Purkinje cells in the cerebellum.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Ryu Haga
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Junjie Liu
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| |
Collapse
|
32
|
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep 2020; 28:2923-2938.e8. [PMID: 31509752 DOI: 10.1016/j.celrep.2019.07.078] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cerebellar dysfunction relates to various psychiatric disorders, including autism spectrum and depressive disorders. However, the physiological aspect is less advanced. Here, we investigate the immune-triggered hyperexcitability in the cerebellum on a wider scope. Activated microglia via exposure to bacterial endotoxin lipopolysaccharide or heat-killed Gram-negative bacteria induce a potentiation of the intrinsic excitability in Purkinje neurons, which is suppressed by microglia-activity inhibitor and microglia depletion. An inflammatory cytokine, tumor necrosis factor alpha (TNF-α), released from microglia via toll-like receptor 4, triggers this plasticity. Our two-photon FRET ATP imaging shows an increase in ATP concentration following endotoxin exposure. Both TNF-α and ATP secretion facilitate synaptic transmission. Region-specific inflammation in the cerebellum in vivo shows depression- and autistic-like behaviors. Furthermore, both TNF-α inhibition and microglia depletion revert such behavioral abnormality. Resting-state functional MRI reveals overconnectivity between the inflamed cerebellum and the prefrontal neocortical regions. Thus, immune activity in the cerebellum induces neuronal hyperexcitability and disruption of psychomotor behaviors in animals.
Collapse
Affiliation(s)
- Masamichi Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University Hospital, Shogoin-Kawaramachi-cho, Sakyo-ward, Kyoto 606-8507, Japan
| | - Minsoo Kim
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ward, Kyoto 606-8501, Japan; Department of Molecular and Cellular Physiology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ward, Kyoto 606-8501, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ward, Kyoto 606-8501, Japan
| | - Yamato Itakura
- Department of Biophysics, Kyoto University Graduate School of Science, Kitashirakawa-Oiwake-cho, Sakyo-ward, Kyoto 606-8502, Japan
| | - Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida, Sakyo-ward, Kyoto 606-8501, Japan; Department of Biophysics, Kyoto University Graduate School of Science, Kitashirakawa-Oiwake-cho, Sakyo-ward, Kyoto 606-8502, Japan.
| |
Collapse
|
33
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
34
|
Involvement of the dentate nucleus in the pathophysiology of amyotrophic lateral sclerosis: A multi-center and multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2020; 28:102385. [PMID: 32871387 PMCID: PMC7476068 DOI: 10.1016/j.nicl.2020.102385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
This original research article highlights cerebellar structural and functional connectivity abnormalities implicated in the pathophysiology of ALS. In this study, resting-state functional MRI (rs-FMRI), diffusion tensor imaging (DTI), and 3D T1W structural images were examined. Functional connectivity was investigated between the cerebral cortex and cerebellum targeting the dentate nucleus (DN). Microstructural white matter diffusivity was examined along the cerebellar peduncles connecting the DN with the cerebral cortex and brain stem. Grey matter volumes of the cerebellar lobules and DN were determined. Overall, we provide evidence supporting involvement of the DN and associated cerebellar white matter tracts in the pathophysiology of ALS.
Amyotrophic lateral sclerosis (ALS) is characterized primarily by motor neuron but also frontotemporal lobar degeneration. Although the cerebellum is involved in both motor and cognitive functions, little is known of its role in ALS. We targeted the dentate nucleus (DN) in the cerebellum and the associated white matter fibers tracts connecting the DN to the rest of the brain using multimodal imaging techniques to examine the cerebellar structural and functional connectivity patterns in ALS patients and hypothesized that the DN is implicated in the pathophysiology of ALS. A cohort of 127 participants (56 healthy subjects (HS); 71 ALS patients) were recruited across Canada through the Canadian ALS Neuroimaging Consortium (CALSNIC). Resting state functional MRI, diffusion tensor imaging (DTI), and 3D weighted T1 structural images were acquired on a 3-tesla scanner. The DN in the cerebellum was used as a seed to evaluate the whole brain cerebral resting-state functional connectivity (rsFC). The superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP) and inferior cerebellar peduncle (ICP) were used as a region of interest in DTI to evaluate the structural integrity of the DN with the cortex and brain stem. Cerebellar volumetric analysis was done to examine the lobular and DN grey matter (GM) changes in ALS patients. Lastly, an association between DN rsFC and structural alterations were explored. DN rsFC was reduced with cerebrum (supplementary motor area, precentral gyrus, frontal, posterior parietal, temporal), lobule IV, and brain stem, and increased with parieto-occipital region. DN rsFC and white matter (WM) diffusivity alterations at SCP, MCP, and ICP were accompanied by correlations with ALSFRS-R. There were no DN volumetric changes. Notably, DN rsFC correlated with WM abnormalities at superior cerebellar peduncle. The DN plays a pathophysiological role in ALS. Impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. This study demonstrates altered cerebellar rsFC connectivity with motor and extra-motor regions in ALS, and impaired rsFC is likely due to the observed cerebellar peduncular WM damage given the lack of GM atrophy of the DN. The correlation between the altered DN connectivity, and the behavioral data support the hypothesis that the DN plays a pathophysiological role in ALS.
Collapse
|
35
|
Henschke JU, Pakan JM. Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas. eLife 2020; 9:59148. [PMID: 32795386 PMCID: PMC7428308 DOI: 10.7554/elife.59148] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
The cerebral cortex and cerebellum both play important roles in sensorimotor processing, however, precise connections between these major brain structures remain elusive. Using anterograde mono-trans-synaptic tracing, we elucidate cerebrocerebellar pathways originating from primary motor, sensory, and association cortex. We confirm a highly organized topography of corticopontine projections in mice; however, we found no corticopontine projections originating from primary auditory cortex and detail several potential extra-pontine cerebrocerebellar pathways. The cerebellar hemispheres were the major target of resulting disynaptic mossy fiber terminals, but we also found at least sparse cerebrocerebellar projections to every lobule of the cerebellum. Notably, projections originating from association cortex resulted in less laterality than primary sensory/motor cortices. Within molecularly defined cerebellar modules we found spatial overlap of mossy fiber terminals, originating from functionally distinct cortical areas, within crus I, paraflocculus, and vermal regions IV/V and VI - highlighting these regions as potential hubs for multimodal cortical influence.
Collapse
Affiliation(s)
- Julia U Henschke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Magdeburg, Germany
| | - Janelle Mp Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz, Magdeburg, Germany
| |
Collapse
|
36
|
Lindquist DH. Emotion in motion: A three-stage model of aversive classical conditioning. Neurosci Biobehav Rev 2020; 115:363-377. [DOI: 10.1016/j.neubiorev.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
|
37
|
McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Lobulus Simplex and Crus I Differentially Represent Phase and Phase Difference of Prefrontal Cortical and Hippocampal Oscillations. Cell Rep 2020; 27:2328-2334.e3. [PMID: 31116979 PMCID: PMC6538275 DOI: 10.1016/j.celrep.2019.04.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
The cerebellum has long been implicated in tasks involving precise temporal control, especially in the coordination of movements. Here we asked whether the cerebellum represents temporal aspects of oscillatory neuronal activity, measured as instantaneous phase and difference between instantaneous phases of oscillations in two cerebral cortical areas involved in cognitive function. We simultaneously recorded Purkinje cell (PC) single-unit spike activity in cerebellar lobulus simplex (LS) and Crus I and local field potential (LFP) activity in the medial prefrontal cortex (mPFC) and dorsal hippocampus CA1 region (dCA1). Purkinje cells in cerebellar LS and Crus I differentially represented specific phases and phase differences of mPFC and dCA1 LFP oscillations in a frequency-specific manner, suggesting a site- and frequency-specific cerebellar representation of temporal aspects of neuronal oscillations in non-motor cerebral cortical areas. These findings suggest that cerebellar interactions with cerebral cortical areas involved in cognitive functions might involve temporal coordination of neuronal oscillations. The cerebellum has long been implicated in tasks involving precise temporal control, especially in the coordination of movements. McAfee et al. show that the cerebellar principal neurons, Purkinje cells, represent precise temporal information about the phase and phase differences of neuronal oscillations occurring in two non-motor-related cerebral cortical structures.
Collapse
Affiliation(s)
- Samuel S McAfee
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA; St. Jude Children's Research Hospital, Division of Translational Imaging Research, Memphis, TN 38105, USA.
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis, TN 38163, USA.
| |
Collapse
|
38
|
Ohtsuki G, Shishikura M, Ozaki A. Synergistic excitability plasticity in cerebellar functioning. FEBS J 2020; 287:4557-4593. [PMID: 32367676 DOI: 10.1111/febs.15355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.
Collapse
Affiliation(s)
- Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Biophysics, Kyoto University Graduate School of Science, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Mari Shishikura
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| | - Akitoshi Ozaki
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| |
Collapse
|
39
|
Krautheim JT, Steines M, Dannlowski U, Neziroğlu G, Acosta H, Sommer J, Straube B, Kircher T. Emotion specific neural activation for the production and perception of facial expressions. Cortex 2020; 127:17-28. [DOI: 10.1016/j.cortex.2020.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 01/19/2020] [Indexed: 01/09/2023]
|
40
|
Jackman SL, Chen CH, Offermann HL, Drew IR, Harrison BM, Bowman AM, Flick KM, Flaquer I, Regehr WG. Cerebellar Purkinje cell activity modulates aggressive behavior. eLife 2020; 9:53229. [PMID: 32343225 PMCID: PMC7202893 DOI: 10.7554/elife.53229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Although the cerebellum is traditionally associated with balance and motor function, it also plays wider roles in affective and cognitive behaviors. Evidence suggests that the cerebellar vermis may regulate aggressive behavior, though the cerebellar circuits and patterns of activity that influence aggression remain unclear. We used optogenetic methods to bidirectionally modulate the activity of spatially-delineated cerebellar Purkinje cells to evaluate the impact on aggression in mice. Increasing Purkinje cell activity in the vermis significantly reduced the frequency of attacks in a resident-intruder assay. Reduced aggression was not a consequence of impaired motor function, because optogenetic stimulation did not alter motor performance. In complementary experiments, optogenetic inhibition of Purkinje cells in the vermis increased the frequency of attacks. These results suggest Purkinje cell activity in the cerebellar vermis regulates aggression, and further support the importance of the cerebellum in driving affective behaviors that could contribute to neurological disorders.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Iain R Drew
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bailey M Harrison
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Anna M Bowman
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Katelyn M Flick
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Zingg B, Peng B, Huang J, Tao HW, Zhang LI. Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry. J Neurosci 2020; 40:3250-3267. [PMID: 32198185 PMCID: PMC7159884 DOI: 10.1523/jneurosci.2158-19.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits.SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Bo Peng
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Junxiang Huang
- Zilkha Neurogenetic Institute
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute
- Department of Physiology and Neuroscience
| | - Li I Zhang
- Zilkha Neurogenetic Institute
- Department of Physiology and Neuroscience
| |
Collapse
|
42
|
Aoki S, Coulon P, Ruigrok TJH. Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex. Cereb Cortex 2020; 29:598-614. [PMID: 29300895 DOI: 10.1093/cercor/bhx343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex requires cerebellar input for optimizing sensorimotor processing. However, how the sensorimotor cortex uses cerebellar information is far from understood. One critical and unanswered question is how cerebellar functional entities (zones or modules) are connected to distinct parts of the sensorimotor cortices. Here, we utilized retrograde transneuronal infection of rabies virus (RABV) to study the organization of connections from the cerebellar cortex to M1, M2, and S1 of the rat cerebral cortex. RABV was co-injected with cholera toxin β-subunit (CTb) into each of these cortical regions and a survival time of 66-70 h allowed for third-order retrograde RABV infection of Purkinje cells. CTb served to identify the injection site. RABV+ Purkinje cells throughout cerebellar zones were identified by reference to the cerebellar zebrin pattern. All injections, including those into S1, resulted in multiple, zonally arranged, strips of RABV+ Purkinje cells. M1 injections were characterized by input from Purkinje cells in the vermal X-zone, medial paravermis (C1- and Cx-zones), and lateral hemisphere (D2-zone); M2 receives input from D2- and C3-zones; connections to S1 originate from X-, Cx-, C3-, and D2-zones. We hypothesize that individual domains of the sensorimotor cortex require information from a specific combination of cerebellar modules.
Collapse
Affiliation(s)
- Sho Aoki
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Present address: Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Patrice Coulon
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Van Overwalle F, Van de Steen F, van Dun K, Heleven E. Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling. Neuroimage 2020; 206:116326. [DOI: 10.1016/j.neuroimage.2019.116326] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
|
44
|
Wagner MJ, Luo L. Neocortex-Cerebellum Circuits for Cognitive Processing. Trends Neurosci 2019; 43:42-54. [PMID: 31787351 DOI: 10.1016/j.tins.2019.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Although classically thought of as a motor circuit, the cerebellum is now understood to contribute to a wide variety of cognitive functions through its dense interconnections with the neocortex, the center of brain cognition. Recent investigations have shed light on the nature of cerebellar cognitive processing and information exchange with the neocortex. We review findings that demonstrate widespread reward-related cognitive input to the cerebellum, as well as new studies that have characterized the codependence of processing in the neocortex and cerebellum. Together, these data support a view of the neocortex-cerebellum circuit as a joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive processing. These studies have also expanded classical theory on the computations performed by the cerebellar circuit.
Collapse
Affiliation(s)
- Mark J Wagner
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Tremblay SA, Chapman CA, Courtemanche R. State-Dependent Entrainment of Prefrontal Cortex Local Field Potential Activity Following Patterned Stimulation of the Cerebellar Vermis. Front Syst Neurosci 2019; 13:60. [PMID: 31736718 PMCID: PMC6828963 DOI: 10.3389/fnsys.2019.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022] Open
Abstract
The cerebellum is involved in sensorimotor, cognitive, and emotional functions through cerebello-cerebral connectivity. Cerebellar neurostimulation thus likely affects cortical circuits, as has been shown in studies using cerebellar stimulation to treat neurological disorders through modulation of frontal EEG oscillations. Here we studied the effects of different frequencies of cerebellar stimulation on oscillations and coherence in the cerebellum and prefrontal cortex in the urethane-anesthetized rat. Local field potentials were recorded in the right lateral cerebellum (Crus I/II) and bilaterally in the prefrontal cortex (frontal association area, FrA) in adult male Sprague-Dawley rats. Stimulation was delivered to the cerebellar vermis (lobule VII) using single pulses (0.2 Hz for 60 s), or repeated pulses at 1 Hz (30 s), 5 Hz (10 s), 25 Hz (2 s), and 50 Hz (1 s). Effects of stimulation were influenced by the initial state of EEG activity which varies over time during urethane-anesthesia; 1 Hz stimulation was more effective when delivered during the slow-wave state (Stage 1), while stimulation with single-pulse, 25, and 50 Hz showed stronger effects during the activated state (Stage 2). Single-pulses resulted in increases in oscillatory power in the delta and theta bands for the cerebellum, and in frequencies up to 80 Hz in cortical sites. 1 Hz stimulation induced a decrease in 0–30 Hz activity and increased activity in the 30–200 Hz range, in the right FrA. 5 Hz stimulation reduced power in high frequencies in Stage 1 and induced mixed effects during Stage 2.25 Hz stimulation increased cortical power at low frequencies during Stage 2, and increased power in higher frequency bands during Stage 1. Stimulation at 50 Hz increased delta-band power in all recording sites, with the strongest and most rapid effects in the cerebellum. 25 and 50 Hz stimulation also induced state-dependent effects on cerebello-cortical and cortico-cortical coherence at high frequencies. Cerebellar stimulation can therefore entrain field potential activity in the FrA and drive synchronization of cerebello-cortical and cortico-cortical networks in a frequency-dependent manner. These effects highlight the role of the cerebellar vermis in modulating large-scale synchronization of neural networks in non-motor frontal cortex.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - C Andrew Chapman
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Richard Courtemanche
- Department of Health, Kinesiology, and Applied Physiology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
46
|
Gao Z, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N. Response to "Fallacies of Mice Experiments". Neuroinformatics 2019; 17:475-478. [PMID: 31377994 PMCID: PMC6842428 DOI: 10.1007/s12021-019-09433-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181-183, Gao et al. 2018, Nature, 563, 113-116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than the dentate nucleus, given previous anatomical studies in non-human primates. Second, De Schutter suggests that our study design did not delineate different components of the behavior and the fastigial nucleus might play roles in sensory discrimination rather than motor planning. These comments are based on anatomical studies in other species and homology-based arguments and ignore key anatomical data and neurophysiological experiments from our study. Here we outline our interpretation of existing data and point out gaps in knowledge where future studies are needed.
Collapse
Affiliation(s)
- Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Alyse M Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael N Economo
- Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Amada M Abrego
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Aoki S, Smith JB, Li H, Yan X, Igarashi M, Coulon P, Wickens JR, Ruigrok TJH, Jin X. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. eLife 2019; 8:e49995. [PMID: 31490123 PMCID: PMC6731092 DOI: 10.7554/elife.49995] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Cortico-basal ganglia-thalamocortical loops are largely conceived as parallel circuits that process limbic, associative, and sensorimotor information separately. Whether and how these functionally distinct loops interact remains unclear. Combining genetic and viral approaches, we systemically mapped the limbic and motor cortico-basal ganglia-thalamocortical loops in rodents. Despite largely closed loops within each functional domain, we discovered a unidirectional influence of the limbic over the motor loop via ventral striatum-substantia nigra (SNr)-motor thalamus circuitry. Slice electrophysiology verifies that the projection from ventral striatum functionally inhibits nigro-thalamic SNr neurons. In vivo optogenetic stimulation of ventral or dorsolateral striatum to SNr pathway modulates activity in medial prefrontal cortex (mPFC) and motor cortex (M1), respectively. However, whereas the dorsolateral striatum-SNr pathway exerts little impact on mPFC, activation of the ventral striatum-SNr pathway effectively alters M1 activity. These results demonstrate an open cortico-basal ganglia loop whereby limbic information could modulate motor output through ventral striatum control of M1.
Collapse
Affiliation(s)
- Sho Aoki
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Department of NeuroscienceErasmus Medical Center RotterdamRotterdamNetherlands
- Japan Society for the Promotion of SciencesTokyoJapan
| | - Jared B Smith
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Hao Li
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Xunyi Yan
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Masakazu Igarashi
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Japan Society for the Promotion of SciencesTokyoJapan
| | - Patrice Coulon
- Institut des Neurosciences de la TimoneCentre National de la Recherche Scientifique (CNRS), Aix-Marseille UniversitéMarseilleFrance
| | - Jeffery R Wickens
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Tom JH Ruigrok
- Department of NeuroscienceErasmus Medical Center RotterdamRotterdamNetherlands
| | - Xin Jin
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
48
|
Castagna C, Merighi A, Lossi L. Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cell Mol Neurobiol 2019; 39:833-856. [PMID: 31098770 DOI: 10.1007/s10571-019-00683-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/02/2019] [Indexed: 01/17/2023]
Abstract
Reeler heterozygous mice (reln+/-) are seemingly normal but haplodeficient in reln, a gene implicated in autism. Structural/neurochemical alterations in the reln+/- brain are subtle and difficult to demonstrate. Therefore, the usefulness of these mice in translational research is still debated. As evidence implicated several synapse-related genes in autism and the cerebellar vermis is structurally altered in the condition, we have investigated the expression of synaptophysin 1 (SYP1) and contactin 6 (CNTN6) within the vermis of reln+/- mice. Semi-thin plastic sections of the vermis from adult mice of both sexes and different genotypes (reln+/- and reln+/+) were processed with an indirect immunofluorescence protocol. Immunofluorescence was quantified on binary images and statistically analyzed. Reln+/- males displayed a statistically significant reduction of 11.89% in the expression of SYP1 compared to sex-matched wild-type animals, whereas no differences were observed between reln+/+ and reln+/- females. In reln+/- male mice, reductions were particularly evident in the molecular layer: 10.23% less SYP1 than reln+/+ males and 5.84% < reln+/+ females. In reln+/- females, decrease was 9.84% versus reln+/+ males and 5.43% versus reln+/+ females. Both reln+/- males and females showed a stronger decrease in CNTN6 expression throughout all the three cortical layers of the vermis: 17-23% in the granular layer, 24-26% in the Purkinje cell layer, and 9-14% in the molecular layer. Altogether, decrease of vermian SYP1 and CNTN6 in reln+/- mice displayed patterns compatible with the structural modifications of the autistic cerebellum. Therefore, these mice may be a good model in translational studies.
Collapse
Affiliation(s)
- Claudia Castagna
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy.
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| |
Collapse
|
49
|
Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C, Rondi-Reig L. Anatomical and physiological foundations of cerebello-hippocampal interaction. eLife 2019; 8:e41896. [PMID: 31205000 PMCID: PMC6579515 DOI: 10.7554/elife.41896] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple lines of evidence suggest that functionally intact cerebello-hippocampal interactions are required for appropriate spatial processing. However, how the cerebellum anatomically and physiologically engages with the hippocampus to sustain such communication remains unknown. Using rabies virus as a retrograde transneuronal tracer in mice, we reveal that the dorsal hippocampus receives input from topographically restricted and disparate regions of the cerebellum. By simultaneously recording local field potential from both the dorsal hippocampus and anatomically connected cerebellar regions, we additionally suggest that the two structures interact, in a behaviorally dynamic manner, through subregion-specific synchronization of neuronal oscillations in the 6-12 Hz frequency range. Together, these results reveal a novel neural network macro-architecture through which we can understand how a brain region classically associated with motor control, the cerebellum, may influence hippocampal neuronal activity and related functions, such as spatial navigation.
Collapse
Affiliation(s)
- Thomas Charles Watson
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Pauline Obiang
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Arturo Torres-Herraez
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Aurélie Watilliaux
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Patrice Coulon
- Institut de Neurosciences de la TimoneCNRS and Aix Marseille UniversitéMarseilleFrance
| | - Christelle Rochefort
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Cerebellum, Navigation and Memory TeamCNRS UMR 8246, INSERM, UMR-S 1130, Sorbonne Universités, University Pierre and Marie CurieParisFrance
| |
Collapse
|
50
|
Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar Contribution to Preparatory Activity in Motor Neocortex. Neuron 2019; 103:506-519.e4. [PMID: 31201123 PMCID: PMC6693889 DOI: 10.1016/j.neuron.2019.05.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
Abstract
In motor neocortex, preparatory activity predictive of specific movements is maintained by a positive feedback loop with the thalamus. Motor thalamus receives excitatory input from the cerebellum, which learns to generate predictive signals for motor control. The contribution of this pathway to neocortical preparatory signals remains poorly understood. Here, we show that, in a virtual reality conditioning task, cerebellar output neurons in the dentate nucleus exhibit preparatory activity similar to that in anterolateral motor cortex prior to reward acquisition. Silencing activity in dentate nucleus by photoactivating inhibitory Purkinje cells in the cerebellar cortex caused robust, short-latency suppression of preparatory activity in anterolateral motor cortex. Our results suggest that preparatory activity is controlled by a learned decrease of Purkinje cell firing in advance of reward under supervision of climbing fiber inputs signaling reward delivery. Thus, cerebellar computations exert a powerful influence on preparatory activity in motor neocortex. Similar activity in dentate nucleus (DN) and ALM cortex prior to reward acquisition Silencing DN activity selectively suppresses preparatory activity in ALM Preparatory activity likely controlled by learned decrease in Purkinje cell firing Dynamics of preparatory activity imply reward time prediction from external cues
Collapse
Affiliation(s)
- Francois P Chabrol
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Sainsbury Wellcome Center, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|